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Abstract. Suppose T is a geodesic triangle with respect to the spherical or the hyperbolic
metric. Let f : T → E be a triangle map onto a euclidean triangle E , and assume that the angle
measures of two of the vertices are preserved by f . We prove that the metric distortion of f is
extremal on the side of T opposite the angle whose measure is not preserved. As applications
we determine the minimum points of the hyperbolic and spherical densities on some symmetric
regions.

1. Introduction

We identify the Riemann sphere with C = C ∪ {∞} , and we consider two
non-degenerate circular-arc triangles T and E . We think of T and E as closed
subsets of the Riemann sphere. A triangle map f : T → E is a homeomorphism f
from T onto E which is a conformal map from the interior of T onto the interior
of E and maps the vertices of T onto the vertices of E . We will assume that T
is a geodesic triangle, either on the Riemann sphere equipped with the spherical
metric or in the unit disc equipped with the hyperbolic metric. According to these
two cases we call T a spherical or a hyperbolic triangle. The triangle E will always
be a euclidean triangle, meaning the edges of E will be straight line segments in
the complex plane.

The metric distortion associated to a triangle map f : T → E at z ∈ T is
the ratio of the euclidean length element |dζ | at ζ = f(z) to the spherical length
element 2|dz|/(1 + |z|2) at z , or to the hyperbolic length element 2|dz|/(1− |z|2)
at z , depending on whether T is a spherical or hyperbolic triangle. The main
result of this paper is the following theorem on metric distortion.

Theorem 1.1. Suppose f : T → E is a triangle map of a spherical (respec-
tively hyperbolic) triangle T onto a euclidean triangle E such that f preserves
the angle measure at two vertices of T . Any point where the metric distortion of
f attains its minimum (respectively its maximum) over T lies on the side of T
that is opposite the angle whose measure is changed by f .
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The sum of the angle measures of the vertices of a triangle is larger than π ,
equal to π , or less than π according to whether the triangle is spherical, euclidean,
or hyperbolic, respectively. Under the assumptions of the theorem, the triangle
map f preserves the angle measure at two vertices of T , which we will call A
and B , say. It follows that the angle measure of the third vertex of T , which we
will call C , is decreased by f if T is spherical and increased if T is hyperbolic.
At C the metric distortion of f becomes singular, i.e., it tends to infinity as we
approach C if T is spherical and vanishes at C if T is hyperbolic. One might
then expect that the other extreme would occur on the edge of T opposite C ,
which is exactly what Theorem 1.1 says.

In general, there is no obvious point on the side opposite C where the ex-
tremum of the metric distortion is attained. In special cases, however, the location
of the extremum can be precisely determined (cf. Corollary 2.9).

Using well-known expressions for the triangle functions considered here in
terms of hypergeometric functions, the metric distortion can be written down more
or less explicitly. Thus, at first sight, the reduction of the statement of Theorem 1.1
to a straightforward calculus problem seems plausible. However, because of the
highly involved nature of these explicit formulas, this approach seems not to be
feasible, and so we take a different approach.

Rather than attempting to use explicit formulas, we use the differential equa-
tion for triangle maps together with geometric arguments to prove our theorem.
The proof runs along the following lines. We consider the function on T which
is the logarithm of the ratio of the two length elements. This is a real-valued
function, so to find its critical points, we set its z -derivative equal to zero, where
z is a holomorphic coordinate on the geodesic triangle T . We get an equation
involving z and z̄ . This equation can be solved for z̄ in terms of a function H
that is meromorphic in T . Surprisingly, the function H has remarkable mapping
properties. Namely, the image of T under H is also a circular-arc triangle. In
fact, the image of T under H , the mapping H post-composed by complex con-
jugation, is a circular-arc triangle T ′ which is complementary to T in a sense we
will precisely describe before the statement of Theorem 2.5. From these mapping
properties of H , Theorem 1.1 will follow as an easy corollary (cf. Corollary 2.8).
The fact that H has the stated mapping property is the deepest and most striking
result of the present paper. The proof, if appropriately organized, can be reduced
to a direct computation checking a differential equation for H .

In Section 3 we give two applications of Theorem 1.1. Our first application
is a new proof of a theorem of A. Baernstein II ([B], [BV]) and H. Montgomery
[M], which says that if one considers the complex plane minus a symmetric lattice,
then the ratio of the hyperbolic to the euclidean length elements is smallest at the
natural points of symmetry that are farthest from the lattice points. Our second
application is to determine sharp upper bounds on the spherical derivative at the
origin of a map from the unit disc into a symmetric region in the Riemann sphere,
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as in our previous paper [BC]. In particular we are able to obtain precise upper
bounds on the spherical derivative at the origin of a map from the unit disc into
the Riemann sphere minus the vertices of a regular inscribed dodecahedron or
icosahedron, two cases we were not able to handle in [BC].
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2. Maps from geodesic triangles onto euclidean triangles

Suppose f : T → E is a triangle map. In this section we make the assumptions
of Theorem 1.1: namely, that T is a hyperbolic or spherical triangle, that E is
a euclidean triangle, and that f preserves the angle measure of two vertices.
We continue to denote the vertices of T by A , B , and C , and we denote the
corresponding angle measures by πα , πβ , and πγ . The vertices of E we will
denote by Ã , B̃ , and C̃ , with corresponding angle measures πα̃ , πβ̃ , and πγ̃ .
Under our assumptions on f , we may assume f(A) = Ã , f(B) = B̃, f(C) = C̃ ,
α = α̃ , and β = β̃ . With this notation, C is the vertex of T whose angle measure
is changed by f and so γ 	= γ̃ . Since E is a euclidean triangle, we must also
have that α+ β < 1. We let z denote a complex variable on the domain triangle
T , and we let ζ denote a complex variable on the image triangle E . The length
element in the domain of f is given by

2|dz|
1± |z|2 ,

where here and henceforth, we make the following sign convention: When we use
the symbols ± and ∓ , the upper sign corresponds to the spherical case and the
lower sign to the hyperbolic case.
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The sense preserving isometries of the Riemann sphere with the spherical
metric or the unit disc with the hyperbolic metric are given by the Möbius trans-
formations

U : z̃ �→ z = eiθ z̃ − z̃0

1± z̃0z̃
.

