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Abstract. We consider the class of meromorphic functions whose set of singular values is
bounded and for which the ω -limit set of the post singular set is a compact repeller. We show
that if two simple growth conditions are satisfied, then the function is ergodic on its Julia set.

1. Introduction

The dynamical phenomena of systems generated by conformal mappings of
the plane are controlled by the behavior of the forward orbits of the singular val-
ues. The closure of these orbits is called the post-singular set, or in the case of
rational maps, the post-critical set. For rational maps, it is known that outside
the post-critical set the function is expanding and this expansion leads to the fol-
lowing dichotomy: a rational map either acts ergodically with respect to Lebesgue
measure on the sphere and the Julia set is the full sphere or the postcritical set
behaves as a measure theoretic attractor. (See [16], [18]). For transcendental
meromorphic functions, the essential singularities make the situation more com-
plicated. For example, in [15] Lyubich proved that for the exponential function,
the set of points whose ω -limit set contains the ω -limit set of the post-singular
set may have positive but not full measure and in [17] McMullen proved that for
the sine family the set of points attracted to infinity always has positive measure
and many ergodic components.

In this paper, motivated by our study of the tangent family [14], we find
sufficient conditions for a transcendental meromorphic function to be ergodic on
its Julia set. We prove

Theorem 1. Let f be a transcendental meromorphic function whose singular
values lie in a bounded set. If f satisfies two simple growth conditions, if the ω -
limit set of the post singular set, ωf , is compact and if for some k > 1 , |f ′| > k
on ωf , then f is ergodic with respect to Lebesgue measure on its Julia set.
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As examples of the theorem we see first that if the omitted values of the
tangent map λ tan(z) land on repelling periodic cycles, the map is ergodic and
second that there are values of λ such that the map λe−z2

sin(z) is ergodic. These
special cases also follow from the results in [8].

Our techniques are an adaptation of those developed in [11] to control the
set attracted to the essential singularities. The new ideas involve dealing with the
poles.

The paper is organized as follows. In Section 2 we set our notation and
summarize the basic definitions and theory. In Section 3 we prove our theorem
and in Section 4 we discuss applications and examples.

We would like to thank I.N. Baker for helpful comments on the original version
and for pointing out that our proof of the main theorem holds more generally than
we had originally stated it.

2. Preliminaries

2.1. Julia sets of meromorphic functions. If f : C → Ĉ is a transcen-
dental meromorphic function, the orbits of points fall into three categories: they
may be infinite, they may become periodic and hence consist of a finite number of
distinct points, or they may terminate at a pole of f . To study the dynamics, we
define the stable set, or Fatou set, Ωf as the set of those points z such that the
sequence fn(z) is defined and meromorphic for all n and forms a normal family
in a neighborhood of z . The unstable set, or Julia set, Jf is the complement of
the stable set. We assume ∞ ∈ Jf . Thus, Ωf is open, Jf is closed. It is easy to
see that Ωf is completely invariant and z ∈ Jf if and only if f(z) ∈ Jf or z =∞ .
As in the rational case Jf ⊂

(⋃
n≥0 f

−n(z)
)
for all z ∈Ĉ−Ef , where Ef consists

of at most two exceptional values with finite inverse orbits. For all transcenden-
tal entire functions ∞ is an omitted value, so it is also exceptional. For generic
transcendental meromorphic functions, the set of prepoles Pf =

⋃
n≥0 f

−n(∞) is
infinite and Jf = Pf . Moreover, the Julia set Jf is the closure of the repelling
periodic points ([1], [3], [9]).

The singular set S = Sf of a meromorphic function f consists of those values
in C at which f is not a regular covering. Therefore at a singular value v there
is a branch of the inverse which is not holomorphic but has an algebraic or tran-
scendental singularity. If the singularity is algebraic, v is a critical value, whereas
if it is transcendental, there is a path α: [0,∞)→ C such that limt→∞ |α(t)| =∞
and limt→∞ f

(
α(t)

)
= v , and v is called an asymptotic value for f . If we can

associate to a given asymptotic value v an asymptotic tract, that is, a simply
connected unbounded domain A such that f(A) is a punctured neighborhood
of v and f : A → f(A) is an unramified covering, then v is called a logarithmic
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singularity. We define the post-singular set as

PS = PSf =
⋃

n≥0

fn(S)

and denote its ω -limit set by ωf .
We distinguish the following classes of meromorphic functions. For f mero-

morphic and p ≥ 1 define

Mp = {f : cardS = p}, M =
⋃

p≥1

Mp, and B = {f : S is bounded}.

