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Abstract. In this paper we investigate the exponent of convergence of the zeros and the
hyper-order of meromorphic solutions of higher-order homogeneous linear differential equations
with transcendental coefficients.

1. Introduction and results

Throughout the presentation, f will denote a transcendental meromorphic
function in the finite complex plane, and the standard notations of the Nevanlinna
theory will be employed (see e.g. [8]). In addition, we will use notations λ(f)
and λ̄(f) to denote the exponent of convergence of the zeros and distinct zeros of
f(z), respectively; λ̄(1/f) will be used to denote the exponent of convergence of
the distinct poles of meromorphic function f(z), and σ(f) will denote the order of
growth of f(z) and µ(f) the lower order of f(z). The hyper-order of f, σ2(f), is
defined to be limr→∞ log log T (r, f)/ log r . The following two results were proved
by S. Bank and I. Laine in [1] and [2], respectively.

Theorem A. Let A(z) be a transcendental entire function of order σ (0 <
σ ≤ ∞), with λ(A) < σ . Then any solution f of

(1.1) f ′′ + Af = 0

satisfies λ(f) ≥ σ .

Theorem B. Let A(z) be a transcendental meromorphic function of order
σ , where 0 < σ ≤ +∞ , and assume that λ̄(A) < σ . Then if f(z) �≡ 0 is a
meromorphic solution of (1.1) , we have

max{λ̄(f), λ̄(1/f)} ≥ σ.

In this paper, the exponent of convergence of the distinct zeros of an arbitrary
solution of higher-order linear equations will be considered.
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Theorem 1. Let A0, . . . , Ak−1 be entire functions such that

(1.2) max{σ(A1), σ(A2), . . . , σ(Ak−1), λ(A0)} < σ(A0) = σ (0 < σ ≤ ∞),
and that A0 has at least one zero whose multiplicity is not a multiple of k . Then
every solution f of the equation

(1.3) f(k) + Ak−1f
(k−1) + · · ·+ A0f = 0

satisfies λ̄(f) ≥ σ . Moreover, if A0 is transcendental with σ(A0) = 0 having
at least one zero whose multiplicity is not a multiple of k , and A1, . . . , Ak−1 are
polynomials, every solution f of (1.3) has infinitely many zeros.

We will give some further estimates on the growth of infinite order solutions of
the equation (1.3). It is well known that all solutions of (1.3) are entire functions,
and when some of the coefficients of (1.3) are transcendental, (1.3) has at least
one solution f with σ(f) =∞ .

Recently, Ki-Ho Kwon obtained the following result in [8] for the second-order
linear differential equation
(1.4) f ′′ + A(z)f ′ +B(z)f = 0.

Theorem C. Let A(z) and B(z) be entire functions such that σ(A) < σ(B)
or σ(B) < σ(A) < 1

2
. Then every solution f �≡ 0 of (1.4) satisfies

lim
r→∞

log log T (r, f)
log r

≥ max{σ(A), σ(B)}.

We shall investigate the above types of problems as generalizations for higher-
order homogeneous linear differential equations, with one coefficient whose growth
rate is the dominant one. The reader is referred to [9] and [11] for some of the
results that relate to Theorem 2.4 below.

Theorem 2. Suppose that A0, . . . , Ak−1 are entire functions and there exists
one As (0 ≤ s ≤ k − 1) satisfying for j �= s such that

σ(Aj) < σ(As).
Then the equation (1.3) has at least one solution f satisfying either λ(f) ≥ σ(As)
or σ2(f) = σ(As) .

Theorem 3. Suppose that A0, . . . , Ak−1 are entire functions such that

max{σ(Aj) : j = 1, . . . , k − 1} < σ(A0).
Then every solution f �≡ 0 of (1.3) satisfies σ2(f) ≥ σ(A0) . Furthermore, if
λ(f) < +∞ , then σ2(f) = σ(A0) .

Theorem 4. Suppose that A0, . . . , Ak−1 are entire functions such that A0 �≡
0 and

max{σ(Aj) : j = 0, 2, . . . , k − 1} < σ(A1) < 1
2 .

Then every solution f �≡ 0 of (1.3) satisfies σ2(f) ≥ σ(A1) . Moreover, if λ(f) <
+∞ , then σ2(f) = σ(A1) .
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2. Proof of Theorem 1

Assume that f �≡ 0 is a solution of (1.3). It is easy to see that f is entire
with σ(f) = ∞ . Now we assume that the assertion of Theorem 1 is false. That
is,

(2.1) λ̄(f) < σ.