Here θ ∈ [0, 2π] . Moreover, |z̃0| < 1 in the hyperbolic case. In the spherical case,
z̃0 ∈ C∪{∞} . If z̃0 = ∞ , the definition of U needs to be adjusted appropriately,
i.e., U : z̃ �→ −eiθ/z̃ . Similar adjustments have to be made in the following to
include the case of infinity in formulas, and we will usually not mention this
explicitly. The sense preserving isometries of the euclidean ζ -plane are the maps

V : ζ �→ ζ̃ = eiθζ + ζ0.

Here θ ∈ [0, 2π] and ζ0 ∈ C .
We use I to denote the mapping

I(z) = ∓1
z̄
.

Note that I is the map to the antipodal point on the Riemann sphere in the
spherical case or inversion through the unit circle in the hyperbolic case.

We want to find the extrema of the metric distortion by the map f . It is
technically a little easier and amounts to the same to consider the logarithm of
(twice) this quantity. Explicitly, it is given by

µ(z) = log(1± |z|2) + 1
2
log

(
|f ′(z)|2

)
.

Let x and y be the real and imaginary-parts of the holomorphic coordinate
z = x+ iy . If φ(z) is a function with values in C, we denote by φ̄ the function
z �→ φ(z) , i.e., the composition of complex conjugation and φ . For differentiable
φ defined on an open subregion of the z -plane, we define

∂φ

∂z
=

1
2

(
∂φ

∂x
− i

∂φ

∂y

)
and

∂φ

∂z̄
=

1
2

(
∂φ

∂x
+ i

∂φ

∂y

)
.

We denote by ν the function defined by

ν(z) = (1± |z|2)∂µ
∂z

(z).

Note that both µ and ν are smooth, i.e., infinitely differentiable, in the
interior of T .

The function ν is essentially ∂µ/∂z . The factor (1 ± |z|2) ensures that ν
has certain useful invariance properties that we will make precise momentarily. To
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solve our main extremal problem, we will want to find the critical points of µ .
They are given by the zeros of ν .

To simplify the appearance of the formulas below, we will use the following
short-hand notation:

Dzφ =
d

dz
log

(
dφ

dz

)
=

d2φ/dz2

dφ/dz
.

The following function will play an important role in determining the critical
points of µ :

H(z) = ∓ Dzf(z)
zDzf(z) + 2

.

Note that the denominator in the fraction defining H is not identically zero and
hence H is a meromorphic in the interior of T . Indeed, if the denominator were
identically zero, we would get a differential equation for f . It would then be
straightforward to show that f would have to be a Möbius transformation. But,
Möbius transformations preserve angle measures, whereas f changes the angle
measure at the vertex C of T . This would then be a contradiction.

Remark. The idea to consider this function H comes from the work of
Ruscheweyh and Wirths [RW].

Solving for Dzf in the definition of H , we get

(1) Dzf(z) =
∓2H(z)
1± zH(z)

.

The following proposition describes the invariance behavior of the functions
µ and H .

Proposition 2.1. Let the notation be as above. Consider the function

f̃ = V ◦ f ◦ U, z̃ �→ ζ̃ = V ◦ f ◦ U(z̃),

and let µ̃ , ν̃ , and H̃ be defined as µ , ν , and H , respectively, using f̃ instead
of f . Then

(i) µ̃ = µ ◦ U ,
(ii) ν̃ = ν ◦ U ,
(iii) U ◦ I = I ◦ U ,
(iv) H̃ = U−1 ◦H ◦ U .

Proof. Equation (i) follows from the invariant definition of µ as the logarithm
of (twice) the ratio of the infinitesimal length elements and the fact that U and
V are isometries in the appropriate geometries.
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Equation (ii) follows from the chain rule and the equation

(1± |z̃|2)
∣∣∣∣dUdz̃ (z̃)

∣∣∣∣ = 1± |U(z̃)|2.

In the spherical case equation (iii) follows from the fact that rotations map
antipodal points to antipodal points. Similarly, suppose two points are mapped
to each other by inversion with respect to the unit circle. Then the image points
of these points under a Möbius transformation preserving the unit disc have the
same property.

To prove (iv), first note that

(2) Dz̃ f̃ = (Dzf ◦ U) · dU
dz̃

+Dz̃U.

Moreover, the following identity is true for a, b ∈C , a 	= I(b),

(3)
∓2U(b)

1± U(a)U(b)
· dU
dz̃

(a) +Dz̃U(a) =
∓2b
1± ab

.

Using (2), (1), and (3) with a = z̃ and b = U−1 ◦H ◦ U(z̃), we obtain

Dz̃ f̃(z̃) =
∓2

(
H ◦ U(z̃)

)
1± U(z̃)

(
H ◦ U(z̃)

) · dU
dz̃

(z̃) +Dz̃U(z̃) =
∓2

(
U−1 ◦H ◦ U(z̃)

)
1± z̃

(
U−1 ◦H ◦ U(z̃)

) .
Note that in this equation the denominator is not identically zero, since H 	≡ I .
This equation together with equation (1) where z , f , and H are replaced by z̃ ,
f̃ , and H̃ , respectively, implies (iv).

We now prove that the functions µ , ν , and H have extensions to the bound-
ary of T .

