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Abstract. Given an L∞ -function µ ≥ 0 , with compact support in Rn , and a bounded
domain Ω (⊃ supp (µ)) . Suppose there exists a function u , satisfying the following overdetermined
boundary value problem div(|∇u|p−2∇u) = −µ in Ω,

u = 0 on ∂Ω,
−∂u/∂ν = 1 on ∂Ω,

where ν is the outward unit normal vector on ∂Ω (the boundary of Ω). We assume that ∂Ω is
C2 , u ∈ C2(Ω \ supp (µ)) ∩ C1(Ω) , and 1 < p < ∞ .

In this paper we study uniqueness, uniform bounds and some geometric properties for solu-
tions (u, Ω) of the above overdetermined (free) boundary value problem. We show, among other
things, that if (ui, Ωi) ( i = 1, 2) are two solutions to the above problem for a fixed µ , with Ω1

convex, then Ω2 ⊂ Ω1 . Consequently if both Ω1 and Ω2 are convex, then they coincide. Using
an argument due to J. Serrin, we also prove certain types of symmetry and monotonicity, along
lines, for u .

0. Introduction

The mean value property for harmonic functions

(0.1)
∫

∂B(x0,r)

h dσ = cnr
n−1h(x0),

is well known and has a central role in classical potential theory. Here σ is the
surface element, and cn is the area of the unit sphere in Rn (n ≥ 2). Now (0.1)
can be written as

(0.2)
∫

∂B(x0,r)

h dσ =
∫

h dµ,
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where µ = cnr
n−1δx0 , is a constant multiple of the Dirac measure. Hence, letting

hy(x) =
{

(1/c2) log |x− y|−1 n = 2,
(1/(n− 2)cn)|x − y|2−n n ≥ 3,

where y is fixed, and defining

u(y) =
∫

∂B(x0,r)

hy(x)dσ −
∫

hy(x)dµ in B(x0, r),

we have (by (0.2)) u = 0, and −∂u/∂ν = 1 on ∂B(x0, r) (see [K]). Here ν is the
outward normal vector on ∂B(x0 , r). The function u , thus defined, satisfies (in
the sense of distributions)

(0.3)

∆u = −µ in B(x0, r),
u = 0 on ∂B(x0 , r),
−∂u/∂ν = 1 on ∂B(x0 , r).

In general, one may consider the following question: For a given (positive Radon)
measure (in this paper, apart from Examples 1–6, we only consider positive L∞

functions) with compact support, find a domain Ω (⊃ supp (µ)), and a function
u satisfying (in some weak sense)

(0.4)


∆pu = −µ in Ω,
u = 0 on ∂Ω,
−∂u/∂ν = 1 on ∂Ω,

where ∆pu = div(|∇u|p−2∇u), is the p-Laplace operator and 1 < p < ∞ . This
is an overdetermined (free) boundary value problem and hence not always well-
posed (see Examples 4 and 5 below). The existence depends, strongly, on the
concentration of the measure µ . For p = 2 there are some results on the existence
for certain types of µ ; see [GS] and [Sh1]. As for other values of p , there are no
results known to the authors.

One may also change the problem slightly by letting µ be identically zero,
and instead having nonzero Dirichlet boundary conditions, working in a subdomain
of Rn ; see [AC] for p = 2, and [HS] for 1 < p < ∞ , and convex subdomains.

In this paper, we will not consider the question of existence or regularity
of solutions to (0.4). We only consider some qualitative aspects of the solutions,
assuming they already exist. Our results concern uniqueness (Theorem 1), uniform
bounds (Theorem 2), monotonicity along lines (Theorem 3), and starshapeness
(Theorem 4).

Rules. Throughout this paper the following rules apply: Ω denotes a
bounded domain, with C2 boundary; except from Examples 1–6, µ always denotes
a nonnegative L∞ -function with

supp (µ) ⊂ Ω;
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ν denotes the unit normal vector on the boundary, and pointing outward, of a
domain in consideration.

