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Abstract. Our aim in this paper is to deal with the existence of boundary limits for BLD
functions u on the unit ball B of Rn satisfying

∫
B

|∇u(x)|p(1− |x|)α dx < ∞,

where ∇ denotes the gradient, 1 < p < ∞ and −1 < α < p− 1 . We consider the Lq -means over
the spherical surfaces S(0, r) centered at the origin with radius r , and show that

lim inf
r→1

(1− r)(n−p+α)/p−(n−1)/q

(∫
S(0,r)

|u(x)|q dS(x)
)1/q

= 0

when q > 0 and (n− p− 1)/p(n− 1) < 1/q < (n− p+α)/p(n− 1) . If u is in addition monotone
in B in the sense of Lebesgue, then u is shown to have weighted boundary limit zero.

1. Introduction

Let Rn denote the n -dimensional Euclidean space. We use the notation
B(x, r) to denote the open ball centered at x with radius r > 0, whose boundary
is denoted by S(x, r). Consider the Lq -means over S(0, r) defined by

Sq(u, r) =
(

1
|S(0, r)|

∫
S(0,r)

|u(x)|q dS(x)
)1/q

,

where |S(0, r)| denotes the surface area, which is written as |S(0, r)| = σnr
n−1 ;

in case q = ∞ , S∞(u, r) denotes the essential supremum of u over S(0, r). We
note by Hölder’s inequality that Sq(u, r) is nondecreasing for q .

Let u be a Green potential in the unit ball B = B(0, 1). Gardiner [1, Theo-
rem 2] showed that

lim inf
r→1

(1− r)(n−1)(1−1/q)Sq(u, r) = 0
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when (n− 3)/(n− 1) < 1/q � (n− 2)/(n− 1) and q > 0. This gives an extension
of the result by Stoll [22] in the plane case, which states that

lim inf
r→1

(1− r)S∞(u, r) = 0.

Recently Herron and Koskela [4, Theorem 7.3, Corollary 7.5] proved that

S∞(u, r) � M
[
log

(
2/(1− r)

)](n−1)/n
, 0 < r < 1,

with a positive constant M , when u is a monotone function on B with finite
Dirichlet integral: ∫

B

|∇u(x)|n dx < ∞;

see the next section for the definition of monotone functions. We here note that
harmonic functions are monotone, A -harmonic functions and hence coordinate
functions of quasiregular mappings are monotone (see [3] and [18]). Thus the class
of monotone functions is considerably wide.

Our main aim in this paper is to establish the analogue of these results for
BLD and monotone BLD functions u on B satisfying

(1)
∫
B

|∇u(x)|p�(x)α dx < ∞,

where �(x) = 1 − |x| , 1 < p < ∞ and −1 < α < p − 1. We first study
weighted boundary limits of spherical Lq -means for BLD functions satisfying (1),
and establish a result corresponding to [16, Theorem 2.1] given in half spaces.

If u is a monotone BLD function on B(x0 , 2r) and p > n− 1, then the key
for our results is the fact that

(2) |u(x)− u(y)|p � Mrp−n
∫
B(x0,2r)

|∇u(z)|p dz whenever x , y ∈ B(x0, r) ;

see e.g. [4, Lemma 7.1], [6, Remark, p. 9] and, for the case p = n , [26, Section 16].
If u is harmonic, then (2) holds for p � 1 by the mean value property, so that the
condition p > n− 1 is not required for harmonic functions. Further we note that
if p > n , then (2) holds for all BLD functions, on account of Sobolev’s theorem.
Thus, if we restrict ourselves to monotone functions, then we have only to consider
the case n− 1 < p � n .

Related results are given by Gardiner [1], Stoll [22], [23], [24] and the first
author [12], [13] and [16].

We wish to express our deepest appreciation to the referee for his useful
suggestions.
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2. Statement of results

If 1 < p < ∞ , G is an open set in Rn and E ⊂ G , then the relative
p-capacity is defined by

Cp(E;G) = inf
∫
G

f(y)p dy,

where the infimum is taken over all nonnegative measurable functions f on G
such that ∫

G

|x− y|1−nf(y)dy � 1 for every x ∈ E ;

see [8] and [15] for the basic properties of p-capacity.
Following Ziemer [28], we say that a locally integrable function u is p-precise

in G if

(i)
∫
G |∇u(x)|p dx < ∞ , where ∇ denotes the gradient;

(ii) for every ε > 0 there exists an open set ω such that Cp(ω,G) < ε and u is
continuous as a function on G− ω .