Proposition 2.2. Let the notation be as discussed above. Then
(i) µ extends continuously to T with values in R = R ∪ {−∞,+∞} . The

function µ can be ∞ or −∞ only at the vertex C , where µ(C) = ∞ in the
spherical case and µ(C) = −∞ in the hyperbolic case.

(ii) If one of the vertices A or B of T has internal angle measure strictly less
than 1

2π , then this vertex is a local minimum for µ if T is spherical and a local
maximum for µ if T is hyperbolic.

(iii) The function ν extends continuously to T with values in C . The only
point where ν = ∞ is the vertex C . We have ν = 0 at the vertices A and B .
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Proof. By Schwarz’s reflection principle, at all boundary points of T which
are not vertices, f has a unique local extension as a conformal map. It is then
clear that µ and ν extend smoothly to the boundary of T , except possibly at the
vertices. Thus, we need only check what happens there. Let πδ denote the angle
measure of one of the vertices of T (i.e. δ = α, β , or γ ), and let πδ̃ denote the
angle measure of the image vertex (i.e. δ̃ = α, β , or γ̃ ).

We first consider the case that δ 	= 0. In other words, we exclude for the
moment the case that T is hyperbolic with the vertex in question lying on the
boundary of the unit circle.

By the invariance properties proved in Proposition 2.1, we can move this
vertex to z = 0 by an isometry. Moreover, we can assume that one of the edges
meeting at this vertex lies along the positive real-axis with the interior of the
triangle lying to the left and that the other edge meeting at this vertex is a straight
line segment. Post-composing f by an euclidean isometry, we can assume that the
image vertex is also at the origin, that one of the sides of the euclidean triangle is
along the positive real ζ -axis, and that the other side meeting the vertex at ζ = 0
is a line segment in the upper half-plane. In this case, for z ∈ T near the origin,
f is of the form

f(z) = [h1(z1/δ)]δ̃.

Here and in the following, h1, h2 , etc. will denote functions holomorphic at the
origin. Here we have h1(0) = 0, h′

1(0) 	= 0, and h1 positive on the positive real
axis. We will always choose branches of the power functions u �→ uλ , λ ∈ R , that
are positive on the positive real axis. Then,

(4) f ′(z) = (δ̃/δ)h1(z1/δ)δ̃−1h′
1(z

1/δ)z1/δ−1 = zδ̃/δ−1h2(z1/δ), h2(0) 	= 0,

and

(5) Dzf(z) =
δ̃/δ − 1

z
+

1
δ
· h

′
2(z

1/δ)
h2(z1/δ)

· z1/δ−1 =
1
z
h3(z1/δ), h3(0) = δ̃/δ − 1.

If δ̃ = δ , then δ < 1. Hence Dzf(z) → 0 as z → 0, z ∈ T . In this case Dzf
continuously extends to the origin with value 0 at this point. On the other hand,
if δ̃ 	= δ , then Dzf(z) → ∞ as z → 0, z ∈ T .

The above expansions for f and its derivatives imply the statements of the
proposition. To see this note that if δ̃ 	= δ , then near 0 we have

µ(z) = (δ̃/δ − 1) log |z|+O(1).

If δ̃ = δ , we have
µ(z) = log |h2(0)|+O(|z|min{2,1/δ}).
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If in addition δ < 1
2
, then

µ(z) = log |h2(0)| ± |z|2 + o(|z|2).

Statements (i) and (ii) follow.
Since

(6) ν(z) = ±z̄ + 1
2
(1± |z|2)Dzf(z),

statement (iii) follows from the above remark about Dzf .
It remains to treat the case δ = 0. In this case, T is hyperbolic, the vertex

in question is C , and it lies on the boundary of the unit circle. Without loss of
generality (again cf. Proposition 2.1), we may assume the interior of the triangle
is contained in the upper half plane, the vertex C is located at z = 1, and one
of the sides meeting at C lies along the positive real-axis. We can also translate
and rotate the target triangle E so that the image vertex lies at the origin and
so that the image of the side of T along the positive real-axis is mapped into the
positive real-axis. Note that since T is in the upper half-plane, E will be in the
lower half-plane. With this setup, the function f near z = 1 can be written as

f(z) = h4

(
eη(z+1)/(z−1)

)δ̃

with h4(0) = 0, h′
4(0) 	= 0, provided we choose η as a positive real number so

that the function z �→ η(z + 1)(z − 1)−1 maps the angle of T at z = C to a
strip of width π . Computation yields the following expansions for z ∈ T near the
point 1:

f ′(z) =
1

(z − 1)2
eδ̃η(z+1)/(z−1)h5

(
eη(z+1)/(z−1)

)
, h5(0) 	= 0,

and

Dzf(z) = − 2
z − 1

+
1

(z − 1)2
h6

(
eη(z+1)/(z−1)

)
, h6(0) = −2δ̃η 	= 0.

Noting that (1 − |z|)/|z − 1| → 1 as z → 1, z ∈ T , the assertions easily follow
from these expressions. We leave the details to the reader.

Proposition 2.3. Let the notation be as discussed above. Then, the function
H extends continuously to T with values in C . Moreover,

(7) H(A) = A, H(B) = B, and H(C) = I(C).

Proof. The Schwarz reflection principle and formula (1) imply that H extends
meromorphicly and hence continuously to the boundary points of T different from
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the vertices. To see what happens at the vertices we can use the invariance property
of H and the invariant nature of the equations in (7) to reduce to the same
normalizations for T and E as in the proof of Proposition 2.2. Using the same
notation as in that proof, we can assume that the vertex is located at the origin
if δ 	= 0. If in addition δ̃ = δ , then Dzf(z) → 0 as z → 0, z ∈ T . This together
with the definition of H implies that H has a continuous extension to the origin
with H(0) = 0.

If δ 	= 0 and δ̃ 	= δ , then it follows from (5) that H has a continuous extension
to the origin if we set H(0) = ∞ = I(0).

