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Abstract. We generalize the classical Rellich–Kondrachov compactness theorem for Sobolev
spaces defined on metric spaces.

1. Introduction

In the classical setting Sobolev spaces were defined on subdomains of Rn or
on Riemannian manifolds. It seemed to be essential to define Sobolev spaces on a
sufficiently smooth object, as the classical definition requires Lp -summability of
the gradient.

However, the theory has been recently extended to the setting of metric spaces.
Particularly many authors deal with Sobolev spaces associated with a family of
vector fields. This leads to Sobolev-type inequalities on balls with respect to
the Carnot–Carathéodory metric; see the works of Capogna, Coulhon, Danielli,
Franchi, Gallot, Gutiérrez, Jerison, Garofalo, Lanconelli, Lu, Nhieu, Rothschild,
Saloff-Coste, Stein, Wheeden, Varopoulos, [2], [3], [7], [10], [11], [13], [8], [9], [14],
[16], [25], [28], [29], [34], [35], [37] and many others. There is, however, a much
more general approach to Sobolev inequalities. Biroli and Mosco, [1] and Sturm,
[36] investigate inequalities for Dirichlet forms on metric spaces, while HajFlasz, [17],
defines Sobolev spaces on an arbitrary metric space equipped with a locally finite
Borel measure. Franchi Lu and Wheeden [12] deal with representation formulas
in metric spaces, and HajFlasz and Koskela, [20], [21] give an approach to Sobolev
inequalities on metric spaces, different from that of HajFlasz, [17]. The approach
of HajFlasz to Sobolev spaces has been employed by HajFlasz and Kinnunen, [19],
HajFlasz and Martio, [22], Heinonen and Koskela, [24], Kinnunen and Martio, [26]
and Koskela and MacManus, [27].

There are quite a lot of papers concerned with the Sobolev type inequalities in
metric setting and a few results concerning compact embedding. To our knowledge,
the compact embedding theorems for vector fields are obtained in Danielli, [4],
Garofalo and Lanconelli, [15], Garofalo and Nhieu, [16], Lu, [30], Manfredini, [31],
and Rothschild and Stein, [34]. Recently HajFlasz and Koskela, [21] obtained a
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more general result, namely, a compact embedding theorem in a general setting of
metric spaces with doubling measure.

In this paper we establish a new criterion for the relative compactness in Lp

and then apply it to a new compact embedding theorem for Sobolev spaces of
HajFlasz, [17]. In all the above papers except [17] it is essential to assume that
the measure with which the space is equipped satisfies a doubling condition (see
below), while in [17] the condition is weaker, a lower boundary of the growth of
the measure of a ball. The condition made in our paper concerning the measure
is weaker than the doubling condition.

The approach to Sobolev spaces given in [17] covers the case of vector fields;
see Franchi, Lu and Wheeden, [12] and HajFlasz and Koskela, [21]. In particular,
our result covers most of the above-mentioned compact embedding theorems. It
also deals with compactness of embedding for weighted Sobolev spaces considered
by Heinonen, Kilpeläinen and Martio, [23].

Although the setting of our result is slightly different from that of HajFlasz and
Koskela, [21], it is almost equivalent in the case when the measure is doubling;
see [21]. The result of HajFlasz and Koskela was obtained independently of ours.

Now let us recall the definition of the Sobolev space. First start with the
classical definition. If Ω ⊂ Rn is an open set and 1 ≤ p < ∞ , we define W 1,p(Ω)
as the closure of C∞(Ω) in the norm ‖f‖1,p = ‖f‖Lp(Ω) + ‖∇f‖Lp(Ω) .

If X is a metric space, d is the metric and µ a Borel measure on X finite on
bounded sets HajFlasz, [17] defines the Sobolev space W 1,p(X, d, µ) for 1 ≤ p < ∞
as follows: f ∈ W 1,p(X, d, µ) if and only if f ∈ Lp(X,µ) and there exists a
function 0 < g ∈ Lp(X,µ) such that

(1) |f(x) − f(y)| ≤ d(x, y)
(
g(x) + g(y)

)

almost everywhere, which means that there exists a set E ⊂ X with µ(E) = 0
such that the inequality (1) holds for all x, y ∈ X \E . The space is equipped with
the norm ‖f‖W1,p(X,d,µ) = ‖f‖Lp(X,µ) + infg ‖f‖Lp(X,µ) , the infimum being over
all functions g that satisfy inequality (1).

