DISTANCE BETWEEN DOMAINS IN THE SENSE OF LEHTO IS NOT A METRIC

Vladimir Božin and Vladimir Marković
Massachusetts Institute of Technology, Department of Mathematics
77 Massachusetts Ave., Cambridge, MA 02139-4307, U.S.A.; bozin@math.mit.edu
University of Minnesota, Department of Mathematics
Minneapolis, MN 55455, U.S.A.; markovic@math.umn.edu

Abstract

In this paper we consider the question whether the quotient of the set of domains conformally equivalent to a halfplane by the group of Möbius transformations with distance in the sense of Lehto is a metric space. The answer is shown to be negative in the general case. However, restricted to analytic domains the question has an affirmative answer.

1. Introduction

Let \mathscr{D} denote the set of complex domains conformally equivalent to the upper half-plane $H=\{z \in \mathbf{C}: \operatorname{Im} z>0\}$. Throughout this paper we shall denote elements of \mathscr{D} by $D, \widetilde{D}, \widetilde{\widetilde{D}}$. The Poincaré density of the hyperbolic metric of D is defined by

$$
\eta_{D}(z)=\frac{\left|\pi_{D}^{\prime}(z)\right|}{\operatorname{Im} \pi_{D}(z)}
$$

where $\pi_{D}: D \rightarrow H$ is a conformal mapping onto H.
The Schwarzian derivative, or Schwarzian, of a conformal mapping $f: D \rightarrow \widetilde{D}$ is defined in D as the holomorphic function

$$
S(f, z)=S_{f}(z)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}(z)-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}(z)\right)^{2}
$$

The following two properties of the Schwarzian derivative are well known:
(1) $S_{f} \equiv 0$ if and only if f is a Möbius transformation.
(2) Cayley's formula

$$
S(g \circ f, z)=S(g, f(z)) f^{\prime}(z)^{2}+S(f, z)
$$

holds for conformal mappings $f: D \rightarrow \widetilde{D}$ and $g: \widetilde{D} \rightarrow \widetilde{\widetilde{D}}$.

Furthermore, if a weighted sup-norm is defined for functions φ holomorphic in D by

$$
\|\varphi\|_{D}=\sup _{z \in D}|\varphi(z)| \eta_{D}(z)^{-2}
$$

we have the identities (see e.g. [3])

$$
\begin{equation*}
\left\|S_{g \circ f-1}\right\|_{\widetilde{D}}=\left\|S_{g}-S_{f}\right\|_{D}, \quad\left\|S_{f}\right\|_{D}=\left\|S_{f-1}\right\|_{\widetilde{D}} \tag{3}
\end{equation*}
$$

Two domains D and \widetilde{D} are said to be Möbius equivalent if there is a Möbius transformation of D onto \widetilde{D}. We denote by Ω the quotient set of the set \mathscr{D} by the group of Möbius transformations. The Lehto distance between two domains D and D in \mathscr{D} is defined by

$$
\delta(D, \widetilde{D})=\inf \left\{\left\|S_{f}\right\|_{D}: f: D \rightarrow \widetilde{D} \text { conformal }\right\}
$$

The above properties of the Schwarzian derivative imply that

$$
\begin{aligned}
& \delta(D, \widetilde{D})=\delta(\widetilde{D}, D) \\
& \delta(D, \widetilde{\widetilde{D}}) \leq \delta(D, \widetilde{D})+\delta(\widetilde{D}, \widetilde{\widetilde{D}})
\end{aligned}
$$

for all domains D, \widetilde{D} and $\widetilde{\widetilde{D}}$ in \mathscr{D}. Because $\delta(D, \widetilde{D})=0$ for Möbius equivalent domains D and \widetilde{D}, the Lehto distance δ defines a pseudometric in the quotient set Ω. We shall see in the sequel that for the subset of Ω consisting of domains with analytic boundaries the Lehto distance does, indeed, define a metric, but that for an arbitrary domain $D \in \mathscr{D}$, the equality $\delta(D, \widetilde{D})=0$ does not imply the Möbius equivalence of D and \widetilde{D}.