Finally, if δ = 0, we may assume that the vertex (i.e. C ) is located at z = 1.
The expansion for Dzf in the second part of the proof of Proposition 2.2 shows
that H extends continuously to C if we put H(1) = 1 = I(1).

We will be interested in the critical points of µ , and it turns out they occur
if and only if z̄ = H(z).

Proposition 2.4. Let the notation be as discussed above. Suppose T is
spherical (respectively hyperbolic), and z0 ∈ T is a point where µ has a local
minimum (respectively maximum). Then ν(z0) = 0 . Moreover, for all z ∈ T \{C} ,
we have ν(z) = 0 if and only if z̄ = H(z) .

Proof. By the invariance properties of ν and µ , we may assume z0 	= ∞ .
If z0 is in the interior of T , then z0 is a critical point of µ , and so ν(z0) = 0.
By Schwarz’s reflection principle, this is also true for points on the edges of T
which are not vertices. Finally, z0 cannot be the vertex C , and we already know
ν(A) = ν(B) = 0 by statement (iii) in Proposition 2.2.

To prove that ν(z) = 0 if and only if z̄ = H(z), note that for z 	= C,∞ , we
have ν(z) = 0 if and only if ∂µ/∂z = 0. By direct computation,

∂µ

∂z
(z) =

±z̄
1± zz̄

+
1
2
Dzf(z).

Setting this equal to zero and solving for z̄ , we get

z̄ = ∓ Dzf(z)
zDzf(z) + 2

.

The expression on the right is just the definition of H , and so we are done in the
case that z 	= ∞ . The case z = ∞ follows from the invariance properties of H
and ν .

Before coming to the main result of this section, we introduce one last idea.
Given a distinguished side of the triangle T , which in our case will be the side
connecting the vertices A and B , we define the triangle T ′ complementary to
T with respect to the distinguished side AB as follows. Each side of T is a
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circular-arc on the Riemann sphere, and can thus be extended to form a complete
circle on the Riemann sphere. If we so extend the two sides of T other than our
distinguished side connecting A to B , i.e., the two sides meeting at C , then we
obtain two complete circles. They determine a unique subregion of the Riemann
sphere which contains T and is bounded by subarcs of these circles. This region
is the union of T and another circular-arc triangle. We define this second triangle
to be the complementary triangle T ′ . Note that the distinguished side connecting
A and B is a common side of both triangles T and T ′ . Hence T ′ shares the
vertices A and B with T , and T ′ has angle measures π(1− α) and π(1 − β) at
the vertices A and B , respectively. From the fact that T is a geodesic triangle,
it follows that the third vertex of T ′ is I(C), and the angle measure of T ′ at
I(C) is πγ . Note that the relation of T ′ to be the complementary triangle of T
is invariant under Möbius transformations. Figure 2 shows a circular-arc triangle
T and its complementary triangle T ′ . To simplify the drawing, the triangles in
this figure are not geodesic.

I(C)

A

C

B
T

T ′

Figure 2.

An anti-conformal triangle map of a circular-arc triangle T1 onto a circular-
arc triangle T2 is a homeomorphism from T1 onto T2 which is an anti-conformal
map of the interior of T1 onto the interior of T2 and which maps the vertices of
T1 onto the vertices of T2 .

We now state the main result of this section, which describes the mapping
properties of the meromorphic function H .

Theorem 2.5. Under the assumptions of Theorem 1.1 , the function H is
an anti-conformal triangle map of T onto the complementary triangle T ′ of T
with respect to the side of T connecting the two vertices whose angle measures
are preserved by the given triangle map f , i.e. the side connecting A and B . The
correspondence of the vertices of T and T ′ is given by H(A) = A , H(B) = B ,
H(C) = I(C) .

Note that we have already proven the statement about the vertex correspon-
dence in Proposition 2.3. Before giving the rest of the proof of Theorem 2.5, we
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outline our strategy. We begin by recalling that we can detect functions which
map conformally onto the interior of circular-arc triangles by examining their
Schwarzian derivatives. If G is a holomorphic function of a complex variable t ,
then we define the Schwarzian derivative of G with respect to t , denoted {G, t} ,
by

{G, t} = d

dt
DtG− 1

2
(
DtG

)2
.

Schwarzian derivatives are useful because they remain invariant if G is post-
composed by an arbitrary Möbius transformation. We recall the following well-
known facts, the second of which is an implication of the Schwarz–Christoffel
formula; see for example [Ne] or [Ca] for details.

Theorem 2.6. Let t be a complex variable. A function G meromorphic
in the upper half-plane Im t > 0 maps the upper half-plane conformally onto the
interior of a circular-arc triangle with internal angle measurements πa , πb , and
πc , and maps the real-axis onto the boundary such that 0, 1 and ∞ map to the
vertices of measure πa, πb , and πc respectively if and only if

{G, t} = 1− a2

2t2
+

1− b2

2(t− 1)2
+

a2 + b2 − c2 − 1
2t(t− 1)

.

Moreover, if the target is a euclidean triangle, then

DtG(t) =
a − 1
t

+
b − 1
t− 1

.

The strategy for proving Theorem 2.5 is then to change variables to the upper
half-plane, to compute the Schwarzian derivative of H in order to check that
it maps to a circular-arc triangle, and then to determine the placement of that
triangle.

So, let t be a complex variable, let ζ(t) be the conformal map from Im t > 0
onto the interior of the euclidean triangle E such that when extended to the bound-
ary 0, 1, and ∞ map to the vertices Ã , B̃ , and C̃ of E respectively. Similarly,
let z(t) be the conformal map from Im t > 0 onto the region T in the z -plane
such that when extended to the boundary 0, 1 and ∞ map to the vertices A , B
and C of T respectively. We can use Theorem 2.6 to compute {z, t} and {ζ, t} ,
and from this we can compute {H ◦ z, t} . Before we do that, we will first state
some useful identities between the Schwarzian derivatives of the various functions
we are considering.

