ON THE ZEROS OF PAIRS OF LINEAR DIFFERENTIAL POLYNOMIALS

G. Frank and J.K. Langley

Technische Universität Berlin, Fachbereich Mathematik Strasse des 17. Juni 136, D-10623 Berlin, Germany University of Nottingham, Department of Mathematics Nottingham NG7 2RD, England; jkl@maths.nott.ac.uk

Abstract. Suppose that f is meromorphic in the plane and that F and G are given by

$$F = f^{(k)} + \sum_{j=0}^{k-1} a_j f^{(j)}, \qquad G = f^{(k)} + \sum_{j=0}^{k-1} b_j f^{(j)},$$

with $k \ge 1$ and the a_j , b_j rational functions, such that $a_j \ne b_j$ for at least one j. We classify those f for which F and G have only finitely many zeros.

1. Introduction

The study of zeros of linear differential polynomials has a long history, going back to the fundamental work of Pólya [28] on entire and meromorphic functions and their derivatives. The following theorem was proved by the first author and Hennekemper and Polloczek [5], [7] for $k \geq 3$ and by the second author [20] for k = 2, and confirmed a conjecture of Hayman [9], [10], [11] from 1959.

Theorem A. Suppose that f is meromorphic in the plane and that f and $f^{(k)}$ have only finitely many zeros, for some $k \ge 2$. Then we have $f(z) = R(z)e^{P(z)}$, with R a rational function and P a polynomial. In particular, f has finite order and finitely many poles.

Refinements of this theorem may be found in [6], [20], [21], [23], while simple examples show that no comparable result holds for k = 1 (see however [4]). A natural generalization of Theorem A involves replacing the k'th derivative $f^{(k)}$ by a linear differential polynomial

(1)
$$F = f^{(k)} + \sum_{j=0}^{k-1} a_j f^{(j)},$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 30D35.

with coefficients a_j which are rational functions. Thus the first author and Hellerstein proved in [6] that if f is meromorphic in the plane and

$$N(r, 1/f) + N(r, 1/F) = o\big(T(r, f'/f)\big), \qquad r \to \infty,$$

in which $k \geq 3$ and F is given by (1) with polynomial coefficients a_j , and in which the notation is that of [10], then f'/f has finite order. Subsequent papers [3], [29] determined all functions f meromorphic in the plane for which f and F, subject to the above assumptions, have no zeros, while the papers [20], [22] give a rather more complicated classification of all functions f meromorphic in the plane such that f and $f'' + a_1 f' + a_0 f$ have only finitely many zeros, for any rational functions a_1 , a_0 . Related results appear in [14], [19], [27] and elsewhere.

With regard to these results, it seems reasonable to ask how essential the hypothesis on the zeros of f really is. Of course, it is easy to give examples of entire f for which F, as given by (1), has no zeros: just set $F = e^P$, with P a polynomial, and solve the resulting differential equation for f. However, some conclusion regarding poles might be expected, and the following theorem [24], [25], [26] summarizes some results in this direction.

Theorem B. Suppose that f is meromorphic of finite order in the plane, and that f'' has only finitely many zeros. Then

$$\overline{N}(r, f) = O(\log r)^3, \qquad r \to \infty$$

If, in addition, T(r, f) = O(r) or $N(r, 1/f') = o(r^{1/2})$ as $r \to \infty$, then f has only finitely many poles.

On the other hand, examples of meromorphic f having infinite order, such that f' and f'' have no zeros, while f has an arbitrary set of poles, were given in [24], and we show in the next section how to construct examples of functions f and linear differential polynomials F in f, such that F and F' have no zeros, while f has an arbitrary set of poles. Thus the zeros of a single linear differential polynomial in f do not suffice to determine f.

In the present paper, we consider two linear differential polynomials

$$F = L_k(f) = f^{(k)} + \sum_{j=0}^{k-1} a_j f^{(j)}, \qquad G = M_k(f) = f^{(k)} + \sum_{j=0}^{k-1} b_j f^{(j)},$$

in a meromorphic function f, with k a positive integer and the a_j and b_j rational functions, and with $a_j \neq b_j$ for at least one j. There is a well-known reduction procedure [17], described in Lemma 1 below, to obtain linear differential operators P, Q, H with coefficients which are rational functions, such that $L_k = P(H)$ and $M_k = Q(H)$ and the common (local) solutions of the homogeneous equations

(2)
$$L_k(w) = 0, \qquad M_k(w) = 0$$

are precisely the (local) solutions of H(w) = 0. This allows us to concentrate on the case where the equations (2) have no non-trivial common (local) solution, that is, no common (local) solution other than the trivial solution $w \equiv 0$, for in the contrary case we may regard F and G as linear differential polynomials in H(f). Our main result is then the following.

Theorem 1. Let k be a positive integer and let a_0, \ldots, a_{k-1} and b_0, \ldots, b_{k-1} be rational functions with $a_j \neq b_j$ for at least one j. Assume that the equations

$$w^{(k)} + \sum_{j=0}^{k-1} a_j w^{(j)} = 0, \qquad w^{(k)} + \sum_{j=0}^{k-1} b_j w^{(j)} = 0,$$

have no non-trivial common (local) solution. Let f be meromorphic in the plane such that

$$F = f^{(k)} + \sum_{j=0}^{k-1} a_j f^{(j)}, \qquad G = f^{(k)} + \sum_{j=0}^{k-1} b_j f^{(j)}$$

both have only finitely many zeros. Then f has finite order and finitely many zeros and f'/f has a representation

(3)
$$\frac{f'(z)}{f(z)} = Y(z) + \frac{P_0(Q(z) + \log S(z))(Q'(z) + S'(z)/S(z))}{S(z)e^{Q(z)} - 1}$$

in which S and Y are rational functions and Q and P_0 are polynomials, and at least one of P_0 and S is constant.

In the next section we will give examples showing that (3) can indeed occur. Our approach to proving Theorem 1 exploits the fact that F and G have, with finitely many exceptions, the same poles, and proceeds via the rather surprising conclusion that f itself has finitely many zeros. This allows us to use the machinery developed in [5], [6], [7].

This research was carried out during the second author's visit to the Technische Universität, Berlin, funded by a grant from the Deutscher Akademischer Austauschdienst (DAAD).

2. Examples

2.1. Example. Let a_0, \ldots, a_{k-2} and P be polynomials, and let f be a solution of the equation

$$f^{(k-1)} + \sum_{j=0}^{k-2} a_j f^{(j)} = K = e^P.$$

Let c, d be distinct constants. Then F = K' + cK and G = K' + dK are both linear differential polynomials of order k in f, having finitely many zeros. However, here F and G should, according to the reduction procedure referred to in the discussion of the system (2), more correctly be regarded as linear differential polynomials in K. **2.2. Example.** Setting $f(z) = \tan z$ we find that F = f'' - 2if' and G = f'' + 2if' are both zero-free. This example does not, however, contradict Theorem 1 since the equations w'' - 2iw' = 0, w'' + 2iw' = 0 have the non-trivial common solution w = 1, and F and G are more properly regarded as linear differential polynomials in f'.

2.3. Example. Let P and P_1 be polynomials, with P non-constant and P_1 not identically zero, chosen so that $P_1(P)$ is a non-positive integer at every zero of $e^P - 1$. For example, we may take $P_1(P) = P^2 4^{-1} \pi^{-2}$. Then

$$f'/f = T(e^P - 1)^{-1} = -P_1(P)P' + P_1(P)P'e^P(e^P - 1)^{-1}, \qquad T = P_1(P)P',$$

defines a meromorphic function having no zeros, and poles at all but finitely many zeros of $e^P - 1$, while the equations

$$f'(z) = 0,$$
 $f'(z) + T(z)f(z) = 0$

each have only finitely many solutions z. Further, with a and b rational functions we define L by

$$L/f = f''/f + af'/f + b = S(e^P - 1)^{-2},$$

where

$$S = be^{2P} + e^{P}(T' - TP' + aT - 2b) + (T^{2} - T' - aT + b),$$

and L cannot vanish identically, since f has infinitely many poles. There are thus three ways to ensure that L/f has only finitely many zeros, the same then being true of L. We can either solve simultaneously both equations

(4)
$$aT - 2b = TP' - T', \quad -aT + b = T' - T^2,$$

for a and b, using the fact that the determinant of the coefficients is -T, which is not identically zero, or we can set b = 0, and solve either of the equations (4) for a. To see that a non-zero rational function Y can arise in (3), we need only write $f = Ue^V g$, with U a rational function and V a polynomial, so that there are linear differential polynomials G_1 , G_2 in g, with coefficients which are rational functions and with G_1/G_2 non-constant, each having finitely many zeros.