Any solution u to (0.4) is extended continuously to entire Rn , with u ≡ 0 in
Rn \Ω; we also assume that if (u,Ω) is a solution to (0.4) then u ∈ C1(Ω) and it
is C2 in an interior neighborhood of ∂Ω, and has a C2 extension across ∂Ω. It
is also noteworthy that since u is constant on ∂Ω and positive in Ω, we will have

|∇u| = −∂u/∂ν on ∂Ω.

1. Examples

In this section we give a few explicit examples, where µ will be a non-negative
measure. For this purpose we define a1 = (p − 1)/(p − n), a2 = p/(p − 1),
a3 = −n/(p− 1), and a4 = a1 + r1/a1 (1/a2 − a1), for a fixed r .

Example 1. Let

u(x) =
{

a1(1 − |x|1/a1), p �= n,
log |x|−1, p = n.

Then on ∂B(0, 1), u = 0, and |∇u| = 1, and in B(0, 1) we have ∆pu = −cnδ0 ,
where cn is as in (0.1).

Example 2. Let p �= n , and set f(r) = r − r1−1/a1 . Then it is not hard to
see that for each 0 < r1 < 1 there is r2 > 1 such that f(r1) = −f(r2). Hence
r1 + r2 = r

1−1/a1
1 + r

1−1/a1
2 . This can be used to show that the function u defined

as

u(x) =

{
a1r1

((
|x|/r1

)1/a1 − 1
)
, r1 ≤ |x| ≤ 1,

a1r2

(
1 −

(
|x|/r2

)1/a1)
, 1 ≤ |x| ≤ r2.

is Lipschitz. Now define Ω = {x : r1 < |x| < r2} . Then (u,Ω) solves (0.4) with
dµ = (rn−1

1 + rn−1
2 )χ∂B(0,1)dσ .

Example 3. Let p �= n , 0 < r < 1, and define u as

u(x) =
{

(−ra3/a2)|x|a2 + a4, |x| ≤ r,
a1(1 − |x|1/a1), r < |x| ≤ 1.

Then ∆pu = −nr−nχB(0,r) and u = 0 and |∇u| = 1 on ∂B(0, 1).
For the case p = n , in Examples 2 and 3, one may define a similar function

using the log-function.

Example 4 (Non-existence). Here we give a simple example of an L∞ -
function µ , such that (0.4) has no solutions. Fix µ and let (u,Ω) solve (0.4).
Then, integration by parts gives

(1.1)
∫

dµ = −
∫

Ω

div(|∇u|p−2∇u) = −
∫

∂Ω

|∇u|p−2∇u · ν =
∫

∂Ω

dσ.
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Now let µ be defined as dµ = CχDdx , where

C = n(n−1)/n

(
cn

volume(D)

)1/n

,

and cn is as in (0.1). Then (1.1) reduces to

n(n−1)/n ·
(

cn

volume (D)

)1/n

· volume (D) = area (∂Ω),

and hence, by the (strict) inclusion D ⊂ Ω,

c1/n
n

(
n volume(Ω)

)(n−1)/n
> c1/n

n

(
n volume (D)

)(n−1)/n = area (∂Ω).

This obviously contradicts the well-known isoperimetric inequality [B]. Therefore
for µ as above there cannot exist a solution to (0.4).

Example 5 (Non-existence). Let dµ = f(x)dx , and suppose (u,Ω) solves
(0.4). Set M = supf , and let B(x0 , rΩ) be the smallest ball containing Ω. Then
we claim

(1.2) n < MrΩ.

This provides us with a test for non-existence.
To prove (1.2), we define

v(x) =
(

p− 1
p

)
r
p/(p−1)
Ω − |x − x0|p/(p−1)

r
1/(p−1)
Ω

.

Then
∆pv =

−n

rΩ
.

Now if (1.2) fails, then

∆pu = −f ≥ −M ≥ −n

rΩ
= ∆pv in Ω.

