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Abstract. Suppose that f is meromorphic in the plane and that F and G are given by

F = f(k) +
k−1∑
j=0

ajf
(j), G = f(k) +

k−1∑
j=0

bjf
(j),

with k ≥ 1 and the aj , bj rational functions, such that aj �≡ bj for at least one j . We classify
those f for which F and G have only finitely many zeros.

1. Introduction

The study of zeros of linear differential polynomials has a long history, going
back to the fundamental work of Pólya [28] on entire and meromorphic functions
and their derivatives. The following theorem was proved by the first author and
Hennekemper and Polloczek [5], [7] for k ≥ 3 and by the second author [20] for
k = 2, and confirmed a conjecture of Hayman [9], [10], [11] from 1959.

Theorem A. Suppose that f is meromorphic in the plane and that f and
f(k) have only finitely many zeros, for some k ≥ 2 . Then we have f(z) =
R(z)eP(z) , with R a rational function and P a polynomial. In particular, f
has finite order and finitely many poles.

Refinements of this theorem may be found in [6], [20], [21], [23], while simple
examples show that no comparable result holds for k = 1 (see however [4]). A
natural generalization of Theorem A involves replacing the k ’th derivative f(k)

by a linear differential polynomial

(1) F = f(k) +
k−1∑
j=0

ajf
(j),

1991 Mathematics Subject Classification: Primary 30D35.



410 G. Frank and J.K. Langley

with coefficients aj which are rational functions. Thus the first author and Heller-
stein proved in [6] that if f is meromorphic in the plane and

N(r, 1/f) +N(r, 1/F ) = o
(
T (r, f ′/f)

)
, r→ ∞,

in which k ≥ 3 and F is given by (1) with polynomial coefficients aj , and in which
the notation is that of [10], then f ′/f has finite order. Subsequent papers [3], [29]
determined all functions f meromorphic in the plane for which f and F , subject
to the above assumptions, have no zeros, while the papers [20], [22] give a rather
more complicated classification of all functions f meromorphic in the plane such
that f and f ′′+a1f

′+a0f have only finitely many zeros, for any rational functions
a1 , a0 . Related results appear in [14], [19], [27] and elsewhere.

With regard to these results, it seems reasonable to ask how essential the
hypothesis on the zeros of f really is. Of course, it is easy to give examples of
entire f for which F , as given by (1), has no zeros: just set F = eP , with P
a polynomial, and solve the resulting differential equation for f . However, some
conclusion regarding poles might be expected, and the following theorem [24], [25],
[26] summarizes some results in this direction.

Theorem B. Suppose that f is meromorphic of finite order in the plane,
and that f ′′ has only finitely many zeros. Then

N(r, f) = O(log r)3 , r→ ∞.

If, in addition, T (r, f) = O(r) or N(r, 1/f ′) = o(r1/2) as r → ∞ , then f has
only finitely many poles.

On the other hand, examples of meromorphic f having infinite order, such
that f ′ and f ′′ have no zeros, while f has an arbitrary set of poles, were given
in [24], and we show in the next section how to construct examples of functions
f and linear differential polynomials F in f , such that F and F ′ have no zeros,
while f has an arbitrary set of poles. Thus the zeros of a single linear differential
polynomial in f do not suffice to determine f .

In the present paper, we consider two linear differential polynomials

F = Lk(f) = f(k) +
k−1∑
j=0

ajf
(j), G =Mk(f) = f(k) +

k−1∑
j=0

bjf
(j),

in a meromorphic function f , with k a positive integer and the aj and bj rational
functions, and with aj �≡ bj for at least one j . There is a well-known reduction
procedure [17], described in Lemma 1 below, to obtain linear differential operators
P , Q , H with coefficients which are rational functions, such that Lk = P (H)
and Mk = Q(H) and the common (local) solutions of the homogeneous equations

(2) Lk(w) = 0, Mk(w) = 0
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are precisely the (local) solutions of H(w) = 0. This allows us to concentrate on
the case where the equations (2) have no non-trivial common (local) solution, that
is, no common (local) solution other than the trivial solution w ≡ 0, for in the
contrary case we may regard F and G as linear differential polynomials in H(f).
Our main result is then the following.

Theorem 1. Let k be a positive integer and let a0, . . . , ak−1 and b0, . . . , bk−1

be rational functions with aj �≡ bj for at least one j . Assume that the equations

w(k) +
k−1∑
j=0

ajw
(j) = 0, w(k) +

k−1∑
j=0

bjw
(j) = 0,

have no non-trivial common (local) solution. Let f be meromorphic in the plane
such that

F = f(k) +
k−1∑
j=0

ajf
(j), G = f(k) +

k−1∑
j=0

bjf
(j)

both have only finitely many zeros. Then f has finite order and finitely many
zeros and f ′/f has a representation

(3)
f ′(z)
f(z)

= Y (z) +
P0

(
Q(z) + logS(z)

)(
Q′(z) + S ′(z)/S(z)

)
S(z)eQ(z) − 1

,

in which S and Y are rational functions and Q and P0 are polynomials, and at
least one of P0 and S is constant.

In the next section we will give examples showing that (3) can indeed occur.
Our approach to proving Theorem 1 exploits the fact that F and G have, with
finitely many exceptions, the same poles, and proceeds via the rather surprising
conclusion that f itself has finitely many zeros. This allows us to use the machinery
developed in [5], [6], [7].

This research was carried out during the second author’s visit to the Tech-
nische Universität, Berlin, funded by a grant from the Deutscher Akademischer
Austauschdienst (DAAD).

2. Examples

2.1. Example. Let a0, . . . , ak−2 and P be polynomials, and let f be a
solution of the equation

f(k−1) +
k−2∑
j=0

ajf
(j) = K = eP .

Let c , d be distinct constants. Then F = K ′ + cK and G = K ′ + dK are
both linear differential polynomials of order k in f , having finitely many zeros.
However, here F and G should, according to the reduction procedure referred to
in the discussion of the system (2), more correctly be regarded as linear differential
polynomials in K .
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2.2. Example. Setting f(z) = tan z we find that F = f ′′ − 2if ′ and
G = f ′′ + 2if ′ are both zero-free. This example does not, however, contradict
Theorem 1 since the equations w′′ − 2iw′ = 0, w′′ +2iw′ = 0 have the non-trivial
common solution w = 1, and F and G are more properly regarded as linear
differential polynomials in f ′ .

