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Abstract. We show here that the limit mapping f of a weakly convergent sequence of
mappings fν with finite distortion also has finite distortion and give several dimension free esti-
mates for the dilatation of f . Our arguments are based on the weak continuity of the Jacobian
determinants and the concept of polyconvexity.

1. Introduction

Let f : Ω → Rn be a mapping in the Sobolev space W 1,n
loc (Ω,Rn) where Ω is

a domain in Rn . Then the differential matrix Df(x) ∈ Rn×n and its determinant
J(x, f) = detDf(x) are well defined at almost every point x ∈ Ω. Here Rn×n

denotes the space of all n× n -matrices, where n > 1, equipped with the operator
norm

|A| = max{|Aξ| : ξ ∈ Sn−1}.

We assume most of the time that J(x, f) ≥ 0 a.e. and refer to such mappings f
as orientation preserving. We let Rn×n

+ denote the set of matrices with positive
determinant and write Rn×n

+ ∪ {0} when the zero matrix is included.

Definition 1.1. A mapping f ∈ W 1,n
loc (Ω,Rn) is said to be of finite distortion

if
Df(x) ∈ Rn×n

+ ∪ {0}

for almost every x ∈ Ω.
In what follows it is vital that the Sobolev exponent is at least the dimension

of Ω so that we can integrate the Jacobian. In this case the mappings of finite
distortion are actually continuous [18].

Definition 1.1 asserts that

(1.2) |Df(x)|n ≤ KO(x)J(x, f)
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where 1 ≤ KO(x) < ∞ a.e. The smallest such function defined by

(1.3) KO(x, f) =
|Df(x)|n
J(x, f)

if J(x, f) �= 0 and 1 otherwise is called the outer dilatation function of f .

We shall establish the following limit theorem.

Theorem 1.4. Suppose that fν : Ω → Rn is a sequence of mappings of finite
distortion which converges weakly in W 1,n

loc (Ω,Rn) to f and suppose that

(1.5) KO(x, fν ) ≤ M(x) < ∞ for ν = 1, 2, . . .

a.e. in Ω . Then f has finite distortion and

(1.6) KO(x, f) ≤ M(x)

a.e. in Ω .

Theorem 1.4 is a refinement of Reshetnyak’s theorem [15] concerning map-
pings fν of bounded distortion, that is mappings which satisfy (1.5) with M(x) ≤
K where K is a constant. In this case, weak convergence in W 1,n

loc (Ω,Rn) implies
uniform convergence on compact sets and hence, by Reshetnyak’s theorem, that
the limit mapping f satisfies KO(x, f) ≤ K instead of the pointwise bound given
in (1.6).

Remark 1.7. The hypotheses of Theorem 1.4 imply a stronger conclusion
than (1.6), namely the existence of a subsequence {fνk} such that

(1.8) KO(x, f) ≤ b∗ lim
k→∞

KO(x, fνk )

in Ω.

The limit in (1.8) is to be understood in the sense of biting convergence de-
fined in Section 2; see [1], [3] and [6]. The basic ingredient of our proof is the
higher integrability of nonnegative Jacobians. For a discussion of this property for
mappings with bounded distortion see [5], [7], [8], [11] and [16].

The outer dilatation function KO(x, f) has a simple geometric interpretation.
If f : Ω → Rn has a differential Df(x) �= 0, then Df(x) maps the unit sphere
onto an ellipsoid E and

(1.9) KO(x, f) =
vol(BO)
vol(E)

,
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where BO is the smallest ball circumscribed about E . In the same way, we may
define the inner dilatation of f at x by

(1.10) KI(x, f) =
vol(E)
vol(BI)

,

where BI is the largest ball inscribed in E . We set KI(x, f) = 1 at degenerate
points where Df(x) = 0 and we call

(1.11) K(x, f) = max{KO(x, f),KI (x, f)}
the maximal dilatation,

(1.12) KM (x, f) = 1
2 (KO(x, f) + KI(x, f))

the mean dilatation and

(1.13) H(x, f) =
(
KO(x, f)KI (x, f)

)1/n

the linear dilatation for f at x . The linear dilatation has the following dimension
free representation

(1.14) H(x, f) =
max{|Df(x)ξ| : ξ ∈ Sn−1}
min{|Df(x)ξ| : ξ ∈ Sn−1}

at points where Df(x) �= 0.

All of these dilatation functions coincide when n = 2; this is not the case
when n > 2. However, the functions KI , KM and K have the same lower
semicontinuity property as KO when n > 2.

