BOUNDARY LIMITS OF SPHERICAL MEANS FOR BLD AND MONOTONE BLD FUNCTIONS IN THE UNIT BALL

Yoshihiro Mizuta and Tetsu Shimomura

Hiroshima University, The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences, Higashi-Hiroshima 739, Japan

Abstract. Our aim in this paper is to deal with the existence of boundary limits for BLD functions u on the unit ball **B** of \mathbf{R}^n satisfying

$$\int_{\mathbf{B}} |\nabla u(x)|^p (1-|x|)^\alpha \, dx < \infty,$$

where ∇ denotes the gradient, $1 and <math>-1 < \alpha < p - 1$. We consider the L^q -means over the spherical surfaces S(0, r) centered at the origin with radius r, and show that

$$\liminf_{r \to 1} (1-r)^{(n-p+\alpha)/p - (n-1)/q} \left(\int_{S(0,r)} |u(x)|^q \, dS(x) \right)^{1/q} = 0$$

when q > 0 and $(n - p - 1)/p(n - 1) < 1/q < (n - p + \alpha)/p(n - 1)$. If u is in addition monotone in **B** in the sense of Lebesgue, then u is shown to have weighted boundary limit zero.

1. Introduction

Let \mathbf{R}^n denote the *n*-dimensional Euclidean space. We use the notation B(x,r) to denote the open ball centered at x with radius r > 0, whose boundary is denoted by S(x,r). Consider the L^q -means over S(0,r) defined by

$$S_q(u,r) = \left(\frac{1}{|S(0,r)|} \int_{S(0,r)} |u(x)|^q \, dS(x)\right)^{1/q},$$

where |S(0,r)| denotes the surface area, which is written as $|S(0,r)| = \sigma_n r^{n-1}$; in case $q = \infty$, $S_{\infty}(u,r)$ denotes the essential supremum of u over S(0,r). We note by Hölder's inequality that $S_q(u,r)$ is nondecreasing for q.

Let u be a Green potential in the unit ball $\mathbf{B} = B(0, 1)$. Gardiner [1, Theorem 2] showed that

$$\liminf_{r \to 1} (1-r)^{(n-1)(1-1/q)} S_q(u,r) = 0$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 31B25, 31B15.

when $(n-3)/(n-1) < 1/q \leq (n-2)/(n-1)$ and q > 0. This gives an extension of the result by Stoll [22] in the plane case, which states that

$$\liminf_{r \to 1} (1-r) S_{\infty}(u,r) = 0.$$

Recently Herron and Koskela [4, Theorem 7.3, Corollary 7.5] proved that

$$S_{\infty}(u,r) \leq M \left[\log(2/(1-r)) \right]^{(n-1)/n}, \quad 0 < r < 1,$$

with a positive constant M, when u is a monotone function on **B** with finite Dirichlet integral:

$$\int_{\mathbf{B}} |\nabla u(x)|^n \, dx < \infty;$$

see the next section for the definition of monotone functions. We here note that harmonic functions are monotone, \mathscr{A} -harmonic functions and hence coordinate functions of quasiregular mappings are monotone (see [3] and [18]). Thus the class of monotone functions is considerably wide.

Our main aim in this paper is to establish the analogue of these results for BLD and monotone BLD functions u on **B** satisfying

(1)
$$\int_{\mathbf{B}} |\nabla u(x)|^p \varrho(x)^{\alpha} \, dx < \infty,$$

where $\varrho(x) = 1 - |x|$, $1 and <math>-1 < \alpha < p - 1$. We first study weighted boundary limits of spherical L^q -means for BLD functions satisfying (1), and establish a result corresponding to [16, Theorem 2.1] given in half spaces.

If u is a monotone BLD function on $B(x_0, 2r)$ and p > n - 1, then the key for our results is the fact that

(2)
$$|u(x) - u(y)|^p \leq Mr^{p-n} \int_{B(x_0,2r)} |\nabla u(z)|^p dz$$
 whenever $x, y \in B(x_0,r);$

see e.g. [4, Lemma 7.1], [6, Remark, p. 9] and, for the case p = n, [26, Section 16]. If u is harmonic, then (2) holds for $p \ge 1$ by the mean value property, so that the condition p > n - 1 is not required for harmonic functions. Further we note that if p > n, then (2) holds for all BLD functions, on account of Sobolev's theorem. Thus, if we restrict ourselves to monotone functions, then we have only to consider the case n - 1 .

Related results are given by Gardiner [1], Stoll [22], [23], [24] and the first author [12], [13] and [16].

We wish to express our deepest appreciation to the referee for his useful suggestions.