HajFlasz, [17], proved that if 1 < p ≤ ∞ , X = Ω ⊂ Rn is a bounded domain
with sufficiently regular boundary, say Lipschitz boundary, the metric is the Eu-
clidean metric and the measure is the Lebesgue measure, the above definition is
equivalent to the classical definition of the Sobolev space W 1,p(Ω); see also [22].
If p = 1, the equivalence fails, [18]. Then he proved that, in the metric setting,
the lower boundary for the measure of the ball

(2) µ
(
B(x, r)

)
≥ Crs

for all x ∈ X and r ≤ diamX implies the Sobolev embedding theorem with s
playing the role of the dimension of the space.
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In this paper we prove that slightly different condition from (2) implies com-
pactness of embedding. In particular, our condition is satisfied when the measure
is doubling, i.e., µ

(
B(x, 2r)

)
≤ Cµ

(
B(x, r)

)
.

In what follows the average value of the function over the set A will be denoted
by fA = µ(A)−1

∫
A
f dµ =

∫
−

A
f dµ .

Acknowledgements. The author wishes to thank Piotr HajFlasz and Ela KaFla-
majska for helpful discussions during the preparation of the paper.

2. The main results

There are two main results obtained here. The first result is a criterion for
the relative compactness in Lp(X,µ).

Theorem 1. Let X be a metric space equipped with a finite Borel measure
µ , such that, for any r > 0 , h(r) = inf

{
µ
(
B(x, r)

)
: x ∈ X

}
> 0 . Then every

bounded sequence {fn} ⊂ Lp(X,µ) , 1 ≤ p < ∞ such that

(3) sup
n

∫
X

|fn(x) − (fn)B(x,r)|p dµ(x) r→0−→ 0,

is relatively compact in Lp(X,µ) .

The second result is a compact embedding theorem for Sobolev spaces on
metric spaces. As we will see, the theorem is a fairly elementary consequence of
the above criterion for compactness. We believe that the above result may be
useful for proving compactness in other situations.

Theorem 2. Let X be a metric space equipped with a finite Borel measure
µ , such that, for any r > 0 , h(r) = inf

{
µ
(
B(x, r)

)
: x ∈ X

}
> 0 . Assume that

there exists a function N(r) such that rpN(r) → 0 , as r → 0 , and one of the
following conditions is satisfied:
1. Every ball B(x, r) can be covered by N(r) balls with radii 1

2r and centers in
B(x, r) .

2. For every x ∈ X and r > 0 we have

µ
(
B(x, 2r)

)
≤ N(r)µ

(
B(x, r)

)
.

Then any sequence {fn} , bounded in W 1,p(X, d, µ) , 1 ≤ p < ∞ , is relatively
compact in Lp(X,µ) .

The following corollary directly applies to [22].

Corollary 1. Let X ⊂ Rn be a compact set, d(x, y) = |x − y|λ for some
0 < λ ≤ 1 , and let µ be an arbitrary finite Borel measure, supported on X by
the property that h(r) = inf

{
µ
(
B(x, r)

)
: x ∈ X

}
> 0 for every r > 0 . Then the

embedding W 1,p(X, d, µ) ⊂ Lp(X,µ) is compact for every p ≥ 1 .
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Proof. Obviously one can take a constant function N(r) with the property 1
in Theorem 2.

Proof of Theorem 1. We start with recalling two known facts (see e.g. [5,
Corollary 11 and Theorem 12 of Section IV.8], [33, p. 20]).

Theorem 3 (Hahn–Saks–Vitali.) Let X be a measurable space equipped
with a finite measure µ , 1 ≤ p < ∞ , and let fn, f ∈ Lp(X,µ) . Then fn → f in
Lp(X,µ) if and only if the following two conditions are satisfied:
1. All the functions |fn|p are equi-integrable, i.e., for every ε > 0 there exists

δ > 0 such that

µ(A) < δ =⇒ sup
n

∫
A

|fn(y)|p dµ(y) < ε;

2. fn converges to f in measure.