2.3. Example. Let P and P1 be polynomials, with P non-constant and P1

not identically zero, chosen so that P1(P ) is a non-positive integer at every zero
of eP − 1. For example, we may take P1(P ) = P 24−1π−2 . Then

f ′/f = T (eP − 1)−1 = −P1(P )P ′ + P1(P )P ′eP (eP − 1)−1, T = P1(P )P ′,

defines a meromorphic function having no zeros, and poles at all but finitely many
zeros of eP − 1, while the equations

f ′(z) = 0, f ′(z) + T (z)f(z) = 0

each have only finitely many solutions z . Further, with a and b rational functions
we define L by

L/f = f ′′/f + af ′/f + b = S(eP − 1)−2,

where
S = be2P + eP (T ′ − TP ′ + aT − 2b) + (T 2 − T ′ − aT + b),

and L cannot vanish identically, since f has infinitely many poles. There are thus
three ways to ensure that L/f has only finitely many zeros, the same then being
true of L . We can either solve simultaneously both equations

(4) aT − 2b = TP ′ − T ′, −aT + b = T ′ − T 2,

for a and b , using the fact that the determinant of the coefficients is −T , which
is not identically zero, or we can set b = 0, and solve either of the equations
(4) for a . To see that a non-zero rational function Y can arise in (3), we need
only write f = UeV g , with U a rational function and V a polynomial, so that
there are linear differential polynomials G1 , G2 in g , with coefficients which are
rational functions and with G1/G2 non-constant, each having finitely many zeros.

2.4. Example. Let c be a constant, let k ≥ 1 and let A0, . . . , Ak be
polynomials with Ak = 1, and define the operator L by

L =
k∑

j=0

AjD
j , D = d/dz.

Let an and Mn be sequences, such that each Mn is a positive integer, while the
complex sequence (an) tends to infinity, without repetition, as n → ∞ . Define
rational functions Rn(z) by

Rn(z) = L
(
(z − an)−Mn

)
.
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Then Rn has a pole of order Mn + k at an . Let g be an entire function having
a simple zero at each an , and no other zeros. Using Mittag–Leffler interpolation,
choose an entire function h such that we have, for each n ,

c+ g(z)−1eh(z) = R′
n(z)/Rn(z) +O(|z − an|Mn+k−1)

as z tends to an . Define H by

H ′/H = c+ g−1eh.

Then there are non-zero constants bn such that we have, for each n ,

H(z) = bnRn(z)
(
1 +O(|z − an|Mn+k)

)
= bnRn(z) +O(1)

as z tends to an . Hence there is a function hn analytic at an such that H(z) −
bnRn(z) = hn(z) on a punctured neighbourhood Un of an . It follows that if
w is a solution of the equation L(w) = H(z) − bnRn(z) on a simply connected
subdomain Vn of Un then w has an analytic extension to a neighbourhood of an .
If f1 is a solution of the equation L(f1) = H on Vn then f1 may be written in
the form

f1(z) = bn(z − an)−Mn +w(z) + v(z),

in which L(v) = 0 so that v is the restriction to Vn of an entire function. It
follows that f1 has an analytic extension to Un with a pole at an . Therefore
every local solution f of L(f) = H extends to a function meromorphic in the
plane and, since every zero of g is a pole of H , both H = L(f) and H ′−cH have
no zeros.

3. Preliminaries

The following lemma is well known [17, p. 126].

Lemma 1. Let k , n be non-negative integers with k ≥ n and let D denote
d/dz , and let linear differential operators L1 , L2 of orders k , n be defined by

L1 =
k∑
j=0

ajD
j , L2 =

n∑
j=0

bjD
j ,

in which a0, . . . , ak , b0, . . . , bn are rational functions with akbn �≡ 0 . Then there
exist an integer q with 0 ≤ q ≤ n and an operator H =

∑q
j=0 cjD

j , with the
coefficients cj rational functions and cq �≡ 0 , and linear differential operators Q1 ,
Q2 , P1 , P2 with rational functions as coefficients, such that

L1 = Q1(H), L2 = Q2(H), P1(L1) + P2(L2) = H,

in which the parentheses denote composition. Further, if w is meromorphic on
some domain U , we have H(w) ≡ 0 on U if and only if L1(w) ≡ L2(w) ≡ 0
on U . Moreover, the operators Q1 , Q2 have orders k − q , n − q respectively,
while the operators P1 , P2 both have order at most k .
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Proof. This is just the Euclidean algorithm for linear differential operators
but, since we need the estimate for the orders of P1 and P2 , we present a proof.
We proceed by induction on n , there being nothing at all to prove when n = 0,
as in this case H is the identity operator. Assuming the result true when one of
the operators has order less than n , we apply the division algorithm [17, p. 126]
for linear differential operators in order to write

L1 = L(L2) +M1

with L and M1 each a linear differential operator with rational functions as co-
efficients, and in which M1 either is the zero operator or has order less than n .
Plainly, the order of L is k−n . If M1 is the zero operator we write H = L2 and
Q1 = L , and P1 is the zero operator, with P2 and Q2 the identity.

Now assume that M1 is not the zero operator. The induction hypothesis gives
us operators H , p1 , p2 , q1 , q2 such that the orders of p1 and p2 are at most n ,
and such that

L2 = q2(H), M1 = q1(H), p1(M1) + p2(L2) = H.

Now we set Q1 = L(q2) + q1 , Q2 = q2 and we have

H = p1(L1) +
(
p2 − p1(L)

)
(L2).

Thus P1 = p1 and P2 = p2−p1(L) have order at most k . The remaining assertion
is obvious.

The next lemma is also fairly standard.

Lemma 2. There exists a positive constant c with the following properties.
Suppose that f is transcendental and meromorphic in the plane, and that r is
large and N > 1 . Then we have∣∣log |f(z)|∣∣ ≤ cN2T (r, f)

for all z with 1
2r ≤ |z| ≤ re−2/N and lying outside a union of discs having sum of

radii at most 4erN−2 .

Proof. We denote by d positive constants not depending on f , r , N . Let
rj = re−j/N , j = 1, 2. Then provided r is large enough we have

(5) n(r1, f) + n(r1, 1/f) ≤
(
log(r/r1)

)−1(2T (r, f) + log |1/f(0)|
)
≤ dNT (r, f),

with minor modifications if f(0) = 0,∞ . Let the zeros and poles of f in 1
4
r ≤ |z| ≤

r1 be a1, . . . , an and b1, . . . , bm , respectively, repeated according to multiplicity,
and write

f(z) = g(z)F (z)G(z)−1 , F (z) =
m∏
j=1

(1− z/bj), G(z) =
n∏

k=1

(1− z/ak),
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so that g is analytic and non-zero in 1
4
r ≤ |z| ≤ r1 . For |z| ≤ r we have, using

(5),

(6) log+ |F (z)| + log+ |G(z)| ≤ d(m+ n) ≤ dNT (r, f).

We also have [13, p. 366]

log
∣∣∣∣
n∏

k=1

(z − ak)
∣∣∣∣ ≥ n log(rN−2)

outside a union E1 of discs having sum of radii at most 2erN−2 , so that for z
satisfying 1

2r ≤ |z| ≤ r1 but lying outside E1 we have

(7)
log |G(z)| ≥ n log(rN−2)−

n∑
k=1

log |ak|

≥ n log(rN−2)− n log r ≥ −dN2T (r, f),

using (5). Using the fact that F (0) = G(0) = 1, we clearly have

(8) T (r, g) ≤ dNT (r, f),

by (6). Finally, a standard application of the Poisson–Jensen formula to g(ζ) in
|ζ | ≤ r1 gives, for 1

2r ≤ |z| ≤ r2 ,

∣∣log |g(z)|∣∣ ≤ r1 + r2
r1 − r2

(
m(r1, g) +m(r1, 1/g)

)
+ dn(r1, g) + dn(r1, 1/g) +O(log r)

≤ dN2T (r, f),

using (5) and (8) and, combining the last estimate with (6) and (7), the result
follows.