Since also u = 0 ≤ v on ∂Ω, we may apply Lemma 1 (a) and (c) (Section 3) to
deduce that u < v in Ω. (Or at least in some interior neighborhood of ∂Ω; see the
remark following Lemma 1.) Now let y ∈ ∂Ω correspond to the largest distance
to x0 , i.e. |y− x0| = rΩ , and observe that the unit outward normal vector ν at y
equals (y− x0)/|y−x0| and that u(y) = v(y) = 0. Invoking part (b) of Lemma 1
we conclude

(1.3) −1 =
∂u

∂ν
(y) >

∂v

∂ν
(y) = −1,

which is a contradiction. Hence (1.2) holds.
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Example 6 (Perimeter of Ω). Let (u,Ω) solve (0.4), and let us drop the
assumption that ∂Ω is C2 . The boundary condition ∂u/∂ν = −1 is to be inter-
preted as (replaced by) |∇u| = 1, in the sense that for any small ε > 0 there is a
small neighborhood Nε of ∂Ω such that

(1.4)
∣∣ |∇u| − 1

∣∣ < ε, in Ω ∩Nε.

We will show that Ω has finite perimeter; see [Z] for a definition. Let us define
v = up/(p−1) (observe that u ≥ 0). Then one may easily verify that

∆pv = Cp(u∆pu + |∇u|p), Cp =
(

p

p− 1

)p−1

.

Since ∆pu = 0 in {0 < u < ε} , for ε small, we have

∆pv = Cp|∇u|p ≥ 1
2
Cp.

Using this and that |∇v| = 0 on {u = 0} , we have (by (1.4))

1
2
Cp

∫
{0<u<ε}

dx ≤
∫
{0<u<ε}

∆pv dx =
∫
{u=ε}

|∇v|p−2∇v · ν dσ

= Cp

∫
{u=ε}

|∇u|p−1u dσ = Cpε

∫
{u=ε}

|∇u|p−1 dσ = Cpε

∫
dµ.

This shows that

(1.5) χ{u>ε} → χ{u>0} in L1(Rn).

Next, by (1.4), for any ε > 0 there is δε ↘ 0 such that |∇u| > 1− δε in {u ≤ ε} .
Hence∫

dµ = −
∫

Ω

∆pu dx =
∫

∂{u>ε}
|∇u|p−1 dσ ≥ (1 − δε)p−1 Perimeter ({u > ε}).

Letting ε → 0 and using (1.5) and the lower-semicontinuity of the variation mea-
sure (perimeter) we obtain

Perimeter (Ω) = Perimeter ({u > 0}) ≤
∫

dµ.
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2. Main results

In this section we state our main results, which will be proven in Section 4.
These results are of qualitative nature (uniqueness and geometric features) and
for p = 2 they where proven in [GS] and [Sh2]. To avoid technical difficulties
we assume, throughout this section, that u is C1 on Ω, it is C2 in an interior
neighbourhood of ∂Ω and it has a C2 extension across ∂Ω. Also once again we
stress that supp (µ) ⊂ Ω, and µ is a bounded L∞ -function with compact support.

Theorem 1. Let (uj ,Ωj) (j = 1, 2) be solutions to (0.4) , with supp (µ) ⊂
Ω1 ∩ Ω2 . Then the following hold.

(1) If Ω1 is convex then Ω2 ⊂ Ω1 .
(2) If Ω1 ∩ Ω2 is convex, then Ω1 ≡ Ω2 .
(3) If both Ω1 and Ω2 are convex, then Ω1 ≡ Ω2 and u1 ≡ u2 .

Theorem 2. Let 1 < p ≤ n and (u,Ω) be a solution to (0.4) , with Ω
bounded. Then there exists R = R(µ, p, n) such that

Ω ⊂ B(0, R).

For the next result we need some new definitions and notations.
For a fixed unit vector a ∈ Rn and for λ ∈ R set

Tλ = Ta,λ := {x · a = λ}, T−
λ := {x · a < λ}, T+

λ := {x · a > λ}.