According to Ohtsuka [17], we say that a function u is locally p-precise in G
if it is p-precise in every relatively compact open subset of G .

We note that if u is locally p-precise in G , then u is partially differentiable
almost everywhere on G and its spherical means over S(x, r) are well defined
whenever S(x, r) ⊂ G , since a set of p-capacity zero has Hausdorff dimension at
most n− p .

We first study the weighted boundary limits of spherical means for locally
p-precise functions on B satisfying (1).

Theorem 1 (cf. [12, Theorem 2.1] and [16, Theorem 2.1]). Let u be a locally
p-precise function on B satisfying (1) with −1 < α < p− 1 . If p < q < ∞ and

n− p− 1
p(n− 1)

<
1
q
<

n− p+ α

p(n− 1)
,

then
lim inf
r→1

(1− r)(n−p+α)/p−(n−1)/qSq(u, r) = 0.

The sharpness of the exponent will be discussed in the final section. For BLD
functions in half spaces of Rn , Theorem 1 was already given by the first author
[16, Theorem 2.1]; for the reader’s convenience, we give a proof of Theorem 1.

We say that a continuous function u is monotone in an open set G , in the
sense of Lebesgue, if both

max
D

u(x) = max
∂D

u(x) and min
D

u(x) = min
∂D

u(x)
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hold for every relatively compact open set D with the closure D ⊂ G (see [5]).
Clearly, harmonic functions are monotone, and more generally, solutions of elliptic
partial differential equations of second order and weak solutions for variational
problems may be monotone. For these facts, see Gilbarg–Trudinger [2], Heinonen–
Kilpeläinen–Martio [3], Reshetnyak [18], Serrin [19], and Vuorinen [25], [26].

It will be seen that the existence of lower limit in Theorem 1 is derived as
a consequence of fine limit argument on the line R1 . Next we show that the
exceptional sets disappear for monotone functions.

Theorem 2. Let u be a monotone function on B satisfying (1) . If n− 1 <
p < n+ α , p < q < ∞ and

1
q
<

n− p+ α

p(n− 1)
,

then
lim
r→1

(1 − r)(n−p+α)/p−(n−1)/qSq(u, r) = 0.

Corollary 1. Let u be a coordinate function of a quasiregular mapping on
B satisfying (1) . If n− 1 < p < n+ α , p < q < ∞ and

1
q
<

n− p+ α

p(n− 1)
,

then
lim
r→1

(1 − r)(n−p+α)/p−(n−1)/qSq(u, r) = 0.

For the definition and basic properties of quasiregular mappings, we refer
to [3], [18] and [25]. In particular, a coordinate function u = fi of a quasiregular
mapping f = (f1, . . . , fn): B → Rn is A -harmonic (see [3, Theorem 14.39] and
monotone in B , so that Theorem 2 gives the present corollary.

In case 1/q = (n − p + α)/p(n − 1) > 0, one might expect that Sq(u, r) is
bounded. In fact, we can show that this is true only in case 0 � α < p−1 without
assuming the monotonicity; see Remark 3 given below in the final section. We
refer the reader to the result by Yamashita [27] who showed affirmatively the case
p = 2 and α = 1 for harmonic functions. The case α = p− 1 remains open.

Finally we treat the case q = ∞ . In order to give a general result, we consider
a nondecreasing positive function ϕ on the interval [0,∞) such that ϕ is log-type,
that is, there exists a positive constant M satisfying

ϕ(r2) � Mϕ(r) for all r � 0.

Set Φp(r) = rpϕ(r) for p > 1. Our final aim is to study the existence of weighted
boundary limits of monotone BLD functions u on B , which satisfy

(3)
∫
B

Φp
(
|∇u(x)|

)
�(x)α dx < ∞,
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where � is as in (1). Consider the function

κ(r) =
[∫ 1

r

(
tn−p+αϕ(t−1)

)−1/(p−1)
dt

t

]1−1/p

for 0 � r � 2−1 ; set κ(r) = κ(2−1) for r > 2−1 . We see (cf. [20, Lemma 2.4])
that if n− p + α > 0, then

κ(r) ∼
[
rn−p+αϕ(r−1)

]−1/p as r → 0

and if n− p+ α = 0 and ϕ(r) =
(
log(e+ r)

)σ with 0 � σ < p− 1, then

κ(r) ∼
[
log(1/r)

](p−1−σ)/p
as r → 0.