Set f ′/f = g . Then, by an elementary computation, it follows that

(2.2) f(j)/f = gj + 1
2 j(j − 1)g

j−2g′ +Hj−2(g),

where Hj−2(g) is a differential polynomial in g and its derivatives with constant
coefficients, and the degree of Hj−2(g) is no greater than j−2. Substituting (2.2)
in (1.3), we get

(2.3) −A0 = gk + 1
2k(k − 1)g

k−2g′ + Ak−1g
k−1 + Pk−2(g),

where Pk−2(g) is a differential polynomial in g and its derivatives with coefficients
that are linear combinations of A1, . . . , Ak−2 with constant coefficients, and the
degree of Pk−2(g) is no greater than k − 2. Since the poles of g = f ′/f can only
occur at the zeros of f , and all poles of g are simple, it follows from (2.1) that

(2.4) σ
(
N(r, g)

)
= λ̄(f) < σ.

By (2.3), we have

(2.5) T (r,A0) ≤M

(
T (r, g) +

k−1∑
j=1

T (r,Aj)
)
+ S(r, g) (r /∈ E),

where E ⊂ (0,+∞) with a finite linear measure and M (> 0) is a constant.
By (1.2) and hence because µ(A0) = σ(A0) (see e.g. [5, Corollary 6.1]), we have
σ(Aj) < µ(A0) = σ(A0) = σ for j = 1, . . . , k − 1. It follows that the inequality

(2.6) M
k−1∑
j=1

T (r,Aj) < 1
2T (r,A0)

holds for r /∈ E and sufficiently large r . By (2.5) and (2.6), we have

(2.7) T (r,A0) ≤
(
2M + o(1)

)
T (r, g)

for r /∈ E and sufficiently large r . Hence, again by [5] as well as by (2.4), (1.2),
and (2.7), we have µ(g) = σ(g) ≥ σ ,

T (r,Aj) = S(r, g) (j = 1, . . . , k),
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and, for r /∈ E ,
N(r, g) = o(1)T (r, g) = S(r, g).

Thus by (1.2) and µ(g) ≥ σ , N(r, 1/A0) = S(r, g) holds. Therefore (2.3) satisfies
all the conditions of the Tumura–Clunie theorem [8, p. 69], and it follows that

−A0 = hk(z), h(z) = g(z) +
1
k
a(z),

where h satisfies

hk−1a = 1
2
k(k − 1)hk−2h′ + Ak−1h

k−1

a = 1
2k(k − 1)h

′

h
+Ak−1,

h′

h
=
1
k

A′
0

A0
.

Hence

−A0 =
(
f ′

f
+
k − 1
2k

A′
0

A0
+
Ak−1

k

)k

.

This contradicts the assumption that A0 has at least one zero whose multiplicity
is not a multiple of k . Thus we must have λ̄(f) ≥ σ , and Theorem 1 is proved.

3. Lemmas needed for the proof of Theorem 2

Lemma 1 ([6, Lemma 3]). Let the differential equation

(3.1) w(k) + ak−1w
(k−1) + · · ·+ a0w = 0

be satisfied in the complex plane by linearly independent meromorphic functions
f1, . . . , fk . Then the coefficients aj (j = 0, . . . , k − 1) are meromorphic in the
plane satisfying the properties

(3.2) m(r, aj) = O
{
log

[
max

(
T (r, fs) : s = 1, . . . , k

)]}
.

Using the same reasoning as in the proof of the Tumura–Clunie theorem, we
can obtain the following lemma.

Lemma 2. Let gn+1 = Pn(g) , and let Pn(g) be a differential polynomial
in the transcendental entire function g(z) of total degree at most n , with the
coefficients in w′/w, . . . , w(n)/w , and A0, . . . , Ak−1 (where w is an entire function
with σ(w) < ∞, A0, . . . , Ak−1 , satisfying the additional hypotheses of Theorem 2) .
Then σ(g) ≤ σ(As) .
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Proof. Since

(3.3)
m(r, g) =

1
2π

∫ 2π

0

log+ |g(reiθ)| dθ

=
1
2π

∫
ε1

log+ |g(reiθ)| dθ + 1
2π

∫
ε2

log+ |g(reiθ)| dθ,

where ε1 = {θ : |g(reiθ)| < 1} ∩ [0, 2π] , ε2 = [0, 2π]− ε1 , we have

(3.4)
∫

ε1

log+ |g(reiθ)| dθ = 0.