We use the following notation in the next lemma and henceforth. If g is
meromorphic in 0 ≤ r1 ≤ |z| < ∞ then by a result of Valiron [30, p. 15] we may
write g(z) = zNh(z)g1(z), in which g1 is meromorphic in the plane, N is an
integer, and h is analytic in |z| ≥ r1 with h(∞) = 1. With n(r, g) the number
of poles of g in r1 ≤ |z| ≤ r , the Nevanlinna characteristic is defined for r ≥ r1
by [2, p. 89]

(9)
T (r, g) = m(r, g) +N(r, g) =

1
2π

∫ 2π

0

log+ |g(reiθ)| dθ +N(r, g),

N(r, g) =
∫ r

R

n(t, g)
dt

t
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and we have T (r, g) = T (r, 1/g) + O(log r). Further, S(r, g) will denote any
quantity such that

(10) S(r, g) = O
(
log+ T (r, g) + log r

)
(n.e.),

in which (n.e.) (‘nearly everywhere’) means as r tends to infinity outside a set of
finite measure. In particular, m(r, g′/g) = S(r, g).

We denote sectorial regions using

S∗(r, α, β) = {z : |z| > r, α < arg z < β},

this a region on the Riemann surface of log z if β − α > 2π .

Lemma 3. Suppose that f1, . . . , fN are functions analytic in the region S =
S∗(r0 ,−π, π) and each admitting unrestricted analytic continuation in |z| > r0 ,
the continuations satisfying

(11) log+ log+ |fj(z)| = O(log |z|)

on S∗(r0,−2π, 2π) . Suppose that g is meromorphic in |z| > r0 . Suppose further
that for some positive integer Q , each of the functions g1, . . . , gk on S is a poly-

nomial in the f
(m)
j , g(m) , 1 ≤ j ≤ k , 0 ≤ m ≤ Q . Suppose finally that g1, . . . , gk

are linearly independent solutions in S of an equation

(12) w(k) +
k−1∑
j=0

Ajw
(j) = 0,

in which the Aj are meromorphic in |z| > r0 . Then we have, for j = 0, . . . , k− 1 ,

(13) m(r,Aj) = S(r, g).

Proof. In this proof we use characteristic functions defined as in (9). When
the fj are meromorphic in |z| > r0 , the estimate (13) is well known [6]. We first
note that each gµ , being a polynomial in the f(m)

j and g(m) , may be written
as a quotient of function elements admitting unrestricted analytic continuation in
|z| > r0 , and that continuing gj in this way around any curve homotopic to zero
in |z| > r0 leads back to gj . Since each gj solves (12), there exist constants cj,m
such that continuing gj once counter-clockwise around any circle |z| = r > r0
leads to

k∑
m=1

cj,mgm.
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The usual eigenvalue argument [17, p. 358] then gives a solution g∗ of (12), which
we can assume without loss of generality is g1 , such that under this continuation
g1 leads to a constant multiple of itself. Thus, for some constant c , the function

h1 = zcg1

is meromorphic in |z| > r0 . We then have, for j = 1, . . . , k ,

(14)
m(r, g(j)

1 /g1) ≤
j∑

m=1

m(r, h(m)
1 /h1) +O(log r)

≤ O
(
log+ T (r, h1) + log r

)
(n.e.).

Further, (11) gives, for 1 ≤ j ≤ k ,

log+ log+ |f(m)
j (z)| = O(log |z|)

on S∗(2r0 ,−π, π) and recalling the representation of the gµ as polynomials in the
f

(m)
j and g(m) we get, for some positive constant M ,

(15) T (r, h1) ≤ m(r, h1) +O
(
N(r, g)

)
≤ O

(
T (r, g) + rM

)
(n.e.).

We now proceed by induction on k , and for k = 1 the result already follows,
since A0 = −g′1/g1 . Assuming now that the result is true for k − 1, we apply the
familiar reduction of order method [17] to write vj = gj/g1 for j = 2, . . . , k , so
that each vj solves an equation

(16) v(k) +
k−1∑
m=1

Bmv
(m) = 0,

and the Bm are meromorphic in |z| > r0 and can be calculated from the coeffi-
cients A1, . . . , Ak−1 and the g(j)

1 /g1 as follows. We have, with Ak = 1,

(17) Bm = Am +
k∑

j=m+1

AjPj,m(g′1/g1), m = 1, . . . , k − 1.

Here each Pj,m(g′1/g1) is a differential polynomial in g′1/g1 with constant coeffi-
cients. We regard (16) as an equation of order k − 1 in the wj = v′j and we then
write yj = wjg

2
1 = g′jg1 − gjg

′
1 . The yj solve

y(k−1) +
k−2∑
m=0

Cmy
(m) = 0,
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with coefficients Cm meromorphic in |z| > r0 , and the yj are themselves polyno-
mials in the f(m)

j and g(m) . Further, with Bk = 1 we have

(18) Cm = Bm+1 +
k∑

j=m+2

BjQj,m(g′1/g1), m = 0, . . . , k − 2,

in which each Qj,m(g′1/g1) is a differential polynomial in g′1/g1 , with constant
coefficients.

From the induction hypothesis we deduce that m(r, Cm) = S(r, g) for each
m , so that the same is true of the Bm , using (14), (15) and (18). We now have
m(r,Am) = S(r, g) for m = 1, . . . , k − 1, using (17), and (12) and (14) and (15)
give m(r,A0) = S(r, g). The induction is complete and the lemma is proved.

Lemma 4. Let k ≥ 1 be an integer and let f1, . . . , fk , G , H and a0, . . . , ak−1 ,
A0, . . . , Ak−1 all be meromorphic in a domain U . Suppose that f1, . . . , fk are lin-
early independent solutions in U of

Lk(w) = w(k) +
k−1∑
j=0

ajw
(j) = 0.

Suppose further that the functions f1H + f ′1G, . . . , fkH + f ′kG are linearly inde-
pendent solutions in U of

Mk(w) = w(k) +
k−1∑
j=0

Ajw
(j) = 0.

Then we have, in U , setting Ak = 1 and A−1 = a−1 = 0 ,

kH ′ + (Ak−1 − ak−1)H = −
(

1
2k(k − 1)G′′ + (k − 1)Ak−1G

′ + Ak−2G
)

+ ak−1(Ak−1G+ kG′) +G(a′k−1 + ak−2 − a2
k−1).(19)

Proof. When ak−1 = 0 this is a special case of Lemma 6 of [6]. Since
Mk(fjH + f ′jG) = 0 we have

(20) Mk(fjH) = −Mk(f ′jG).