Theorem 1.15. Theorem 1.4 and Remark 1.7 remain valid with KI(x, f) ,
KM (x, f) and K(x, f) in place of KO(x, f) .

This is not true of the geometrically appealing linear dilatation H(x, f) when
n > 2. Indeed a striking example in [10] exhibits for each K > 1 a sequence of
mappings fν ∈ W 1,n

loc (R
n,Rn) such that

1. H(x, fν ) ≡ K ,
2. fν converges uniformly to a linear map f : Rn → Rn ,
3. H(x, f) ≡ K ′ > K where K ′ is a constant.

In light of this anomaly it is desirable to see what one can say about the linear
dilatation of the limit f of a sequence of mappings. The following analogue of
Theorems 1.4 and 1.15 answers a question raised at the Saariselkä Conference in
June 1997. See also Section 14 in [17].

Theorem 1.16. Suppose that fν : Ω → Rn is a sequence of mappings of
finite distortion which converges weakly in W 1,n

loc (Ω,Rn) to f and suppose that

(1.17) H(x, fν ) ≤ M(x) < ∞ for ν = 1, 2, . . .
a.e. in Ω . Then f has finite distortion and

(1.18) H(x, f) ≤ 1
2

(
M(x) + M(x)n−1

)2/n ≤ M(x)2−(2/n)

a.e. in Ω .
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2. Biting convergence

We shall make use of some ideas of Brooks and Chacon [6], in particular, the
notion of biting convergence or weak convergence in measure.

Suppose that h and hν , ν = 1, 2, . . . , are Lebesgue measurable functions
on E ⊂ Rn with values in a finite dimensional normed space (V, ‖ · ‖). In our
applications we shall assume that V = R or V = Rn×n . We say that hν converges
to h in the biting sense in E if there exist an increasing sequence of measurable
subsets Ek of E with ⋃

k

Ek = E

such that for each k , the functions h and hν are in L1(Ek, V ) for all ν and

(2.1) lim
ν→∞

∫
Ek

φhν dx =
∫

Ek

φh dx

whenever φ ∈ L∞(Ek). In other words, the sequence hν converges weakly to h
outside arbitrarily small bites from E , that is outside E \ Ek for k = 1, 2, . . . .
We shall call h the biting limit of the sequence hν and write

(2.2) hν
b→h or h = b∗ lim

ν→∞
hν .

It is immaterial which increasing sequence of subsets Ek of E we choose to
define h as long as the weak limits on these sets exist; different bites yield the
same limit. We leave it to the reader to verify the following two simple properties
of biting convergence.

Lemma 2.3. If hν
b→h in E and if λ is finite and measurable in E , then

λhν
b→λh in E .

Lemma 2.4. If hν are measurable functions in E , ν = 1, 2, . . . , and if

sup
ν

‖hν(x)‖ < ∞

a.e. in E , then hν contains a subsequence which converges in the biting sense
in E .

We shall require the following lemma.

Lemma 2.5. If Aν converges weakly to A in Lp
loc(E,Rn×n) where 1 ≤ p <

∞ , then there is a subsequence {νk} such that

(2.6) |A|s ≤ b∗ lim
k→∞

|Aνk |s

for 1 ≤ s ≤ p .
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Proof. Choose measurable unit vectors ξ = ξ(x) and ζ = ζ(x) such that

|A(x)| = 〈A(x)ξ(x), ζ(x)〉 whence |Aν(x)| ≥ 〈Aν (x)ξ(x), ζ(x)〉

in E . Since ts is convex in 0 < t < ∞ ,

(2.7) |Aν |s − |A|s ≥ s|A|s−1(|Aν | − |A|) ≥ s|A|s−1(〈Aνξ, ζ〉 − 〈Aξ, ζ〉)

in E , the right hand side of (2.7) converges to 0 in the biting sense as ν → ∞ by
Lemma 2.3 and we obtain (2.6) for some subsequence {νk} by Lemma 2.4.