2. Statement of results

If $1 , G is an open set in <math>\mathbb{R}^n$ and $E \subset G$, then the relative p-capacity is defined by

$$C_p(E;G) = \inf \int_G f(y)^p \, dy,$$

where the infimum is taken over all nonnegative measurable functions f on G such that

$$\int_{G} |x - y|^{1 - n} f(y) \, dy \ge 1 \qquad \text{for every } x \in E;$$

see [8] and [15] for the basic properties of p-capacity.

Following Ziemer [28], we say that a locally integrable function u is p-precise in G if

- (i) $\int_G |\nabla u(x)|^p dx < \infty$, where ∇ denotes the gradient;
- (ii) for every $\varepsilon > 0$ there exists an open set ω such that $C_p(\omega, G) < \varepsilon$ and u is continuous as a function on $G \omega$.

According to Ohtsuka [17], we say that a function u is locally p-precise in G if it is p-precise in every relatively compact open subset of G.

We note that if u is locally p-precise in G, then u is partially differentiable almost everywhere on G and its spherical means over S(x,r) are well defined whenever $S(x,r) \subset G$, since a set of p-capacity zero has Hausdorff dimension at most n-p.

We first study the weighted boundary limits of spherical means for locally p-precise functions on **B** satisfying (1).

Theorem 1 (cf. [12, Theorem 2.1] and [16, Theorem 2.1]). Let u be a locally p-precise function on **B** satisfying (1) with $-1 < \alpha < p - 1$. If $p < q < \infty$ and

$$\frac{n-p-1}{p(n-1)} < \frac{1}{q} < \frac{n-p+\alpha}{p(n-1)},$$

then

$$\liminf_{r \to 1} (1-r)^{(n-p+\alpha)/p - (n-1)/q} S_q(u,r) = 0.$$

The sharpness of the exponent will be discussed in the final section. For BLD functions in half spaces of \mathbf{R}^n , Theorem 1 was already given by the first author [16, Theorem 2.1]; for the reader's convenience, we give a proof of Theorem 1.

We say that a continuous function u is monotone in an open set G, in the sense of Lebesgue, if both

$$\max_{\overline{D}} u(x) = \max_{\partial D} u(x) \quad \text{and} \quad \min_{\overline{D}} u(x) = \min_{\partial D} u(x)$$

hold for every relatively compact open set D with the closure $\overline{D} \subset G$ (see [5]). Clearly, harmonic functions are monotone, and more generally, solutions of elliptic partial differential equations of second order and weak solutions for variational problems may be monotone. For these facts, see Gilbarg–Trudinger [2], Heinonen– Kilpeläinen–Martio [3], Reshetnyak [18], Serrin [19], and Vuorinen [25], [26].

It will be seen that the existence of lower limit in Theorem 1 is derived as a consequence of fine limit argument on the line \mathbf{R}^1 . Next we show that the exceptional sets disappear for monotone functions.

Theorem 2. Let u be a monotone function on **B** satisfying (1). If $n - 1 , <math>p < q < \infty$ and

$$\frac{1}{q} < \frac{n-p+\alpha}{p(n-1)},$$

then

$$\lim_{r \to 1} (1-r)^{(n-p+\alpha)/p - (n-1)/q} S_q(u,r) = 0.$$

Corollary 1. Let u be a coordinate function of a quasiregular mapping on **B** satisfying (1). If $n - 1 , <math>p < q < \infty$ and

$$\frac{1}{q} < \frac{n-p+\alpha}{p(n-1)},$$

then

$$\lim_{r \to 1} (1-r)^{(n-p+\alpha)/p - (n-1)/q} S_q(u,r) = 0.$$

For the definition and basic properties of quasiregular mappings, we refer to [3], [18] and [25]. In particular, a coordinate function $u = f_i$ of a quasiregular mapping $f = (f_1, \ldots, f_n)$: $\mathbf{B} \to \mathbf{R}^n$ is \mathscr{A} -harmonic (see [3, Theorem 14.39] and monotone in \mathbf{B} , so that Theorem 2 gives the present corollary.

In case $1/q = (n - p + \alpha)/p(n - 1) > 0$, one might expect that $S_q(u, r)$ is bounded. In fact, we can show that this is true only in case $0 \leq \alpha without$ assuming the monotonicity; see Remark 3 given below in the final section. Werefer the reader to the result by Yamashita [27] who showed affirmatively the case<math>p = 2 and $\alpha = 1$ for harmonic functions. The case $\alpha = p - 1$ remains open.