Of course M ⊂ B . Some basic examples of entire functions in M are:

λez, a sin(z) + b, f(z) =
∫ z

h(η) exp
(
p(η)

)
dη,

where λ, a, b ∈ C and h(η), p(η) are polynomials. The class M also includes
meromorphic functions with polynomial Schwarzian derivative. An example is
λ tan(z) whose Schwarzian derivative is constant. Examples of functions in B−M
are:

f(z) = λsin(z)/z and f(z) = λe−z2
sin(z);

an example of a function not in B is f(z) = λz sin(z).
We call the set ωf a repeller if, for all z ∈ ωf such that f(z) is defined,

f(z) ∈ ωf and if there exists k > 1 such that, for all z ∈ ωf , |f ′(z)| ≥ k . It is a
compact repeller if f(z) is defined for all z ∈ ωf and if ωf is compact.

In particular, if f ∈ M and all critical and asymptotic values are eventually
mapped to repelling periodic points, then ωf is a compact repeller. Note that
for transcendental meromorphic functions with poles, ωf may include points with
finite forward orbits. For example, the singular set S of the function f(z) =
1
2πi tan(z) consists of the omitted values {± 1

2π} . Since they are poles and have
no forward orbit, ωf = Sf is a repeller but is not a compact repeller. Clearly, if
ωf is not finite and contains prepoles it cannot be a compact repeller.

2.2. Classification of stable behavior. Let D be a component of the
stable set; f will map D to a component, but if the image contains an asymptotic
value, the map might not be onto. In any case, we call the image f(D) and note
that either there exist integers m �= n > 0 such that fn(D) = fm(D), and D is
called eventually periodic with period p = min(|m−n|), with the minimum taken
over all such m , n , or for all m �= n , fn(D) ∩ fm(D) = ∅ , and D is called a
wandering domain.

The qualitative and quantitative description of the eventually periodic be-
havior is slightly more complicated than in the rational case because of the tran-
scendental singularity at ∞ and the possibility that fp may not be defined at
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some values. As for rational maps, eventually periodic domains may be attract-
ing, parabolic or rotation domains. In addition, however, an eventually periodic
domain D may be an an essentially parabolic or Baker domain; that is, the bound-
ary of D contains a point z0 (possibly ∞) such that fnp(z)→ z0 for z ∈ D and
fp is not holomorphic at z0 . If p = 1, then the only possible boundary point
is ∞ .

2.3. Two propositions. We shall need the following proposition proved
in [13].

Proposition 2.1. Let f be a meromorphic function and let D be an open
disk such that D ∩ Jf �= ∅ . Suppose that there are branches gnk ∈ f−n holo-
morphic and univalent on D with nk → ∞ . Then (g′nk

)→ 0 uniformly on every
compact set in D .

We shall also need the following version of Koebe’s distortion theorem.

Proposition 2.2. If g: D(0, 1) → C is a univalent map normalized so that
g(0) = 0 , then for every 0 < k < 1 and z, w ∈ D(0, k) , there is a constant T (k)
such that |g′(z)|/|g′(w)| lies between 1/T (k) and T (k) .

2.4. Orbits that tend to infinity. In this section we adapt the discussion
of Eremenko and Lyubich [11] on entire functions in B to meromorphic functions
in B . They give a sufficient condition for the measure of the set

I∞(f) = {z ∈ C : fn(z)→ ∞}

to be zero. We need additional conditions on the Laurent expansions about the
poles to prove this in the meromorphic case.

At each pole p of order mp , form the Laurent expansion of f about p , fp(z) =
cp/(z − p)mp

(
1 + φp(z − p)

)
where φ(z) is analytic and φ(z − p) = o

(
(z − p)mp

)
.

Suppose f ∈ B . Let D(q, r) denote the disk of radius r centered at q ; Ar

the annulus Ar = {z : r < |z| <∞} .
Because S(f) is bounded, we can find R0 > 0 such that S(f) ⊂ D(0, R0).