Proposition 2.7. Let

u = {ζ, t} − {z, t} and v =
z(dH/dt)
1± zH

.
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We then have the following equalities:

{ζ, z} = {f, z} = ∓2dH/dz

(1± zH)2
,(8)

u =
∓2(dH/dt)(dz/dt)

(1 ± zH)2
,(9)

DtH =
d

dt
log u−Dtζ ± 2v.(10)

Proof. To show (8), we begin with the definition

{f, z} = d

dz
Dzf − 1

2
(Dzf)2.

We now use equation (1) to get

{f, z} =
d

dz

[
∓2H
1± zH

]
− 1

2

(
∓2H
1± zH

)2

.

After taking the derivative of the first term, squaring the second term, and can-
celling, we are left with the expression in (8).

For (9), note that the “chain rule” for Schwarzian derivatives reads

{ζ, t} = {ζ, z}(dz/dt)2 + {z, t}.
Thus,

u = {ζ, t} − {z, t} = {ζ, z}(dz/dt)2.
Combining this with (8), we have

u =
∓2dH/dz

(1 ± zH)2
· (dz/dt)2 =

∓2(dH/dt)(dz/dt)
(1 ± zH)2

,

which shows (9).
For (10), we begin by computing the t -derivative of logu , which appears on

the right in equation (10). Using (9),

(11)

d

dt
log u =

d

dt
log

[
∓2(dH/dt)(dz/dt)

(1 ± zH)2

]

= DtH +Dtz ∓ 2
H(dz/dt) + z(dH/dt)

1± zH
.

On the other hand,

(12) Dtζ −Dtz = Dzζ ·
dz

dt
= ∓2H(dz/dt)

1± zH
,

where the left equality is the chain rule for the operator D and the right equality
is equation (1). Solving for Dtz in equation (12), substituting this expression in
for Dtz in equation (11), and then cancelling gives us

d

dt
log u = DtH +Dtζ ∓

2z(dH/dt)
1± zH

.

Solving this last equation for DtH results in (10).
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Proof of Theorem 2.5. As we said in our outline, we need to compute {H◦z, t}
and verify that it is in the form of a Schwarzian derivative of a triangle function. To
compute {H, t} , we need to know DtH and its derivative. We have an expression
for DtH by Proposition 2.7. So, we now differentiate equation (10):

d

dt
DtH =

d2

dt2
log u− d

dt
Dtζ ± 2

[(dz/dt)(dH/dt) + z(d2H/dt2)](1 ± zH)
(1± zH)2

− 2
[H(dz/dt) + z(dH/dt)](z)(dH/dt)

(1± zH)2

=
d2

dt2
log u− d

dt
Dtζ ± 2

(dz/dt)(dH/dt)
(1 ± zH)2

± 2
z(d2H/dt2)
(1± zH)2

+ 2
z2H(d2H/dt2)
(1± zH)2

− 2
z2(dH/dt)2

(1± zH)2
.

Using equation (9) to replace the term

±2(dH/dt)(dz/dt)
(1± zH)2

with −u , and using the fact that
d2H

dt2
= DtH · dH

dt
,

we get
d

dt
DtH =

d2

dt2
log u− d

dt
Dtζ − u± 2

z(dH/dt)(DtH)
(1 ± zH)2

[1± zH] − 2
z2(dH/dt)2

(1± zH)2
.

Next, we let v be as in Proposition 2.7, and we have
d

dt
DtH =

d2

dt2
logu− d

dt
Dtζ − u± 2vDtH − 2v2.

Replacing the occurrence of DtH on the right-hand side in the above equation
with the right hand side of equation (10), we get

d

dt
DtH =

d2

dt2
log u− d

dt
Dtζ − u± 2v

[
d

dt
log u−Dtζ

]
+ 2v2.

Then, we combine this last equation with equation (10) to compute {H, t} :

{H, t} = d

dt
DtH − 1

2
(DtH)2

=
d2

dt2
log u− d

dt
Dtζ − u± 2v

[
d

dt
log u−Dtζ

]
+ 2v2

− 1
2

[
d

dt
logu−Dtζ ± 2v

]2

=
d2

dt2
log u− d

dt
Dtζ − u− 1

2

[
d

dt
log u−Dtζ

]2

.
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Now, using Theorem 2.6 to compute {ζ, t} and {z, t} ,

u(t) = {ζ, t} − {z, t} =
γ2 − γ̃2

2t(t− 1)
.

Moreover, since the triangle in the ζ -plane is euclidean, the second part of Theo-
rem 2.6 tells us

Dtζ = −1− α

t
− 1− β

t− 1
.

Thus,
d

dt
log u−Dtζ = −α

t
− β

t− 1
.

Differentiating this equation with respect to t , we find

d2

dt2
log u− d

dt
Dtζ =

α

t2
+

β

(t− 1)2
.

Combining these last two equalities with our equation for {H, t} , we find

{H, t} = α

t2
+

β

(t− 1)2
− γ2 − γ̃2

2t(t− 1)
− 1

2

[
−α

t
− β

t− 1

]2

=
2α− α2

2t2
+

2β − β2

2(t− 1)2
+

γ̃2 − γ2 − 2αβ
2t(t− 1)

=
1− (1− α)2

2t2
+

1− (1 − β)2

2(t − 1)2
+

γ̃2 − γ2 − 2αβ
2t(t− 1)

.

Because E is euclidean, we have γ̃ = 1− α− β , and so

γ̃2 − γ2 − 2αβ = (1− α− β)2 − γ2 − 2αβ = (1− α)2 + (1− β)2 − γ2 − 1.