For x ∈ Rn let xλ denote the reflected point with respect to Tλ and set uλ(x) =
u(xλ). Also let

Ωλ = Ω ∩ T+
λ = the cap cut off by Tλ,

Ω̃λ = {xλ : x ∈ Ωλ} = the reflection of Ωλ in Tλ.

Theorem 3. Assume that for some unit vector a ∈ Rn and some λ0 ∈ R
we have

supp (µ) ∩ T+
λ = ∅,

for all λ ≥ λ0 . Then for any solution u to (0.4) the following hold.

Ω̃λ ⊂ Ω for all λ ≥ λ0,(2.1)
u ≤ uλ in Ωλ for all λ > λ0,(2.2)

a · ∇u ≤ 0 in Ωλ0.(2.3)

Corollary 1. Let (u,Ω) be a solution to (0.4) and suppose supp (µ) ⊂ K , a
compact convex set. Then for any x ∈ ∂Ω \K the inward normal ray Lx , of ∂Ω
at x intersects K . Moreover, ∂Ω \K is Lipschitz.
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Proof. If for x ∈ ∂Ω \K we have Lx ∩K = ∅ then one can find a ∈ Rn and
λ0 ∈ R such that K ⊂ T−

a,λ0
, Lx ⊂ T+

a,λ0
. The first inclusion implies that the

assumptions of Theorem 3 are satisfied and hence (2.1) holds. This in particular
means that ∂Ω ∩ T+

a,λ0
is a graph, seen from Ta,λ0 , and therefore the outward

normal vector νy at every point y ∈ ∂Ω ∩ T+
a,λ0

makes an angle 0 ≤ θ < 1
2π with

a , i.e.

(2.4) νy · a > 0 for all y ∈ ∂Ω ∩ T+
a,λ0

(scalar product).

Now the second inclusion (Lx ⊂ T+
a,λ0

) implies that νx (outward normal
at x) points into T−

a,λ0
. Hence the angle between a and νx is greater than 1

2π ,
i.e. νx · a < 0. Since ∂Ω is C1 we may choose y ∈ ∂Ω ∩ T+

a,λ0
near x with νy

pointing into T−
a,λ , i.e. νy ·a < 0. This contradicts (2.4). Hence the first statement

of the corollary follows. The second statement follows easily by varying a and λ0

such that K ⊂ T−
a,λ0

.

For the proof of Theorem 3 we shall use some reflection methods related to
the “moving plane method” which has previously been used in similar problems
in [Se], [GNN], [BN], [Sh2], [GS].

Theorem 4. Let (u,Ω) solve (0.4) and suppose there is α ≤ −1 such that

(2.5) tαµ(x/t) ≤ µ(x),

for all 0 < t ≤ 1 and x ∈ Rn . Then Ω is starshaped with respect to the origin,
and moreover

(2.6) tβu(x/t) ≤ u(x)

for β = (p + α)/(p − 1) and all 0 < t ≤ 1 and x ∈ Ω .

3. Auxiliary lemmas

This section is devoted to some technical lemmas.

Lemma 1 (Hopf’s comparison principle). Let D ⊂ Rn be bounded, and
v1, v2 ∈ C1(D) , with

∆pv1 ≤ ∆pv2.

Then the following hold.

(a) If v1 ≥ v2 on ∂D , then v1 ≥ v2 in D .
(b) Suppose v1 > v2 in D , v1(x0) = v2(x0) for some x0 ∈ ∂D , |∇v2| ≥ γ > 0

in D (for some γ > 0), and D satisfies the interior sphere condition. Then
∂v1/∂ν(x0) < ∂v2/∂ν(x0) , where ν is the unit outward normal vector on ∂D ,
at x0 .

(c) If v1 ≥ v2 and v1 �≡ v2 in D , |∇v2| ≥ γ > 0 (for some γ > 0), then
v1 > v2 in D .
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Remark. Throughout this paper we will, repeatedly, use Lemma 1. It is
thus crucial that the relation |∇v2| > γ , for some γ > 0, holds for the function v2

in part (b) and (c) of the lemma. This, however, is not needed for part (a) of the
lemma. Now in our applications of this lemma we will always consider part (a) in
the entire domain in consideration and part (b) and (c) in a small subdomain with
x0 on its boundary. Since the magnitude of the gradient of any solution to (0.4)
approaches one, continuously, the required condition in the lemma is fulfilled, near
the boundary for solutions to (0.4). In the sequel we will omit mentioning this
argument.