Theorem 3. Let u be a monotone function on B satisfying (3) . If n− 1 <
p � n+ α and κ(0) = ∞ , then

lim
|x|→1

[
κ
(
�(x)

)]−1
u(x) = 0.

In case ϕ ≡ 1, p = n and α = 0, Theorem 3 was proved by Herron–Koskela
[4, Theorem 7.3, Corollary 7.5]. In view of [11, Theorem 1] and [16, Theorem 4.1],
we see that if u is harmonic in B , then the conclusions of Theorems 2 and 3
remain true for p smaller than n− 1.

Corollary 2. Let u be a coordinate function of a quasiregular mapping on
B satisfying (3) . If n− 1 < p � n+ α and κ(0) = ∞ , then

lim
|x|→1

[
κ
(
�(x)

)]−1
u(x) = 0.

3. Preliminary lemmas

Throughout this paper, let �(x) denote the distance of x ∈ Rn from the unit
spherical surface S(0, 1), that is,

�(x) =
∣∣|x| − 1

∣∣.
Further, let M denote various constants independent of the variables in question.

Recall the definition of relative p-capacity in the previous section. We write
Cp(E) = 0 if

Cp(E ∩G;G) = 0 for every bounded open set G .

We say that a property holds p-q.e. on G if the property holds for every x ∈ G
except that in a set of p-capacity zero. In view of [13, Lemma 2.2], if E ⊂ B and
Cp(E) = 0, then we can find a nonnegative measurable function f on B such
that ∫

B

f(y)p�(y)α dy < ∞

and ∫
B

|x− y|1−nf(y)dy = ∞ for every x ∈ E .

Now we give several results which are used for the proof of Theorem 1.



50 Yoshihiro Mizuta and Tetsu Shimomura

Lemma 1. If u is a locally p-precise function on B satisfying (1) with
−1 < α < p − 1 , then it has an extension u with compact support in Rn which
is q -precise in Rn for 1 < q < min{p, p/(1 + α)} and satisfies∫

Rn

|∇u(x)|p�(x)α dx < ∞.

Proof. If 1 < q < p and q < p/(1 + α), then Hölder’s inequality gives∫
B

|∇u(x)|q dx �
(∫

B

�(x)−αq/(p−q) dx
)1−q/p(∫

B

|∇u(x)|p�(x)α dx

)q/p
< ∞.

Hence we can find a q -precise extension u to Rn by Stein [21, Chapter 5], or we
may consider the inversion to define

u(x) = u(x/|x|2) for |x| > 1 .

We may further assume that the extension u vanishes outside B(0, 2), by con-
sidering χu , where χ is an infinitely differentiable function on Rn with compact
support in B(0, 2).

We introduce Sobolev’s integral representation.

Lemma 2 (cf. [9]). Let 1 < q < ∞ and v be a q -precise function on Rn

with compact support. Then

v(x) = c
n∑
j=1

∫
Rn

xj − yj
|x− y|n

∂v

∂yj
(y)dy

holds for q -q.e. on Rn , where c = |S(0, 1)|−1 .

Corollary 3. Let u be a locally p-precise function on B satisfying (1) with
−1 < α < p− 1 . Then

u(x) = c
n∑
j=1

∫
Rn

xj − yj
|x− y|n

∂u

∂yj
(y)dy

holds for p-q.e. on B , where u is an extension of u as in Lemma 1 .

Lemma 3 (cf. [12, Lemma 2.1] and [13, Lemma 5.1]). If we set ky(x) =
|x− y|δ(1−n) for fixed y and δ > 0 , then

Sq(ky , r) � M




|y|−δ(n−1) if |y| � 2r,
r−δ(n−1) if 1

2r < |y| < 2r and 1/q > δ,

r−(n−1)/q
∣∣|y| − r

∣∣(1/q−δ)(n−1)
if 1

2r < |y| < 2r and 1/q < δ,

r−δ(n−1)
[
log

(
2r/

∣∣|y| − r
∣∣)]1/q

if 1
2r < |y| < 2r and 1/q = δ,

r−δ(n−1) if |y| � 1
2
r.