3. Weak continuity of minors

Suppose that {fν} is a sequence of orientation preserving mappings

(3.1) fν = (f1
ν , . . . , fn

ν ): Ω → Rn, ν = 1, 2, . . . ,

which converge weakly in W 1,n
loc (Ω,Rn) to a mapping f = (f1, . . . , fn). This

simply means that for each i, j = 1, 2, . . . , n we have

(3.2) lim
ν→∞

∫
Ω

φ
∂f i

ν

∂xj
dx =

∫
Ω

φ
∂f i

∂xj
dx

for each φ in L
n/(n−1)
0 (Ω), the space of test functions in Ln/(n−1) with compact

support in Ω.
A similar conclusion can be drawn for arbitrary minors of the differential

matrix Df . Given l -tuples 1 ≤ i1 < · · · < il ≤ n and 1 ≤ j1 < · · · < jl ≤ n we
let

∂(f i1 , . . . , f il )
∂(xj1 , . . . , xjl )

denote the corresponding l× l minor of Df . We then have the following counter-
part for (3.2).

Lemma 3.3 (Weak continuity). The above hypotheses imply that

(3.4) lim
ν→∞

∫
Ω

φ
∂(f i1

ν , . . . , f il
ν )

∂(xj1 , . . . , xjl )
dx =

∫
Ω

φ
∂(f i1 , . . . , f il )
∂(xj1 , . . . , xjl )

dx

for each φ in L
n/(n−l)
0 (Ω) and corresponding l × l minors of Dfν and Df , l =

1, 2, . . . , n .

Proof. The convergence of the minors in the case where φ is in C∞
0 (Ω)

follows from integration by parts and the compactness of the Sobolev imbedding.
The result in this case can be traced back at least as far as [2], [12] and [14]. The
extension to arbitrary φ in L

n/(n−l)
0 (Ω) with 1 ≤ l < n poses no problem because

C∞
0 (Ω) is dense in L

n/(n−l)
0 (Ω). It is the case where l = n and φ is in L∞

0 (Ω) that
requires our mappings fν to be orientation preserving; for this see Corollary 1.2
in [13].
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The case where the mappings fν are K -quasiregular can be handled due to
the higher degree of integrability of the Jacobians [5] and [8]. For yet another ap-
proach see the biting theorem for Jacobians, Corollary 2.3 in [4] and Corollary 2.2
in [19].

Corollary 3.5 (Biting convergence). The above hypotheses imply that

(3.6) b∗ lim
ν→∞

∂(f i1
ν , . . . , f il

ν )
∂(xj1 , . . . , xjl )

=
∂(f i1 , . . . , f il )
∂(xj1 , . . . , xjl )

for corresponding l × l minors of Dfν and Df , l = 1, 2, . . . , n .

4. Dilatation functions

We introduce as in Section 1 the following quantities for a matrix A in Rn×n
+ :

(4.1)

Outer dilatation
Inner dilatation

Mean dilatation

Maximal dilatation

Linear dilatation

KO(A) = |A|n/det(A),

KI(A) = KO(A−1),

KM (A) = 1
2

(
KO(A) + KI(A)

)
,

K(A) = max{KO(A),KI (A)},

H(A) =
(
KO(A)KI (A)

)1/n
.

By Cramer’s rule, we can express KI(A) in terms of the minors of order (n − 1)
and the determinant of A as follows:

(4.2) KI (A) =
|A#|n

det(A)n−1
.

Here A# is the matrix in Rn×n whose entries are co-factors of A ,

A#
jk = (−1)j+k det(Mjk),

where Mjk is a submatrix of A obtained by deleting the j th row and k th column.
The above definitions and an elementary analysis of the eigenvalues of AAT

yield the following estimates

(4.3) KO KI = Hn, KO ≤ Hn−1 ≤ Kn−1
I , KI ≤ Hn−1 ≤ Kn−1

O .

From this and the arithmetic-geometric mean inequality we obtain the following
estimates for the linear dilatation H :

(4.4) Hn/2 ≤ 1
2 (KO + KI) = KM = 1

2

(
KO +

Hn

KO

)
≤ 1

2 (H + Hn−1).

Equality holds in the first inequality only when KO = KI and in the second
inequality only when KO = Kn−1

I or KI = Kn−1
O .
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5. Polyconvexity

We show here that the dilatation functions KO , KI , KM and K are poly-
convex on the set Rn×n

+ , that is, that they can be expressed as convex functions
of minors of the matrix A ∈ Rn×n

+ .

Lemma 5.1. The function

(5.2) F (x, y) = Fp,q(x, y) =
xp

yq

is convex on R+ ×R+ whenever p ≥ q + 1 ≥ 1 .

Proof. We must show that

(5.3) F (x, y) − F (a, b) ≥ A(x − a) + B(y − b)

for all x, y, a, b ∈ R+ where

A =
∂F

∂x
(a, b) =

pap−1

bq
, B =

∂F

∂y
(a, b) = − qap

bq+1
.