On ε2 , we have |g(reiθ)| ≥ 1. By g = Pn(g)/gn and the hypothesis that Pn(g)
is the sum of a finite number of terms of the type

a(z)gl0 · (g′)l1 · · · (g(ν))lν ,

where l0, . . . , lν are non-negative integers and
∑ν

t=0 lt = n , a(z) is a combination
of the addition, subtraction and multiplication operations of w′/w, · · · , w(n)/w ,
A0, . . . , Ak−1 . We have

(3.5)

1
2π

∫
ε2

log+ |g(reiθ)| dθ ≤ M

(∑
m(r, a) +

ν∑
t=1

m

(
r, g(t)

g

))

≤ M

( n∑
j=1

m

(
r,
w(j)

w

)
+

k−1∑
j=0

m(r,Aj) + S(r, g)
)

for |z| = r outside a set E of finite linear measure, where M is some positive
constant. By the fact that m(r, w(j)/w) = O(log r) (j = 1, . . . , n) and (3.3)–(3.5),
we have

(3.6) m(r, g) ≤ M

(k−2∑
j=0

m(r,Aj) + S(r, g)
)
, r /∈ E.

By S(r, g)/m(r, g) → 0 (r → ∞) and the additional hypotheses, we get σ(g) ≤
σ(As) from (3.6).

Lemma 3 [12, Theorem 1.45]. Let h(z) be a nonconstant entire function
with σ(h) = σ . If f(z) = exp{h(z)} , then σ2(f) , the hyper-order of f(z) ,
satisfies σ2(f) = σ .
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4. Proof of Theorem 2

Proof. By Lemma 1 and σ(Aj) < σ(As) (j �= s), it follows that the equation
(1.3) has at least one solution f with σ(f) =∞ . Now assume that λ(f) < σ(As).
Then f can be expressed in the form f = weh such that σ(w) < σ(As) and h
is a transcendental entire function. By mathematical induction, we can prove for
n = 1, . . . , k

(4.1) f(n)(z) = weh(h′)n + wehPn−1(h′),

where Pn−1(h′) is a differential polynomial in h′, . . . , h(n) of total degree n − 1
with its coefficients being polynomials in w′/w, · · · , w(n)/w . Substituting (4.1) in
(1.3), we obtain

(4.2) (h′)k + Pk−1(h′) + Ak−1[(h′)k−1 + Pk−2(h′)] + · · ·+ A0 = 0,

i.e.,

(4.3) (h′)k = P ∗
k−1(h

′),

where P ∗
k−1(h

′) is a differential polynomial in h′, . . . , h(k) of total degree k − 1
with its coefficients being polynomials in w′/w, . . . , w(k)/w,A0, . . . , As, . . . , Ak−1 .
By (4.3) and Lemma 2, we have σ(h) = σ(h′) ≤ σ(As). Since (h′)s + Ps−1(h′) =
f(s)/f �≡ 0 and (4.2), we get σ(h′) ≥ σ(As). Hence σ(h) = σ(As).

By Lemma 3 and f = weh with σ(w) < ∞ , it follows that σ2(f) = σ(h) =
σ(As).

5. Proof of Theorem 3

Set max{σ(Aj) : j = 1, . . . , k− 1} = ρ,< σ(A0) = α . We can rewrite (1.3) as

(5.1) −A0 =
f(k)

f
+ Ak−1

f(k−1)

f
+ · · · +A1

f ′

f
.

Hence the inequality

(5.2) m(r,A0) ≤
k−1∑
j=1

m(r,Aj) +O{log T (r, f) + log r}

holds for all r outside a set E ⊂ (0,+∞) with a linear measure mE = δ < +∞ .
Since σ(A0) = α , there exists {r′n} (r′n → ∞) such that

(5.3) lim
r′

n→∞

logm(r′n, A0)
log r′n

= α.
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By mE = δ <∞ , there exists a point rn ∈ [r′n, r′n + δ + 1]− E . From

logm(rn, A0)
log rn

≥ logm(r′n, A0)
log(r′n + δ + 1)

=
logm(r′n, A0)

log r′n + log
(
1 + (δ + 1)/r′n

)

we get

(5.4) lim
rn→∞

logm(rn, A0)
log rn

≥ α.

So, for any given ε (0 < 2ε < α− ρ), and for j = 1, . . . , k − 1,

m(rn, Aj) ≤ rρ+ε
n and m(rn, A0) > rα−ε

n

hold for any sufficiently large rn . Therefore,

(5.5)
k−1∑
j=1

m(rn, Aj) ≤ 1
2m(rn, A0)

holds for a sufficiently large rn . By (5.2) and (5.5), we get for a sufficiently large rn

(5.6) m(rn, A0) ≤M{log T (rn, f) + log rn}.