Corollary 4. If 1 < q < ∞ , then∫
S(0,r)

|x− y|q(1−n) dS(y) � M
∣∣|x| − r

∣∣−(n−1)(q−1)

for every x ∈ Rn .
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Lemma 4. If −1 < β < 0 and 0 < (1 − n)q + n < −β , then

∫
Rn

|x− y|q(1−n)�(y)β dy � M�(x)q(1−n)+n+β

for every x ∈ B .

Proof. In view of Corollary 4, we have

∫
Rn

|x− y|q(1−n)�(y)β dy =
∫ ∞

0

(∫
S(0,r)

|x− y|q(1−n) dS(y)
)
|1− r|β dr

� M

∫
R1

∣∣r − |x|
∣∣−(n−1)(q−1)|1− r|β dr.

Since 0 < −(n − 1)(q − 1) + 1 < 1 and 0 < β + 1 < 1 by our assumptions, the
Riesz composition theorem yields

∫
Rn

|x− y|q(1−n)�(y)β dy � M�(x)−(n−1)(q−1)+β+1,

as required.

Lemma 5 (cf. [13, Corollary 5.1]). If µ is a finite measure on the real line
R1 and 0 < d < 1 , then

lim inf
r→0

|r|d
∫
R1

|r − t|−d dµ(t) = µ({0}).

4. Proof of Theorem 1

Under the assumptions on p , α and q in Theorem 1, we can take (β, γ) such
that

α < β < p− 1, 0 < γ < 1,

p(n− 1)γ + p− n > 0,

p(n− 1)γ + p − n < β < p(n− 1)γ + α− p(n− 1)/q

and
1
q
< γ <

1
q
+

1
p(n − 1)

.

In view of Lemma 1 and Corollary 3, we may assume that

|u(x)| �
∫
Rn

|x− y|1−nf(y)dy
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for every x ∈ B , where f is a nonnegative function on Rn which vanishes outside
a bounded set and satisfies

∫
Rn

f(y)p�(y)α dy < ∞;

recall that �(y) =
∣∣|y|−1

∣∣ . Using Hölder’s inequality, we have with 1/p+1/p′ = 1

|u(x)| �
(∫

Rn

|x− y|a(1−n)�(y)b dy
)1/p′(∫

Rn

|x− y|γ(1−n)pf(y)p�(y)β dy
)1/p

,

where a = (1− γ)p′ and b = −βp′/p . Since −1 < b < 0 and

b

a
<

n

a′
− 1 < 0, a′ =

a

a − 1
,

Lemma 4 yields

|u(x)| � M�(x)(1−γ)(1−n)+n/p′−β/p
(∫

Rn

|x− y|γ(1−n)pf(y)p�(y)β dy
)1/p

.

In view of Minkowski’s inequality for integral we have

Sq(u, r) � M(1 − r)(1−γ)(1−n)+n/p′−β/p

×
[∫

Rn

(∫
S(0,r)

|x− y|γ(1−n)q dS(x)
)p/q

f(y)p�(y)β dy
]1/p

for 2−1 < r < 1. Since γq > 1, Corollary 4 gives

Sq(u, r) � M(1 − r)(1−γ)(1−n)+n/p′−β/p

×
(∫

Rn

∣∣|y| − r
∣∣−(n−1)(γq−1)p/q

f(y)p�(y)β dy
)1/p

.

For simplicity, set d = (n− 1)(γq − 1)p/q . Then we see that 0 < d < 1. Consider
the function

K(s, t) = spωsp[(1−γ)(1−n)+n/p′−β/p]|t− s|−dtβ−α

for 0 � s < 1 and 0 � t < ∞ , where we set

ω = (n− p+ α)/p− (n− 1)/q.
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Here note that

(1− r)ωSq(u, r) � M

(∫
Rn

K
(
1− r, �(y)

)
f(y)p�(y)α dy

)1/p

.

Since ω + [(1− γ)(1− n) + n/p′ − β/p] > 0, we see that

lim
s→0

K(s, t) = 0

for all fixed t > 0. If t � 3
2
s , then

K(s, t) � M(s/t)(n−1)γp+α−β−p(n−1)/q � M,

if 0 � t � 1
2s , then

K(s, t) � M(s/t)α−β � M

and if 1
2s < t < 3

2s , then

K(s, t) � Msd|s − t|−d.

