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Abstract. Our aim in this paper is to deal with the existence of boundary limits for BLD
functions u on the unit ball B of R" satisfying

/ Vu(@)[P(1 — J2])* dz < oo,
B

where V denotes the gradient, 1 < p < oo and —1 < a < p — 1. We consider the L?-means over
the spherical surfaces S(0,7) centered at the origin with radius r, and show that

1/q
lim inf(1 — r)(—pte)/p=(n=1)/q (/ lu(x)|? dS(x)) =0
S(0,r)

r—1

when ¢ >0 and (n—p—1)/p(n—1)<1/g< (n—p+a)/p(n—1). If u is in addition monotone
in B in the sense of Lebesgue, then u is shown to have weighted boundary limit zero.

1. Introduction

Let R™ denote the n-dimensional Euclidean space. We use the notation
B(x,r) to denote the open ball centered at x with radius r > 0, whose boundary
is denoted by S(z,r). Consider the L?-means over S(0,r) defined by

1/q
Sq<u,r>=(m ru<x>rqu<x>) ,

S(0,r)

where |S(0,7)| denotes the surface area, which is written as [S(0,7)| = 0,7 1;
in case ¢ = 00, Soo(u,r) denotes the essential supremum of u over S(0,r). We
note by Hélder’s inequality that S, (u,r) is nondecreasing for q.

Let u be a Green potential in the unit ball B = B(0,1). Gardiner [1, Theo-
rem 2] showed that

lim inf(1 — r)(”*l)(lfl/Q)Sq(um) =0

r—1
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when (n—3)/(n—1)<1/¢< (n—2)/(n—1) and ¢ > 0. This gives an extension
of the result by Stoll [22] in the plane case, which states that

liminf(1 — r)Seo (u,r) = 0.

r—1

Recently Herron and Koskela [4, Theorem 7.3, Corollary 7.5] proved that

Soo(u, ) §M[log(2/(1—r))}(nfl)/n, 0<r<l,

with a positive constant M, when u is a monotone function on B with finite
Dirichlet integral:

/ |Vu(x)|" de < oo;
B

see the next section for the definition of monotone functions. We here note that
harmonic functions are monotone, &/-harmonic functions and hence coordinate
functions of quasiregular mappings are monotone (see [3] and [18]). Thus the class
of monotone functions is considerably wide.

Our main aim in this paper is to establish the analogue of these results for
BLD and monotone BLD functions v on B satisfying

1) /B Vu(z)Po(e)* dz < oo,

where p(z) = 1 -z, 1 < p < o0 and -1 < a < p—1. We first study
weighted boundary limits of spherical L?-means for BLD functions satisfying (1),
and establish a result corresponding to [16, Theorem 2.1] given in half spaces.

If u is a monotone BLD function on B(zg,2r) and p > n — 1, then the key
for our results is the fact that

(2) |u(z) —u(y)P = M?“p”/ |IVu(z)|P dz whenever z, y € B(xo,7);
B(CBQ,Q?")

see e.g. [4, Lemma 7.1], [6, Remark, p. 9] and, for the case p = n, [26, Section 16].
If w is harmonic, then (2) holds for p =2 1 by the mean value property, so that the
condition p > n — 1 is not required for harmonic functions. Further we note that
if p > n, then (2) holds for all BLD functions, on account of Sobolev’s theorem.
Thus, if we restrict ourselves to monotone functions, then we have only to consider
the case n —1 <p < n.

Related results are given by Gardiner [1], Stoll [22], [23], [24] and the first
author [12], [13] and [16].

We wish to express our deepest appreciation to the referee for his useful
suggestions.
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2. Statement of results

If 1 <p< oo, G isan open set in R” and F C G, then the relative
p-capacity is defined by

C,(E:G) = int /G F()P dy,

where the infimum is taken over all nonnegative measurable functions f on G
such that
lz—y|* " f(y)dy =1 for every x € E;
G

see [8] and [15] for the basic properties of p-capacity.

Following Ziemer [28], we say that a locally integrable function wu is p-precise
in G if
(i) [o|Vu(x)?dz < oo, where V denotes the gradient;
(ii) for every € > 0 there exists an open set w such that Cp(w,G) < € and u is

continuous as a function on G —w.