2. Reducing the problem to quadratic differentials

We can consider the space

$$
Q=\left\{\varphi: \varphi \text { holomorphic in } H,\|\varphi\|_{H}<\infty\right\}
$$

as the space of quadratic differentials of bounded norm corresponding to the universal Teichmüller space $T(H)$; cf. [3]. If D is a domain in \mathscr{D} and $f: H \rightarrow D$ a conformal mapping of the upper half-plane H onto D, the Kraus-Nehari theorem implies the norm inequality $\|\varphi\|_{H} \leq \frac{3}{2}$. Thus every conformal mapping $f: H \rightarrow D$ of a domain $D \in \mathscr{D}$ determines a corresponding quadratic differential $\varphi=S_{f} \in Q$. For another domain $\widetilde{D} \in \mathscr{D}$ and conformal mapping $\tilde{f}: H \rightarrow \widetilde{D}$ we denote the respective quadratic differential by $\widetilde{\varphi}=S_{\tilde{f}} \in Q$. The vanishing $\delta(D, \widetilde{D})=0$ of the Lehto distance is equivalent to the existence of a sequence $g_{n}: D \rightarrow \widetilde{D}$ of conformal mappings so that $\left\|S_{g_{n}}\right\|_{D} \rightarrow 0$ when $n \rightarrow \infty$. For each g_{n} there is a Möbius transformation $A: H \rightarrow H$ such that $g_{n}=\tilde{f} \circ A_{n}{ }^{-1} \circ f^{-1}$. Now by (3) we have the identity $\left\|S_{g_{n}}\right\|_{D}=\left\|S_{\tilde{f}}-S_{f \circ A_{n}}\right\|_{H}$, and thus we get the following

Lemma 1A. The vanishing $\delta(D, \widetilde{D})=0$ of the Lehto distance between the domains $D, \widetilde{D} \in \mathscr{D}$ is equivalent to the existence of a sequence of Möbius transformations $A_{n}: H \rightarrow H$ such that $\left\|\varphi-\varphi_{n}\right\|_{H} \rightarrow 0$ when $n \rightarrow \infty$, where the sequence of quadratic differentials $\varphi_{n} \in Q$ is defined by $\varphi_{n}(z)=\varphi\left(A_{n} z\right) A_{n}^{\prime}(z)^{2}=$ $S_{f \circ A_{n}}$.

Similarly we have for the Möbius equivalence of domains
Lemma 1B. Two domains $D, \widetilde{D} \in \mathscr{D}$ are Möbius equivalent, if and only if there exists a Möbius transformation $A: H \rightarrow H$ such that $\widetilde{\varphi}=\varphi(A z) A^{\prime}(z)^{2}$.

For any quadratic differential $\varphi \in Q$ we define the subset $N(\varphi) \subset Q$ by

$$
N(\varphi)=\left\{(\varphi \circ A) A^{\prime 2}: A: H \rightarrow H \text { is a Möbius transformation }\right\} .
$$

As an immediate consequence of Lemmas 1A and 1B we have
Lemma 1C. Let $f: H \rightarrow D$ be a conformal mapping. The set of all $\widetilde{D} \in \mathscr{D}$ which satisfy $\delta(D, \widetilde{D})=0$ is equal to the set of domains Möbius equivalent to D if and only if $N\left(S_{f}\right)$ is closed in Q.

Finally we prove
Lemma 1D. (Ω, δ) is a metric space, if and only if $N(\varphi)$ is closed in Q for all $\varphi \in Q$.

Proof. Should $N(\varphi)$ be closed in Q for each $\varphi \in Q$, then $\delta(D, \widetilde{D})=0$ if and only if D and \widetilde{D} are Möbius equivalent by Lemma 1 C , so that (Ω, δ) would be a metric space. Conversely any $\varphi \in Q$ with $\|\varphi\|_{H},<\frac{1}{2}$ is the Schwarzian of a conformal mapping of the upper half-plane H by the Ahlfors-Weill theorem (cf. [2]). So should δ define a metric in Ω, then $N(\varphi)$ would by Lemma 1C be closed wherever $\|\varphi\|_{H}<\frac{1}{2}$, and thus actually for all $\varphi \in Q$. व

3. A metric for analytic domains

A domain $D \in \mathscr{D}$ is analytic, if the boundary of D is an analytic curve, i.e. the image of a circle K under a conformal mapping defined in a neighbourhood of K. We denote by $C_{0}(H)$ the subspace of $C(H)$ consisting of continuous functions f vanishing on the boundary of H, and define a subspace Q_{0} of Q by

$$
Q_{0}=\left\{\varphi \in Q: \varphi \eta_{H}^{-2} \in C_{0}(H)\right\}
$$

Lemma 2. $S_{f} \in Q_{0}$ when $f: H \rightarrow D$ is a conformal mapping onto an analytic domain D.