2.4. Example. Let c be a constant, let $k \ge 1$ and let A_0, \ldots, A_k be polynomials with $A_k = 1$, and define the operator L by

$$L = \sum_{j=0}^{k} A_j D^j, \qquad D = d/dz.$$

Let a_n and M_n be sequences, such that each M_n is a positive integer, while the complex sequence (a_n) tends to infinity, without repetition, as $n \to \infty$. Define rational functions $R_n(z)$ by

$$R_n(z) = L((z - a_n)^{-M_n}).$$

Then R_n has a pole of order $M_n + k$ at a_n . Let g be an entire function having a simple zero at each a_n , and no other zeros. Using Mittag-Leffler interpolation, choose an entire function h such that we have, for each n,

$$c + g(z)^{-1}e^{h(z)} = R'_n(z)/R_n(z) + O(|z - a_n|^{M_n + k - 1})$$

as z tends to a_n . Define H by

$$H'/H = c + g^{-1}e^h.$$

Then there are non-zero constants b_n such that we have, for each n,

$$H(z) = b_n R_n(z) \left(1 + O(|z - a_n|^{M_n + k}) \right) = b_n R_n(z) + O(1)$$

as z tends to a_n . Hence there is a function h_n analytic at a_n such that $H(z) - b_n R_n(z) = h_n(z)$ on a punctured neighbourhood U_n of a_n . It follows that if w is a solution of the equation $L(w) = H(z) - b_n R_n(z)$ on a simply connected subdomain V_n of U_n then w has an analytic extension to a neighbourhood of a_n . If f_1 is a solution of the equation $L(f_1) = H$ on V_n then f_1 may be written in the form

$$f_1(z) = b_n(z - a_n)^{-M_n} + w(z) + v(z),$$

in which L(v) = 0 so that v is the restriction to V_n of an entire function. It follows that f_1 has an analytic extension to U_n with a pole at a_n . Therefore every local solution f of L(f) = H extends to a function meromorphic in the plane and, since every zero of g is a pole of H, both H = L(f) and H' - cH have no zeros.

3. Preliminaries

The following lemma is well known [17, p. 126].

Lemma 1. Let k, n be non-negative integers with $k \ge n$ and let D denote d/dz, and let linear differential operators L_1 , L_2 of orders k, n be defined by

$$L_1 = \sum_{j=0}^k a_j D^j, \qquad L_2 = \sum_{j=0}^n b_j D^j,$$

in which a_0, \ldots, a_k , b_0, \ldots, b_n are rational functions with $a_k b_n \neq 0$. Then there exist an integer q with $0 \leq q \leq n$ and an operator $H = \sum_{j=0}^{q} c_j D^j$, with the coefficients c_j rational functions and $c_q \neq 0$, and linear differential operators Q_1 , Q_2 , P_1 , P_2 with rational functions as coefficients, such that

$$L_1 = Q_1(H),$$
 $L_2 = Q_2(H),$ $P_1(L_1) + P_2(L_2) = H,$

in which the parentheses denote composition. Further, if w is meromorphic on some domain U, we have $H(w) \equiv 0$ on U if and only if $L_1(w) \equiv L_2(w) \equiv 0$ on U. Moreover, the operators Q_1 , Q_2 have orders k - q, n - q respectively, while the operators P_1 , P_2 both have order at most k. Proof. This is just the Euclidean algorithm for linear differential operators but, since we need the estimate for the orders of P_1 and P_2 , we present a proof. We proceed by induction on n, there being nothing at all to prove when n = 0, as in this case H is the identity operator. Assuming the result true when one of the operators has order less than n, we apply the division algorithm [17, p. 126] for linear differential operators in order to write

$$L_1 = L(L_2) + M_1$$

with L and M_1 each a linear differential operator with rational functions as coefficients, and in which M_1 either is the zero operator or has order less than n. Plainly, the order of L is k - n. If M_1 is the zero operator we write $H = L_2$ and $Q_1 = L$, and P_1 is the zero operator, with P_2 and Q_2 the identity.

Now assume that M_1 is not the zero operator. The induction hypothesis gives us operators H, p_1 , p_2 , q_1 , q_2 such that the orders of p_1 and p_2 are at most n, and such that

$$L_2 = q_2(H),$$
 $M_1 = q_1(H),$ $p_1(M_1) + p_2(L_2) = H.$

Now we set $Q_1 = L(q_2) + q_1$, $Q_2 = q_2$ and we have

$$H = p_1(L_1) + (p_2 - p_1(L))(L_2).$$

Thus $P_1 = p_1$ and $P_2 = p_2 - p_1(L)$ have order at most k. The remaining assertion is obvious.

The next lemma is also fairly standard.

Lemma 2. There exists a positive constant c with the following properties. Suppose that f is transcendental and meromorphic in the plane, and that r is large and N > 1. Then we have

$$\left|\log|f(z)|\right| \le cN^2T(r,f)$$

for all z with $\frac{1}{2}r \le |z| \le re^{-2/N}$ and lying outside a union of discs having sum of radii at most $4erN^{-2}$.

Proof. We denote by d positive constants not depending on f, r, N. Let $r_j = re^{-j/N}$, j = 1, 2. Then provided r is large enough we have

(5)
$$n(r_1, f) + n(r_1, 1/f) \le (\log(r/r_1))^{-1} (2T(r, f) + \log|1/f(0)|) \le dNT(r, f),$$

with minor modifications if $f(0) = 0, \infty$. Let the zeros and poles of f in $\frac{1}{4}r \leq |z| \leq r_1$ be a_1, \ldots, a_n and b_1, \ldots, b_m , respectively, repeated according to multiplicity, and write

$$f(z) = g(z)F(z)G(z)^{-1}, \qquad F(z) = \prod_{j=1}^{m} (1 - z/b_j), \qquad G(z) = \prod_{k=1}^{n} (1 - z/a_k),$$

so that g is analytic and non-zero in $\frac{1}{4}r \leq |z| \leq r_1$. For $|z| \leq r$ we have, using (5),

(6)
$$\log^+ |F(z)| + \log^+ |G(z)| \le d(m+n) \le dNT(r, f).$$

We also have [13, p. 366]

$$\log \left| \prod_{k=1}^{n} (z - a_k) \right| \ge n \log(r N^{-2})$$

outside a union E_1 of discs having sum of radii at most $2erN^{-2}$, so that for z satisfying $\frac{1}{2}r \leq |z| \leq r_1$ but lying outside E_1 we have

(7)
$$\log |G(z)| \ge n \log(rN^{-2}) - \sum_{k=1}^{n} \log |a_k| \\ \ge n \log(rN^{-2}) - n \log r \ge -dN^2 T(r, f),$$

using (5). Using the fact that F(0) = G(0) = 1, we clearly have

(8)
$$T(r,g) \le dNT(r,f),$$

by (6). Finally, a standard application of the Poisson–Jensen formula to $g(\zeta)$ in $|\zeta| \leq r_1$ gives, for $\frac{1}{2}r \leq |z| \leq r_2$,

$$\begin{aligned} \left| \log |g(z)| \right| &\leq \frac{r_1 + r_2}{r_1 - r_2} \left(m(r_1, g) + m(r_1, 1/g) \right) + dn(r_1, g) + dn(r_1, 1/g) + O(\log r) \\ &\leq dN^2 T(r, f), \end{aligned}$$

using (5) and (8) and, combining the last estimate with (6) and (7), the result follows.

We use the following notation in the next lemma and henceforth. If g is meromorphic in $0 \le r_1 \le |z| < \infty$ then by a result of Valiron [30, p. 15] we may write $g(z) = z^N h(z)g_1(z)$, in which g_1 is meromorphic in the plane, N is an integer, and h is analytic in $|z| \ge r_1$ with $h(\infty) = 1$. With n(r,g) the number of poles of g in $r_1 \le |z| \le r$, the Nevanlinna characteristic is defined for $r \ge r_1$ by [2, p. 89]

(9)

$$T(r,g) = m(r,g) + N(r,g) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |g(re^{i\theta})| \, d\theta + N(r,g),$$

$$N(r,g) = \int_R^r n(t,g) \, \frac{dt}{t}$$

and we have $T(r,g) = T(r,1/g) + O(\log r)$. Further, S(r,g) will denote any quantity such that

(10)
$$S(r,g) = O(\log^+ T(r,g) + \log r)$$
 (n.e.),

in which (n.e.) ('nearly everywhere') means as r tends to infinity outside a set of finite measure. In particular, m(r, g'/g) = S(r, g).