According to Ohtsuka [17], we say that a function w is locally p-precise in G
if it is p-precise in every relatively compact open subset of G.

We note that if u is locally p-precise in GG, then u is partially differentiable
almost everywhere on G and its spherical means over S(x,r) are well defined
whenever S(z,7) C G, since a set of p-capacity zero has Hausdorff dimension at
most n — p.

We first study the weighted boundary limits of spherical means for locally
p-precise functions on B satisfying (1).

Theorem 1 (cf. [12, Theorem 2.1] and [16, Theorem 2.1]). Let u be a locally
p-precise function on B satisfying (1) with —1 <a<p—1. If p < g < oo and

n—p—1 1 n—p+a

pn—1) g pa—1)

then
lim inf(1 — py(npta)/p=(n=1)/4g (y r) = 0.

The sharpness of the exponent will be discussed in the final section. For BLD
functions in half spaces of R", Theorem 1 was already given by the first author
[16, Theorem 2.1]; for the reader’s convenience, we give a proof of Theorem 1.

We say that a continuous function v is monotone in an open set G, in the
sense of Lebesgue, if both

mﬁa,xu(x) = r%%xu(x) and mﬁin u(x) = rgli)nu(x)
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hold for every relatively compact open set D with the closure D C G (see [5]).
Clearly, harmonic functions are monotone, and more generally, solutions of elliptic
partial differential equations of second order and weak solutions for variational
problems may be monotone. For these facts, see Gilbarg—Trudinger [2], Heinonen—
Kilpeldinen-Martio [3], Reshetnyak [18], Serrin [19], and Vuorinen [25], [26].

It will be seen that the existence of lower limit in Theorem 1 is derived as
a consequence of fine limit argument on the line R!. Next we show that the
exceptional sets disappear for monotone functions.

Theorem 2. Let u be a monotone function on B satisfying (1). If n —1 <

p<n+a, p<qg<oo and
1 n—-—p+a

i < 7’
q pn-1)
then

lim (1 — r)(”’p+o‘)/p*(”*1)/q8q(u,7“) = 0.

r—1

Corollary 1. Let u be a coordinate function of a quasiregular mapping on
B satisfying (1). If n—1<p<n+a, p<q<oo and

n—p+au«o

S 1)

1
q
then

lim (1 — r)(n=PFe)/p=(n=D/ag (4 ) = 0.

r—1

For the definition and basic properties of quasiregular mappings, we refer
to [3], [18] and [25]. In particular, a coordinate function u = f; of a quasiregular
mapping f = (fi,..., fn): B — R" is &/-harmonic (see [3, Theorem 14.39] and
monotone in B, so that Theorem 2 gives the present corollary.

In case 1/¢ = (n —p+ «)/p(n — 1) > 0, one might expect that S,(u,r) is
bounded. In fact, we can show that this is true only in case 0 < o < p—1 without
assuming the monotonicity; see Remark 3 given below in the final section. We
refer the reader to the result by Yamashita [27] who showed affirmatively the case
p =2 and « =1 for harmonic functions. The case & = p — 1 remains open.

Finally we treat the case ¢ = co. In order to give a general result, we consider
a nondecreasing positive function ¢ on the interval [0, 00) such that ¢ is log-type,
that is, there exists a positive constant M satisfying

o(r*) < Mp(r)  forall r>0.

Set ®,(r) = rPp(r) for p > 1. Our final aim is to study the existence of weighted
boundary limits of monotone BLD functions u on B, which satisfy

3) [ 8(IVu@))efa)® ds < ,



Boundary limits of spherical means for BLD and monotone BLD functions 49

where p is as in (1). Consider the function

K(r) = [/Tl (tnwagp(tl))l/(?’l) %] 1-1/p

for 0 < r <271 set k(r) = w(271) for r > 271, We see (cf. [20, Lemma 2.4])
that if n —p+a > 0, then

K(r) ~ [r”ﬂ”o‘go(r’l)}fl/p as r — 0
and if n —p+a =0 and ¢(r) = (log(e + 7)) with 0 < o < p— 1, then
k(1) ~ [log(1/r)] p=1=a)lp a5 0.