Finally we treat the case $q = \infty$. In order to give a general result, we consider a nondecreasing positive function φ on the interval $[0, \infty)$ such that φ is log-type, that is, there exists a positive constant M satisfying

$$\varphi(r^2) \leq M\varphi(r) \quad \text{for all } r \geq 0.$$

Set $\Phi_p(r) = r^p \varphi(r)$ for p > 1. Our final aim is to study the existence of weighted boundary limits of monotone BLD functions u on **B**, which satisfy

(3)
$$\int_{\mathbf{B}} \Phi_p (|\nabla u(x)|) \varrho(x)^{\alpha} \, dx < \infty,$$

where ρ is as in (1). Consider the function

$$\kappa(r) = \left[\int_{r}^{1} \left(t^{n-p+\alpha} \varphi(t^{-1}) \right)^{-1/(p-1)} \frac{dt}{t} \right]^{1-1/p}$$

for $0 \leq r \leq 2^{-1}$; set $\kappa(r) = \kappa(2^{-1})$ for $r > 2^{-1}$. We see (cf. [20, Lemma 2.4]) that if $n - p + \alpha > 0$, then

$$\kappa(r) \sim \left[r^{n-p+\alpha}\varphi(r^{-1})\right]^{-1/p}$$
 as $r \to 0$

and if $n - p + \alpha = 0$ and $\varphi(r) = (\log(e + r))^{\sigma}$ with $0 \leq \sigma , then$

$$\kappa(r) \sim \left[\log(1/r)\right]^{(p-1-\sigma)/p}$$
 as $r \to 0$

Theorem 3. Let u be a monotone function on **B** satisfying (3). If $n - 1 and <math>\kappa(0) = \infty$, then

$$\lim_{|x|\to 1} \left[\kappa(\varrho(x))\right]^{-1} u(x) = 0.$$

In case $\varphi \equiv 1$, p = n and $\alpha = 0$, Theorem 3 was proved by Herron–Koskela [4, Theorem 7.3, Corollary 7.5]. In view of [11, Theorem 1] and [16, Theorem 4.1], we see that if u is harmonic in **B**, then the conclusions of Theorems 2 and 3 remain true for p smaller than n - 1.

Corollary 2. Let u be a coordinate function of a quasiregular mapping on **B** satisfying (3). If $n - 1 and <math>\kappa(0) = \infty$, then

$$\lim_{|x|\to 1} \left[\kappa(\varrho(x))\right]^{-1} u(x) = 0.$$

3. Preliminary lemmas

Throughout this paper, let $\varrho(x)$ denote the distance of $x \in \mathbf{R}^n$ from the unit spherical surface S(0, 1), that is,

$$\varrho(x) = \big| |x| - 1 \big|.$$

Further, let M denote various constants independent of the variables in question.

Recall the definition of relative
$$p\text{-capacity}$$
 in the previous section. We write $C_p(E)=0\,$ if

 $C_p(E \cap G; G) = 0$ for every bounded open set G.

We say that a property holds p-q.e. on G if the property holds for every $x \in G$ except that in a set of p-capacity zero. In view of [13, Lemma 2.2], if $E \subset \mathbf{B}$ and $C_p(E) = 0$, then we can find a nonnegative measurable function f on \mathbf{B} such that

$$\int_{\mathbf{B}} f(y)^p \varrho(y)^\alpha \, dy < \infty$$

and

$$\int_{\mathbf{B}} |x - y|^{1 - n} f(y) \, dy = \infty \qquad \text{for every } x \in E.$$

Now we give several results which are used for the proof of Theorem 1.

Lemma 1. If u is a locally p-precise function on **B** satisfying (1) with $-1 < \alpha < p - 1$, then it has an extension \overline{u} with compact support in \mathbf{R}^n which is q-precise in \mathbf{R}^n for $1 < q < \min\{p, p/(1 + \alpha)\}$ and satisfies

$$\int_{\mathbf{R}^n} |\nabla \overline{u}(x)|^p \varrho(x)^\alpha \, dx < \infty$$

Proof. If 1 < q < p and $q < p/(1 + \alpha)$, then Hölder's inequality gives

$$\int_{\mathbf{B}} |\nabla u(x)|^q \, dx \leq \left(\int_{\mathbf{B}} \varrho(x)^{-\alpha q/(p-q)} \, dx \right)^{1-q/p} \left(\int_{\mathbf{B}} |\nabla u(x)|^p \varrho(x)^\alpha \, dx \right)^{q/p} < \infty.$$

Hence we can find a q-precise extension \overline{u} to \mathbb{R}^n by Stein [21, Chapter 5], or we may consider the inversion to define

$$\overline{u}(x) = u(x/|x|^2) \quad \text{for } |x| > 1.$$

We may further assume that the extension \overline{u} vanishes outside B(0,2), by considering $\chi \overline{u}$, where χ is an infinitely differentiable function on \mathbf{R}^n with compact support in B(0,2).

We introduce Sobolev's integral representation.

Lemma 2 (cf. [9]). Let $1 < q < \infty$ and v be a q-precise function on \mathbb{R}^n with compact support. Then

$$v(x) = c \sum_{j=1}^{n} \int_{\mathbf{R}^n} \frac{x_j - y_j}{|x - y|^n} \frac{\partial v}{\partial y_j}(y) \, dy$$

holds for *q*-*q*.*e*. on \mathbf{R}^n , where $c = |S(0,1)|^{-1}$.