Theorem 4 (Dunford–Pettis). Let X be a measurable space equipped with
a finite measure µ and let fn ∈ L1(X,µ) . Then {fn} is weakly relatively compact
in L1(X,µ) if and only if {|fn|} is equi-integrable.

Now we can return to the proof of Theorem 1. We will check conditions 1
and 2 of Theorem 3 for a subsequence of {fn} , starting with condition 1. Let
A ⊂ X be a measurable subset. Given r > 0, we have

(∫
A

|fn|p dµ

)1/p

≤
(∫

A

|fn(x)− (fn)B(x,r)|p dµ(x)
)1/p

+
(∫

A

|(fn)B(x,r)|p dµ(x)
)1/p

≤
(∫

A

|fn(x)− (fn)B(x,r)|p dµ(x)
)1/p

+ µ(A)1/ph(r)−1/p‖fn‖Lp(X,µ).

By (3), for every ε > 0 we can find r > 0 (r does not depend on n) such that the
first expression on the right-hand side is less than 1

2ε . For that fixed r > 0, the
second expression is less than 1

2
ε , provided µ(A) is sufficiently small. This ends

the proof of 1. We are left with 2.
First, note that {fn} is weakly relatively compact in Lp(X,µ). Indeed, for

p > 1 the weak compactness follows from the reflexivity of Lp(X,µ), while for
p = 1 the weak compactness follows from the equi-integrability of the family {|fn|}
just proved and from Theorem 4. Thus, we can choose a subsequence (still denoted
by {fn}) and f ∈ Lp(X,µ) such that fn ⇀ f weakly in Lp(X,µ). It remains to
show that fn → f in measure, which means that for every ε > 0

L (n) = µ{x ∈ X : |fn(x)− f(x)| > ε} n→∞−→ 0.
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Fix ε > 0. Obviously,

|fn(x)− f(x)| ≤ |fn(x)− (fn)B(x,r)|+ |(fn)B(x,r) − fB(x,r)|+ |f(x) − fB(x,r)|.

Hence
L (n) ≤ µ

(
A1(n, r)

)
+ µ

(
A2(n, r)

)
+ µ

(
A3(n, r)

)
,

where
A1(n, r) = {x ∈ X : |fn(x)− (fn)B(x,r)| ≥ 1

3ε},
A2(n, r) = {x ∈ X : |(fn)B(x,r) − fB(x,r)| ≥ 1

3ε},
A3(r) = {x ∈ X : |f(x) − fB(x,r)| ≥ 1

3ε}.

It follows from (3) and from Chebyschev’s inequality that

sup
n

µ
(
A1(n, r)

)
≤

(3
ε

)p

sup
n

∫
X

|fn(x)− (fn)B(x,r)|p dµ(x) r→0−→ 0.

By the same argument

µ
(
A3(r)

) r→0−→ 0,

provided we prove that

(4)
∫

X

|f(x) − fB(x,r)|p dµ(x) r→0−→ 0.

Assume for a moment that we have established (4), and we show how to complete
the proof of the theorem.

Since fn ⇀ f weakly in Lp(X,µ), we obtain (fn)B(x,r) → fB(x,r) for all
x ∈ X and all r > 0. In particular, µ

(
A2(n, r)

)
→ 0 as n → ∞ . Hence the above

estimates for µ
(
Ai(n, r)

)
imply that L (n) → 0 as n → ∞ .

Now it remains to prove (4). It follows from Banach–Steinhaus’ theorem,
from (3) and the fact that

(5) fn(x)− (fn)B(x,r) ⇀ f(x) − (f)B(x,r)

weakly in Lp(X,µ) (as a function of the variable x). Note that since (fn)B(x,r) →
(f)B(x,r) pointwise and |(fn)B(x,r)| ≤ h(r)−1/p supn ‖fn‖Lp(X,µ) , we even have
(fn)B(x,r) → (f)B(x,r) strongly in Lp(X,µ), so (5) follows. The proof of Theorem 1
is complete.