Theorem 3. Let u be a monotone function on B satisfying (3). If n —1 <
p < n+a and k(0) = co, then
. ~1
|al;1|ri11 [k(o(z))] u(z) =o0.

In case ¢ =1, p=n and a =0, Theorem 3 was proved by Herron—Koskela
[4, Theorem 7.3, Corollary 7.5]. In view of [11, Theorem 1] and [16, Theorem 4.1],
we see that if u is harmonic in B, then the conclusions of Theorems 2 and 3
remain true for p smaller than n — 1.

Corollary 2. Let u be a coordinate function of a quasiregular mapping on
B satisfying (3). If n—1 <p <n+« and k(0) = co, then

. —1
|al;1|ri11 [k(o(z))] "u(z) =0.
3. Preliminary lemmas
Throughout this paper, let o(z) denote the distance of x € R™ from the unit
spherical surface S(0,1), that is,

o(z) = ||z - 1.
Further, let M denote various constants independent of the variables in question.
Recall the definition of relative p-capacity in the previous section. We write
Cp(E) =0 if
Cpo(ENG;G) =0 for every bounded open set G.

We say that a property holds p-q.e. on G if the property holds for every x € G
except that in a set of p-capacity zero. In view of [13, Lemma 2.2}, if £ C B and
Cp(E) = 0, then we can find a nonnegative measurable function f on B such
that

/ F()? o(y)* dy < oo
B

and
/ lz —y|' " f(y) dy = o0 for every x € E.
B

Now we give several results which are used for the proof of Theorem 1.
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Lemma 1. If u is a locally p-precise function on B satisfying (1) with
—1 < a < p-—1, then it has an extension uw with compact support in R"™ which
is g-precise in R"™ for 1 < ¢ < min{p,p/(1 + a)} and satisfies

/ |V (z)|Po(x)* dx < oo.
Rn

Proof. If 1 < ¢ <p and ¢ < p/(1+ «), then Holder’s inequality gives

/B Vu(a)[? dz < ( /B olz) 29/ (r=0) d:z;)lq/p ( /B V()P o) d:z;) "

Hence we can find a g-precise extension u to R™ by Stein [21, Chapter 5], or we
may consider the inversion to define

u(z) = u(z/|z]?) for |z| > 1.
We may further assume that the extension @ vanishes outside B(0,2), by con-
sidering yu, where x is an infinitely differentiable function on R"™ with compact
support in B(0,2).
We introduce Sobolev’s integral representation.

Lemma 2 (cf. [9]). Let 1 < ¢ < co and v be a g-precise function on R"
with compact support. Then

—y; Ov
=c —(y) dy
E:/?!x—ywaw()
holds for q-q.e. on R™, where ¢ = |S(0,1)|7!.
Corollary 3. Let u be a locally p-precise function on B satisfying (1) with

—1<a<p—1. Then
—C§ ——(y) dy
/?!w—ywaw()

holds for p-q.e. on B, where u is an extension of u as in Lemma 1.

Lemma 3 (cf. [12, Lemma 2.1] and [13, Lemma 5.1]). If we set ky(z) =
|z — y|°=") for fixed y and § > 0, then

( y’fé(nfl) if!y[ > 2r,
p8(n=1) if ir < |y| < 2r and 1/q > 6,

Sy(ky,7) = M r*(nfl)/q“yy — r}(l/qfé)(nfl) if 2r <|y| < 2r and 1/q <4,

p=o(n=1) [log(%/“y[ — rml/q if %7“ < |yl <2rand1/q =29,
p=0(n=1) if ly| = %r.
Corollary 4. If 1 < q < oo, then

/ |z — y’q(l—n) dS(y) < MHZL‘] . 7a}*(nfl)(qfl)
S(0,r)

for every x € R™.
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Lemma 4. If -1 < <0 and 0 < (1 —n)q+n < —0, then

[ =l o) dy < Mofayt e

for every x € B.

Proof. In view of Corollary 4, we have

L/ m—m“lmmwﬂ@n5£ (Lm)m—ywlmdﬁw)ﬂ—ﬂﬁﬁ

< M/ }7“ — ]a;]}f(nfl)(qfl)ll — 7“][3 dr.
Rl

Since 0 < —(n—1)(¢g—1)+1< 1 and 0 < 841 < 1 by our assumptions, the
Riesz composition theorem yields

j;!x—yW“7”mdey§JWQ@)(”1”q1”ﬁ+ﬂ

as required.