We denote sectorial regions using

$$S^*(r, \alpha, \beta) = \{ z : |z| > r, \ \alpha < \arg z < \beta \},$$

this a region on the Riemann surface of $\log z$ if $\beta - \alpha > 2\pi$.

Lemma 3. Suppose that f_1, \ldots, f_N are functions analytic in the region $S = S^*(r_0, -\pi, \pi)$ and each admitting unrestricted analytic continuation in $|z| > r_0$, the continuations satisfying

(11)
$$\log^+ \log^+ |f_j(z)| = O(\log |z|)$$

on $S^*(r_0, -2\pi, 2\pi)$. Suppose that g is meromorphic in $|z| > r_0$. Suppose further that for some positive integer Q, each of the functions g_1, \ldots, g_k on S is a polynomial in the $f_j^{(m)}$, $g^{(m)}$, $1 \le j \le k$, $0 \le m \le Q$. Suppose finally that g_1, \ldots, g_k are linearly independent solutions in S of an equation

(12)
$$w^{(k)} + \sum_{j=0}^{k-1} A_j w^{(j)} = 0,$$

in which the A_j are meromorphic in $|z| > r_0$. Then we have, for $j = 0, \ldots, k-1$,

(13)
$$m(r,A_j) = S(r,g).$$

Proof. In this proof we use characteristic functions defined as in (9). When the f_j are meromorphic in $|z| > r_0$, the estimate (13) is well known [6]. We first note that each g_{μ} , being a polynomial in the $f_j^{(m)}$ and $g^{(m)}$, may be written as a quotient of function elements admitting unrestricted analytic continuation in $|z| > r_0$, and that continuing g_j in this way around any curve homotopic to zero in $|z| > r_0$ leads back to g_j . Since each g_j solves (12), there exist constants $c_{j,m}$ such that continuing g_j once counter-clockwise around any circle $|z| = r > r_0$ leads to

$$\sum_{m=1}^{k} c_{j,m} g_m$$

The usual eigenvalue argument [17, p. 358] then gives a solution g^* of (12), which we can assume without loss of generality is g_1 , such that under this continuation g_1 leads to a constant multiple of itself. Thus, for some constant c, the function

$$h_1 = z^c g_1$$

is meromorphic in $|z| > r_0$. We then have, for $j = 1, \ldots, k$,

(14)
$$m(r, g_1^{(j)}/g_1) \le \sum_{m=1}^j m(r, h_1^{(m)}/h_1) + O(\log r) \le O\left(\log^+ T(r, h_1) + \log r\right) \quad \text{(n.e.)}.$$

Further, (11) gives, for $1 \le j \le k$,

$$\log^{+}\log^{+}|f_{j}^{(m)}(z)| = O(\log|z|)$$

on $S^*(2r_0, -\pi, \pi)$ and recalling the representation of the g_{μ} as polynomials in the $f_j^{(m)}$ and $g^{(m)}$ we get, for some positive constant M,

(15)
$$T(r,h_1) \le m(r,h_1) + O(N(r,g)) \le O(T(r,g) + r^M)$$
 (n.e.).

We now proceed by induction on k, and for k = 1 the result already follows, since $A_0 = -g'_1/g_1$. Assuming now that the result is true for k-1, we apply the familiar reduction of order method [17] to write $v_j = g_j/g_1$ for j = 2, ..., k, so that each v_j solves an equation

(16)
$$v^{(k)} + \sum_{m=1}^{k-1} B_m v^{(m)} = 0,$$

and the B_m are meromorphic in $|z| > r_0$ and can be calculated from the coefficients A_1, \ldots, A_{k-1} and the $g_1^{(j)}/g_1$ as follows. We have, with $A_k = 1$,

(17)
$$B_m = A_m + \sum_{j=m+1}^k A_j P_{j,m}(g'_1/g_1), \qquad m = 1, \dots, k-1.$$

Here each $P_{j,m}(g'_1/g_1)$ is a differential polynomial in g'_1/g_1 with constant coefficients. We regard (16) as an equation of order k-1 in the $w_j = v'_j$ and we then write $y_j = w_j g_1^2 = g'_j g_1 - g_j g'_1$. The y_j solve

$$y^{(k-1)} + \sum_{m=0}^{k-2} C_m y^{(m)} = 0,$$

with coefficients C_m meromorphic in $|z| > r_0$, and the y_j are themselves polynomials in the $f_j^{(m)}$ and $g^{(m)}$. Further, with $B_k = 1$ we have

(18)
$$C_m = B_{m+1} + \sum_{j=m+2}^k B_j Q_{j,m}(g'_1/g_1), \qquad m = 0, \dots, k-2,$$

in which each $Q_{j,m}(g'_1/g_1)$ is a differential polynomial in g'_1/g_1 , with constant coefficients.

From the induction hypothesis we deduce that $m(r, C_m) = S(r, g)$ for each m, so that the same is true of the B_m , using (14), (15) and (18). We now have $m(r, A_m) = S(r, g)$ for $m = 1, \ldots, k - 1$, using (17), and (12) and (14) and (15) give $m(r, A_0) = S(r, g)$. The induction is complete and the lemma is proved.

Lemma 4. Let $k \ge 1$ be an integer and let f_1, \ldots, f_k , G, H and a_0, \ldots, a_{k-1} , A_0, \ldots, A_{k-1} all be meromorphic in a domain U. Suppose that f_1, \ldots, f_k are linearly independent solutions in U of

$$L_k(w) = w^{(k)} + \sum_{j=0}^{k-1} a_j w^{(j)} = 0.$$

Suppose further that the functions $f_1H + f'_1G, \ldots, f_kH + f'_kG$ are linearly independent solutions in U of

$$M_k(w) = w^{(k)} + \sum_{j=0}^{k-1} A_j w^{(j)} = 0.$$

Then we have, in U, setting $A_k = 1$ and $A_{-1} = a_{-1} = 0$,

$$kH' + (A_{k-1} - a_{k-1})H = -\left(\frac{1}{2}k(k-1)G'' + (k-1)A_{k-1}G' + A_{k-2}G\right) + a_{k-1}(A_{k-1}G + kG') + G(a'_{k-1} + a_{k-2} - a^2_{k-1}).$$
(19)

Proof. When $a_{k-1} = 0$ this is a special case of Lemma 6 of [6]. Since $M_k(f_jH + f'_jG) = 0$ we have

(20)
$$M_k(f_jH) = -M_k(f'_jG).$$

For integers n and m, we use the notation

$${}^{n}C_{m} = \frac{n!}{m!(n-m)!}$$

when $0 \le m \le n$, and

 ${}^{n}C_{m} = 0$

otherwise. We also write, for $0 \le \mu \le k$,

$$M_{k,\mu}(w) = \sum_{m=\mu}^{k} ({}^{m}C_{\mu}) A_{m} w^{(m-\mu)}, \qquad M_{k,-1}(w) = 0.$$

Thus, for $j = 1, \ldots, k$,

(21)
$$M_{k}(f_{j}H) = \sum_{m=0}^{k} A_{m} \sum_{\mu=0}^{k} ({}^{m}C_{\mu}) f_{j}^{(\mu)} H^{(m-\mu)} = \sum_{\mu=0}^{k} f_{j}^{(\mu)} M_{k,\mu}(H)$$
$$= \sum_{\mu=0}^{k-1} f_{j}^{(\mu)} (M_{k,\mu}(H) - a_{\mu}H).$$

We also have

$$M_{k}(f'_{j}G) = \sum_{\mu=0}^{k} f_{j}^{(\mu+1)} M_{k,\mu}(G)$$

$$(22) \qquad = \sum_{\mu=0}^{k-2} f_{j}^{(\mu+1)} M_{k,\mu}(G) + f_{j}^{(k)} M_{k,k-1}(G) + f_{j}^{(k+1)}G$$

$$= \sum_{\mu=0}^{k-1} f_{j}^{(\mu)} (M_{k,\mu-1}(G) - a_{\mu}M_{k,k-1}(G) + (a_{\mu}a_{k-1} - a'_{\mu} - a_{\mu-1})G).$$

Since the Wronskian determinant of the f_j is not identically zero, the coefficient of $f_j^{(\mu)}$ on the right-hand-side of (21) and that on the right-hand-side of (22) must have sum 0, by (20). Now $\mu = k - 1$ gives (19).

The following lemma is from [22].

Lemma A. Let c, M, N be positive constants and let Q(z) be analytic and satisfy $|Q(z)| \leq M + |z|^M$ in a half-plane $\operatorname{Re}(z) \geq c$. Suppose that Q(n) is an integer for all integers $n \geq N$. Then Q is a polynomial.