Consequently, applying Lemma 5, we conclude that

lim inf
r→1

(1− r)ωSq(u, r) = 0.

Now the proof of Theorem 1 is completed.

5. Proof of Theorem 2

For a proof of Theorem 2, we need the following result, which gives an essential
tool in treating monotone functions.

Lemma 6 (cf. [4, Lemma 7.1], [6, Remark, p. 9], [16, Section 16]). Let
p > n− 1 . If u is a monotone p-precise function on B(x0, 2r) , then

(4) |u(x)− u(y)|p � Mrp−n
∫
B(x0,2r)

|∇u(z)|p dz whenever x , y ∈ B(x0, r) .

Lemma 6 is a consequence of Sobolev’s theorem, so that the restriction p >
n − 1 is needed; for a proof of Lemma 6, see for example [4, Lemma 7.1] or [15,
Theorem 5.2, Chapter 8].

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Let u be a monotone function on B satisfying (1) with
n− 1 < p < n+ α . If |s− t| � r < 1

2 (1− t), then Lemma 6 yields

|Sq(u, s)− Sq(u, t)| �
(

1
σn

∫
S(0,1)

|u(sξ)− u(tξ)|q dS(ξ)
)1/q

� Mr(p−n)/p

(∫
S(0,1)

(∫
B(tξ,2r)

|∇u(z)|p dz
)q/p

dS(ξ)
)1/q

,

so that Minkowski’s inequality for integral yields

|Sq(u, s)− Sq(u, t)| � Mr(p−n)/p(2r/t)(n−1)/q

×
(∫

B(0,t+2r)−B(0,t−2r)

|∇u(z)|p dz
)1/p

.

Let rj = 2−j−1 , tj = 1 − rj−1 and Aj = B(0, 1 − rj) − B(0, 1 − 3rj) for
j = 1, 2, . . . . As before, set

ω = (n− p+ α)/p − (n − 1)/q > 0.

Then we find

|Sq(u, tj)− Sq(u, r)| � Mr−ωj+1

(∫
Aj

|∇u(z)|p�(z)α dz

)1/p

for tj � r < tj + rj+1 ,

|Sq(u, tj + rj+1)− Sq(u, r)| � Mr−ωj+2

(∫
Aj

|∇u(z)|p�(z)α dz

)1/p

for tj + rj+1 � r < tj + rj+1 + rj+2 and

|Sq(u, r)− Sq(u, tj+1)| � Mr−ωj+2

(∫
Aj+1

|∇u(z)|p�(z)α dz

)1/p

for tj + rj+1 + rj+2 � r < tj+1 . Collecting these results, we have

|Sq(u, tj)− Sq(u, r)| � Mr−ωj

(∫
Aj

|∇u(z)|p�(z)α dz

)1/p

+Mr−ωj+1

(∫
Aj+1

|∇u(z)|p�(z)α dz

)1/p



Boundary limits of spherical means for BLD and monotone BLD functions 55

for tj � r < tj+1 . Hence it follows that

|Sq(u, tj)− Sq(u, tj+m)| � M

j+m∑
l=j

r−ωl

(∫
Al

|∇u(z)|p�(z)α dz

)1/p

.

Since Al ∩Ak = ∅ when l � k + 2, Hölder’s inequality gives

|Sq(u, tj)−Sq(u, tj+m)| � M

(j+m∑
l=j

r−p
′ω

l

)1/p′(j+m∑
l=j

∫
Al

|∇u(z)|p�(z)α dz

)1/p

� Mr−ωj+m

(∫
B(0,1−rj+m)−B(0,1−3rj)

|∇u(z)|p�(z)α dz

)1/p

.

More generally, if tj � r < 1, then we take m such that tj+m−1 � r < tj+m , and
establish

|Sq(u, tj)− Sq(u, r)| � M(1 − r)−ω
(∫

B−B(0,1−3rj)

|∇u(z)|p�(z)α dz

)1/p

,

which implies that

lim sup
r→1

(1− r)ωSq(u, r) � M

(∫
B−B(0,1−3rj)

|∇u(z)|p�(z)α dz

)1/p

for all j . Therefore it follows that

lim
r→1

(1 − r)ωSq(u, r) = 0,

as required.