Lemma 5 (cf. [13, Corollary 5.1]). If p is a finite measure on the real line
R! and 0 < d < 1, then

T—

lim n |r|* /R et () = p({0))

4. Proof of Theorem 1

Under the assumptions on p, a and ¢ in Theorem 1, we can take (3,7) such
that
a< f<p-1, 0<y <1,

p(n—1)y+p—n>0,
pn—1)y+p-—n<pB<pn—1)y+a—-pn-1)/q

and
1< <1+ 1
— fy p— _—
q g pn—1)

In view of Lemma 1 and Corollary 3, we may assume that

u@| £ [ o=yl ) dy
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for every x € B, where f is a nonnegative function on R™ which vanishes outside
a bounded set and satisfies

f(y)Po(y)™ dy < oc;
Rn

recall that o(y) = ||y|—1|. Using Holder’s inequality, we have with 1/p+1/p’ =1

1/p

i ([ te=areowran)” ([ e spara)

where a = (1 —v)p’ and b= —pp'/p. Since —1 < b < 0 and

b n a
—<—,—1<0, G/: 5
a a a—1

Lemma 4 yields

1/p
u(z)| £ Mo(z)1=A=m+n/p'=5/p (/ |z — y[ VAP £(y)P o(y)? dy) :

In view of Minkowski’s inequality for integral we have

SQ(uvr) < M(1 - 7“)(1*’7)(1*71)+n/p’7ﬁ/p

<L (gl mas <x>)p/qf<y>p@<y>ﬂ 7 :

for 271 < r < 1. Since v¢ > 1, Corollary 4 gives
Sq(u,m) = M(1 - Py (A= (A=n)+n/p'=5/p

1/p
- (/ [y — | TPy ()8 dy) .
Rn

For simplicity, set d = (n —1)(vg — 1)p/q. Then we see that 0 < d < 1. Consider
the function

K(s,t) = SpwSp[(lfv)(lann/p’fﬂ/p]’t _ Srdt,@fa
for 0 £ s <1 and 0 =t < oo, where we set

w=(n—-p+a)/p—(n-1)/q
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Here note that

1/p

(1 1) Syu,r) < M( | RO =row) S o) dy)

n

Since w + [(1 —)(1 —n) +n/p" — B/p] > 0, we see that

lim K (s,t) =0

s—0

for all fixed ¢t > 0. If t 2 %s, then

K(s,t) < M(s/t)n=Dwpte=f=pn=1/a <

if 0<¢< <s, then

2 K(s,t) < M(s/t)* B < M

and if %s <t < %s, then
K(s,t) £ Ms?s —t|7%
Consequently, applying Lemma 5, we conclude that

liminf(1 — r)*Sq(u,r) = 0.

r—1

Now the proof of Theorem 1 is completed.

5. Proof of Theorem 2

For a proof of Theorem 2, we need the following result, which gives an essential
tool in treating monotone functions.

Lemma 6 (cf. [4, Lemma 7.1], [6, Remark, p. 9], [16, Section 16]). Let
p>n—1. If u is a monotone p-precise function on B(zo,2r), then

(4) |u(z) —u(y)|P = M?“p”/ |Vu(z)|P dz whenever x, y € B(zo,T).
B(CBQ,Q?")

Lemma 6 is a consequence of Sobolev’s theorem, so that the restriction p >
n — 1 is needed; for a proof of Lemma 6, see for example [4, Lemma 7.1] or [15,
Theorem 5.2, Chapter 8|.

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Let u be a monotone function on B satisfying (1) with
n—1l<p<n+ta If|ls—t|Sr< %(1—t), then Lemma 6 yields

1/q
1Sy ) — Salu, )] < (i / R u<t5>rws<s>)

On

q/p 1/q
§M7~<“>/p(/ (/ rwz)rpdz) dS(E)) |
s(0,1) \J B(t¢,2r)

so that Minkowski’s inequality for integral yields

|Sq(u,s) — Sq(u,t)] < M¢(P*n)/79(27a/t)(n71)/q

1/p
« (/ Vu(z)|P dz) .
B(0,t+2r)—B(0,t—2r)

Let Ty = 27j71, tj =1 —Tj—1 and Aj = B(O,l —Tj) —B(O,l —37“j) for
j=1,2,.... As before, set

w=(n—p+a)/p—(n—-1)/qg>0.