Lemma 5. Suppose that R, S are rational functions, with R not identically zero, that P, P_1 are polynomials, with P_1 non-constant. Suppose that we have $P_1(P(z) + \log R(z)) \equiv S(z)$ in some domain U. Then R is constant.

Proof. By the hypotheses there is an equation

(23)
$$\sum_{j=0}^{q} a_j(z) w^j = 0,$$

with polynomial coefficients a_j , not all 0, having a local solution $w = \log R(z)$. The analytic continuations of $\log R(z)$ all satisfy the same equation. But $\log R(z)$ adds an integer multiple of $2\pi i$ as we continue once around a zero or pole of R and, since the solution of (23) has at most q branches, we conclude that R has no zeros or poles and is constant.

4. An estimate for logarithmic derivatives

Lemma 6. Suppose that $k \ge 1$ and that f is meromorphic in the plane and that

(24)
$$F = f^{(k)} + \sum_{j=0}^{k-1} a_j f^{(j)}, \qquad G = f^{(k)} + \sum_{j=0}^{k-1} b_j f^{(j)},$$

with the a_j and b_j rational functions. Then either F/G is constant or

(25)
$$m(r, f'/f) \leq \overline{N}(r, 1/F) + \overline{N}(r, 1/G) + S(r, f'/f).$$

Proof. Let f_1, \ldots, f_k be linearly independent solutions of the equation

(26)
$$w^{(k)} + \sum_{j=0}^{k-1} a_j w^{(j)} = 0$$

in the domain $S = S^*(r_0, -\pi, \pi)$. Then the f_j all admit unrestricted analytic continuation in $|z| > r_0$, provided r_0 is large enough. Let

(27)
$$W = W(f_1, \dots, f_k), \qquad W'/W = -a_{k-1}$$

in S. Then we have, in S,

$$W(f_1,\ldots,f_k,f) = WF$$

and so

$$W((f_1/f)', \dots, (f_k/f)') = (-1)^k WFf^{-k-1}$$

and

$$W(w_1, \dots, w_k) = WF/f, \qquad w_j = -f'_j + f_j f'/f.$$

Thus the w_j are linearly independent solutions in S of an equation

(28)
$$w^{(k)} + \sum_{j=0}^{k-1} A_j w^{(j)} = 0, \qquad A_{k-1} = -W'/W + f'/f - F'/F.$$

We assert that the A_j are meromorphic in $|z| > r_0$, establishing this in the standard way by noting that if A_j^* and w_m^* are respectively the function elements obtained by analytically continuing A_j and w_m once counter-clockwise around $|z| = r > r_0$, then w_m^* is a linear combination of the w_j in S, and w_1^*, \ldots, w_k^* are linearly independent by the law of permanence of functional relations. Since we have

$$\sum_{j=0}^{k-1} (A_j^* - A_j) w_m^{(j)} = 0$$

in S for $1 \le m \le k$, we deduce that $A_j^* = A_j$ on S. Our assertion established, we have, by Lemma 3,

(29)
$$m(r, A_j) = S(r, f'/f), \quad j = 0, \dots, k-1.$$

We may apply Lemma 4, with H = f'/f and G = -1, to obtain, using (27), (28) and (29),

$$k(f'/f)' + (A_{k-1} - a_{k-1})f'/f = k(f'/f)' + (f'/f - F'/F)f'/f = C,$$

$$m(r, C) = S(r, f'/f).$$

The same argument with the a_j replaced by b_j gives

$$k(f'/f)' + (B_{k-1} - b_{k-1})f'/f = k(f'/f)' + (f'/f - G'/G)f'/f = D,$$

$$m(r, B_{k-1}) + m(r, D) = S(r, f'/f).$$

We therefore have

$$A^* f'/f = E^*,$$

$$A^* = (A_{k-1} - a_{k-1}) - (B_{k-1} - b_{k-1}) = G'/G - F'/F,$$

$$m(r, A^*) + m(r, E^*) = S(r, f'/f),$$

and either F/G is constant or $A^* \neq 0$, in which case we obtain (25), on writing $f'/f = E^*/A^*$ and

$$m(r, f'/f) \le m(r, E^*) + m(r, A^*) + N(r, A^*) + O(1).$$

5. Estimates for counting functions

We use the following notation throughout this section. Let k be a positive integer and let f be a meromorphic function in the plane. Let F and G be given by (24), with the a_j , b_j rational functions and $a_j - b_j \neq 0$ for at least one j. Assume that neither F nor G vanishes identically. Define V, E by

(30)
$$F = VG, \quad E = G - F = (1 - V)G = \sum_{j=0}^{k-1} (b_j - a_j) f^{(j)}.$$

We begin with some basic estimates. Dividing the first relation of (30) through by f and writing each $f^{(j)}/f$ as a differential polynomial in f'/f, we see at once that

(31)
$$T(r, F/f) + T(r, G/f) \le O(T(r, f'/f)) + S(r, f'/f).$$

Since all but finitely many zeros and poles of V arise from zeros of F and G, we also have

(32)
$$m(r, V'/V) = S(r, f'/f), T(r, V'/V) \le \overline{N}(r, 1/F) + \overline{N}(r, 1/G) + S(r, f'/f).$$

We now estimate m(r, F'/F) and m(r, G'/G). From (31) and the relations

$$F'/F = (F/f)'/(F/f) + f'/f, \qquad V'/V = F'/F - G'/G,$$

we see that any term which is S(r, F'/F), or S(r, G'/G) or S(r, V'/V), is an S(r, f'/f), while if V is non-constant then, using Lemma 6,

(33)
$$m(r, F'/F) \le m(r, f'/f) + S(r, f'/f) \le \overline{N}(r, 1/F) + \overline{N}(r, 1/G) + S(r, f'/f).$$

The same estimate plainly holds with F'/F replaced by G'/G.

Lemma 7. Let V be as in (30). Then there exists an integer q with $1 \le q \le k$ such that G satisfies

(34)
$$0 = (1 - V)G^{(q)} + \sum_{j=0}^{q-1} T_j(V)G^{(j)},$$

in which each $T_i(V)$ has a representation

$$T_j(V) = \alpha_j + \sum_{m=0}^q \beta_{m,j} V^{(m)},$$

with the coefficients α_j and $\beta_{m,j}$ rational functions.

Proof. We begin by recalling (30). Thus, for s = 0, ..., k, we have

(35)
$$E^{(s)} = (1-V)G^{(s)} - \sum_{j=1}^{s} \frac{s!}{j!(s-j)!} V^{(j)}G^{(s-j)}.$$

Using the division algorithm for linear differential operators, each $E^{(s)}$ may be written in the form

$$E^{(s)} = \sum_{m=0}^{s-1} c_{m,s} G^{(m)} + \sum_{m=0}^{k-1} d_{m,s} f^{(m)}, \qquad s = 0, \dots, k,$$

the first sum not appearing when s = 0, and with the $c_{m,s}$ and $d_{m,s}$ rational functions. Now the k by k + 1 matrix $(d_{m,s})$ has rank at most k and so by elementary linear algebra its columns are linearly dependent over the field of rational functions. Hence there are rational functions δ_s , not all identically zero, such that

$$\sum_{s=0}^{k} \delta_s d_{m,s} \equiv 0$$

for $0 \le m \le k-1$. Thus, if q is the largest s such that $\delta_s \not\equiv 0$, then q > 0 because, by hypothesis, at least one $d_{m,0}$ is non-zero, and we have

$$\sum_{s=0}^{q} \delta_s E^{(s)} = \sum_{t=0}^{q-1} d_t G^{(t)},$$

with coefficients d_t which are rational functions. Replacing the $E^{(s)}$ using (35), we have an equation as asserted.

We now make some estimates for the number of zeros and poles of f, under certain assumptions on the coefficients.

Lemma 8. If $a_{k-1} \equiv b_{k-1}$ then

$$\overline{N}(r,f) \le \overline{N}(r,1/F) + \overline{N}(r,1/G) + S(r,f'/f).$$

To prove Lemma 8 we write, using (30),

(36)
$$(1-V)f^{(k)} + \sum_{j=0}^{k-1} (a_j - Vb_j)f^{(j)} = 0.$$

Suppose that z is large and that $f(z) = \infty$. Then V(z) = 1 and, by the hypothesis that $a_{k-1} \equiv b_{k-1}$, we have $a_{k-1}(z) - V(z)b_{k-1}(z) = 0$. Dividing (36) through by $f^{(k-1)}$, we see that $(1-V)f^{(k)}/f^{(k-1)}$ vanishes at z. Thus V'(z) = V(z) - 1 = 0 and the result follows from (32).