Lemma 2 (Serrin’s boundary point lemma). Let D be a domain with C2

boundary and let T be a plane containing the normal to ∂D at some point x0 ∈
∂D . Denote by D′ the portion of D that lies on some particular side of T .
Suppose that w1 and w2 are of class C2(D) , w1 �≡ w2 in D , w1(x0) = w2(x0)
and satisfy

∆pw1 ≤ ∆pw2, w1 ≥ w2 in D′.

Then either
∂w1

∂τ
>

∂w2

∂τ
or

∂2w1

∂τ 2
>

∂2w2

∂τ 2
at x0,

where τ is any direction entering D′ non-tangentially.

Lemma 3. Let (u,Ω) solve (0.4) . Let Tλ be a plane containing the normal

to ∂Ω at some point x0 ∈ ∂Ω . Suppose, moreover, Ω̃λ ⊂ Ω . Then the first and
second derivatives of u and ũ coincide at x0 .

The proofs of Lemmas 1, 2 and 3 are much the same as that of the case p = 2.
Indeed, since |∇u| > 0 near the boundary, in all three lemmas, we may rewrite
the p-Laplacian as

h1(|∇u|)∆u + h2(|∇u|)
∑
i,j

uiujuij,

where h1 and h2 are positive C1 functions in their argument. Hence we will
have a uniformly elliptic operator, which is translation and rotation invariant.
However, for the reader’s convenience we give exact references for the proofs of
the lemmas. Lemma 1 is proven in [T, Lemma 3.2, Propositions 3.4.1, 3.4.2]. A
proof for Lemma 2 can be found in ([Se, Lemmas 1 and 2]). The proof of Lemma 3
is also the same as in ([Se, p. 307]).

Lemma 4. Let (u,Ω) be a solution to (0.4) . Consider a hyperplane T ,
which cuts off Ω a cap Ω′ , and such that supp (µ) ∩ Ω′ = ∅ . Then

(3.1) d := sup
x∈∂Ω′

dist (x, T ) < sup
T

u.
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Moreover if x0 ∈ T is such that u(x0) = supT u , then

(3.2) −∂u

∂a
(x0) > 1,

where a is the unit normal vector to T pointing inward Ω′ .

Proof. Since the problem is rotation and translation invariant we may assume
that T = {x1 = 0} , and Ω′ = {x1 > 0} ∩ Ω. Now let y ∈ ∂Ω′ , be such that
d = dist (y, T ) and observe that (∂u/∂x1)(y) = −1. Then define

h(x) = s(d − x1),

where
s :=

supT u

d
.

Now observing that

(3.3) ∆ph = ∆pu = 0 in Ω′, h ≥ u on ∂Ω′, u(y) = h(y) = 0

we may invoke Lemma 1 (a)–(c) to deduce

−s =
∂h

∂x1
(y) <

∂u

∂x1
(y) = −1,

i.e.

(3.4)
supT u

d
= s > 1,

which proves (3.1). Next using (3.3)–(3.4) and the fact that u(x0) = h(x0) we
obtain

1 < s = − ∂h

∂x1
(x0) ≤ − ∂u

∂x1
(x0),

i.e. (3.2) holds.

Lemma 5 (Pasting lemma, [HKM, 7.9]). Let u be any solution to (0.4) and
extend it to the entire Rn by defining it to be zero in the exterior of Ω . Then

∆p(u − c) ≥ −µ,

for any constant c .

The proof of this lemma follows easily from the pasting lemma [HKM, 7.9].
However, for the reader’s convenience we give the proof.

Proof. Take a small neighborhood N of ∂Ω such that supp (µ)∩N = ∅ , and
define

v =
{

max(u, 0) in N ∩ Ω,
0 in Rn \ Ω.