For integers n and m , we use the notation

nCm =
n!

m!(n−m)!

when 0 ≤ m ≤ n , and
nCm = 0
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otherwise. We also write, for 0 ≤ µ ≤ k ,

Mk,µ(w) =
k∑

m=µ

(mCµ)Amw(m−µ), Mk,−1(w) = 0.

Thus, for j = 1, . . . , k ,

(21)

Mk(fjH) =
k∑

m=0

Am

k∑
µ=0

(mCµ)f
(µ)
j H(m−µ) =

k∑
µ=0

f
(µ)
j Mk,µ(H)

=
k−1∑
µ=0

f
(µ)
j

(
Mk,µ(H) − aµH

)
.

We also have

Mk(f ′jG) =
k∑

µ=0

f
(µ+1)
j Mk,µ(G)

=
k−2∑
µ=0

f
(µ+1)
j Mk,µ(G) + f

(k)
j Mk,k−1(G) + f

(k+1)
j G(22)

=
k−1∑
µ=0

f
(µ)
j

(
Mk,µ−1(G)− aµMk,k−1(G) + (aµak−1 − a′µ − aµ−1)G

)
.

Since the Wronskian determinant of the fj is not identically zero, the coefficient
of f(µ)

j on the right-hand-side of (21) and that on the right-hand-side of (22) must
have sum 0, by (20). Now µ = k − 1 gives (19).

The following lemma is from [22].

Lemma A. Let c , M , N be positive constants and let Q(z) be analytic and
satisfy |Q(z)| ≤ M + |z|M in a half-plane Re(z) ≥ c . Suppose that Q(n) is an
integer for all integers n ≥ N . Then Q is a polynomial.

Lemma 5. Suppose that R,S are rational functions, with R not identically
zero, that P,P1 are polynomials, with P1 non-constant. Suppose that we have
P1

(
P (z) + logR(z)

)
≡ S(z) in some domain U . Then R is constant.

Proof. By the hypotheses there is an equation

(23)
q∑

j=0

aj(z)wj = 0,

with polynomial coefficients aj , not all 0, having a local solution w = logR(z).
The analytic continuations of logR(z) all satisfy the same equation. But logR(z)
adds an integer multiple of 2πi as we continue once around a zero or pole of R
and, since the solution of (23) has at most q branches, we conclude that R has
no zeros or poles and is constant.
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4. An estimate for logarithmic derivatives

Lemma 6. Suppose that k ≥ 1 and that f is meromorphic in the plane and
that

(24) F = f(k) +
k−1∑
j=0

ajf
(j), G = f(k) +

k−1∑
j=0

bjf
(j),

with the aj and bj rational functions. Then either F/G is constant or

(25) m(r, f ′/f) ≤ N(r, 1/F ) + N(r, 1/G) + S(r, f ′/f).

Proof. Let f1, . . . , fk be linearly independent solutions of the equation

(26) w(k) +
k−1∑
j=0

ajw
(j) = 0

in the domain S = S∗(r0,−π, π). Then the fj all admit unrestricted analytic
continuation in |z| > r0 , provided r0 is large enough. Let

(27) W = W (f1, . . . , fk), W ′/W = −ak−1

in S . Then we have, in S ,

W (f1, . . . , fk, f) =WF

and so
W

(
(f1/f)′, . . . , (fk/f)′

)
= (−1)kWFf−k−1

and
W (w1, . . . wk) =WF/f, wj = −f ′j + fjf ′/f.

Thus the wj are linearly independent solutions in S of an equation

(28) w(k) +
k−1∑
j=0

Ajw
(j) = 0, Ak−1 = −W ′/W + f ′/f − F ′/F.

We assert that the Aj are meromorphic in |z| > r0 , establishing this in the
standard way by noting that if A∗

j and w∗
m are respectively the function elements

obtained by analytically continuing Aj and wm once counter-clockwise around
|z| = r > r0 , then w∗

m is a linear combination of the wj in S , and w∗
1, . . . , w

∗
k are

linearly independent by the law of permanence of functional relations. Since we
have

k−1∑
j=0

(A∗
j − Aj)w(j)

m = 0
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in S for 1 ≤ m ≤ k , we deduce that A∗
j = Aj on S . Our assertion established,

we have, by Lemma 3,

(29) m(r,Aj) = S(r, f ′/f), j = 0, . . . , k − 1.

We may apply Lemma 4, with H = f ′/f and G = −1, to obtain, using (27), (28)
and (29),

k(f ′/f)′ + (Ak−1 − ak−1)f ′/f = k(f ′/f)′ + (f ′/f − F ′/F )f ′/f = C,

m(r, C) = S(r, f ′/f).

The same argument with the aj replaced by bj gives

k(f ′/f)′ + (Bk−1 − bk−1)f ′/f = k(f ′/f)′ + (f ′/f −G′/G)f ′/f = D,

m(r,Bk−1) +m(r,D) = S(r, f ′/f).

We therefore have

A∗f ′/f = E∗,

A∗ = (Ak−1 − ak−1)− (Bk−1 − bk−1) = G′/G− F ′/F,

m(r,A∗) +m(r,E∗) = S(r, f ′/f),

and either F/G is constant or A∗ �≡ 0, in which case we obtain (25), on writing
f ′/f = E∗/A∗ and

m(r, f ′/f) ≤ m(r,E∗) +m(r,A∗) +N(r,A∗) +O(1).

5. Estimates for counting functions

We use the following notation throughout this section. Let k be a positive
integer and let f be a meromorphic function in the plane. Let F and G be given
by (24), with the aj , bj rational functions and aj − bj �≡ 0 for at least one j .
Assume that neither F nor G vanishes identically. Define V , E by

(30) F = V G, E = G − F = (1− V )G =
k−1∑
j=0

(bj − aj)f(j).

We begin with some basic estimates. Dividing the first relation of (30) through
by f and writing each f(j)/f as a differential polynomial in f ′/f , we see at once
that

(31) T (r, F/f) + T (r,G/f) ≤ O
(
T (r, f ′/f)

)
+ S(r, f ′/f).
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Since all but finitely many zeros and poles of V arise from zeros of F and G , we
also have

(32)
m(r, V ′/V ) = S(r, f ′/f),

T (r, V ′/V ) ≤ N(r, 1/F ) +N(r, 1/G) + S(r, f ′/f).

We now estimate m(r, F ′/F ) and m(r,G′/G). From (31) and the relations

F ′/F = (F/f)′/(F/f) + f ′/f, V ′/V = F ′/F −G′/G,

we see that any term which is S(r, F ′/F ), or S(r,G′/G) or S(r, V ′/V ), is an
S(r, f ′/f), while if V is non-constant then, using Lemma 6,

(33) m(r, F ′/F ) ≤ m(r, f ′/f)+S(r, f ′/f) ≤ N(r, 1/F )+N(r, 1/G)+S(r, f ′/f).

The same estimate plainly holds with F ′/F replaced by G′/G .