Fix R > R0 . Without loss of generality we may assume that f is analytic at 0
and |f(0)| < 1

2R0 .
Suppose w ∈ AR and f(z) = w . Since there are no singular values in

AR , any branch g of f−1 such that g(w) = z can be continued analytically
throughout AR . Let g be some branch of f−1 and set V = g(AR). By [20],
∞ is either a logarithmic branch point of g with asymptotic value a , V = Va is
simply connected and f : Va → AR is a universal covering, or ∞ is an algebraic
branch point of g of order mp − 1 for some integer mp , V = Vp is conformally
equivalent to a disk punctured at a pole p of f and f : Vp → AR is a regular mp

to 1 covering.
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Let m denote Lebesgue measure in C and let ΘR(r, f) be the linear measure
of the set {θ : |f(reiθ)| < R} .

With this notation we have

Proposition 2.3. Let f ∈ B and suppose that there is a positive integer
J and positive constants b,B,C1, C2 > 0 such that for every p , and z ∈ Vp , the
multiplicities mp are bounded by J and the coefficients cp and functions φp(z−p)
and φ′p(z − p) satisfy

(∗) b < |cp| < B, |φp(z − p)| < C1, |φ′p(z − p)| < C1, C2 < |1 + φp(z − p)|.

Moreover suppose

(∗∗) lim inf
r→∞

1
log r

∫ r

1

ΘR(t, f)
dt

t
> 0.

Then m
(
I∞(f)

)
= 0 .

Proof. We summarize the proof in [11] that m(I∞) = 0 for entire functions
satisfying condition (∗∗), indicating the necessary changes to account for the poles.
We remark that the proof there is valid if there are only finitely many poles. We
therefore assume here that our functions have infinitely many poles.

The first step in the proof that m(I∞) = 0 is to obtain a uniform expansion
estimate on |f ′| restricted to each component Va or Vp .

For simply connected Va , the argument is the same as in [11] using Te-
ichmüller’s construction of a logarithmic coordinate. We outline that argument
here. If ∞ is a logarithmic branch point of g , we first define a logarithmic coor-
dinate w = log z , z ∈ Va and set Ua = logVa ; then Ua ⊂ H = {w : Rew > 0}
has infinitely many simply connected unbounded components Ua,n each contained
in a vertical strip of width 2π and the exponential maps each Ua,n univalently
onto Va . We have a commutative diagram:

Ua

exp

��

F �� HR

exp

��
Va

f �� AR

where H = {w : Rew > logR} and F maps Ua,n ⊂ H univalently onto HR .
If w ∈ H , the disk D = D

(
F (w), δ(w)

)
centered at F (w) with radius δ(w) =

ReF (w)− logR is contained in HR . Denote the branches of F−1 by Gn: HR →
Ua,n . By the Koebe 1

4 -theorem Gn(D) contains a disk Dn of center w and radius
1
4δ(w)

∣∣(Gn)′
(
F (w)

)∣∣ . Since Ua,n cannot contain any vertical segment of length
2π , for w ∈ Ua,n we have

|F ′(w)| > 1
4π

(
ReF (w)− logR

)
.
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It follows there are constants k,K > 1 such that if ReF (w) > k , then
|F ′| > K . By the chain rule, we have |f ′(z)| > K|f(z)|/|z| .

To obtain an estimate for |f ′| = |f ′p| on the punctured disk domain Vp we
use a different argument.

Note that since φp and φ′p are analytic in Vp , |φp| and |φ′p| achieve their
maxima on ∂Vp . Increasing R clearly decreases these maxima so that by taking
R large enough, we may assume C1 , C2 and C1/C2 are small relative to R .

If z ∈ Vp , by conditions (∗)

R ≤ |fp(z)| =
∣∣∣∣ cp
(z − p)mp

(
1 + φp(z − p)

)∣∣∣∣ ≤ B

|z − p|mp
(1 + C1)

so that |z − p| < Mp =
(
B(1 + C1)/R

)1/mp
< 1.