Lemma 9. Suppose that the equations

$$L_1(w) = w^{(k)} + \sum_{j=0}^{k-1} a_j w^{(j)} = 0, \qquad L_2(w) = w^{(k)} + \sum_{j=0}^{k-1} b_j w^{(j)} = 0$$

have no non-trivial common (local) solution, and that V is non-constant. Then we have

(37)
$$N(r, 1/f) \le 2N(r, 1/F) + 4k\overline{N}(r, 1/F) + 5k\overline{N}(r, 1/G) + S(r, f'/f)$$
 (n.e.).

424

Proof. Since the equations $L_1(w) = 0$, $L_2(w) = 0$ have no non-trivial common (local) solution, it follows using Lemma 1 that there exist a rational function b, not identically zero, and linear differential operators L, M with coefficients which are rational functions and with order at most k, such that we have $b = L(L_1) + M(L_2)$ and hence

$$bf = L(F) + M(G),$$

and using (30) we write the last relation in the form

$$bf/F = L(F)/F + M(G)/F = L(F)/F + M(G)/GV.$$

But L(F)/F may be written as a polynomial of degree at most k in F'/F and its derivatives, with coefficients which are rational functions. Using (33) applied to F and G and the remark preceding (33), this gives

(38)
$$m(r, f/F) \le m(r, 1/V) + 2k(\overline{N}(r, 1/F) + \overline{N}(r, 1/G)) + S(r, f'/f).$$

We now write the equation (34) in the form

$$1/V = V_1/V_2,$$

$$V_1 = \left(\frac{G^{(q)}}{G} + \sum_{j=0}^{q-1} \frac{M_j G^{(j)}}{G} \right),$$

$$V_2 = \left(\frac{G^{(q)}}{G} + \sum_{j=0}^{q-1} \frac{N_j G^{(j)}}{G} \right).$$

Here each M_j is a differential polynomial in V'/V, with coefficients which are rational functions, and each N_j is a rational function. We now have, by (32) and (33), applied to G,

$$m(r, V_j) \le q \left(\overline{N}(r, 1/F) + \overline{N}(r, 1/G) \right) + S(r, f'/f)$$

for j = 1, 2, as well as

$$N(r, V_2) \le q \left(\overline{N}(r, f) + \overline{N}(r, 1/G) \right) + S(r, f'/f).$$

Combining these estimates with (38), we have

(39) $m(r, f/F) \leq q\overline{N}(r, f) + (2k+2q)\overline{N}(r, 1/F) + (2k+3q)\overline{N}(r, 1/G) + S(r, f'/f).$ Since 1/f = (F/f)(1/F) and since each pole z of f with z large is a pole of F/f of order k, we can now write

$$\begin{split} N(r,1/f) + k\overline{N}(r,f) &\leq N(r,F/f) + N(r,1/F) + O(\log r) \\ &\leq T(r,f/F) + N(r,1/F) + O(\log r) \\ &\leq m(r,f/F) + 2N(r,1/F) + O(\log r) \end{split}$$

to obtain (37), using (39) and the fact that $q \leq k$.

Lemma 10. With the hypotheses of Lemma 9, suppose that

$$N(r, 1/F) + N(r, 1/G) = S(r, f'/f).$$

Then

$$N(r, 1/f) = S(r, f'/f),$$

and

$$T(r, f'/f) \le \overline{N}(r, f) + S(r, f'/f) \le T(r, V) + S(r, f'/f).$$

The proof is obvious, using Lemmas 6 and 9 and recalling that V = 1 at all but finitely many poles of f.

6. A growth lemma

Lemma 11. Suppose that f is meromorphic in the plane and that F and G are given by (24), with $k \ge 1$ and with the a_j and b_j rational functions, such that $a_j \not\equiv b_j$ for at least one j. Suppose that F and G have only finitely many zeros. Then f has finite order.

We remark that when $k \geq 3$ and at least one of F and G has polynomial coefficients, it already follows from the hypotheses and Theorem 2 of [6] that f'/f has finite order.

Proof of Lemma 11. Suppose that k and the functions f(z), F(z), G(z) are as in the hypotheses, and suppose that f is meromorphic of infinite order in the plane. Then F/G is transcendental, because otherwise f would be a solution of a homogeneous linear differential equation with rational functions as coefficients, and f would have finite order. With the notation of Lemma 1, and with $a_k = b_k = 1$, we may write $F = L_1(f)$, $G = L_2(f)$. Let H be the operator of Lemma 1.

Suppose first that H has positive order. In this case we set $g_1 = H(f) = \sum_{j=0}^{q} c_j f^{(j)}$, in which $0 \le q \le k-1$, and the c_j are rational functions, with $c_q \ne 0$. By Lemma 1 there are differential operators Q_j and P_j , with coefficients which are rational functions, such that

$$g_1 = P_1(F) + P_2(G), \qquad F = Q_1(g_1), \qquad G = Q_2(g_1),$$

and, dividing through by the leading coefficients, there are linear differential operators Q_1^* , Q_2^* , each of form

$$Q_j^* = D^{k-q} + \sum_{m=0}^{k-q-1} a_{j,m} D^m$$

and having coefficients which are rational functions, such that $Q_1^*(g_1)$ and $Q_2^*(g_1)$ both have finitely many zeros.

Lemma 12. If g_1 has finite order then so has f.

Proof. Assume that g_1 has finite order. Then since all but finitely many poles of f are poles of g_1/f of multiplicity q, it follows that N(r, f) has finite order and we can write $f = f_1/f_2 = f_1u_2$, with the f_j entire, f_2 of finite order. For |z| outside a set F_0 of finite measure, standard estimates from [10, p. 22] or [8] give $f_2^{(m)}(z)/f_2(z) = O(|z|^{d_1})$, for $1 \le m \le q$, in which d_1 is a positive constant. Substituting $f = f_1u_1$ into the equation $H(f) = g_1$ and dividing through by f_1u_1 , we obtain an equation

$$f_1^{(q)}/f_1 + \sum_{j=0}^{q-1} A_j f_1^{(j)}/f_1 = g_1/f = g_1 f_2/f_1,$$

in which the coefficients A_j satisfy $A_j(z) = O(|z|^{d_2})$, for $0 \le j \le q - 1$, and for |z| outside F_0 , where d_2 is a positive constant. A standard application of the Wiman–Valiron theory [12, Theorem 12] (see also [30]) now shows that f_1 has finite order and so has f. This proves Lemma 12.

Returning to the proof of Lemma 11, we may assume henceforth that H has order 0, that is, that the equations

$$L_1(w) = 0, \qquad L_2(w) = 0$$

have no non-trivial common (local) solution. Then by Lemma 10 we have

(40)
$$T(r, f'/f) \le cT(r, F/G) \qquad (n.e.),$$

using c throughout this proof to denote a positive constant, not necessarily the same at each occurrence.

Since F and G are given by (24), we may write

(41)

$$F(z) = R(z)e^{P(z)}G(z),$$

$$E(z) = G(z) - F(z) = \left(1 - R(z)e^{P(z)}\right)G(z) = \sum_{j=0}^{k-1} B_j(z)f^{(j)}(z),$$

with P entire, and with R and the B_j rational functions. If |z| is large and f has a pole of multiplicity n at z then, dividing the equation $F = Re^P G$ through by $f^{(k-1)}$, we obtain

(42)
$$R(z)e^{P(z)} = 1, \qquad (n+k-1)(R'(z)/R(z)+P'(z)) = b_{k-1}(z) - a_{k-1}(z)$$

and so

(43)
$$\log^+ |P'(z)| = O(\log^+ |z|).$$

Also, if $R(z)e^{P(z)} = 1$ and |z| is large, then either f has a pole at z, or E(z) = 0.

Suppose that P is a polynomial. Since $R(z)e^{P(z)} = 1$ at all but finitely many poles of f we have $\overline{N}(r, f) \leq T(r, Re^P) + O(\log r)$. But by (42) the multiplicity n of a pole of f at z is bounded by a power of |z|. Therefore

$$\log^+ N(r, f) = O(\log r)$$

and we have $f = f_1/f_2$ in which the f_j are entire and f_2 is not identically zero but has finite order. There then exists a subset E^* of $(1, \infty)$ of infinite logarithmic measure such that for |z| = r in E^* we have

$$|R(z)e^{P(z)} - 1| \ge r^{-c}, \qquad |f_2^{(j)}(z)/f_2(z)| \le r^c, \qquad 1 \le j \le k,$$

the easiest way to establish this being to write

$$1/(Re^{P} - 1) = R^{-1}e^{-P}(1 - R^{-1}e^{-P})^{-1}$$

and then use standard estimates [10, p. 22] for the logarithmic derivative of the function $1 - R^{-1}e^{-P}$. As in the proof of Lemma 12 a standard application of the Wiman–Valiron theory [12, Theorem 12] to the relation $G = (1 - Re^{P})^{-1}E$ shows that f_1 has finite order and so does f. Therefore we may assume for the rest of the proof that P is transcendental.