Lemma 7. Let V be as in (30) . Then there exists an integer q with
1 ≤ q ≤ k such that G satisfies

(34) 0 = (1 − V )G(q) +
q−1∑
j=0

Tj(V )G(j),

in which each Tj(V ) has a representation

Tj(V ) = αj +
q∑

m=0

βm,jV
(m),

with the coefficients αj and βm,j rational functions.

Proof. We begin by recalling (30). Thus, for s = 0, . . . , k , we have

(35) E(s) = (1− V )G(s) −
s∑

j=1

s!
j!(s− j)!

V (j)G(s−j).

Using the division algorithm for linear differential operators, each E(s) may be
written in the form

E(s) =
s−1∑
m=0

cm,sG
(m) +

k−1∑
m=0

dm,sf
(m), s = 0, . . . , k,
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the first sum not appearing when s = 0, and with the cm,s and dm,s rational
functions. Now the k by k + 1 matrix (dm,s) has rank at most k and so by ele-
mentary linear algebra its columns are linearly dependent over the field of rational
functions. Hence there are rational functions δs , not all identically zero, such that

k∑
s=0

δsdm,s ≡ 0

for 0 ≤ m ≤ k − 1. Thus, if q is the largest s such that δs �≡ 0, then q > 0
because, by hypothesis, at least one dm,0 is non-zero, and we have

q∑
s=0

δsE
(s) =

q−1∑
t=0

dtG
(t),

with coefficients dt which are rational functions. Replacing the E(s) using (35),
we have an equation as asserted.

We now make some estimates for the number of zeros and poles of f , under
certain assumptions on the coefficients.

Lemma 8. If ak−1 ≡ bk−1 then

N(r, f) ≤ N(r, 1/F ) +N(r, 1/G) + S(r, f ′/f).

To prove Lemma 8 we write, using (30),

(36) (1− V )f(k) +
k−1∑
j=0

(aj − V bj)f(j) = 0.

Suppose that z is large and that f(z) = ∞ . Then V (z) = 1 and, by the hypothesis
that ak−1 ≡ bk−1 , we have ak−1(z)− V (z)bk−1(z) = 0. Dividing (36) through by
f(k−1) , we see that (1−V )f(k)/f(k−1) vanishes at z . Thus V ′(z) = V (z)− 1 = 0
and the result follows from (32).

Lemma 9. Suppose that the equations

L1(w) = w(k) +
k−1∑
j=0

ajw
(j) = 0, L2(w) = w(k) +

k−1∑
j=0

bjw
(j) = 0

have no non-trivial common (local) solution, and that V is non-constant. Then
we have

(37) N(r, 1/f) ≤ 2N(r, 1/F )+4kN(r, 1/F )+5kN(r, 1/G)+S(r, f ′/f) (n.e.).
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Proof. Since the equations L1(w) = 0, L2(w) = 0 have no non-trivial com-
mon (local) solution, it follows using Lemma 1 that there exist a rational func-
tion b , not identically zero, and linear differential operators L , M with coeffi-
cients which are rational functions and with order at most k , such that we have
b = L(L1) +M(L2) and hence

bf = L(F ) +M(G),

and using (30) we write the last relation in the form

bf/F = L(F )/F +M(G)/F = L(F )/F +M(G)/GV.

But L(F )/F may be written as a polynomial of degree at most k in F ′/F and
its derivatives, with coefficients which are rational functions. Using (33) applied
to F and G and the remark preceding (33), this gives

(38) m(r, f/F ) ≤ m(r, 1/V ) + 2k
(
N(r, 1/F ) +N(r, 1/G)

)
+ S(r, f ′/f).

We now write the equation (34) in the form

1/V = V1/V2,

V1 =
(
G(q)/G+

q−1∑
j=0

MjG
(j)/G

)
,

V2 =
(
G(q)/G+

q−1∑
j=0

NjG
(j)/G

)
.

Here each Mj is a differential polynomial in V ′/V , with coefficients which are
rational functions, and each Nj is a rational function. We now have, by (32) and
(33), applied to G ,

m(r, Vj) ≤ q
(
N(r, 1/F ) +N(r, 1/G)

)
+ S(r, f ′/f)

for j = 1, 2, as well as

N(r, V2) ≤ q
(
N(r, f) +N(r, 1/G)

)
+ S(r, f ′/f).

Combining these estimates with (38), we have

(39) m(r, f/F ) ≤ qN(r, f)+(2k+2q)N(r, 1/F )+(2k+3q)N(r, 1/G)+S(r, f ′/f).

Since 1/f = (F/f)(1/F ) and since each pole z of f with z large is a pole of F/f
of order k , we can now write

N(r, 1/f) + kN(r, f) ≤ N(r, F/f) +N(r, 1/F ) +O(log r)
≤ T (r, f/F ) +N(r, 1/F ) +O(log r)
≤ m(r, f/F ) + 2N(r, 1/F ) +O(log r)

to obtain (37), using (39) and the fact that q ≤ k .
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Lemma 10. With the hypotheses of Lemma 9 , suppose that

N(r, 1/F ) +N(r, 1/G) = S(r, f ′/f).

Then
N(r, 1/f) = S(r, f ′/f),

and
T (r, f ′/f) ≤ N(r, f) + S(r, f ′/f) ≤ T (r, V ) + S(r, f ′/f).

The proof is obvious, using Lemmas 6 and 9 and recalling that V = 1 at all
but finitely many poles of f .

6. A growth lemma

Lemma 11. Suppose that f is meromorphic in the plane and that F and
G are given by (24) , with k ≥ 1 and with the aj and bj rational functions, such
that aj �≡ bj for at least one j . Suppose that F and G have only finitely many
zeros. Then f has finite order.

We remark that when k ≥ 3 and at least one of F and G has polynomial
coefficients, it already follows from the hypotheses and Theorem 2 of [6] that f ′/f
has finite order.

Proof of Lemma 11. Suppose that k and the functions f(z), F (z), G(z) are
as in the hypotheses, and suppose that f is meromorphic of infinite order in the
plane. Then F/G is transcendental, because otherwise f would be a solution of a
homogeneous linear differential equation with rational functions as coefficients, and
f would have finite order. With the notation of Lemma 1, and with ak = bk = 1,
we may write F = L1(f), G = L2(f). Let H be the operator of Lemma 1.

Suppose first that H has positive order. In this case we set g1 = H(f) =∑q
j=0 cjf

(j) , in which 0 ≤ q ≤ k − 1, and the cj are rational functions, with
cq �≡ 0. By Lemma 1 there are differential operators Qj and Pj , with coefficients
which are rational functions, such that

g1 = P1(F ) + P2(G), F = Q1(g1), G = Q2(g1),

and, dividing through by the leading coefficients, there are linear differential op-
erators Q∗

1 , Q
∗
2 , each of form

Q∗
j = Dk−q +

k−q−1∑
m=0

aj,mD
m

and having coefficients which are rational functions, such that Q∗
1(g1) and Q∗

2(g1)
both have finitely many zeros.
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Lemma 12. If g1 has finite order then so has f .