Proof. Let $M: H \rightarrow U$ be a Möbius transformation of H onto the unit disc U, and $g=f \circ M^{-1}: U \rightarrow D$. Because D is an analytic domain, the mapping g extends to a conformal mapping defined in a neighbourhood of the closed unit disk \bar{U}. Having a holomorphic extension into a neighbourhood of \bar{U}, the Schwarzian S_{g} remains bounded on \bar{U}, so that $\lim _{|w| \rightarrow 1} S_{g}(w) \eta_{U}^{-2}(w)=0$. Thus we also have $\lim _{z \rightarrow r} S_{f}(w) \eta_{H}^{-2}(z)=0$ for every boundary point $r \in \overline{\mathbf{R}}$ of H, so that the Schwarzian S_{f} belongs to Q_{0} when D is an analytic domain.

Lemma 3. $N(\varphi)$ is closed in Q for every $\varphi \in Q_{0}$.
Proof. Let $\varphi \in Q_{0}$ and A_{n} a sequence of Möbius automorphisms of H such that $\varphi_{n}=\left(\varphi \circ A_{n}\right) A^{\prime 2} \rightarrow \widetilde{\varphi}$ in Q when $n \rightarrow \infty$. By the compactness principle (e.g. [4]) we may suppose that the sequence A_{n} converges locally uniformly in H either to a Möbius automorphism $A: H \rightarrow H$, or to a constant $c \in \overline{\mathbf{R}}$. Should the sequence A_{n} converge to a constant function, we would have for all $z \in H$

$$
\widetilde{\varphi}(z) \eta_{H}(z)^{-2}=\lim _{n \rightarrow \infty} \varphi\left(A_{n} z\right) \eta_{H}\left(A_{n} z\right)^{-2}=0
$$

because $\varphi \in Q_{0}$. Thus $\widetilde{\varphi}$ vanishes identically, and we have $\|\widetilde{\varphi}\|_{H}=0$. But $\varphi_{n} \rightarrow \widetilde{\varphi}$ in Q, and as $\left\|\varphi_{n}\right\|_{H}=\|\varphi\|_{H}$ for all n, and we have $\varphi=\widetilde{\varphi}=0 \in Q_{0}$, so that $\widetilde{\varphi}=\varphi \in N(\varphi)$. When the sequence A_{n} converges to a Möbius automorphism A, we have $\widetilde{\varphi}=(\varphi \circ A) A^{\prime 2}$, which obviously belongs to $N(\varphi)$. Thus $N(\varphi)$ is a closed subset of Q for all $\varphi \in Q_{0}$. व

Denoting by Ω_{A} the quotient of the set of analytic domains by the group of Möbius transformations we get as an immediate consequence of Lemmas 2, 3 and 1D.

Theorem 1. $\left(\Omega_{A}, \delta\right)$ is a metric space.

4. (Ω, δ) is not a metric space

We are going to give here three slightly different examples of quadratic differentials $\varphi \in Q$ for which $N(\varphi)$ is not closed in Q. To do this we construct a quadratic differential $\varphi \in Q$ and determine a sequence of Möbius transformations $A_{n}: H \rightarrow H$ so that the sequence $\varphi_{n}=\left(\varphi \circ A_{n}\right){A^{\prime}}_{n}^{2}$ converges in Q towards a quadratic differential $\widetilde{\varphi}$ not in $N(\varphi)$. Particularly, if we choose φ so that $\|\varphi\|_{H}<\frac{1}{2}$, then by the Ahlfors-Weill theorem there are conformal mappings $f: H \rightarrow D$ and $\tilde{f}: H \rightarrow \widetilde{D}$ with $S_{f}=\varphi, S_{\tilde{f}}=\widetilde{\varphi}$, so that we have $\delta(D, \widetilde{D})=0$ for the image domains D and \widetilde{D}, although D and \widetilde{D} are not Möbius equivalent.