Inequality (5.3) is an immediate consequence of the arithmetic-geometric mean
inequality

(5.4) ur1
1 ur2

2 ur3
3 ≤ r1u1 + r2u2 + r3u3

which holds whenever rj , uj are nonnegative for j = 1, 2, 3 with r1+ r2 + r3 = 1.
See, for example, Section 2.5 in [9] In particular if we set

r1 =
1
p
, r2 =

q

p
, r3 =

p − q − 1
p

, u1 =
xp

yq
, u2 =

apy

bq+1
, u3 =

ap

bq
,

then we obtain

xap−1

bq
= ur1

1 ur2
2 ur3

3 ≤ r1u1 + r2u2 + r3u3 =
1
p

xp

yq
+

q

p

apy

bq+1
+

p − q − 1
p

ap

bq

whence

(5.5)
xp

yq
− ap

bq
≥ pap−1

bq
(x − a)− qap

bq+1
(y − b)

which is (5.3).
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We see from (4.1) and (4.2) that

(5.6)
KO(A) = F

(
|A|,det(A)

)
with p = n and q = 1,

KI (A) = F
(
|A#|,det(A)

)
with p = n and q = n − 1.

We observe next that the function F (x, y) is increasing in the variable x and that
x is a convex function of the minors of A , x = |A| or x = |A#| , respectively,
in (5.6). This implies that both KO and KI are polyconvex and hence so are
the mean and maximal dilatations KM and K . On the other hand, the linear
dilatation H fails to be even rank-one convex [10].

We conclude by recording from (5.5) and (5.6) what polyconvexity means for
the outer and inner dilatations:

(5.7) KO(X)− KO(A) ≥
n|A|n−1

det(A)
(
|X| − |A|

)
− |A|n

det(A)2
(
det(X)− det(A)

)

and
(5.8)

KI(X)− KI(A) ≥
n|A#|n−1

det(A)n−1

(
|X#| − |A#|

)
− (n − 1)|A#|n

det(A)n
(
det(X)− det(A)

)
.

6. Lower semicontinuity

For simplicity of notation we will use the symbol K (f) = K (x, f) to denote
any one of the dilatations KO(x, f), KI(x, f), KM (x, f) or K(x, f). Then

K (x, f) = K
(
Df(x)

)

whenever J(x, f) > 0, where K (Df) denotes the corresponding dilatation func-
tion of matrices defined in (4.1).

Theorem 6.1. Suppose that fν : Ω → Rn is a sequence of mappings of finite
distortion which converge weakly in W 1,n

loc (Ω,Rn) to f and suppose that

(6.2) K (x, fν ) ≤ M(x) < ∞ for ν = 1, 2, . . .

a.e. in Ω . Then f has finite distortion and there exists a subsequence {fνk} such
that

(6.3) K (x, f) ≤ b∗ lim
k→∞

K (x, fνk )

in Ω . In particular

(6.4) K (x, f) ≤ M(x)

a.e. in Ω .
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Proof. We consider first the case where K (f) is the outer dilatation KO(f).
Then (6.2) implies that

|Dfν(x)|n ≤ M(x)J(x, fν )

a.e. in Ω while

(6.5) b∗ lim
ν→∞

det(Dfν ) = det(Df), b∗ lim
ν→∞

M det(Dfν ) = M det(Df)

by Corollary 3.5 and Lemma 2.3. Next by Lemma 2.5 we can choose a subsequence
{fνk} such that

(6.6) |Df |n ≤ b∗ lim
k→∞

|Dfνk |n ≤ b∗ lim
k→∞

M det(Dfνk ) = M det(Df)

and

(6.7) |Df(x)|n ≤ M(x)J(x, f)

a.e. in Ω. Thus f has finite distortion and (6.4) holds a.e. in Ω.
Finally in order to establish (6.3) we apply (5.7) to the matrices X = Dfν

and A = Df to obtain

(6.8) KO(fν )− KO(f) ≥ M1(|Dfν | − |Df |)− M2

(
det(Dfν )− det(Df)

)
,

where

(6.9) M1 =
n|Df |n−1

det(Df)
, M2 =

|Df |n
det(Df)2

,

a.e. in the set E ⊂ Ω where det(Df) �= 0. Next if we restrict our attention to
the set E , then by Lemma 2.5, Corollary 3.5 and Lemma 2.4 we can choose a
subsequence {fνk} such that

(6.10) |Df | ≤ b∗ lim
k→∞

|Dfνk |, det(Df) = b∗ lim
k→∞

det(Dfνk )

and such that KO(fνk ) converges in the biting sense. Then we obtain

(6.11) KO(f) ≤ b∗ lim
k→∞

KO(fνk )

in E from (6.8), (6.9) and (6.10). By our convention

(6.12) KO(f) = 1 ≤ b∗ lim
k→∞

KO(fνk )

a.e. in Ω \E , completing the proof of Theorem 6.1 for the case where K = KO .