Proof. Assume that g1 has finite order. Then since all but finitely many poles
of f are poles of g1/f of multiplicity q , it follows that N(r, f) has finite order
and we can write f = f1/f2 = f1u2 , with the fj entire, f2 of finite order. For
|z| outside a set F0 of finite measure, standard estimates from [10, p. 22] or [8]
give f(m)

2 (z)/f2(z) = O(|z|d1 ), for 1 ≤ m ≤ q , in which d1 is a positive constant.
Substituting f = f1u1 into the equation H(f) = g1 and dividing through by
f1u1 , we obtain an equation

f
(q)
1 /f1 +

q−1∑
j=0

Ajf
(j)
1 /f1 = g1/f = g1f2/f1,

in which the coefficients Aj satisfy Aj(z) = O(|z|d2), for 0 ≤ j ≤ q − 1, and for
|z| outside F0 , where d2 is a positive constant. A standard application of the
Wiman–Valiron theory [12, Theorem 12] (see also [30]) now shows that f1 has
finite order and so has f . This proves Lemma 12.

Returning to the proof of Lemma 11, we may assume henceforth that H has
order 0, that is, that the equations

L1(w) = 0, L2(w) = 0

have no non-trivial common (local) solution. Then by Lemma 10 we have

(40) T (r, f ′/f) ≤ cT (r, F/G) (n.e.),

using c throughout this proof to denote a positive constant, not necessarily the
same at each occurrence.

Since F and G are given by (24), we may write

(41)

F (z) = R(z)eP(z)G(z),

E(z) = G(z) − F (z) =
(
1−R(z)eP(z)

)
G(z) =

k−1∑
j=0

Bj(z)f(j)(z),

with P entire, and with R and the Bj rational functions. If |z| is large and f
has a pole of multiplicity n at z then, dividing the equation F = RePG through
by f(k−1) , we obtain

(42) R(z)eP(z) = 1, (n+ k − 1)
(
R′(z)/R(z) + P ′(z)

)
= bk−1(z)− ak−1(z)

and so

(43) log+ |P ′(z)| = O(log+ |z|).
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Also, if R(z)eP(z) = 1 and |z| is large, then either f has a pole at z , or E(z) = 0.
Suppose that P is a polynomial. Since R(z)eP(z) = 1 at all but finitely many

poles of f we have N(r, f) ≤ T (r,ReP ) + O(log r). But by (42) the multiplicity
n of a pole of f at z is bounded by a power of |z| . Therefore

log+N(r, f) = O(log r)

and we have f = f1/f2 in which the fj are entire and f2 is not identically zero but
has finite order. There then exists a subset E∗ of (1,∞) of infinite logarithmic
measure such that for |z| = r in E∗ we have

|R(z)eP(z) − 1| ≥ r−c , |f(j)
2 (z)/f2(z)| ≤ rc, 1 ≤ j ≤ k,

the easiest way to establish this being to write

1/(ReP − 1) = R−1e−P (1−R−1e−P )−1

and then use standard estimates [10, p. 22] for the logarithmic derivative of the
function 1−R−1e−P . As in the proof of Lemma 12 a standard application of the
Wiman–Valiron theory [12, Theorem 12] to the relation G = (1−ReP )−1E shows
that f1 has finite order and so does f . Therefore we may assume for the rest of
the proof that P is transcendental.

Take a large positive r0 , normal for P with respect to the Wiman–Valiron
theory [12], [30], and such that, using (40) and (41),

(44) T (r0, f(j)/f) < cT (r0, F/G) = cT (r0, ReP )

for j = 1, . . . , k . For non-zero complex v , and positive K , we define the logarith-
mic rectangle

D(v,K) = {u = veτ : |Re(τ )| ≤ KN−2/3, | Im(τ )| ≤ KN−2/3},

in which N = ν(r0, P ) is the central index of P , and is large if r0 is large.
By Lemma 2, (41) and (44) we have, for j = 1, . . . , k ,

(45) log |f(j)(z)/f(z)| ≤ cN2T (r0, ReP ), log |E(z)/f(z)| ≥ −cN2T (r0 , ReP ),

for all z with 1
2r0 ≤ |z| ≤ r0e

−2/N and lying outside a union D0 of open discs
having sum of radii at most cr0N−2 , so that there is a subset D1 of [0, 2π] , having
measure at most cN−2 , such that some determination of arg ζ is in D1 for every
ζ in D0 .

Choose z0 with |z0| = r0 and |P (z0)| = M(r0 , P ). On D(z0 , 128) we
have [12, Theorem 12]

(46) P (z) + logR(z) = P (z)
(
1 + o(1)

)
= P (z0)(z/z0)N

(
1 + o(1)

)
= αζN ,
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(47) α = P (z0)z−N0 , ζ = z
(
1 + o(1/N)

)
, P ′(z)/P (z) =

(
1 + o(1)

)
N/z.

In particular, P ′(z) is large on D(z0, 128) so that, using (43), there are no poles
of f in D(z0 , 128), and by (41) every zero of R(z)eP(z) −1 in D(z0 , 128) is simple
and is a zero of E .

On D(z0, 128) we write

z = z0e
τ , ζ = z0e

σ, σ = τ + o(1/N),

so that
dσ

dτ
= 1 + o(N−1/3)

and, by convexity, σ is a univalent function of τ for |Re(τ )| ≤ 64N−2/3 , | Im(τ )| ≤
64N−2/3 . Further,

(48)
dζ

dz
=
ζ

z

dσ

dτ
= 1 + o(N−1/3)

on D(z0, 64). In addition, the image of D(z0 , 64) under ζ = ζ(z) contains
D(z0 , 32), and αζN is large for ζ in D(z0 , 32).

If c0 is a positive constant there exists a positive constant c1 such that on
each circle |w| = (2n+ 1)π , with n a positive integer, and on the ray argw = 0,
|w| ≥ c0 , we have |ew − 1| ≥ c1 . We choose σ0 such that

σ0 ∈ [−16N−1,−8N−1], |αzN0 eNσ0 | = (2n+ 1)π

for some integer n , and we choose m1 , n1 , m2 , n2 such that

m1, n1,m2, n2 ∈ [4N−2/3, 8N−2/3]

and
arg(αζN ) = 0 for ζ = z0e

σ, Im(σ) ∈ {−n1, n2},
and such that |(α/π)zN0 eNσ| is an odd integer for Re(σ) in {σ0 −m1, σ0 +m2} .
Thus on the boundary of the logarithmic rectangle

B = {ζ = z0e
σ : σ0 −m1 ≤ Re(σ) ≤ σ0 +m2, −n1 ≤ Im(σ) ≤ n2},

and on the arc L0 given by

(49) ζ = z0e
σ0+iλ, −n1 ≤ λ ≤ n2,

we have

(50) |eαζ
N

− 1| ≥ c1 > 0.