6. Proof of Theorem 3

Let u be a monotone function on B satisfying (3) with n− 1 < p < n+α . If
B(x, 2r) ⊂ B and 0 < δ < 1, then, applying Lemma 6 and dividing the domain
of integration into two parts

E1 =
{
z ∈ B(x, 2r) : |∇u(z)| > r−δ

}
,

E2 = B(x, 2r) −E1,

we have

|u(x)− u(y)|p � Mrp−n−δp
∫
E2

dz +Mrp−n[ϕ(r−δ)]−1

∫
E1

Φp
(
|∇u(z)|

)
dz.
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Since ϕ(r−δ) � Mϕ(r−1) for r > 0, it follows that

(5) |u(x)− u(y)|p � Mr(1−δ)p +Mrp−n[ϕ(r−1)]−1

∫
B(x,2r)

Φp
(
|∇u(z)|

)
dz

for y ∈ B(x, r).
Let x0 = 0 and rj = 2−j−1 , j = 0, 1, . . . . For ξ ∈ S(0, 1), let xj = (1−2rj)ξ .

Then we find with the aid of (5)

|u(xj)− u(y1)|p � Mr
(1−δ)p
j +Mrp−nj [ϕ(r−1

j )]−1

∫
B(xj,rj)

Φp
(
|∇u(z)|

)
dz

for y1 ∈ S(xj , 1
2rj),

|u(y1)− u(y2)|p � Mr
(1−δ)p
j +Mrp−nj [ϕ(r−1

j )]−1

∫
B(xj,rj)

Φp
(
|∇u(z)|

)
dz

for y2 ∈ S(y1,
1
4
rj) and

|u(y2)− u(xj+1)|p � Mr
(1−δ)p
j+1 +Mrp−nj+1 [ϕ(r

−1
j+1)]

−1

∫
B(xj+1,rj+1)

Φp
(
|∇u(z)|

)
dz

for y2 ∈ S(xj+1,
1
2rj+1). Thus it follows that

|u(xj)− u(xj+1)| � Mr1−δ
j +Mr1−δ

j+1

+Mr
(p−n)/p
j [ϕ(r−1

j )]−1/p

(∫
B(xj,rj)

Φp
(
|∇u(z)|

)
dz

)1/p

+Mr
(p−n)/p
j+1 [ϕ(r−1

j+1)]
−1/p

(∫
B(xj+1,rj+1)

Φp
(
|∇u(z)|

)
dz

)1/p

� Mr1−δ
j +Mr1−δ

j+1 +Mr
(p−n−α)/p
j [ϕ(r−1

j )]−1/p

×
(∫

B(xj,rj)

Φp
(
|∇u(z)|

)
�(z)α dz

)1/p

+Mr
(p−n−α)/p
j+1 [ϕ(r−1

j+1)]
−1/p

(∫
B(xj+1,rj+1)

Φp
(
|∇u(z)|

)
�(z)α dz

)1/p

,

so that

|u(xj+m)− u(xj)| � M

j+m∑
l=j

r1−δ
l

+M

j+m∑
l=j

r
(p−n−α)/p
l [ϕ(r−1

l )]−1/p

(∫
B(xl,rl)

Φp
(
|∇u(z)|

)
�(z)α dz

)1/p

.
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Since B(xl , rl) ∩B(xk , rk) = ∅ when l � k + 2, Hölder’s inequality gives

|u(xj)− u(xj+m)| � Mr1−δ
j

+M

(j+m∑
l=j

r
p′(p−n−α)/p
l [ϕ(r−1

l )]−p
′/p

)1/p′(j+m∑
l=j

∫
B(xl,rl)

Φp
(
|∇u(z)|

)
�(z)α dz

)1/p

� Mr1−δ
j +Mκ(rj+m)

(∫
B(0,1−rj+m)−B(0,1−3rj)

Φp
(
|∇u(z)|

)
�(z)α dz

)1/p

.

If x ∈ B(xj+m, rj+m) with xj = (1− 2rj)x/|x| , then

|u(x)− u(xj)| � Mr1−δ
j +Mκ

(
�(x)

)(∫
B−B(0,1−3rj)

Φp
(
|∇u(z)|

)
�(z)α dz

)1/p

,

which implies that

lim sup
|x|→1

[
κ
(
�(x)

)]−1|u(x)| � M

(∫
B−B(0,1−3rj)

Φp
(
|∇u(z)|

)
�(z)α dz

)1/p

for all j . Therefore it follows that

lim
|x|→1

[
κ
(
�(x)

)]−1
u(x) = 0,

as required.