By (5.4) and (5.6), we have σ2(f) ≥ σ(A0). By this and Theorem 2, we easily
conclude that σ2(f) = σ(A0) if λ(f) < +∞ .

6. Proof of Theorem 4

Our proof depends mainly on the following four known results.

Lemma 4 ([6]). Let f be a transcendental meromorphic function, and let
α > 1 be a given constant. Then there exists a set E1 ⊂ (1,∞) that has finite
logarithmic measure and a constant B > 0 that depends only on α and j =
1, . . . , k , such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1 and for j = 2, . . . , k ,
we have ∣∣∣∣f

(j)(z)
f ′(z)

∣∣∣∣ ≤ B

(
T (αr, f)

r
(logα r) log T (αr, f)

)k−j

.

Lemma 5 ([10]). Let f(z) be a nonconstant entire function. Then there
exists a real number R such that for all r ≥ R there is some corresponding zr

with |zr | = r satisfying

|f(zr)/f ′(zr)| ≤ r.
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Lemma 6 ([3]). Let f(z) be entire of order σ(f) = ρ < 1
2
. Denote A(r) =

inf |z|=r log |f(z)| , B(r) = sup|z|=r log |f(z)| . If ρ < α < 1 , then

log dens{r : A(r) > (cosπα)B(r)} ≥ 1− ρ/α,

where
log dens(H) = limr→∞{lm(H ∩ [1, r])/ log r}

and
log dens(H) = limr→∞{lm(H ∩ [1, r])/ log r}.

Lemma 7 ([4]). Let f(z) be entire with µ(f) = µ < 1
2 and µ < ρ = σ(f) .

If µ ≤ δ < min(ρ, 1
2 ) and δ < α < 1

2 , then

log dens{r : A(r) > (cos πα)B(r) > rδ} > C(ρ, δ, α),

where C(ρ, δ, α) is a positive constant depending only on ρ, δ , and α .

Proof of Theorem 4. Suppose that ρ and α are real numbers satisfying

max{σ(Aj) : j = 0, 2, . . . , k − 1} < ρ < α < σ(A1).

It is easy to see that every solution f �≡ 0 of (1.3) is transcendental and one can
have from (1.3)

(6.1) |A1| ≤
∣∣∣∣f

(k)

f ′

∣∣∣∣+ |Ak−1|
∣∣∣∣f

(k−1)

f ′

∣∣∣∣+ · · ·+
∣∣∣∣A2

f ′′

f ′

∣∣∣∣+ |A0| ·
∣∣∣∣ ff ′

∣∣∣∣.
By Lemma 4, there exists a set E1 ⊂ (1,∞) with the logarithmic measure lmE1 <
∞ , such that for j = 2, . . . , k , and for all z satisfying |z| = r /∈ [0, 1] ∪ E1 , we
have

(6.2)
∣∣∣∣f

(j)(z)
f ′(z)

∣∣∣∣ ≤ log2k r · [T (2r, f ′)]2k.

By Lemma 6 (if µ(A1) = σ(A1)) or Lemma 7 (if µ(A1) < σ(A1)), there exists a
set H ⊂ (1,+∞) with lmH = ∞ , such that for all z satisfying |z| = r ∈ H we
have

(6.3) |A1(z)| ≥ exp{rα}

and

(6.4) |Aj(z)| ≤ exp{rρ} (j = 0, 2, . . . , k − 1).
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By Lemma 5, there exists a number R > 0 such that for all r ≥ R there is a
corresponding zr with |zr | = r satisfying

(6.5) |f(zr)/f ′(zr)| ≤ r.

By (6.1)–(6.5), it follows that there is a sequence {zr} with |zr| = r ∈ H−
(
[0, R)∪

E1

)
(zr → ∞) such that

exp{rα} ≤ M exp{rρ}r log2k r[T (2r, f ′)]2k,

where M (> 0) is a suitable constant. Thus

lim
r→∞

log+ log+ T (r, f ′)
log r

≥ α.

Since α is arbitrary and

T (r, f ′) = m(r, f ′) +N(r, f ′) ≤ m(r, f) +m

(
r,
f ′

f

)
+ 2N(r, f)

≤ 2T (r, f) +M{log rT (r, f)}
≤ (2 +M)T (r, f) +M log r (r /∈ E),

where mE < +∞ , we get σ2(f) ≥ σ(A1). By Theorem 2, we easily conclude that
σ2(f) = σ(A1) if λ(f) < +∞ .
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