Now L0 lies in |ζ | ≤ r0e
−8/N and so using (47) the image z(L0) of L0 under

the mapping z = z(ζ) lies in

|z| ≤ r0e
−8/N

(
1 + o(1)/N

)
≤ r0e

−2/N .

Further, if L1 is the sub-arc of L0 given by −1/N ≤ λ ≤ 1/N in (49), then the
variation of arg z on z(L1) is, by (47), at least

(
c−o(1)

)
/N , and using the remark

following (45) we may therefore choose ζ1 lying on L1 , such that the inequalities
of (45) all hold at z1 = z(ζ1). Note that D(ζ1 , 2) is contained in B , provided r0
is large enough, while B in turn lies in D(z0 , 16), and z(B) lies in D(z0, 32).



On the zeros of pairs of linear differential polynomials 429

Lemma 13. The number of zeros of eαζ
N − 1 in D(ζ1, 1) is at least

ceN
1/3
M(r0 , P ) .

Proof. We have |ζ1| = r0e
σ0 and σ0 is in [−16/N,−8/N ] , so that |αζN1 | =

|P (z0)|eγ , for some γ in [−16,−8] , and the image of D(ζ1, 1) under w = αζN

covers the annulus

|P (z0)|e−N
1/3+γ ≤ |w| ≤ |P (z0)|eN

1/3+γ,

so that the number of zeros of eαζ
N − 1 in D(ζ1, 1) is at least ceN

1/3|P (z0)| =
ceN

1/3
M(r0 , P ). This proves Lemma 13.

We may now complete the proof of Lemma 11. Let g(z) = f(z)/f(z1), and
let C be the union of L0 and the boundary of B . Using (46) and (50) and the
relation G = (1 −ReP )−1E , we have, on z(C),

(51) g(k)(z) =
k−1∑
j=0

sj(z)g(j)(z), sj(z) = O(|z|c).

Since |dz| ≤ 2|dζ | , by (48), the arc length of z(C) is o(r0). We write the equation
(51) in vector form as

I ′(z) = A(z)I(z), I(z) =
(
g(k−1)(z), . . . , g(z)

)T
,

in which the k by k matrix A has entries which are O(r0)c on z(C). Writing

I(z) = I(z1) +
∫ z

z1

A(u)I(u)du, S(z) = max{|g(j)(z)| : j = 0, . . . , k − 1},

we have
S(z) ≤ V (z) = S(z1) +

∫ z

z1

rc0S(u) |du|,

and the standard Gronwall method [1, p. 35] (see also [15], [16], [20]) gives, with
t denoting arc length on z(C),

d

dt

(
V

(
z(t)

))
≤ rc0S

(
z(t)

)
≤ rc0V

(
z(t)

)
,

and so
S

(
z(t)

)
≤ V

(
z(t)

)
≤ V (z1) exp(rc0t) ≤ S(z1) exp(rc0).

We thus have, for j = 0, . . . , k − 1,

|g(j)(z)| ≤ S(z) ≤ S(z1) exp(rc0) ≤ exp
(
NcT (r0, ReP ) + rc0

)
,
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using (45), and so

|E(z)/f(z1)| ≤ exp
(
NcT (r0, ReP ) + rc0

)

on z(C). Hence the function H1 defined by H1(ζ) = E(z)/f(z1) satisfies

log |H1(ζ)| ≤ NcT (r0, ReP )

for all ζ on C , and so for all ζ in B , and hence for all ζ in D(ζ1, 2), by the
maximum principle. But we also have, by (45),

log |H1(ζ1)| = log |E(z1)/f(z1)| ≥ −NcT (r0 , ReP ).

Mapping D(ζ1, 2) to the unit disc, using w = φ(ζ), with ζ1 mapped to 0, and
writing J(w) = H1(ζ), we have, for 0 < r < 1,

T (r, 1/J) ≤ T (r, J) + log |1/J(0)| ≤ logM(r, J) + log |1/H1(ζ1)| ≤ NcT (r0 , ReP ).

Thus the number of zeros of H1(ζ) in D(ζ1 , 1) is at most NcT (r0, ReP ). Hence,
using (41) and (46) and the remark following (47), the number of zeros of eαζ

N −1
in D(ζ1, 1) is at most

NcT (r0, ReP ) ≤ Nc logM(r0 , ReP ) ≤ Nc
(
M(r0 , P ) +O(log r)

)
≤ NcM(r0 , P ).

This contradicts Lemma 13 and Lemma 11 is proved.

7. Proof of Theorem 1

Suppose that f and F and G are as in the hypotheses. Then we know
by Lemma 11 that f has finite order. If F/G is constant then f has finitely
many poles and since F has finitely many zeros we have F = R1e

V with R1

a rational function and V a polynomial. Since G is a constant multiple of F
and since Lemma 1 gives f = V1(F ) + V2(G), in which V1 and V2 are linear
differential operators, the coefficients of which are rational functions, we deduce
that f = R2e

V with R2 a rational function, and f ′/f is a rational function.
Assume henceforth that F/G is non-constant. It follows from Lemma 10 and

(10) that f has only finitely many zeros. If f has only finitely many poles then
again f ′/f is a rational function. We assume henceforth that f has infinitely
many poles.

We have (41), with R a rational function and P a non-constant polynomial.
Since

m(r, f ′/f) +N(r, 1/f) = O(log r),
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the order ρ of T (r, f ′/f) is the same as that of N(r, f). Writing F/f and G/f
as differential polynomials in f ′/f with coefficients which are rational functions,
it is now clear that

(52) deg (P ) ≤ ρ = lim sup
r→∞

logN(r, f)
log r

.

Let r0 be large and positive. We define, in the domain U = S∗(r0,−π, π),
linearly independent solutions f1, . . . , fk of the equation (26), and the Wronskian
W =W (f1 , . . . , fk) satisfies (27) in U . We further define g , h in U by

(53) g−k = F/f, h = (−f ′/f)g.

Then g and h are analytic in U and g , h , W and the fj all admit unrestricted
analytic continuation in |z| > r0 , the continuations of these functions Hm all
satisfying

(54) log+ log+ |Hm(z)| = O(log |z|)

on S∗(r0,−2π, 2π).
We have

W (f1, . . . , fk, f) =WF = Wfg−k

and hence
W

(
(f1/f)′ , . . . , (fk/f)′

)
= (−1)kWf−kg−k

and

(55) W (f1h+ f ′1g, . . . , fkh+ f ′kg) = (−1)kW

in U . Thus the functions fjh + f ′jg , for j = 1, . . . , k , are linearly independent
solutions in U of an equation

(56) w(k) +
k−1∑
j=0

Ajw
(j) = 0, Ak−1 = −W ′/W.