In the proof of Theorem 2 we will need the following lemma.
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Lemma 1. Let X be a metric space equipped with a finite Borel measure µ ,
1 ≤ p < ∞ . Given a locally integrable function g on X , denote gr(x) = gB(x,r) .
Assume that there exists a function N(r) which satisfies either condition 1 or
condition 2 of Theorem 2 . Then

‖gr‖p
Lp(X,µ) ≤ N(r)‖g‖p

Lp(X,r).

Proof. Applying Hölder’s inequality and then Fubini’s theorem we have
∫

X

|gr|p dµ ≤
∫

X

∫
−
B(x,r)

|g(y)|p dµ(y)dµ(x) =
∫

X

|g(y)|p
(∫

B(y,r)

dµ(x)
µ
(
B(x, r)

)
)

dµ(y).

Now it suffices to show that for all y

∫
B(y,r)

dµ(x)
µ
(
B(x, r)

) ≤ N(r).

Suppose first that condition 1 is satisfied. Let {Bi} be a covering of B(y, r) by
N(r) balls with radii 1

2r and centers in B(y, r). We have

∫
B(y,r)

dµ(x)
µ
(
B(x, r)

) ≤
N(r)∑
i=1

∫
Bi

dµ(x)
µ
(
B(x, r)

) ≤
N(r)∑
i=1

∫
Bi

dµ(x)
µ(Bi)

= N(r).

Suppose now that condition 2 is satisfied. For x ∈ B(y, r), we have B(y, r) ⊂
B(x, 2r), and

µ
(
B(y, r)

)
≤ µ

(
B(x, 2r)

)
≤ N(r)µ

(
B(x, r)

)
.

This implies
∫

B(y,r)

dµ(x)
µ
(
B(x, r)

) ≤ N(r)
∫

(B,r)

dµ(x)
µ
(
B(y, r)

) = N(r).

This ends the proof of the lemma.

Proof of Theorem 2. It follows from definition (1) that f ∈ W 1,p(X, d, µ)
satisfies

|f(x) − fB(x,r)| ≤ r

(
g(x) +

∫
−
B(x,r)

g(y)dµ(y)
)

almost everywhere, and hence by Lemma 1

(∫
X

|f(x) − fB(x,r)|p dµ(x)
)1/p

≤ r‖g‖Lp(X,µ) + rN(r)1/p‖g‖Lp(X,µ)
r→0−→ 0.

Thus Theorem 2 follows directly from Theorem 1.
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3. Some remarks

We start with a discussion of the connections between conditions 1 and 2
in the formulation of Theorem 2. Let N1(x, r) be the smallest number of balls
B(y, 1

2r), y ∈ B(x, r) covering B(x, r). Define

N1(r) = sup{N1(x, r) : x ∈ X}.
Denote by N2(r) the smallest constant such that for every x ∈ X

(6) µ
(
B(x, 2r)

)
≤ N2(r)µ

(
B(x, r)

)
.

Remark 1. Conditions µ(X) < ∞ and h(r) = inf
{
µ
(
B(x, r)

)
: x ∈ X

}
> 0

imply that the diameter of X is finite.
Moreover, the number of disjoint balls of fixed radius r , contained in X , is

bounded from above by µ(X)/h(r). This implies that the minimal number of balls
with radii r covering X does not exceed µ(X)/h(1

2r). Indeed, take the maximal
family {B(xi,

1
2
r)} of pairwise disjoint balls. Then the number of balls in that

family does not exceed µ(X)/h(1
2r) and X ⊂

⋃
i B(xi, r). By the same argument

N1(x, r) ≤
µ
(
B(x, 2r)

)
h(1

4r)
.

Remark 2. Since the definition of N1(r) has a purely geometric nature, it
is not possible to estimate N2(r) in terms of N1(r). However, it is possible to
estimate N1(r) in terms of N2(r). Condition (6) gives the upper bound for the
maximal number N(r) of pairwise disjoint balls B(xi,

1
4r) with centers in B(x, r)

in terms of N2(r). N1(r) ≤ N(r) since B(x, r) ⊂
⋃N(r)

i=1 B(xi,
1
2r). See also

Volberg and Konyagin [38] for deep related results.