For t > R , set AR,t = AR \ At . Choose R′ � R and such that R′ > C2b ;
for each pole p set Ṽ p = f−1

p (AR,R′ ). Then if z ∈ Ṽ p , by conditions (∗) we have

bC2

|z − p|mp
≤ |fp(z)| =

∣∣∣∣ cp
(z − p)mp

(
1 + φp(z − p)

)∣∣∣∣ ≤ R′

so that |z − p| > 5p = (bC2/R
′)1/mp . The annulus 5p < |z − p| < Mp is thus

contained in Ṽ p . Note that since for all p , 1 ≤ mp ≤ J , the moduli of these
annuli are uniformly bounded.

Next compute that

|f ′p(z)| = |fp(z)|
∣∣∣∣ mp

z − p +
φ′p(z − p)

1 + φp(z − p)

∣∣∣∣.
In Ṽ p we have

|f ′p(z)| ≤ R′
∣∣∣∣J

(
R′

bC2

)1/mp

+
C1

C2

∣∣∣∣
and ∣∣∣∣ mp

z − p +
φ′p(z − p)

1 + φp(z − p)

∣∣∣∣ >
∣∣∣∣
∣∣∣∣ mp

z − p

∣∣∣∣ −
∣∣∣∣ φ′p(z − p)
1 + φp(z − p)

∣∣∣∣
∣∣∣∣ ≥

∣∣∣∣ 1
M

mp
p

− C1

C2

∣∣∣∣.
Thus by choosing R and R′ large enough, we see that there are constants, K ′ ,
K , independent of p , such that for every |p| > R , in Ṽ p we have

(1) K ′ > |f ′p(z)| > K > 1.

To show that m(I∞) = 0, by the Lebesgue density theorem it is sufficient to
show that for any point z ∈ I∞ ,

(2) lim sup
δ→0

m
(
D(z, δ) ∩ I∞

)
m

(
D(z, δ)

) < 1.
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In order to do this we first restate condition (∗∗) as follows: Let V = f−1(AR).
Then there is a κ > 0 such that

(3) lim sup
t→∞

area (AR,t ∩ V )
area (AR,t)

≤ 1− κ.

In terms of the logarithmic coordinates log z = s + iθ , let St = {logR < s < t ,
0 ≤ θ < 2π} and set U = logV . Then there is a δ > 0 such that

(4) lim sup
t→∞

area (St ∩ U )
area (St)

≤ 1− δ.

For z0 ∈ I∞ , set zn = fn(z0). We may assume without loss of generality
that |zn| > R is so large that the estimates (1) on |f ′| hold. Then either there is
some N such that for all n > N , zn ∈ Va for some simply connected component
Va or there is a subsequence znj → ∞ and a sequence of poles pj → ∞ such that
znj ∈ Vpj .

In the first case the argument is just as in [11]. For w0 = log z0 in a fixed
strip of width 2π , let wn = F (wn−1), where F is the lift defined above. We
may assume that for all n , Rewn is large enough that |F ′(wn)| > K > 1. Let
F−1

n (wn) = wn−1 . Then, there is a constant d , independent of n such that F−1
n

is univalent on Dn = D(wn, d). Moreover, by the expansion of F , we may choose
m such that F (Dn) contains a vertical segment of width bigger than 2π . Fix
such an m and let Bj = F−j

(
D(wm, d/4)

)
for j = 1, . . . ,m , where F−j is the

composition of the appropriate inverse branches. Applying the Koebe distortion
theorem to the function F−m we have Bm ⊂ D(w0, d/4Km). Moreover if sm is
the radius of the smallest disk centered at w0 containing Bm , there is a constant
t < 1, independent of m such that D(w0, tsm) ⊂ Bm ⊂ D(w0, sm). Clearly
sm → 0 as m→ ∞ so that applying (4) we obtain (2).

In the second case we need to modify the argument. Since the moduli of the
annulii Ṽ p have the same bounds, there is a constant 0 < τ < 1, independent of
Vp , such that

area (Ṽ p)
area (Vp)

≤ 1−
(

bC2R

B|1 + C1|R′

)2/mp

< 1− τ.

We want to show that there is a constant µ > 0 independent of p satisfying

(5)
area

(
Vp ∩ f−1

p (V )
)

area (Vp)
≤ 1− µ.