We assert that the Aj are rational functions. First, if E1 is the set of all
singular points of the equation (26) as well as of all zeros of f and F then E1 is
finite and the fj and g and h all admit unrestricted analytic continuation in the
complement Ω of E1 in the plane. Further, since gk and hk are meromorphic,
and since the fj form a fundamental solution set of (26), analytic continuation of
any of the functions f1h+ f ′1g, . . . , fkh+ f ′kg once around any point of E1 leads
back to a linear combination of the same functions. By (55) and the standard
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representation for the Aj as quotients of determinants, we deduce that the Aj are
analytic in Ω. By (54) and Lemma 3, they satisfy

m(r,Aj) = O(log r), r → ∞.

Thus the Aj each have at most a pole at infinity, and a similar analysis in a
punctured neighbourhood of each point of E1 shows that the Aj are rational
functions.

We denote henceforth by dj rational functions. Since each fjh+ f ′jg satisfies
(56) we obtain, using (26), (27), (56) again and Lemma 4,

(57) h′ = − 1
2 (k − 1)g′′ + d1g

′ + d2g.

However, we may define Y and g1 , h1 on U by

(58) Y k = ReP , g1 = Y g, h1 = Y h,

and using (41) and (53) we have

G = Y −kF = g−k1 f.

The same method as above gives us an equation

h′1 = − 1
2
(k − 1)g′′1 + d3g

′
1 + d4g1

in U , which leads at once to

(59) h′ + (Y ′/Y )h = − 1
2
(k − 1)g′′ + d5g

′ + d6g,

using (58). Thus (57) and (59) give

(60) h = d7g
′ + d8g, −f ′/f = d7g

′/g + d8.

The equations (60) continue to hold under analytic continuation of g and h .
Further, d7(z) is a positive integer at a pole z of f with |z| large. Hence d7 �≡
− 1

2 (k − 1). Therefore (57) and (60) together give

g′′ +D1g
′ +D0g = 0,

with coefficients Dj which are rational functions.
Writing

(61) g = uv, 2v′/v = −D1,
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the function u admits unrestricted analytic continuation in |z| > r0 and solves an
equation

(62) u′′(z) + a(z)u(z) = 0,

in which a is a rational function. We assume that either a(z) ≡ 0 or

(63) a(z) = αmz
m

(
1 + o(1)

)
, z → ∞,

in which m is an integer and αm �= 0. If a(z) ≡ 0 or m ≤ −2 we can take any
sectorial region U1 given by |z| > r1 , | arg z − θ1| ≤ 1

2
π . We can estimate the

number n(r, U1, 1/u) of zeros of u , and hence zeros of g , in the set {z ∈ U1 : |z| ≤
r} as follows. Under the assumption m ≤ −2 the equation (62) has a regular
singular point at infinity [17], and there exist a constant d and a solution u1 of
(62), such that in the sectorial region U1 we have

u1(z) = zdφ(z) = zd
(
1 + o(1)

)
,

in which φ(z) is analytic in |z| > r0 with φ(∞) = 1. A second solution of (62)
may be obtained by writing

(u2/u1)′ = u−2
1 ,

so that, subtracting a constant if necessary,

u2(z)/u1(z) =
(
1 + o(1)

)
(1− 2d)−1z1−2d

in U1 , provided d �= 1
2 , while if d =

1
2 we get

u2(z)/u1(z) =
(
1 + o(1)

)
log z.

Writing u as a linear combination of u1 and u2 in U1 we deduce that

n(r, U1, 1/u) = O(log r), r → ∞,

which contradicts (52). We may assume henceforth that a(z) �≡ 0 and m ≥ −1 in
(63).

Now asymptotic representations for the solutions of (62) are obtained by the
method of Hille [15], [16], as follows. The critical rays for (62) are those rays
arg z = θ0 for which

argαm + (m+ 2)θ = 0 mod 2π.

If arg z = θ0 is a critical ray and ε is a positive constant then in the sectorial
region

S0 = S∗(r0, θ0 + ε− 2π/(m+ 2), θ0 − ε+ 2π/(m+ 2)
)
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we write z∗ = 2r0eiθ0 and

(64) Z =
∫ z

z∗
a(t)1/2 dt = 2α1/2

m (m + 2)−1z(m+2)/2
(
1 + o(1)

)
, z → ∞,

and we have principal solutions u1 , u2 of (62) satisfying

(65) uj(z) = a(z)−1/4 exp
(
iZ(−1)j + o(1)

)
in S0 . In one of the sectorial regions

S1 = S∗(r0, θ0+ε, θ0−ε+2π/(m+2)
)
, S2 = S∗(r0, θ0+ε−2π/(m+2), θ0−ε

)
,

we have u1(z)/u2(z) → 0 as |z| → ∞ , and we refer to u2 as dominant and u1 as
sub-dominant in that sectorial region, while in the other we have u2(z)/u1(z) → 0
and u1 is dominant. If u∗ is any solution of (62), then u∗ has at most finitely
many zeros in S1∪S2 . Both principal solutions u1 , u2 admit unrestricted analytic
continuation in |z| > r0 , although not generally without zeros.

It follows from these asymptotics that we have

n(r, U1, 1/u) = O(r(m+2)/2), r→ ∞,

for any sectorial region U1 as above. Hence the degree n of P satisfies, by (52),

(66) n ≤ 1
2 (m+ 2).

We take a critical ray arg z = θ0 of (62) such that f has infinitely many poles
in |z| > r0 , | arg z − θ0| ≤ π/(m+ 2), and we write

u = C1u1 − C2u2

there, with C1 , C2 constants, both necessarily non-zero. The function ζ =
±(1/2πi) log(C2u2/C1u1) maps the sectorial region S0 conformally onto a region
containing a half-plane Re(ζ) ≥ c . At each point in S0 where ζ is an integer, we
have u = 0 and hence f = ∞ and hence ReP = 1, so that (P + logR)/2πi is an
integer. Writing P + logR as a function of ζ and applying Lemma A, we obtain
a polynomial P1 such that we have

P + logR = P1(ζ).

But (66) and the asymptotics (64), (65) for u1 , u2 and ζ force P1 to be linear.
Consequently there exist constants c , c∗ such that C2u2/C1u1 = c∗(ReP )c . Hence
u′2/u2 − u′1/u1 is a rational function, and so are u2u1 and u′1/u1 and u′2/u2 . So
using (61) there exist rational functions Tj such that we have

g′/g = T1+u′/u = T2+T3(u2/u1)′(1−C2u2/C1u1)−1 = T4+T5

(
c∗(ReP )c−1

)−1
,
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and, using the second equation of (60),

f ′/f = T6 + T7

(
c∗(ReP )c − 1

)−1
.

By analytic continuation, Rc must be a rational function, and we can write

f ′/f = T6 + T7(SeQ − 1)−1,

with S a rational function and Q a non-constant polynomial. Examining the
residue of f ′/f at a zero of SeQ − 1, a further application of Lemma A shows
that T7 has a representation

T7 = P2(Q+ logS)(Q′ + S ′/S),

with P2 a polynomial, and by Lemma 5 either S or P2 is constant.
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[2] Bieberbach, L.: Theorie der gewöhnlichen Differentialgleichungen, 2. Auflage. - Springer-

Verlag, Berlin, 1965.
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