Then, by [HKM, 7.9], −v is p-superharmonic in N . Hence v−c , is p-subharmonic
in N which is the desired result.
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4. Proofs of the main theorems

Proof of Theorem 1. Since the proofs of (1) and (2) are similar, we only
prove (1); (3) follows from (1) or (2). Suppose Ω2 \ Ω1 �= ∅ , then we reach a
contradiction. Extend uj by zero to Rn \ Ωj , for j = 1, 2, and let x0 ∈ ∂Ω1 be
such that u2(x0) = sup∂Ω1 u2 . Define now w(x) = u2 − u2(x0) in Ω1 . Then by
Lemma 5 ∆pw ≥ −µ . Hence

∆pw ≥ ∆pu1 in Ω1, w ≤ u1 on ∂Ω1, w(x0) = u1(x0) = 0.

We may thus apply Lemma 1 to deduce that

∂u2/∂ν(x0) = ∂w/∂ν(x0) > ∂u1/∂ν(x0) = −1

i.e.

(4.1) −∂u2/∂ν(x0) < 1.

Now, using the convexity of ∂Ω1 and that supp (µ) ⊂ Ω1 ∩ Ω2 , we can take a
supporting plane T at x0 such that the assumptions of Lemma 4 are fulfilled.
But then, (4.1) contradicts (3.2). This completes the proof of the theorem.

Proof of Theorem 2. By scaling, we may assume supp (µ) ⊂ B(0, 1) and
µ ≤ 1. We also consider the case 1 < p < n ; since for p = n we need only to
replace the fundamental solution |x|(p−n)/(p−1) , in the definition below, with the
logarithmic kernel. Define

v =
{

a|x|p/(p−1) + b, |x| ≤ 1,
c|x|(p−n)/(p−1), |x| ≥ 1,

where

a = −n1/(1−p)

(
p− 1

p

)
, c =

(
p− 1
n− p

)
n1/(1−p), b = c − a.

Then v satisfies

∆pv = −χB(0,1) ≤ −µ ≤ ∆pu in Ω, v > 0 in Rn.

Hence Lemma 1 can be applied to obtain v ≥ u . Define now

d := sup
x∈∂Ω

dist
(
x,B(0, 1)

)
.

Then by Lemma 4, and the above

d ≤ sup
∂B(0,1)

u ≤ sup
∂B(0,1)

v ≤ c.

This proves the theorem.
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Proof of Theorem 3. Obviously Ωλ = ∅ , for large values of λ . We start
moving Tλ , by decreasing λ , towards Ω and until it intersects Ω and produces
the cap Ωλ . Then, at the beginning of this intersection the reflected cap Ω̃λ

remains inside Ω, since ∂Ω is C2 . Now if the theorem fails, then for some λ > λ0

one of the following can occur.
(1) Ω̃λ becomes internally tangent to ∂Ω at some point not on Tλ .
(2) Tλ reaches a position where it is orthogonal to ∂Ω at some point x0 ,

on ∂Ω.
Suppose situation (1) occurs. Then uλ , the reflection of u in Tλ , is p-harmonic
in Ω̃λ , and satisfies uλ ≤ u on ∂Ω̃λ . Therefore we can apply part (a) of Lemma 1
to conclude that uλ ≤ u . Next we observe that near x0 , the touching point of
∂Ω̃λ and ∂Ω, both |∇uλ| and |∇u| are > 0. Hence part (b) and (c) of Lemma 1
can be applied to deduce

−1 = ∂uλ/∂ν(x0) > ∂u/∂ν(x0) = −1,

which is a contradiction, and implies that situation (1) above cannot occur.
Now if situation (2) arises, then one may use Lemmas 2 and 3 to reach a

contradiction. This completes the proof of (2.1).
Next (2.3) follows from (2.2). Now by (2.1) uλ ≥ u = 0 on ∂Ω ∩ T+

λ ,
and uλ = u on Tλ . Since ∆pu

λ ≤ ∆pu in Ωλ we can apply Lemma 1 (a) to
deduce (2.2).