To begin with let us note that for all $a>0$ the function $e^{i a z}$ is in Q with the norm $\left\|e^{i a z}\right\|_{H}=(2 / a e)^{2}$.

Example 1. Let $\varphi(z)=e^{2 \pi i z}+e^{i z}, \widetilde{\varphi}(z)=e^{2 \pi i z}-e^{i z}$ and $A_{k}(z)=z+n_{k}$, where $n_{k}=2 \pi m_{k}+\pi+o(1)$ when $k \rightarrow \infty\left(n_{k}, m_{k} \in \mathbf{N}\right)$. To establish the existence of such a sequence n_{k} we notice that the convergents $P_{s} / Q_{s}, P_{s}, Q_{s} \in \mathbf{N}$, of the continued fraction expansion of π satisfy

$$
\left|\pi-P_{s} / Q_{s}\right|<\frac{1}{Q_{s} Q_{s+1}}<\frac{1}{Q_{s}^{2}}, \quad P_{s} Q_{s-1}-Q_{s} P_{s-1}=(-1)^{s}
$$

with a strictly increasing sequence of denominators Q_{s} (see e.g. [5]). Thus by choosing an appropriate subsequence we have $P_{s_{k}}=n_{k}, Q_{s_{k}}=2 m_{k}+1$ with n_{k}, m_{k} satisfying the above conditions.

It is not difficult to see that $\left(\varphi \circ A_{k}\right){A^{\prime}}_{k}^{2} \rightarrow \widetilde{\varphi}$ in Q. It remains to be shown that

$$
\begin{equation*}
\tilde{\varphi}=(\varphi \circ A) A^{\prime 2} \tag{4}
\end{equation*}
$$

holds for no Möbius transformation $A: H \rightarrow H$. Now φ has zeros at $z_{k}=$ $(2 k+1) \pi /(2 \pi-1)$ and $\widetilde{\varphi}$ at $\tilde{z}_{k}=2 k \pi /(2 \pi-1), k \in \mathbf{Z}$. So should (4) hold for a Möbius transformation, then A would be a translation by an odd integral multiple of $\pi / 2 \pi-1$. Now for any $c \in \mathbf{R}$ the coefficients of $e^{2 \pi i z}$ and $e^{i z}$ in the expansion

$$
\varphi(z+c)=e^{2 \pi i c} e^{2 \pi i z}+e^{i c} e^{i z}
$$

are uniquely determined. However, the equations $e^{2 \pi i c}=1$ and $e^{i c}=-1$ cannot be simultaneously satisfied for any c, so that $\widetilde{\varphi} \neq(\varphi \circ A) A^{2}$ holds for all Möbius automorphisms A of the upper half-plane H.

Example 2. Suppose that the sequence λ_{k} satisfies $\sum_{k=1}^{\infty} 3^{2 k} e^{-2} \pi^{-2}\left|\lambda_{k}\right|<$ $+\infty$ and that $\lambda_{k} \neq 0$ for infinitely many $k \in \mathbf{N}$. We define φ and $\widetilde{\varphi}$ by

$$
\begin{aligned}
& \varphi(z)=\frac{e^{i \pi z}}{\left(1-e^{i \pi z}\right)^{2}}+\sum_{k=1}^{\infty} \lambda_{k} e^{2 i \pi z / 3^{k}} \\
& \widetilde{\varphi}(z)=\frac{-e^{i \pi z}}{\left(1+e^{i \pi z}\right)^{2}}+\sum_{k=1}^{\infty} \lambda_{k} e^{2 i \pi z / 3^{k}}
\end{aligned}
$$