Take a large positive r_0 , normal for P with respect to the Wiman–Valiron theory [12], [30], and such that, using (40) and (41),

(44)
$$T(r_0, f^{(j)}/f) < cT(r_0, F/G) = cT(r_0, Re^P)$$

for j = 1, ..., k. For non-zero complex v, and positive K, we define the logarithmic rectangle

$$D(v,K) = \{ u = ve^{\tau} : |\operatorname{Re}(\tau)| \le KN^{-2/3}, |\operatorname{Im}(\tau)| \le KN^{-2/3} \},\$$

in which $N = \nu(r_0, P)$ is the central index of P, and is large if r_0 is large.

By Lemma 2, (41) and (44) we have, for j = 1, ..., k,

(45)
$$\log |f^{(j)}(z)/f(z)| \le cN^2 T(r_0, Re^P), \quad \log |E(z)/f(z)| \ge -cN^2 T(r_0, Re^P),$$

for all z with $\frac{1}{2}r_0 \leq |z| \leq r_0 e^{-2/N}$ and lying outside a union D_0 of open discs having sum of radii at most $cr_0 N^{-2}$, so that there is a subset D_1 of $[0, 2\pi]$, having measure at most cN^{-2} , such that some determination of $\arg \zeta$ is in D_1 for every ζ in D_0 .

Choose z_0 with $|z_0| = r_0$ and $|P(z_0)| = M(r_0, P)$. On $D(z_0, 128)$ we have [12, Theorem 12]

(46)
$$P(z) + \log R(z) = P(z)(1 + o(1)) = P(z_0)(z/z_0)^N (1 + o(1)) = \alpha \zeta^N$$

(47)
$$\alpha = P(z_0)z_0^{-N}, \quad \zeta = z(1+o(1/N)), \quad P'(z)/P(z) = (1+o(1))N/z.$$

In particular, $P'(z)$ is large on $D(z_0, 128)$ so that, using (43), there are no poles of f in $D(z_0, 128)$, and by (41) every zero of $R(z)e^{P(z)} - 1$ in $D(z_0, 128)$ is simple

and is a zero of E. On $D(z_0, 128)$ we write

$$z = z_0 e^{\tau}, \qquad \zeta = z_0 e^{\sigma}, \qquad \sigma = \tau + o(1/N),$$

so that

$$\frac{d\sigma}{d\tau} = 1 + o(N^{-1/3})$$

and, by convexity, σ is a univalent function of τ for $|\operatorname{Re}(\tau)| \leq 64N^{-2/3}$, $|\operatorname{Im}(\tau)| \leq 64N^{-2/3}$. Further,

(48)
$$\frac{d\zeta}{dz} = \frac{\zeta}{z} \frac{d\sigma}{d\tau} = 1 + o(N^{-1/3})$$

on $D(z_0, 64)$. In addition, the image of $D(z_0, 64)$ under $\zeta = \zeta(z)$ contains $D(z_0, 32)$, and $\alpha \zeta^N$ is large for ζ in $D(z_0, 32)$.

If c_0 is a positive constant there exists a positive constant c_1 such that on each circle $|w| = (2n+1)\pi$, with n a positive integer, and on the ray $\arg w = 0$, $|w| \ge c_0$, we have $|e^w - 1| \ge c_1$. We choose σ_0 such that

$$\sigma_0 \in [-16N^{-1}, -8N^{-1}], \qquad |\alpha z_0^N e^{N\sigma_0}| = (2n+1)\pi$$

for some integer n, and we choose m_1 , n_1 , m_2 , n_2 such that

$$m_1, n_1, m_2, n_2 \in [4N^{-2/3}, 8N^{-2/3}]$$

and

$$\arg(\alpha \zeta^N) = 0$$
 for $\zeta = z_0 e^{\sigma}$, $\operatorname{Im}(\sigma) \in \{-n_1, n_2\}$

and such that $|(\alpha/\pi)z_0^N e^{N\sigma}|$ is an odd integer for $\operatorname{Re}(\sigma)$ in $\{\sigma_0 - m_1, \sigma_0 + m_2\}$. Thus on the boundary of the logarithmic rectangle

$$B = \{ \zeta = z_0 e^{\sigma} : \sigma_0 - m_1 \le \operatorname{Re}(\sigma) \le \sigma_0 + m_2, \ -n_1 \le \operatorname{Im}(\sigma) \le n_2 \},\$$

and on the arc L_0 given by

(49)
$$\zeta = z_0 e^{\sigma_0 + i\lambda}, \qquad -n_1 \le \lambda \le n_2,$$

we have

(50)
$$|e^{\alpha \zeta^N} - 1| \ge c_1 > 0.$$

Now L_0 lies in $|\zeta| \leq r_0 e^{-8/N}$ and so using (47) the image $z(L_0)$ of L_0 under the mapping $z = z(\zeta)$ lies in

$$|z| \le r_0 e^{-8/N} (1 + o(1)/N) \le r_0 e^{-2/N}.$$

Further, if L_1 is the sub-arc of L_0 given by $-1/N \leq \lambda \leq 1/N$ in (49), then the variation of $\arg z$ on $z(L_1)$ is, by (47), at least (c-o(1))/N, and using the remark following (45) we may therefore choose ζ_1 lying on L_1 , such that the inequalities of (45) all hold at $z_1 = z(\zeta_1)$. Note that $D(\zeta_1, 2)$ is contained in B, provided r_0 is large enough, while B in turn lies in $D(z_0, 16)$, and z(B) lies in $D(z_0, 32)$.

Lemma 13. The number of zeros of $e^{\alpha \zeta^N} - 1$ in $D(\zeta_1, 1)$ is at least $ce^{N^{1/3}}M(r_0, P)$.

Proof. We have $|\zeta_1| = r_0 e^{\sigma_0}$ and σ_0 is in [-16/N, -8/N], so that $|\alpha \zeta_1^N| = |P(z_0)|e^{\gamma}$, for some γ in [-16, -8], and the image of $D(\zeta_1, 1)$ under $w = \alpha \zeta^N$ covers the annulus

$$|P(z_0)|e^{-N^{1/3}+\gamma} \le |w| \le |P(z_0)|e^{N^{1/3}+\gamma},$$

so that the number of zeros of $e^{\alpha \zeta^N} - 1$ in $D(\zeta_1, 1)$ is at least $ce^{N^{1/3}}|P(z_0)| = ce^{N^{1/3}}M(r_0, P)$. This proves Lemma 13.

We may now complete the proof of Lemma 11. Let $g(z) = f(z)/f(z_1)$, and let C be the union of L_0 and the boundary of B. Using (46) and (50) and the relation $G = (1 - Re^P)^{-1}E$, we have, on z(C),

(51)
$$g^{(k)}(z) = \sum_{j=0}^{k-1} s_j(z) g^{(j)}(z), \qquad s_j(z) = O(|z|^c).$$