Then we find

1Sa(w,t3) = Sqlw )l = Mriy (/Aj [Vu(z)[Po(2)” dz) 1/p

for t; §T<tj +riv1,

1/p
Salusty + r01) — Salusr)] < Mrr, ( [ vy dz)

J

for tj +71j41 Sr< tj +7j41 + 742 and

[Sq(u, ) = Sylu,ty 1) < M, (/ Vu(z)Polz)® dz) 1/p

j+1

for t; + 741 +rjre <7 < tjy1. Collecting these results, we have
1/p
8,0.t) = Syt < 001 ([ 1ot a:)

1/p
+ M?“;fl (/ |Vu(z)|Po(2)” dz)
Aj1
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for t; < r < t;41. Hence it follows that

Jjt+m /D
]Sq(u,tj)—S(uth]<MZ (/ IVu(2)|P o ) .

Since A; N A =0 when [ = k + 2, Holder’s inequality gives

Jj+m , j+m 1/p
|Sq(u,t;)—=Sq(u,tjtm)| = M(Z P w) (Z / IVu(z)|Pol )

I=j

1/p
<5, ( Vule) oo dz)
B(O,l*?"j.km)*B(O,l*S?"j)

More generally, if ¢; < r < 1, then we take m such that ¢;4,,—1 < r < t;1p, and
establish

1/p

S ts) = Syl <M -n ([ upe)a:)

which implies that

1/p
limsup(1 — r)*Sq(u,r) < M(/ IVu(z)Po(2) dz)
B(0,1-3r;)

r—1
for all j. Therefore it follows that

lim (1 — r)*Sq(u,r) =0,

r—1

as required.

6. Proof of Theorem 3

Let u be a monotone function on B satisfying (3) with n—1<p<n+a. If
B(z,2r) C B and 0 < § < 1, then, applying Lemma 6 and dividing the domain
of integration into two parts

Ey = {z € B(z,2r) : [Vu(z)| > 7“*5},
EQ = B(Q?,QT) — El,

we have

[u(x) = u(y)[? < MrP0P /

Eo

dz+M7“p”[g0(7“5)]1/E @, (|Vu(z)|) dz.
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Since ¢(r=°) = My(r~!) for r > 0, it follows that

(5)  Ju(@) - u()P < MR 4 Mot /B oy BlIvuc))

for y € B(z,r).
Let zp =0 and r; =277~ j=0,1,.... For £ € S(0,1), let x; = (1—2r,)¢.
Then we find with the aid of (5)

[u(z;) — u(yn)l? < Mrit =27 4+ Mr? " o(ry )] ! /B . ®, (|Vu(2)]) dz
for y; € S(xj, %Tj),

) = ul)” < Mr{ = 4 Mry () [ L m(vue)
for y» € S(y1, 1r;) and
) = (o)l < M+ M ol [ L m(vue)

for yo € S(xj41, %Tj+1). Thus it follows that

6
lu(z;) — u(wjr)| = Mrl + Mr; g+1

M e (L a9 ae) N

(CC]',T‘]')

1/p
+ Mrj(ﬁzn)/p [80<r;+11)]*1/79 (/ @p(’VU(Z)’) dZ)
B(zj1,7541)

<M7“1 5+M7“H1+M7“(p " a)/p[ (ry hy-1/e

X (/Bﬁvj,rj) o, (|Vu(z)|) o(2)" dz) 1/p

1/p
w2 gtk ([ ( )%(Wu(zn)g(z)adz) |
Tj+1,T5+1

so that
Jjtm
w(@jm) = ula;)| EM D w70
l=j

Jjtm

1/p
+MZr§p"“>/p[so<nl>11/p( / ( )%(!Vuu)r)g(z)adz) .