Since $\left\|e^{i \pi z} /\left(1-e^{i \pi z}\right)^{2}\right\|_{H}=1 / \pi^{2}$ and $\left\|e^{2 i \pi z / 3^{k}}\right\|_{H}=3^{2 k} / e^{2} \pi^{2}$, we conclude that $\varphi, \widetilde{\varphi} \in Q$. Setting $A_{n}(z)=z+3^{n}$ it is easy to see that $\left(\varphi \circ A_{n}\right) A_{n}^{\prime 2} \rightarrow \widetilde{\varphi}$ in Q. It remains to be shown that $\widetilde{\varphi} \notin N(\varphi)$, i.e., that (4) cannot hold for any Möbius automorphism A of H. Now we notice that the limit

$$
\lim _{z \rightarrow r} \varphi(z) \eta_{H}^{-2}(z)
$$

is 0 for all $r \in \mathbf{R} \backslash 2 \mathbf{Z}$ and does not exist if $r \in 2 \mathbf{Z}$. Similarly, the expression $\widetilde{\varphi}(z) \eta_{H}^{-2}(z)$ equals 0 at all boundary points $r \in \mathbf{R}$ except for the set $2 \mathbf{Z}+1$ of odd integers. Thus a Möbius transformation A satisfying (4) would be a translation by an odd integer. But in the expansion

$$
\varphi(z+2 l+1)-\widetilde{\varphi}(z)=\sum_{k=1}^{\infty} \lambda_{k}\left(e^{2 i \pi(2 l+1) / 3^{k}}-1\right) e^{2 i \pi z / 3^{k}}
$$

the coefficients of $e^{i \pi z / 3^{k}}$ are uniquely determined, so that $\varphi(z+2 l+1)=\widetilde{\varphi}(z)$ cannot hold for any $2 l+1 \in \mathbf{Z}$.

Example 3. We now define φ and $\widetilde{\varphi}$ by

$$
\begin{aligned}
& \varphi(z)=\left(e^{2 \pi i z}-e^{-\pi}\right)\left(\sum_{k=1}^{\infty} \frac{1}{10^{k}} e^{\pi i z / 2^{k}}\right) \\
& \widetilde{\varphi}(z)=\left(e^{2 \pi i z}-e^{-\pi}\right)\left(\sum_{k=1}^{\infty} \frac{1}{10^{k}} e^{\pi i / 2^{k}\left(z+\left(4^{k}-1\right) / 3\right)}\right),
\end{aligned}
$$

and set $A_{n}(z)=z+\frac{1}{3}\left(4^{n}-1\right)$. Since $\left\|e^{\pi i z / 2^{k}}\right\|_{H}=4^{k+1} / e^{2} \pi^{2}$, the series

$$
s(z)=\sum_{k=1}^{\infty} \frac{1}{10^{k}} e^{\pi i z / 2^{k}}
$$

converges in Q. Because $e^{2 \pi i z}-e^{-\pi}$ is bounded in H, both functions φ and $\widetilde{\varphi}$ are in Q, and it is not difficult to see that $\left(\varphi \circ A_{n}\right){A^{\prime}}_{n}^{\prime} \rightarrow \widetilde{\varphi}$ in Q.

For $\operatorname{Im}(z) \leq 1$ we have

$$
\left|\frac{1}{10^{k}} e^{\pi i z / 2^{k}}\right|>2\left|\frac{1}{10^{k+1}} e^{\pi i z / 2^{k+1}}\right|,
$$

so that the series $s(z)$ has no zeros with $\operatorname{Im}(z)<1$. Since all zeros of $e^{2 \pi i z}-e^{-\pi}$ are lying on the line $\operatorname{Im}(z)=\frac{1}{2}$, we see that the functions φ and $\widetilde{\varphi}$ do not have any zeros in the horizontal strip $\left\{z \in H: \operatorname{Im}(z)<\frac{1}{2}\right\}$. On the other hand, the functions φ and $\widetilde{\varphi}$ have zeros on the line $\operatorname{Im}(z)=\frac{1}{2}$ at the points $\frac{1}{2} i+l$ with $l \in \mathbf{Z}$. We conclude that a Möbius automorphism of H satisfying $\widetilde{\varphi}=(\varphi \circ A) A^{\prime 2}$ would be a translation by an integer. Now for any $l \in \mathbf{Z}$ we have an expansion

$$
\varphi(z+l)-\widetilde{\varphi}(z)=\left(e^{2 \pi i z}-e^{-\pi}\right) \sum_{k=1}^{\infty} c_{n} e^{\pi i z / 2^{k}}
$$

with uniquely determined coefficients c_{n}. Hence, for $\varphi(z+l)-\widetilde{\varphi}(z)$ to vanish identically we should have

$$
l \equiv \frac{1}{3}\left(4^{k}-1\right)=1+4+\cdots+4^{k-1} \quad\left(\bmod 2^{k+1}\right)
$$

for every $k=1,2, \ldots$. This is obviously impossible for any fixed $l \in \mathbf{Z}$, so that $\widetilde{\varphi} \neq(\varphi \circ A){A^{\prime}}^{2}$ for all Möbius transformations A.