With the constants of inequality (1), set L = K ′/K . We claim that µ = κτ/L2

where κ is the constant in inequality (3).
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We rewrite area
(
Vp ∩ f−1

p (V )
)
/area (Vp) and estimate

area
(
[(Vp \Ṽ p) ∩ f−1

p (V )] ∪ [Ṽ p ∩ f−1
p (V )]

)
area (Vp)

≤
area

(
[(Vp \Ṽ p) ∩ f−1

p (V )]
)

area (Vp)
+
area (Ṽ p)
area (Vp)

=
area

(
[(Vp \Ṽ p) ∩ f−1

p (V )]
)

area ([Vp \Ṽ p])
× area ([Vp \Ṽ p])

area (Vp)
+
area (Ṽ p)
area (Vp)

≤
(
1− κ

L2

)(
1− area (Ṽ p)

area (Vp)

)
+
area (Ṽ p)
area (Vp)

= 1− κ

L2
− area (Ṽ p)
area (Vp)

+
κ

L2

area (Ṽ p)
area (Vp)

+
area (Ṽ p)
area (Vp)

≤ 1− κ

L2
+
κ

L2
(1 − τ ) = 1− κ

L2
τ = 1− µ.

Now fix nj such that znj ∈ Vnj and choose a univalent branch of f−1
pnj−1

so

that f−1
pnj−1

: znj �→ znj−1 . Let m = nj and set Dm = D(zm,Mpm). For large m ,
|zm − pm| � 5pm and Vpm ≈ D(zm,Mpm). We define Bm = f−m(zm,Mpm/4)
where again f−m is a composition of the appropriate inverse branches so that
z0 ∈ Bm . Then f−m is univalent on Vpm and we can control distortion on Dm .
Now for any trajectory from zn to zn+k , by the chain rule and the estimates on
factors |f ′| , whether the corresponding domain containing zj is a simply connected
Va or is an annular Ṽ p , we have |fk(zn+k)′| > Kk|zn+k|/|zn| . We apply this with
n = 0 and k = nj and we may certainly assume |znj |/|z0| > 1. In the annular
domains we also have |fk(znj )′| < K ′k .

We may assume |znj | > |znj−1 | so that the contraction over this part of the
orbit is at least 1/Km . Then by the Koebe theorems Bm ⊂ D(z0 ,Mpm/K

m), its
distortion is bounded independent of m and its diameter goes to zero as m goes
to infinity. Thus applying (5) to Dm and pulling back we obtain (2).

Thus we have shown that (2) holds at any point in m(I∞) and hence that its
Lebesgue measure is zero.

3. The results

3.1. Two lemmas. For a given f define the sets

L = Lf = {z : fn(z)→ ωf},
Kε = Kε(f) = {z : dist(z, ωf )} < ε

where we omit the f unless confusion results.
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If ωf is a compact repeller it is obvious that it contains no critical points.
In fact, the post-singular set does not accumulate on ωf but actually lands on it.
Precisely,

Lemma 3.1. If ωf is a compact repeller then there is an ε > 0 and an
integer N > 0 such that if c ∈ S , n > N and fn(c) ∈ Kε/2 then fn(c) ∈ ωf .

Proof. If PS is finite, the lemma is obviously true so assume PS is not finite.
Since ωf is compact and PS is infinite, ωf contains no prepoles. Moreover, since
it is a repeller, there exist constants k > 1 and ε > 0 such that |f ′(z)| ≥ k > 1
on the sets Kε and Kε/2 .

Set V = f(Kε/2 ). Since Kε/2 contains no poles V is compact. Moreover,
since f|Kε/2

is expanding, Kε/2 ⊂ int (V ) and there is a regular branch g of f−1

that maps V to Kε/2 . Thus, the annuli A0 = V − g(V ), An+1 = gn(A0), n ∈ N
are nested and mod(An) �= 0 for all n ∈ N .

We claim that for each n ∈ N

fn(S) ∩ (Kε − ωf ) = ∅.