Thus,

{H, t} = 1− (1− α)2

2t2
+

1− (1 − β)2

2(t − 1)2
+

(1− α)2 + (1− β)2 − γ2 − 1
2t(t− 1)

,

and hence by Theorem 2.6, H maps T conformally onto the interior of a circular-
arc triangle with internal angle measures: π(1−α), π(1−β), and πγ . Therefore,
H maps the interior of T anti-conformally to the interior of a circular-arc tri-
angle with these same angle measurements, which are the angle measurements
of T ′ . The Schwarzian derivative computation we have done determines H , and
hence H , up to post-composition by a Möbius transformation. But, any Möbius
transformation is determined by the image of any three distinct points, for ex-
ample the vertices of T . By Proposition 2.3, H maps the vertices of T onto the
corresponding vertices of T ′ . Therefore, H must map T onto T ′ .
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The following corollary implies Theorem 1.1 by Proposition 2.4.

Corollary 2.8. Let z0 ∈ T be a point where ν(z0) = 0 . Then z0 lies on the
side of T connecting the two vertices whose angle measures are preserved by f .
In particular, if T is spherical (respectively hyperbolic), then any point z0 ∈ T
where µ attains a global minimum (respectively maximum) over T lies on this
side.

Proof. By Proposition 2.4, z0 = H(z0). By Theorem 2.5, the image of T
under H is T ′ . Therefore, z0 ∈ T ∩ T ′ . The only common points of T and T ′

are the points on the edge connecting A and B , except possibly the vertex C if
C = I(C). (The possibility C = I(C) can occur only in the hyperbolic case, and
then only when γ = 0, in which case C lies on the unit circle.) Since z0 	= C by
statement (iii) of Proposition 2.2, the corollary follows.

In case that one of the angles preserved by f has measure 1
2π , we can say

even more.

Corollary 2.9. Under the assumptions of Theorem 1.1 , and with the ad-
ditional assumption that α = 1

2 , i.e. the angle at A has measure 1
2π , we have

ν(z0) = 0 for z0 ∈ T if and only if z0 = A or z0 = B . Moreover, if T is spheri-
cal (respectively hyperbolic), then the unique point where µ attains its minimum
(respectively maximum) over T is at the vertex B .

We need the following geometric statement for the proof of the corollary. We
denote by R the reflection across the circle which contains the side of T opposite
to the vertex C .

Lemma 2.10. Let the notation be as discussed above. If α, β ≤ 1
2
, then we

have the strict inclusion R(T ) ⊂ T ′ .

Proof. Let D1 , D2 , D3 , be the unique closed discs in the Riemann sphere
that contain T and whose boundary circles contain the sides of T opposite to A ,
B , and C , respectively. Then R is the reflection across ∂D3 . Moreover,

T = D1 ∩D2 ∩D3 and T ′ = D1 ∩D2 ∩ R(D3).

The hypothesis α ≤ 1
2
implies R(D2 ∩ D3) ⊆ D2 , and similarly, β ≤ 1

2
implies

R(D1 ∩D3) ⊆ D1 . Therefore,

R(T ) ⊆ R(D1 ∩D3) ∩ R(D2 ∩D3) ∩ R(D3) ⊆ D1 ∩D2 ∩R(D3) = T ′.

Note that the angle measures of the triangle R(T ) at the vertices A and B are
απ and βπ , respectively. The angle measures of the triangle T ′ at the vertices
A and B are (1 − α)π and (1 − β)π , respectively. It follows from this that the
above inclusion is strict if α < 1

2 or β < 1
2 . This is always the case under our

assumptions, since απ and βπ are angle measures of the non degenerate euclidean
triangle E which implies α+ β < 1.
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Proof of Corollary 2.9. Assume T is normalized so that the vertex A is at
the origin, that one side of T lies along the positive real-axis, and that one side
of T lies along the positive imaginary-axis. The mapping properties of H and
Lemma 2.10 imply that H (not H !) maps T onto a circular-arc triangle that
strictly contains T . This triangle is nothing other than the reflection of T ′ across
the real-axis.

Let H−1 denote the inverse mapping of H , which is defined on T . Then
H−1 maps T onto a proper subset of itself so that the edge of T along the real
axis is mapped onto itself and the edge along the imaginary axis is mapped into
itself. Since T is a right triangle with right angle at 0, we can reflect T across the
real and imaginary axis and through the origin. Denote the union of T with the
image triangles of T under these involutions by U . The interior of the set U is a
simply connected region and contains the edge AB of T apart from the point B .
By the Schwarz reflection principle, the map H−1 has a continuous extension to
U which is conformal in the interior of U . This mapping maps the side AB of T
onto itself and has the fixed points A and B . This map is not the identity map,
since the image of U is a proper subset of U . By the Schwarz lemma, a map of a
simply connected region into itself that is not the identity can have at most one
internal fixed point. Thus, the vertex A , i.e., the origin, is the only fixed point of
H−1 in the interior of U . Since the edge AB lies along the real-axis, this implies
that the only solutions of z̄ = H(z) on the edge AB of T are A and B . The first
part of the corollary now follows from Proposition 2.4 and Corollary 2.8.

In particular, µ has no critical point in T different from the vertices. Since
µ is invariant under reflection across any side of T , the derivative of µ in the
direction normal to the side will vanish along each side. Since µ has no critical
point except at the vertices, this means that the directional derivative of µ in the
direction of a side cannot vanish anywhere along the side, except at the vertices.
Thus µ is strictly monotonic along each side.

Suppose T is spherical. As we remarked in proof of the previous lemma,
α + β < 1. Therefore, β < 1

2
and the function µ has a local minimum at B by

Proposition 2.2(ii). Since µ is strictly monotonic along the side AB of T , we have
µ(A) > µ(B). We have seen in the first part of the proof that A and B are the
only points where µ can possibly have a global minimum on T . It follows that
z0 = B is the unique point where this global minimum is attained.