Distance between domains in the sense of Lehto is not a metric
By Lemma 1D and the above three counterexamples we get thus the following theorem.

Theorem 2. (Ω, δ) is not a metric space.

5. Further results and discussion

Having shown in the previous section that $N(\varphi)$ is not closed for some $\varphi \in Q$ we now ask how large the set of such φ actually is.

Theorem 3. The set of quadratic differentials $\varphi \in Q$ with $N(\varphi)$ not closed is nowhere dense in Q.

Proof. We proved above that $N(\varphi)$ is not closed in Q if and only if there is a sequence of Möbius transformations A_{n} of H such that $\left(\varphi \circ A_{n}\right) A_{n}^{\prime 2} \rightarrow \widetilde{\varphi}$ and $A_{n} \rightarrow c \in \overline{\mathbf{R}}$. We shall show that this is possible only for quadratic differentials φ in a nowhere dense subset of Q.

Let $\Psi_{0} \in Q$ be an arbitrary quadratic differential. We shall show that within any ball $B \subset Q$ of radius $\varepsilon>0$ centered at Ψ_{0} there is a ball B^{\prime} of radius $\frac{1}{4} \varepsilon$ such that $N(\varphi)$ is closed for every $\varphi \in B^{\prime}$. First choose a quadratic differential $\Phi_{0} \in Q_{0}$ with $\left\|\Phi_{0}\right\|_{H}=1$ and a point $z_{0} \in H$ such that $\left|\Psi_{0}\left(z_{0}\right)\right| \eta_{H}\left(z_{0}\right)^{-2}>\left\|\Psi_{0}\right\|_{H}-\frac{1}{4} \varepsilon$, and further a point $z_{1} \in H$ with $\left|\Phi_{0}\left(z_{1}\right)\right| \eta_{H}\left(z_{1}\right)^{-2}$ sufficiently close to 1 and a Möbius transformation $A: H \rightarrow H$ mapping z_{0} to z_{1} so that

$$
\left|\frac{3}{4} \varepsilon \Phi_{0}\left(A z_{0}\right) A^{\prime}\left(z_{0}\right)^{2} e^{i \theta}+\Psi_{0}\left(z_{0}\right)\right| \eta_{H}\left(z_{0}\right)^{-2}>\left\|\Psi_{0}\right\|_{H}+\frac{1}{2} \varepsilon
$$

Thus $\left\|\Psi_{0}+\Phi\right\|_{H}>\left\|\Psi_{0}\right\|_{H}+\frac{1}{2} \varepsilon$ when Φ is defined by

$$
\Phi=\frac{3}{4} \varepsilon\left(\Phi_{0} \circ A\right) A^{\prime 2} e^{i \theta} .
$$