1=j
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Since B(xy,7) N B(xk,mr) = 0 when [ 2 k + 2, Holder’s inequality gives
w(z;) = w(wjm)| < Mr;™°

rut (S o grye) (§/B<> (wuera)

1=j

< M0 4 M(rjsm) ( /B &, (|Vu(2))o(2)" dz) v

(0,1*7"j+m)*B(0,1*37"j)

If x € B(Tjtm,"j+m) With x; = (1 — 2rj)z/|z|, then

1/p
lu(z) —u(z;)| < M7°J1-*‘S + MFL(Q(Q?)) (/ @p(]Vu(z)])Q(z)a dz) ,

B—B(0,1-3r;)

which implies that

1/p
limsup[&(g(m))}fllu(x)] < M(/BB(O e D, (|Vu(z)|)o(2)* dz)

lz|—1

for all j. Therefore it follows that

lim [/s(g(a;))]flu(x) =0,

lz|—1
as required.

7. Remarks

Remark 1. Let {e;} be a sequence in B which tends to a boundary point.
For a number a > 0 and a sequence {¢;} of positive numbers, consider the function

D= Yeslo— il
J

If a < (n—p)/p, then we can choose {€;} such that
/ |Vu(x)|P de < co.
B
Further, if @ > (n — 1)/q, then we have

Sq(u, |ej) = oo

This implies that the lower limit in Theorem 1 can not be replaced by the upper
limit.
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Remark 2. Let —1 <a <p—1. For § > 0, consider the function

F) =yl = 1"y — e,

where a =6 — (o +1)/p, b=(n—1)/p and e = (1,0,...,0). Then

/ £()? o(y)* dy < oo.
B(2e,1)

We consider the harmonic function v on B defined by
u@ = [ - ale - ol "Iy
B(2e,1)
Then we apply [13, Lemmas 12.1 and 12.2] to establish
/ |Vu(x)|Po(x)* de < 0o

by considering Lipschitz transformations from neighborhoods of boundary points
of B to half spaces. If z € B, then

u(-l’) > / (y1 - -771)’.7} — y’*nf(y) dy > M]a; _ e’1+a*b7
B(x*,|x—el/4)

where z* = (14 3|z —e|)e. Hence, if k(z) = [z—e|'T*? and § < (n—p+a)/p—
(n—1)/q, then

Sq(u,7) = MS,(k,r) = M(1 — r)Pn=e)/pH(n=1)/a+s,

This implies that the exponent (n —p+ «)/p — (n — 1)/q is sharp in Theorems 1
and 2.

Remark 3. Let u be a locally p-precise function on B satisfying
(6) / |Vu(x)|Po(x)* de < co.
B

We see that if 0 S a < p—1 and

then
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Yamashita [27] derived the above inequality for harmonic functions v on B sat-
isfying (6) with p = 2 and 0 < a = 1. In the hyperplane case, we refer to [16,
Theorem 2.2|, and the present result will be proved similarly. In fact, to prove (7),
we apply Sobolev’s integral representation (Lemma 2 and Corollary 3) and write

- rj —y; ou
u(x :cE ———(y) dy.
@) j:l/" !w—y!”ayj()

Here we may assume that the extension @ vanishes outside B(0,2). As in the
proof of Theorem 2.2 of [16], we have by Hélder’s inequality

2 ’ 1/]9/
ull = M 5(0,1) (/0 7= ty*’(lin)p Ht’ a 1}7003 /ptnil dt)

([ st ) as

<M ’.77* o y*’17n+1/p'fa/p
5(0,1)

< ([ 1wty -1 dt)l/pdsw*),

where z* = z/|z| and y* = y/|y|. Now it suffices to apply Sobolev’s inequality.
The case a = p — 1 remains open.

Remark 4. Let u be a locally p-precise function on B satisfying (3). Note
here that if

(8) /0 [Tnfpgo(rfl)}*l/@*n@ <OO,

r

then wu is continuous on B and satisfies (5) on the basis of [10, Lemma 3], so that
the conclusions of Theorems 2 and 3 are also valid for w. If in addition

1
(9) / [Tnfp+ago(7afl)}*1/(29*1)@ < o0,
0

r

then u has a continuous extension to R™, according to [10, Theorem 2]. For these
facts, see also [13], [15] and [20].
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