Remark 3. The situation we deal with in Theorem 2 is more general than
the situation investigated by HajFlasz in [17]. If we take for example X = [0, a] and
any measure µ with property µ(X) < ∞ , and h(r) = inf

{
µ
(
B(x, r)

)
: x ∈ X

}
>

0, the assumption of Theorem 1 is satisfied, so that the compactness property
holds (even if the measure µ does not satisfy property 2 in the assumptions of
Theorem 2). On the other hand, it is easy to show an example of a metric space
X with measure µ , which satisfies condition 2 in Theorem 2, with rpN(r) → 0 as
r → 0, but is not s-regular in the sense of [17]. Let for example X = [0, 1/(2e2)] ,
and µ = ρ dx , with ρ = (e−1/2(log r)2)′ = −(log r)/r e−1/2(log r)2 . It is easy to
calculate that

µ
(
B(x, 2r)

)
≤ C

r2
µ
(
B(x, r)

)
for some C > 0 and all x ∈ X , in particular, rpN(r) → 0 as r → 0 for all p > 2,
while

µ
(
B(0, r)

)
= e−1/2(log r)2

can never exceed Crs for given C > 0, s > 0, and all r .
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Remark 4. Assume that the embedding W 1,p(X, d, µ) ⊂ Lq(X,µ) is com-
pact. Then the set {|f |q : ‖f‖W1,q ≤ 1} is relatively compact in L1(X,µ), so
by La Valleé-Pousin’s theorem (see e.g. [33, p. 19], [32, p. 176]) there is a smooth
increasing convex function g: [0,∞) → [0,∞), g(t)/t → ∞ as t → ∞ such that

sup
‖f‖W 1,p≤1

∫
X

g(|f |p)dµ < ∞.

In fact this means that the space W 1,p(X, d, µ) is embedded in an Orlicz space
which is smaller than L1(X,µ). Thus the compactness of embedding implies that
one can obtain an embedding in a better space. For the best embedding theorem
in the case where the measure satisfies the growth condition µ

(
B(x, r)

)
≥ Crs ,

see [17].

Remark 5. Theorem 1 can be used to obtain compactness results for weighted
Sobolev spaces defined on subsets of Rn . Let f ∈ C1(Rn). By Taylor’s formula,
we have

f(y)− f(x) =
∫ 1

0

〈
∇f

(
x + τ (y − x)

)
, y − x

〉
dτ.

Hence, if |y − x| ≤ r ,

|f(x) − f(y)| ≤ r

∫ 1

0

∣∣∇f
(
x + τ (y − x)

)∣∣ dτ.
Now we average the above inequality over a ball B(x, r), with respect to the
measure dµ(y), and obtain

(7) |f(x) − fB(x,r)| ≤ rTr(|∇f |)(x),
where

(8) Trg(x) =
∫ 1

0

∫
−
B(x,r)

g
(
x + τ (y − x)

)
dµ(y)dτ.

Hence

(9)
∫
Rn

|f(x) − fB(x,r)|p dµ(x) ≤ rp

∫
Rn

(
Tr|∇f |(x)

)p
dµ(x).

The weighted Sobolev space W 1,p(Rn, µ) is defined as the completion of C1(Rn)
in the norm

(10) ‖f‖W1,p(Rn,µ) = ‖f‖Lp(Rn,µ) + ‖∇f‖Lp(Rn,µ).

Assume that Ω ⊂ Rn has the property that µ(Ω) < ∞ and h(r) = inf
{
µ
(
B(x, r)

)
:

x ∈ Ω
}
> 0 for every r > 0. If one can prove the inequality

(11) ‖Trg‖p
Lp(Rn,µ) ≤ N(r)‖g‖p

Lp(Rn,µ),

with rpN(r) → 0 as r → 0, Theorem 1 and (9) imply that every bounded sequence
in W 1,p(Rn, µ) is relatively compact in Lp(Ω, µ).
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1995, 1211–1215.

[21] Haj)lasz, P., and P. Koskela: Sobolev met Poincaré. - Preprint.
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