7. Remarks

Remark 1. Let {ej} be a sequence in B which tends to a boundary point.
For a number a > 0 and a sequence {εj} of positive numbers, consider the function

u(x) =
∑
j

εj |x− ej |−a.

If a < (n− p)/p , then we can choose {εj} such that
∫
B

|∇u(x)|p dx < ∞.

Further, if a > (n− 1)/q , then we have

Sq(u, |ej |) = ∞.

This implies that the lower limit in Theorem 1 can not be replaced by the upper
limit.
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Remark 2. Let −1 < α < p− 1. For δ > 0, consider the function

f(y) =
∣∣|y| − 1

∣∣a|y − e|−b,

where a = δ − (α+ 1)/p , b = (n − 1)/p and e = (1, 0, . . . , 0). Then
∫
B(2e,1)

f(y)p�(y)α dy < ∞.

We consider the harmonic function u on B defined by

u(x) =
∫
B(2e,1)

(y1 − x1)|x− y|−nf(y)dy.

Then we apply [13, Lemmas 12.1 and 12.2] to establish
∫
Rn

|∇u(x)|p�(x)α dx < ∞

by considering Lipschitz transformations from neighborhoods of boundary points
of B to half spaces. If x ∈ B , then

u(x) >
∫
B(x∗,|x−e|/4)

(y1 − x1)|x− y|−nf(y)dy > M |x− e|1+a−b,

where x∗ = (1+ 1
2 |x− e|)e . Hence, if k(x) = |x− e|1+a−b and δ < (n−p+α)/p−

(n− 1)/q , then

Sq(u, r) � MSq(k, r) � M(1 − r)(p−n−α)/p+(n−1)/q+δ.

This implies that the exponent (n− p+ α)/p− (n− 1)/q is sharp in Theorems 1
and 2.

Remark 3. Let u be a locally p-precise function on B satisfying

(6)
∫
B

|∇u(x)|p�(x)α dx < ∞.

We see that if 0 � α < p− 1 and

1
q
=

n− p+ α

p(n − 1)
> 0,

then

(7) Sq(u, r) � M

(∫
Rn

|∇u(x)|p�(x)α dx

)1/p

.
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Yamashita [27] derived the above inequality for harmonic functions u on B sat-
isfying (6) with p = 2 and 0 � α � 1. In the hyperplane case, we refer to [16,
Theorem 2.2], and the present result will be proved similarly. In fact, to prove (7),
we apply Sobolev’s integral representation (Lemma 2 and Corollary 3) and write

u(x) = c
n∑
j=1

∫
Rn

xj − yj
|x− y|n

∂u

∂yj
(y)dy.

Here we may assume that the extension u vanishes outside B(0, 2). As in the
proof of Theorem 2.2 of [16], we have by Hölder’s inequality

|u(x)| � M

∫
S(0,1)

(∫ 2

0

|x− ty∗|(1−n)p′
∣∣|t| − 1

∣∣−αp′/ptn−1 dt

)1/p′

×
(∫

R1
|∇u(ty∗)|p

∣∣|t| − 1
∣∣αtn−1 dt

)1/p

dS(y∗)

� M

∫
S(0,1)

|x∗ − y∗|1−n+1/p′−α/p

×
(∫

R1
|∇u(ty∗)|p

∣∣|t| − 1
∣∣αtn−1 dt

)1/p

dS(y∗),

where x∗ = x/|x| and y∗ = y/|y| . Now it suffices to apply Sobolev’s inequality.
The case α = p− 1 remains open.

Remark 4. Let u be a locally p-precise function on B satisfying (3). Note
here that if

(8)
∫ 1

0

[
rn−pϕ(r−1)

]−1/(p−1) dr

r
< ∞,

then u is continuous on B and satisfies (5) on the basis of [10, Lemma 3], so that
the conclusions of Theorems 2 and 3 are also valid for u . If in addition

(9)
∫ 1

0

[
rn−p+αϕ(r−1)

]−1/(p−1) dr

r
< ∞,

then u has a continuous extension to Rn , according to [10, Theorem 2]. For these
facts, see also [13], [15] and [20].
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