If not, there is a sequence nk ∈ N , nk → ∞ , such that for each nk , there is
some ck ∈ S (not necessarily distinct) satisfying vk = fnk(ck) ∈ Kε −ωf . By the
compactness of Kε , as k → ∞ , the sequence vk accumulates and by definition,
any accumulation point belongs to ωf . For each k , there is an i(k) such that
vk ∈ Ai(k) and wk = f ik (vk) ∈ A0 . Since A0 is compact, the sequence wk has
an accumulation point in A0 which by definition, also belongs to ωf . This is a
contradiction because A0 is separated from ωf by the annuli An , n > 0 and
PS ∩ (K − ωf ) = ∅ as required.

Next, for the set Lf we have

Lemma 3.2. If f ∈ B and ωf is a compact repeller then the Lebesgue
measure of Lf is 0 .

Proof. Since ωf is a compact repeller, it is clear by the classification of stable
domains that Lf ⊂ Jf .

Let ε be chosen as in Lemma 3.1 and define

L =
⋂

n≥0

f−n(Kε/2).

Then z ∈ L − Pf if its full forward trajectory belongs to Kε/2 . We will prove
that m

(
Jf ∩ (L −Pf)

)
= 0. Since L ⊂

⋃∞
n=0 f

−n(L ) and Pf is countable, this
will imply m(L) = 0.

Suppose that m(L −Pf) > 0 and let z0 be a density point of L −Pf . Since
ωf is compact, the orbit {fn(z0)} has a finite accumulation point y0 ∈ Kε/2 ⊂
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Kε . It follows that there exists a sequence nk → ∞ such that zk = fnk(z0)→ y0 .
For k ∈ N , let Dk = D(zk, ε/4) and let gk be the branch of f−nk that maps zk
to z0 . Since zk ∈ Kε/2 , Dk ⊂ Kε and by Lemma 3.1 gk is univalent on Dk .

Now by the definition of a density point and by Propositions 2.1 and 2.2

m
(
gk(Dk) ∩ L

)
m

(
gk(Dk)

) → 1.

Again by Proposition 2.2

m
(
Dk ∩ fnk (L )

)
m(Dk)

→ 1

and m
(
Dk ∩ fnk(L )

)
= m(Dk).

Let U be an open set with compact closure contained in C−K . Since zk ∈ Jf

there exists an integer N such that fN (Dk) ⊃U so that m
(
fN+nk(L )∩U

)
> 0.

By definition however, for all k ∈ N , fk(L ) ⊂ Kε/2 so fN+nk(L ∩U) = ∅ . This
contradiction finishes the proof.

3.2. The main theorem. We are now ready to prove the main theorem.

Theorem 3.3. Suppose f ∈ B . If ωf is a compact repeller and if conditions
(∗) and (∗∗) hold then f is ergodic with respect to Lebesgue measure on its Julia
set.

Proof. Suppose that E ⊂ Jf is an f -invariant measurable set of positive
measure and let z be a density point of E . Since Pf is countable we may assume
z /∈ Pf . Under the hypotheses that f ∈ B and that both (∗) and (∗∗) hold,
by Proposition 2.3 we may assume z /∈ I∞ and thus that its orbit has a finite
accumulation point y ; let zk = fmk (z)→ y , k → ∞ .

Under the hypothesis that ωf is a compact repeller, by Lemma 3.2 we may
assume z /∈ L and hence y /∈ ωf . Now suppose that either y = fn(v) for some
v ∈ S or that for some sequence ck ∈ S and iterates nk , fnk (ck) → y . By
Lemma 3.1, in the first case fN (y) ∈ ωf and in the second, the nk are bounded
and fnk+N (ck) ∈ ωf . In either case there is an N such that fN (zk) → ωf .
Arguing as in the proof of Lemma 3.1, we can find a sequence kj → ∞ such
that wj = fN+kj (zk) lie in a compact annulus A0 separated from ωf ; since
fN+kj (y) ∈ ωf , we have a contradiction. Thus η = dist(y, PS) > 0 and we can
define a univalent branch gk of f−mk on Dk = D(zk , 1

4η) such that gk(zk) = z .
As above, by the definition of a density point and by Propositions 2.1 and 2.2

we obtain

m
(
gk(Dk) ∩E

)
m

(
gk(Dk)

) → 1 and
m

(
Dk ∩ fmk (E)

)
m(Dk)

→ 1.
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Since E is forward invariant we have m(Dk ∩E) = m(Dk).
If f is not ergodic, we can find another forward invariant positive measure

set F ⊂ Jf , m(E ∩ F ) = 0, and a density point z′ for F for which we can
construct disks D′

l of fixed radius such that m(F ∩ D′
k′) = m(D′

k′). Because
zk ∈ Dk , zk′ ∈ D′

k′ defined as above belong to Jf there is some N ∈ N such that
fN (D′

k′) ⊃ Dk . It follows that m(E ∩ F ) > m
(
fN (D′

k′ ∩F )∩ (Dk ∩E)
)
> 0 and

we obtain a contradiction.