Since $|dz| \leq 2|d\zeta|$, by (48), the arc length of z(C) is $o(r_0)$. We write the equation (51) in vector form as

$$I'(z) = A(z)I(z), \qquad I(z) = (g^{(k-1)}(z), \dots, g(z))^T,$$

in which the k by k matrix A has entries which are $O(r_0)^c$ on z(C). Writing

$$I(z) = I(z_1) + \int_{z_1}^{z} A(u)I(u) \, du, \qquad S(z) = \max\{|g^{(j)}(z)| : j = 0, \dots, k-1\},\$$

we have

$$S(z) \le V(z) = S(z_1) + \int_{z_1}^z r_0^c S(u) \, |du|,$$

and the standard Gronwall method [1, p. 35] (see also [15], [16], [20]) gives, with t denoting arc length on z(C),

$$\frac{d}{dt} \big(V\big(z(t)\big) \big) \le r_0^c S\big(z(t)\big) \le r_0^c V\big(z(t)\big),$$

and so

$$S(z(t)) \leq V(z(t)) \leq V(z_1) \exp(r_0^c t) \leq S(z_1) \exp(r_0^c).$$

We thus have, for $j = 0, \ldots, k - 1$,

$$|g^{(j)}(z)| \le S(z) \le S(z_1) \exp(r_0^c) \le \exp(N^c T(r_0, Re^P) + r_0^c),$$

using (45), and so

$$|E(z)/f(z_1)| \le \exp(N^c T(r_0, Re^P) + r_0^c)$$

on z(C). Hence the function H_1 defined by $H_1(\zeta) = E(z)/f(z_1)$ satisfies

$$\log |H_1(\zeta)| \le N^c T(r_0, Re^P)$$

for all ζ on C, and so for all ζ in B, and hence for all ζ in $D(\zeta_1, 2)$, by the maximum principle. But we also have, by (45),

$$\log |H_1(\zeta_1)| = \log |E(z_1)/f(z_1)| \ge -N^c T(r_0, Re^P).$$

Mapping $D(\zeta_1, 2)$ to the unit disc, using $w = \phi(\zeta)$, with ζ_1 mapped to 0, and writing $J(w) = H_1(\zeta)$, we have, for 0 < r < 1,

$$T(r, 1/J) \le T(r, J) + \log|1/J(0)| \le \log M(r, J) + \log|1/H_1(\zeta_1)| \le N^c T(r_0, Re^P)$$

Thus the number of zeros of $H_1(\zeta)$ in $D(\zeta_1, 1)$ is at most $N^c T(r_0, Re^P)$. Hence, using (41) and (46) and the remark following (47), the number of zeros of $e^{\alpha \zeta^N} - 1$ in $D(\zeta_1, 1)$ is at most

$$N^{c}T(r_{0}, Re^{P}) \leq N^{c}\log M(r_{0}, Re^{P}) \leq N^{c}(M(r_{0}, P) + O(\log r)) \leq N^{c}M(r_{0}, P).$$

This contradicts Lemma 13 and Lemma 11 is proved.

7. Proof of Theorem 1

Suppose that f and F and G are as in the hypotheses. Then we know by Lemma 11 that f has finite order. If F/G is constant then f has finitely many poles and since F has finitely many zeros we have $F = R_1 e^V$ with R_1 a rational function and V a polynomial. Since G is a constant multiple of Fand since Lemma 1 gives $f = V_1(F) + V_2(G)$, in which V_1 and V_2 are linear differential operators, the coefficients of which are rational functions, we deduce that $f = R_2 e^V$ with R_2 a rational function, and f'/f is a rational function.

Assume henceforth that F/G is non-constant. It follows from Lemma 10 and (10) that f has only finitely many zeros. If f has only finitely many poles then again f'/f is a rational function. We assume henceforth that f has infinitely many poles.

We have (41), with R a rational function and P a non-constant polynomial. Since

$$m(r, f'/f) + N(r, 1/f) = O(\log r),$$

the order ρ of T(r, f'/f) is the same as that of $\overline{N}(r, f)$. Writing F/f and G/f as differential polynomials in f'/f with coefficients which are rational functions, it is now clear that

(52)
$$\deg(P) \le \rho = \limsup_{r \to \infty} \frac{\log N(r, f)}{\log r}.$$

Let r_0 be large and positive. We define, in the domain $U = S^*(r_0, -\pi, \pi)$, linearly independent solutions f_1, \ldots, f_k of the equation (26), and the Wronskian $W = W(f_1, \ldots, f_k)$ satisfies (27) in U. We further define g, h in U by

(53)
$$g^{-k} = F/f, \qquad h = (-f'/f)g.$$

Then g and h are analytic in U and g, h, W and the f_j all admit unrestricted analytic continuation in $|z| > r_0$, the continuations of these functions H_m all satisfying

(54)
$$\log^{+}\log^{+}|H_{m}(z)| = O(\log|z|)$$

on $S^*(r_0, -2\pi, 2\pi)$. We have

$$W(f_1,\ldots,f_k,f) = WF = Wfg^{-k}$$

and hence

$$W((f_1/f)', \dots, (f_k/f)') = (-1)^k W f^{-k} g^{-k}$$

and

(55)
$$W(f_1h + f'_1g, \dots, f_kh + f'_kg) = (-1)^k W$$

in U. Thus the functions $f_jh + f'_jg$, for j = 1, ..., k, are linearly independent solutions in U of an equation

(56)
$$w^{(k)} + \sum_{j=0}^{k-1} A_j w^{(j)} = 0, \qquad A_{k-1} = -W'/W.$$

We assert that the A_j are rational functions. First, if E_1 is the set of all singular points of the equation (26) as well as of all zeros of f and F then E_1 is finite and the f_j and g and h all admit unrestricted analytic continuation in the complement Ω of E_1 in the plane. Further, since g^k and h^k are meromorphic, and since the f_j form a fundamental solution set of (26), analytic continuation of any of the functions $f_1h + f'_1g, \ldots, f_kh + f'_kg$ once around any point of E_1 leads back to a linear combination of the same functions. By (55) and the standard representation for the A_j as quotients of determinants, we deduce that the A_j are analytic in Ω . By (54) and Lemma 3, they satisfy

$$m(r, A_j) = O(\log r), \qquad r \to \infty.$$

Thus the A_j each have at most a pole at infinity, and a similar analysis in a punctured neighbourhood of each point of E_1 shows that the A_j are rational functions.

We denote henceforth by d_j rational functions. Since each $f_jh + f'_jg$ satisfies (56) we obtain, using (26), (27), (56) again and Lemma 4,

(57)
$$h' = -\frac{1}{2}(k-1)g'' + d_1g' + d_2g.$$

However, we may define Y and g_1 , h_1 on U by

(58)
$$Y^k = Re^P, \qquad g_1 = Yg, \qquad h_1 = Yh,$$

and using (41) and (53) we have

$$G = Y^{-k}F = g_1^{-k}f.$$

The same method as above gives us an equation

$$h_1' = -\frac{1}{2}(k-1)g_1'' + d_3g_1' + d_4g_1$$

in U, which leads at once to

(59)
$$h' + (Y'/Y)h = -\frac{1}{2}(k-1)g'' + d_5g' + d_6g,$$

using (58). Thus (57) and (59) give

(60)
$$h = d_7 g' + d_8 g, \quad -f'/f = d_7 g'/g + d_8.$$

The equations (60) continue to hold under analytic continuation of g and h. Further, $d_7(z)$ is a positive integer at a pole z of f with |z| large. Hence $d_7 \not\equiv -\frac{1}{2}(k-1)$. Therefore (57) and (60) together give

$$g'' + D_1 g' + D_0 g = 0,$$

with coefficients D_j which are rational functions. Writing

Writing

(61)
$$g = uv, \quad 2v'/v = -D_1,$$

the function u admits unrestricted analytic continuation in $|z| > r_0$ and solves an equation

(62)
$$u''(z) + a(z)u(z) = 0,$$

in which a is a rational function. We assume that either $a(z) \equiv 0$ or

(63)
$$a(z) = \alpha_m z^m (1 + o(1)), \qquad z \to \infty,$$

in which m is an integer and $\alpha_m \neq 0$. If $a(z) \equiv 0$ or $m \leq -2$ we can take any sectorial region U_1 given by $|z| > r_1$, $|\arg z - \theta_1| \leq \frac{1}{2}\pi$. We can estimate the number $n(r, U_1, 1/u)$ of zeros of u, and hence zeros of g, in the set $\{z \in U_1 : |z| \leq r\}$ as follows. Under the assumption $m \leq -2$ the equation (62) has a regular singular point at infinity [17], and there exist a constant d and a solution u_1 of (62), such that in the sectorial region U_1 we have

$$u_1(z) = z^d \phi(z) = z^d (1 + o(1)),$$

in which $\phi(z)$ is analytic in $|z| > r_0$ with $\phi(\infty) = 1$. A second solution of (62) may be obtained by writing

$$(u_2/u_1)' = u_1^{-2},$$

so that, subtracting a constant if necessary,

$$u_2(z)/u_1(z) = (1+o(1))(1-2d)^{-1}z^{1-2d}$$

in U_1 , provided $d \neq \frac{1}{2}$, while if $d = \frac{1}{2}$ we get

$$u_2(z)/u_1(z) = (1 + o(1)) \log z.$$

Writing u as a linear combination of u_1 and u_2 in U_1 we deduce that

$$n(r, U_1, 1/u) = O(\log r), \qquad r \to \infty,$$

which contradicts (52). We may assume henceforth that $a(z) \neq 0$ and $m \geq -1$ in (63).