For any $\left\|\Phi_{1}\right\|_{H}<\frac{1}{4} \varepsilon$, the quadratic differential $\varphi=\left(\Psi_{0}+\Phi\right)+\Phi_{1}$ is contained in the ball B of radius ε centered at Ψ_{0} with a norm satisfying $\|\varphi\|_{H}>\left\|\Psi_{0}\right\|_{H}+$ $\frac{1}{4} \varepsilon$. Because Φ, too, belongs to the subspace Q_{0}, we have $\left(\Phi \circ A_{n}\right) A_{n}^{\prime 2} \rightarrow 0$ in H for any sequence A_{n} of Möbius automorphisms of H converging to a constant. Assuming that $\left(\varphi \circ A_{n}\right) A^{\prime 2} \rightarrow \widetilde{\varphi} \in Q$ when $n \rightarrow+\infty$ we would thus also have $\left(\left(\Psi_{0}+\Phi_{1}\right) \circ A_{n}\right){A^{\prime}}_{n}^{2} \rightarrow \widetilde{\varphi}$ in H as $n \rightarrow+\infty$. But $\|\widetilde{\varphi}\|_{H}=\|\varphi\|_{H}>\left\|\Psi_{0}\right\|_{H}+\frac{1}{4} \varepsilon$, so that for some $z \in H$ and $n>n_{0}$ we would have
$\left|\left(\Psi_{0}+\Phi_{1}\right)\left(A_{n} z\right) A_{n}^{\prime}(z)^{2}\right| \eta_{H}(z)^{-2}=\left|\left(\Psi_{0}+\Phi_{1}\right)\left(A_{n} z\right)\right| \eta_{H}\left(A_{n}(z)\right)^{-2}>\left\|\Psi_{0}\right\|_{H}+\frac{1}{4} \varepsilon$,
contradicting the inequality $\left\|\Psi_{0}+\Phi_{1}\right\|_{H}<\left\|\Psi_{0}\right\|_{H}+\frac{1}{4} \varepsilon$. व

Let us finally discuss the background of our examples, especially Examples 3 and 2.

Let Γ_{j} be a decreasing sequence of Fuchsian groups and denote by $Q\left(\Gamma_{j}\right)$ the increasing sequence of subspaces of Q consisting of all quadratic differentials φ satisfying $\varphi=(\varphi \circ A) A^{\prime 2}$ for all $A \in \Gamma_{j}$. Let $P=\overline{\bigcup_{j=1}^{\infty} Q\left(\Gamma_{j}\right)}$. Consider now sequences A_{n} of Möbius transformations such that for every j, the transformations A_{n} are eventually in the same right coset of the group Γ_{j}. Thus for every j there is N_{j} such that $\left(\varphi \circ A_{m}\right){A^{\prime}}_{m}^{2}=\left(\varphi \circ A_{n}\right) A^{\prime 2}$ for all $\varphi \in Q\left(\Gamma_{j}\right)$ whenever $n, m>N_{j}$. Such a sequence A_{n} obviously induces a mapping $F: P \rightarrow Q$ when $F(\varphi)$ is defined by $F(\varphi)=\lim _{n \rightarrow \infty}\left(\varphi \circ A_{n}\right) A_{n}^{\prime 2} \in Q$. Any fixed Möbius transformation $A: H \rightarrow H$ determines a mapping $F_{A}: P \rightarrow Q, \widetilde{\varphi}_{A}(\varphi)=(\varphi \circ A) A^{\prime 2}$ corresponding to the constant sequence $A_{n}=A$.

If $P \neq \bigcup_{j=1}^{\infty} Q\left(\Gamma_{j}\right)$, there can be mappings F which are not equal to F_{A} for any Möbius transformation A. This can be clearly seen from Example 3. There Γ_{j} is the group of translations by integral multiples of 2^{j}, and the mapping F corresponding to the sequence A_{n} acts as if it were a "translation" by the 2 -adic number $1+4+4^{2}+\cdots$. We could choose any other 2 -adic number and "translate" any element of P, which is here the smallest closed subspace of Q containing all functions $e^{m \pi i z / 2^{n}}, m, n \in \mathbf{N}$.

We end this paper by posing the natural problem of characterizing all $\varphi \in Q$ such that $N(\varphi)$ is closed in Q.

We would like to thank our adviser M. Mateljević for motivation and many helpful discussions and suggestions.

References

[1] Ahlfors, L.V.: Quasiconformal Mappings. - D. van Nostrand, Princeton, N.J.-TorontoNew York-London, 1966.
[2] Ahlfors, L.V., and G. Weill: A uniqueness theorem for Beltrami equations. - Proc. Amer. Math. Soc. 13, 1962, 976-978.
[3] Lehto, O.: Univalent Functions and Teichmüller Spaces. - Grad. Texts in Math. 109, Springer-Verlag, New York, 1987.
[4] Lehto, O., and K.I. Virtanen: Quasiconformal Mappings in the Plane. - SpringerVerlag, Berlin-Heidelberg-New York, 1973.
[5] Vinogradov, I.M.: Fundamentals of Number Theory. - Nauka, Moscow, 1965.