4. Examples

1. Examples of functions that the main theorem applies to are found in
the class of meromorphic functions with polynomial Schwarzian derivative. By
Nevanlinna’s theorem, if the Schwarzian of f is a polynomial of degree p ≥ 0 then
f ∈ Mp+2 and all singularities of f−1 are logarithmic. Moreover, at least half of
the singularities are finite so it is not hard to show directly that condition (∗∗)
holds.

Now note from [19] that if the Schwarzian derivative is polynomial of degree
p − 2, then in a sector of width 2π/p − 2ε about each of the p Julia directions,
the function has the asymptotic form

AGν +BGν+1

CGν +DGν+1

where
Gν ≈ exp (−1)ν+1zp/2.

Therefore in any given Julia direction the coefficients cp and functions φp are all
approximately equal and condition (∗) holds.

The dynamical properties of these functions were described in [9]. In partic-
ular, it is shown that they have no wandering domains and no Baker domains.
Thus, if each singular value lands on a repelling cycle, J = Ĉ and the function is
ergodic.

A special subclass contains the functions with constant Schwarzian derivative.
To this class belong the families λez , λ tan(z), λ ∈ C where it is easy to construct
examples for which the singular values land on repelling cycles. For instance: if
f1(z) = πi tan(z), then S(f1) = {±π} , PS = {±π, 0} , ωf = {0} and |f ′1(0)| = π ;
and if f2(z) = πi exp(z) then S = {0} , PS = {0, πi,−πi} , ωf = {−πi} and
|f ′2(−πi)| = π .

2. Functions in the above class where Theorem 3.3 does not apply are ez and
1
2πi tan(z). For e

z the orbit of the singular value 0 tends to ∞ and for 1
2πi tan(z)

the singular values are the poles ± 1
2π ; thus, although ωf is a repeller, it is not

compact. In fact, it is proved in [15] that ez is not ergodic. The same is probably
true for πi/2 tan(z).
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Another simple example where Theorem 3.3 does not apply is the family
a sin(z) + b studied in [17]. Although the singular set consists of two points, and
a , b can be chosen so that the critical values are mapped to repelling periodic
orbits, condition (∗∗) fails and Jf = I∞(f) = Ĉ has many ergodic components.

3. It is hard to find examples of maps with infinitely many singular values
satisfying the hypotheses of our theorem because it is hard to tell whether ωf is
a compact repeller and to check the conditions on the Laurent expansions. Here
is one such example.

Consider the entire function in fλ = λe−z2
sin(z). Since it is entire condi-

tion (∗) is vacuous. To see that it satisfies condition (∗∗) note that for λ real,
if | arctan z| < 1

2 then |f ′λ(z)| is bounded. Its infinitely many critical values are
bounded and accumulate on the asymptotic value 0 hence it belongs to B . More-
over, λ may be chosen so that ωfλ is a compact repeller. Thus Theorem 3.3
applies so that fλ is ergodic on its Julia set.

In this case we also know there are no eventually periodic domains and, since
m(I∞) = 0, no Baker domains. There are also no wandering domains. If there were
a multiply connected wandering domain D , it would contain a homotopically non-
trivial loop γ and by [2] the winding number of (a subsequence of) fn(γ) would be
non-zero for n sufficiently large and the diameter of fn(γ) would tend to infinity.
Thus γ would have to intersect the real axis; since the positive and negative real
axes are asymptotic curves such domains cannot exist. Since m(I∞) = 0, no
wandering domain can escape to infinity. Moreover, since by [7] all limit functions
of fn|D would have to be constants in the compact repeller ωfλ , we conclude
Jfλ = Ĉ.
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