Proof of Theorem 4. For β = (p + α)/(p − 1), define

ut(x) = tβu(x/t), Ωt = {x : x/t ∈ Ω},
and observe that by (2.5), the origin is in the interior of the support of µ and thus
inside Ω. Hence for small values of t , Ωt ⊂ Ω. Now define t0 to be the largest
number such that Ωt ⊂ Ω for all 0 < t < t0 , and let y ∈ ∂Ω ∩ ∂Ωt0 . Since µ is
of relation (2.5), we have

∆put0 ≥ ∆pu, in Ωt0 , 0 = ut0 ≤ u on ∂Ωt0 , ut0(y) = u(y) = 0.

If the conclusion in the theorem fails, then

(4.2) t0 < 1,

and ut0 �≡ u . We may thus invoke Lemma 1 (a)–(c) to conclude

(4.3) −tβ−1
0 =

∂ut0

∂ν
(y) >

∂u

∂ν
(y) = −1.

The assumption α ≤ −1 implies β − 1 ≤ 0, which in turn gives that (4.3) is
in direct contradiction with (4.2). We thus conclude that t0 = 1 and Ω is star-
shaped. To show (2.6), we consider once again ut(x) as above and observe, by the
starshapeness, Ωt ⊂ Ω (for all 0 < t ≤ 1). Hence by (2.5) ∆put ≥ ∆pu in Ωt ,
and ut ≤ u on ∂Ωt . Now Lemma 1 (a) gives the desired result.
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5. Concluding remarks

Most of the results of this paper can easily be generalized to hold for the
following situations:

(1) Degenerate operators of the form div
(
ϕ1(u, |∇u|)∇u

)
+ϕ2(u, |∇u|), with

regular ingredients;
(2) µ a positive measure;
(3) ∂Ω has finite perimeter with no a priori smoothness assumptions;
(4) relaxation of ∂u/∂ν = −1 on ∂Ω to limΩ�x→∂Ω|∇u| = 1.

The reason that we work with L∞ -functions rather than measures is the belonging
of the solution to the space W 1,p(Rn). However, outside the support of µ , the
solution is as good as Lipschitz, if e.g. we have the boundary behavior for the gradi-
ent as in (0.4). Therefore if we assume the solution is in the space W 1,p(Rn), then
we can repeat the above arguments, without any changes, to obtain Theorems 1–4,
for arbitrary nonnegative measures.

The proof of Theorem 2, given here, does not apply when p > n . The
reason is that in this case, we cannot find nonnegative supersolutions in Rn ,
merely because of the behavior of the function |x|(p−n)/(p−1) , near the infinity.
We believe, however, that the theorem should hold for all 1 < p < ∞ .

As mentioned earlier, most of the existing literature is concerned with the
case p = 2. It is known that measures, which are enough concentrated on their
support, do admit solutions; e.g., for finite positive combinations of Dirac masses
there always exists a solution for (0.4), when p = 2. For other values of p , this is
an open question. A natural way of finding solutions is through minimization of
the functional ∫

Rn

1
p
|∇v|p − µv +

(
p− 1

p

)
χ{v>0},

over the set
{v : v ∈ W 1,p

0 (Rn), v ≥ 0}.

A minimizer, or stationary point, u of this functional expects to satisfy

(5.1) ∆pu = −µ + H n−1�∂Ω,

where Ω = {u > 0} , and H n−1�∂Ω is the n -dimensional Hausdorff measure
supported on ∂Ω. Of course if ∂Ω is already known to be “nice” then it is not
hard to prove that (5.1) holds. Also, for smooth boundaries, (5.1) expresses that
|∇u| = 1 on ∂Ω. Thus the main problem, in using minimization, consists of
showing the smoothness of the free boundary. This question (for p = 2) has been
treated by H.W. Alt and L.A. Caffarelli in their pioneering paper [AC]. It is most
likely that the same technique works for the p-Laplacian.
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