Now asymptotic representations for the solutions of (62) are obtained by the method of Hille [15], [16], as follows. The critical rays for (62) are those rays $\arg z = \theta_0$ for which

$$\arg \alpha_m + (m+2)\theta = 0 \mod 2\pi.$$

If $\arg z = \theta_0$ is a critical ray and ε is a positive constant then in the sectorial region

$$S_0 = S^* (r_0, \theta_0 + \varepsilon - 2\pi/(m+2), \theta_0 - \varepsilon + 2\pi/(m+2))$$

we write $z^* = 2r_0 e^{i\theta_0}$ and

(64)
$$Z = \int_{z^*}^{z} a(t)^{1/2} dt = 2\alpha_m^{1/2} (m+2)^{-1} z^{(m+2)/2} (1+o(1)), \qquad z \to \infty,$$

and we have principal solutions u_1 , u_2 of (62) satisfying

(65)
$$u_j(z) = a(z)^{-1/4} \exp\left(iZ(-1)^j + o(1)\right)$$

in S_0 . In one of the sectorial regions

$$S_{1} = S^{*}(r_{0}, \theta_{0} + \varepsilon, \theta_{0} - \varepsilon + 2\pi/(m+2)), \qquad S_{2} = S^{*}(r_{0}, \theta_{0} + \varepsilon - 2\pi/(m+2), \theta_{0} - \varepsilon),$$

we have $u_1(z)/u_2(z) \to 0$ as $|z| \to \infty$, and we refer to u_2 as *dominant* and u_1 as *sub-dominant* in that sectorial region, while in the other we have $u_2(z)/u_1(z) \to 0$ and u_1 is dominant. If u^* is any solution of (62), then u^* has at most finitely many zeros in $S_1 \cup S_2$. Both principal solutions u_1 , u_2 admit unrestricted analytic continuation in $|z| > r_0$, although not generally without zeros.

It follows from these asymptotics that we have

$$n(r, U_1, 1/u) = O(r^{(m+2)/2}), \qquad r \to \infty,$$

for any sectorial region U_1 as above. Hence the degree n of P satisfies, by (52),

(66)
$$n \leq \frac{1}{2}(m+2).$$

We take a critical ray $\arg z = \theta_0$ of (62) such that f has infinitely many poles in $|z| > r_0$, $|\arg z - \theta_0| \le \pi/(m+2)$, and we write

$$u = C_1 u_1 - C_2 u_2$$

there, with C_1 , C_2 constants, both necessarily non-zero. The function $\zeta = \pm (1/2\pi i) \log(C_2 u_2/C_1 u_1)$ maps the sectorial region S_0 conformally onto a region containing a half-plane $\operatorname{Re}(\zeta) \geq c$. At each point in S_0 where ζ is an integer, we have u = 0 and hence $f = \infty$ and hence $Re^P = 1$, so that $(P + \log R)/2\pi i$ is an integer. Writing $P + \log R$ as a function of ζ and applying Lemma A, we obtain a polynomial P_1 such that we have

$$P + \log R = P_1(\zeta).$$

But (66) and the asymptotics (64), (65) for u_1 , u_2 and ζ force P_1 to be linear. Consequently there exist constants c, c^* such that $C_2 u_2/C_1 u_1 = c^* (Re^P)^c$. Hence $u'_2/u_2 - u'_1/u_1$ is a rational function, and so are $u_2 u_1$ and u'_1/u_1 and u'_2/u_2 . So using (61) there exist rational functions T_j such that we have

$$g'/g = T_1 + u'/u = T_2 + T_3(u_2/u_1)'(1 - C_2u_2/C_1u_1)^{-1} = T_4 + T_5(c^*(Re^P)^c - 1)^{-1}$$

and, using the second equation of (60),

$$f'/f = T_6 + T_7 (c^* (Re^P)^c - 1)^{-1}$$

By analytic continuation, R^c must be a rational function, and we can write

$$f'/f = T_6 + T_7 (Se^Q - 1)^{-1},$$

with S a rational function and Q a non-constant polynomial. Examining the residue of f'/f at a zero of $Se^Q - 1$, a further application of Lemma A shows that T_7 has a representation

$$T_7 = P_2(Q + \log S)(Q' + S'/S),$$

with P_2 a polynomial, and by Lemma 5 either S or P_2 is constant.

References

- [1] BELLMAN, R.: Stability Theory of Differential Equations. McGraw-Hill, New York, 1953.
- BIEBERBACH, L.: Theorie der gewöhnlichen Differentialgleichungen, 2. Auflage. Springer-Verlag, Berlin, 1965.
- BRÜGGEMANN, F.: Proof of a conjecture of Frank and Langley concerning zeros of meromorphic functions and linear differential polynomials. - Analysis 12, 1992, 5–30.
- [4] EREMENKO, A., J.K. LANGLEY, and J. ROSSI: On the zeros of meromorphic functions of the form $\sum_{k=1}^{\infty} a_k/z z_k$. J. Analyse Math. 62, 1994, 271–286.
- [5] FRANK, G.: Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen. -Math. Z. 149, 1976, 29–36.
- [6] FRANK, G., and S. HELLERSTEIN: On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients. - Proc. London Math. Soc. (3) 53, 1986, 407–428.
- [7] FRANK, G., W. HENNEKEMPER, and G. POLLOCZEK: Über die Nullstellen meromorpher Funktionen and ihrer Ableitungen. - Math. Ann. 225, 1977, 145–154.
- [8] GUNDERSEN, G.: Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. - J. London Math. Soc. (2) 37, 1988, 88–104.
- [9] HAYMAN, W.K.: Picard values of meromorphic functions and their derivatives. Ann. of Math. 70, 1959, 9–42.
- [10] HAYMAN, W.K.: Meromorphic Functions. Oxford at the Clarendon Press, 1964.
- [11] HAYMAN, W.K.: Research Problems in Function Theory. Athlone Press, London, 1967.
- [12] HAYMAN, W.K.: The local growth of power series: A survey of the Wiman–Valiron method. - Canad. Math. Bull. 17, 1974, 317–358.
- [13] HAYMAN, W.K.: Subharmonic Functions, Vol. 2. Academic Press, London, 1989.
- [14] HECKNER, M.: On meromorphic functions and linear differential polynomials which have few zeros. - Mitt. Math. Sem. Giessen 211, 1992, 1–14.
- [15] HILLE, E.: Lectures on Ordinary Differential Equations. Addison-Wesley, Reading, Mass., 1969.
- [16] HILLE, E.: Ordinary Differential Equations in the Complex Domain. Wiley, New York, 1976.

- [17] INCE, E.L.: Ordinary Differential Equations. Dover, New York, 1956.
- [18] LAINE, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Math. 15, Walter de Gruyter, Berlin–New York, 1993.
- [19] LANGLEY, J.K.: The Tsuji characteristic and zeros of linear differential polynomials. -Analysis 9, 1989, 269–282.
- [20] LANGLEY, J.K.: Proof of a conjecture of Hayman concerning f and f''. J. London Math. Soc. (2) 48, 1993, 500–514.
- [21] LANGLEY, J.K.: On the multiple points of certain meromorphic functions. Proc. Amer. Math. Soc. 123, 1995, 1787–1795.
- [22] LANGLEY, J.K.: On second order linear differential polynomials. Results Math. 26, 1994, 51–82.
- [23] LANGLEY, J.K.: A lower bound for the number of zeros of a meromorphic function and its second derivative. - Proc. Edinburgh Math. Soc. 39, 171–185.
- [24] LANGLEY, J.K.: The zeros of the first two derivatives of a meromorphic function. Proc. Amer. Math. Soc. 124, 1996, 2439–2441.
- [25] LANGLEY, J.K.: The zeros of the second derivative of a meromorphic function. In: XVIth Rolf Nevanlinna Colloquium, edited by I. Laine and O. Martio, Walter de Gruyter, Berlin, 1996.
- [26] LANGLEY, J.K.: On the zeros of the second derivative. Proc. Roy. Soc. Edinburgh 127A, 1997, 359–368.
- [27] MUES, E.: Über eine Vermutung von Hayman. Math. Z. 119, 1972, 11–20.
- [28] PÓLYA, G.: Über die Nullstellen sukzessiver Derivierten. Math. Z. 12, 1922, 36–60.
- [29] STEINMETZ, N.: On the zeros of $(f^{(p)} + a_{p-1}f^{(p-1)} + \dots + a_0f)f$. Analysis 7, 1987, 375–389.
- [30] VALIRON, G.: Lectures on the General Theory of Integral Functions. Edouard Privat, Toulouse, 1923.

Received 26 September 1997