262 F. W. Gehring and T. Iwaniec

Suppose next that K = KI . Then (4.3) yields the rough estimate

(6.13) KO(x, fν ) ≤ Kn−1
I (x, fν ) ≤ M(x)n−1

and f has finite distortion by what was proved above. Next (4.2) and (5.8) applied
to the matrices X = Dfν and A = Df yield

(6.14) KI(fν)− KI(f) ≥ M3(|(Dfν )#| − |(Df)# |)−M4

(
det(Dfν )− det(Df)

)
,

where

(6.15) M3 =
n|(Df)# |n−1

det(Df)n−1
, M4 =

(n − 1)|(Df)# |n
det(Df)n

,

a.e. in E . Then (Dfν )# converges weakly to (Df)# in L
n/(n−1)
loc (Ω,Rn×n), there

is a subsequence {fνk} such that the KI(fνk ) converges in the biting sense and

(6.16) |(Df)# | ≤ b∗ lim
k→∞

|(Dfνk )
#|, det(Df) = b∗ lim

k→∞
det(Dfνk )

again by Lemma 2.5 and Corollary 3.5. Then

(6.17) KI (f) ≤ b∗ lim
k→∞

KI(fνk )

in E as above while

(6.18) KI (f) = 1 ≤ b∗lim inf
k→∞

KI(fνk )

in Ω \ E since f has finite distortion. This completes the proof of Theorem 6.1
for the case where K = KI .

If K = KM , then

max{KO(x, fν ),KI (x, fν )} ≤ 2KM (x, fν ) ≤ 2M(x)

and f has finite distortion. Next there exists a subsequence {fνk} such that
KO(fνk ), KI(fνk ) and KM (fνk ) converge in the biting sense, and we obtain

2KM (f) = KO(f) +KI(f)
≤ b∗ lim

k→∞
KO(fνk ) + b∗ lim

k→∞
KI(fνk ) = 2b∗ lim

k→∞
KM (fνk )

from (6.3) with K = KO and K = KI .
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Finally if K = K , then

max{KO(x, fν ),KI (x, fν )} ≤ K(x, fν ) ≤ M(x)

and we can choose a subsequence {fνk} such that

KO(f) ≤ b∗ lim
k→∞

KO(fνk ) ≤ b∗ lim
k→∞

K(fνk ),

KI(f) ≤ b∗ lim
k→∞

KI(fνk ) ≤ b∗ lim
k→∞

K(fνk ).

Hence

(6.19) K(f) ≤ b∗ lim
k→∞

K(fνk )

completing the proof of Theorem 6.1.

7. Conclusions

Theorem 1.4, Remark 1.7 and Theorem 1.15 of Section 1 follow from Theo-
rem 6.1. For the proof of Theorem 1.16, (1.17) and (4.4) imply that

KM (x, fν ) ≤ 1
2

(
H(x, fν ) +H(x, fν )n−1

)
≤ 1

2(M(x) + M(x)n−1) for ν = 1, 2, . . .

a.e. in Ω. Hence f has finite distortion and

H(x, f) ≤ KM (x, f)2/n ≤
(

1
2

(
M(x) + M(x)n−1

))2/n ≤ M(x)2−(2/n)

a.e. in Ω by (4.4) and Theorem 1.15.
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[17] Väisälä, J.: Questions on quasiconformal maps in space. - In: Quasiconformal Mappings

and Analysis, Springer-Verlag, New York–Berlin–Heidelberg, 1998, 369–374.
[18] Vodop’yanov, S.K., and V.M. Gol’dshtein: Quasiconformal mappings and spaces of

functions with generalized first derivatives. - Siberian Math. J. 17, 1977, 399–411.
[19] Zhang, K.: Biting theorems for Jacobians and their applications. - Ann. Inst. H. Poincaré
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