If T is hyperbolic, it follows similarly that z0 = B is the unique point where
the global maximum of µ on T is attained.

3. Applications

We recall that a region Ω ⊆C is called hyperbolic if and only if there exists
a meromorphic universal covering map f from the unit disc onto Ω. This is the
case if and only if the complement of Ω in C contains at least three points.
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If Ω ⊆ C is hyperbolic, the hyperbolic density Λ at a point w ∈ Ω is defined
as the ratio of the hyperbolic length element at any preimage point of w under f
to the euclidean length element at w . This definition is independent of the choice
of f and of the preimage point w . Explicitly,

Λ(w) =
2

(1 − |z|2)|f ′(z)| , if w = f(z).

As our first application of the results of the previous section, we give a new
proof of the following theorem of A. Baernstein II and H. Montgomery.

Theorem 3.1. Let Ω = C \Lj , were Lj is one of the following two lattices:

L1 = {a+ bi : a, b ∈ Z}, L2 =
{
a+ b

(
1
2 + 1

2

√
3 i

)
: a, b ∈ Z

}
.

Then the set of minimum points of the hyperbolic density Λ of Ω consists of the
points congruent modulo Lj to 1

2 (1 + i) if j = 1 , or to either

1
2 + 1

6

√
3 i or 1 + 1

3

√
3 i

if j = 2 .

Remark. L1 , a square lattice, and L2 , a hexagonal lattice, are, up to rota-
tion and stretching, the two lattices that have non-trivial rotational symmetries.
In the case of the second lattice L2 , the region Ω is important because of its con-
nection to the conjectural extremal functions for Bloch’s and Landau’s constants.
See [B] for a discussion of this problem, and see [BV] for a proof of the stronger
result that in the case of L2 , not only are the specified points z0 minimum points
for ΛL2 for the fixed lattice L2 , but the pairs (L2, z0) (z0 one of the points spec-
ified in the statement of the theorem) are local minimum points for ΛL(z) if the
lattice L is also allowed to vary (given a certain constraint) together with the
point z . The work of H. Montgomery is not phrased in terms of the hyperbolic
density. For a discussion of how Montgomery’s theorem implies the hexagonal case
of Theorem 3.1, see [BV].

Proof. The density Λ is doubly periodic, so we need only minimize it over one
period parallelogram. From the further symmetries, we may consider Λ restricted
to right euclidean triangles Ej for j ∈ {1, 2} as shown in Figure 3. The right-hand
side of Figure 3 shows the square (above) and hexagonal lattice (below), together
with lines of symmetry. In each case, the right triangle over which it suffices to
minimize Λ is outlined in bold. The left-hand side of Figure 3 shows the unit disc
as the universal covering space of Ω, with the hyperbolic triangle outlined in bold
as one of the inverse image triangles of the bold triangle on the right. Using the
standard notation of the previous section we have α̃1 = 1

2 , β̃1 = 1
4 , γ̃1 = 1

4 , and
α̃2 = 1

2 , β̃2 = 1
3 , γ̃2 = 1

6 . The universal covering map of the unit disc onto Ω is
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the analytic continuation of a triangle map fj : Tj → Ej , where αj = α̃j , βj = β̃j ,
and γj = 0 for j ∈ {1, 2} . Note that logΛ

(
fj(z)

)
= log 2 − µ(z), where µ is as

in the previous section. Therefore, the minimum of Λ occurs at the maximum of
µ , which by Corollary 2.9 is at the vertex whose angle measure is preserved by f
and less than 1

2
π . The location of this vertex, modulo Lj , is located precisely as

stated in the theorem.

Figure 3.

For our second application, we define the spherical density Σ at a point w of
a hyperbolic region Ω ⊆C as follows. Let f be a meromorphic universal covering
map from the unit disc onto Ω. Then Σ(w) is the ratio of the hyperbolic length
element at any preimage point of w under f to the spherical length element at w .
Again this definition is independent of the choice of f and of the preimage point w .
Explicitly,

Σ(w) =
1 + |w|2

(1− |z|2)|f ′(z)| if w = f(z).

Since we have Σ(w) → ∞ as w → ∂Ω, one should expect that the minimum
points of Σ are located “as far” from the boundary of Ω as possible. In [BC] we
established methods to prove that the minimum points Σ in symmetric situations
are located where they should be. The following theorem covers some cases that
could not be treated with the methods in [BC].

We need the following well-known fact about tesselations of the Riemann
sphere by spherical triangles, cf. [C]. If T is a spherical triangle, and we reflect
T through its edges, then we obtain new spherical triangles. If we successively
repeat this process with the new triangles, then we obtain a finite tesselation of the
Riemann sphere by non-overlapping triangles if and only if T has angle measures
at its vertices A , B , C given by π/k , π/l , π/m , respectively, where k , l , m are
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integers satisfying
1
k
+

1
l
+

1
m

> 1.

In this case, we say T generates a finite tesselation of the Riemann sphere of
type (k, l,m). The reflections along the sides of T generate a finite group of
isometries of C , the triangle group corresponding to T .

Theorem 3.2. With the above conventions let T be a spherical triangle
generating a finite tesselation of the Riemann sphere of type (2, l,m) , l ≥ 3 .
Suppose Ω is the complement of the orbit of the vertex C of T under the triangle
group Γ generated by T . Then the set of minimum points of the spherical density
Σ of Ω is equal to the orbit of the vertex B of T under Γ .

Before proving Theorem 3.2, we state some corollaries and discuss its signifi-
cance.

Corollary 3.3. Let Ω be the complement (in the Riemann sphere) of the
n -th roots of unity (n ≥ 3). Then Σ is minimal at z = 0 and z = ∞ .

Proof. Take for T the circular-arc triangle with vertices at z = 0, z = 1, and
z = e2πi/2n . This is the case (2, l,m) = (2, n, 2).

Corollary 3.4. Let Ω be the complement (in the Riemann sphere) of the
vertices of a regular polyhedron P inscribed in the Riemann sphere. Then Σ is
minimal at the radial projections to the Riemann sphere of the centers of the faces
of the inscribed polyhedron. Put another way, the minimum points of Σ occur at
the vertices of the inscribed polyhedron dual to P .

Proof. Choose a vertex V , an edge L , and a face F of P such that L is one
of the edges of the face F , and such that L meets V . Take for T the great circle
triangle whose vertices are V , the radial projection to the Riemann sphere of the
midpoint of L , and the radial projection to the Riemann sphere of the center of
the face F . Here we are in one of the cases: (2, l,m) = (2, 3, 3) (tetrahedron),
(2, l,m) = (2, 4, 3) (cube), (2, l,m) = (2, 3, 4) (octahedron), (2, l,m) = (2, 5, 3)
(dodecahedron), or (2, l,m) = (2, 3, 5) (icosahedron).

The triangle T is illustrated for the tetrahedron in Figure 4.

Figure 4.
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By a different method, in an earlier paper [BC], we were able to prove Corol-
lary 3.3, and also Corollary 3.4 in the case that the inscribed polyhedron was a
tetrahedron, cube, or octahedron. Thus, Theorem 3.2 should perhaps be regarded
as providing a new proof for finding the minimum of Σ for some of the regions
considered in [BC]. Nonetheless, methods like those used in [BC] do not seem ad-
equate to prove Corollary 3.4 in the case of the dodecahedron or icosahedron, and
so for these two regions Theorem 3.2 provides the first proof that the minimum
points for Σ are as expected.

We remark, that as discussed in [BC], knowing the minimum value for Σ for
a region Ω, allows one to answer the following question.

Question 3.5. Given a hyperbolic region Ω in the Riemann sphere, what is

sup{f�(0) : f : D → Ω a holomorphic map }?

Here D denotes the unit disc, and the spherical derivative f�(z) is defined
by

f�(z) =
2|f ′(z)|

1 + |f(z)|2

if f(z) 	= ∞ , and f�(z) = 2|(1/f)′(z)| if f(z) = ∞ . The spherical derivative
f�(z) measures how much f distorts length, locally at z , if the length in the im-
age is measured with respect to the spherical metric, and length in the domain is
measured with respect to the ordinary euclidean metric. Thus, combining Corol-
lary 3.4 with the numerical computations in the last section of [BC], we have that
if f is a meromorphic function on the unit disc whose image is contained in the
complement of the vertices of a regular dodecahedron or icosahedron inscribed in
the Riemann sphere, then

f�(0) ≤ 1.350058

in the case of the icosahedron (12 vertices) and

f�(0) ≤ 1.079998

in the case of the dodecahedron (20 vertices). (See [BC] for the precise upper
bounds expressed in terms of the Γ-function.)
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h̃

h

F

F̃

g̃

g
πβ′′

πβ πβ′

παπα πα

Figure 5.

Proof of Theorem 3.2. Finding the minimum points for Σ is equivalent to
finding the minimum points of σ = logΣ. By symmetry, we only need to minimize
σ over the closure of the triangle T . We let F denote the universal covering map
of Ω, and we let F̃ denote its locally defined inverse. We remark that the inverse
image under F of the circular-arc triangle T , will be a union of geodesic triangles
in the unit disc. We only need to consider F restricted to the closure of one of
these triangles. Rather than consider the map F from the hyperbolic triangle
to the spherical triangle, we will find it easier to factor F through a euclidean
triangle, so we can apply our main theorem in the form of Corollary 2.9. That
is, we write F = g ◦ h , where h conformally maps the interior of the hyperbolic
triangle onto the interior of a euclidean triangle, and g conformally maps the
interior of that euclidean triangle onto the interior of the spherical triangle T . We
choose the intermediate euclidean triangle so that g and h both preserve the two
angles preserved by F . We denote by g̃ and h̃ the inverse mappings of g and h ,
and so we have F̃ = h̃ ◦ g̃ . This setup is illustrated in Figure 5.

Notice that the measure of the angle that is not preserved is increased as we
move from left to right in Figure 5. Observe further that

σ(z) = log(1 + |z|2) + log |F̃ ′(z)| − log
(
1− |F̃ (z)|2

)
= log(1 + |z|2) + log |g̃′(z)| + log

∣∣h̃′(g̃(z))∣∣ − log
(
1−

∣∣h̃(
g̃(z)

)∣∣2)
= log(1 + |z|2) + log |g̃′(z)| − log

∣∣h′(h̃(
g̃(z)

))∣∣ − log
(
1−

∣∣h̃(
g̃(z)

)∣∣2)
= µ+(z)− µ−

(
h̃
(
g̃(z)

))
,

where
µ+(z) = log(1 + |z|2) + log |g̃′(z)|,

and µ−(w) = log(1 − |w|2) + log |h′(w)|.
The point is that µ+ and µ− are very similar sorts of functions. In particular, they
are both built out of a conformal map from a circular-arc triangle to a euclidean
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triangle. In other words, they are precisely the kind of function µ we considered
in Section 2. By Corollary 2.9, µ+ attains its minimum at the vertex of T which
is interior to Ω and with internal angle measure < 1

2π . Similarly µ− attains its
maximum at the vertex of the hyperbolic triangle which is inside the unit disc
and which has internal angle measure < 1

2
π . Thus, −µ−

(
h̃
(
g̃(z)

))
attains its

minimum at exactly the same place where µ+(z) attains its minimum. Since σ is
the sum of these two functions, it must be minimal at exactly the same location.
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