Corollary 3. Let u be a locally p-precise function on **B** satisfying (1) with $-1 < \alpha < p - 1$. Then

$$u(x) = c \sum_{j=1}^{n} \int_{\mathbf{R}^{n}} \frac{x_{j} - y_{j}}{|x - y|^{n}} \frac{\partial \overline{u}}{\partial y_{j}}(y) \, dy$$

holds for p-q.e. on **B**, where \overline{u} is an extension of u as in Lemma 1.

Lemma 3 (cf. [12, Lemma 2.1] and [13, Lemma 5.1]). If we set $k_y(x) = |x - y|^{\delta(1-n)}$ for fixed y and $\delta > 0$, then

$$S_{q}(k_{y},r) \leq M \begin{cases} |y|^{-\delta(n-1)} & \text{if } |y| \geq 2r, \\ r^{-\delta(n-1)} & \text{if } \frac{1}{2}r < |y| < 2r \text{ and } 1/q > \delta, \\ r^{-(n-1)/q} ||y| - r|^{(1/q-\delta)(n-1)} & \text{if } \frac{1}{2}r < |y| < 2r \text{ and } 1/q < \delta, \\ r^{-\delta(n-1)} \left[\log(2r/||y| - r|) \right]^{1/q} & \text{if } \frac{1}{2}r < |y| < 2r \text{ and } 1/q = \delta, \\ r^{-\delta(n-1)} & \text{if } |y| \leq \frac{1}{2}r. \end{cases}$$

Corollary 4. If $1 < q < \infty$, then

$$\int_{S(0,r)} |x - y|^{q(1-n)} \, dS(y) \leq M \big| |x| - r \big|^{-(n-1)(q-1)}$$

for every $x \in \mathbf{R}^n$.

Lemma 4. If $-1 < \beta < 0$ and $0 < (1 - n)q + n < -\beta$, then

$$\int_{\mathbf{R}^n} |x-y|^{q(1-n)} \varrho(y)^\beta \, dy \leq M \varrho(x)^{q(1-n)+n+\beta}$$

for every $x \in \mathbf{B}$.

Proof. In view of Corollary 4, we have

$$\int_{\mathbf{R}^n} |x-y|^{q(1-n)} \varrho(y)^{\beta} \, dy = \int_0^\infty \left(\int_{S(0,r)} |x-y|^{q(1-n)} \, dS(y) \right) |1-r|^{\beta} \, dr$$
$$\leq M \int_{\mathbf{R}^1} |r-|x| |^{-(n-1)(q-1)} |1-r|^{\beta} \, dr.$$

Since 0 < -(n-1)(q-1) + 1 < 1 and $0 < \beta + 1 < 1$ by our assumptions, the Riesz composition theorem yields

$$\int_{\mathbf{R}^n} |x - y|^{q(1-n)} \varrho(y)^{\beta} \, dy \leq M \varrho(x)^{-(n-1)(q-1)+\beta+1},$$

as required.

Lemma 5 (cf. [13, Corollary 5.1]). If μ is a finite measure on the real line \mathbf{R}^1 and 0 < d < 1, then

$$\liminf_{r \to 0} |r|^d \int_{\mathbf{R}^1} |r - t|^{-d} d\mu(t) = \mu(\{0\}).$$

4. Proof of Theorem 1

Under the assumptions on $p, \ \alpha \ \text{and} \ q$ in Theorem 1, we can take (β, γ) such that

$$\label{eq:alpha} \begin{split} \alpha < \beta < p-1, \qquad 0 < \gamma < 1, \\ p(n-1)\gamma + p - n > 0, \\ p(n-1)\gamma + p - n < \beta < p(n-1)\gamma + \alpha - p(n-1)/q \end{split}$$

and

$$\frac{1}{q} < \gamma < \frac{1}{q} + \frac{1}{p(n-1)}.$$

In view of Lemma 1 and Corollary 3, we may assume that

$$|u(x)| \leq \int_{\mathbf{R}^n} |x-y|^{1-n} f(y) \, dy$$

for every $x \in \mathbf{B}$, where f is a nonnegative function on \mathbf{R}^n which vanishes outside a bounded set and satisfies

$$\int_{\mathbf{R}^n} f(y)^p \varrho(y)^\alpha \, dy < \infty;$$

recall that $\varrho(y) = \left| |y| - 1 \right|$. Using Hölder's inequality, we have with 1/p + 1/p' = 1

$$|u(x)| \leq \left(\int_{\mathbf{R}^{n}} |x-y|^{a(1-n)} \varrho(y)^{b} \, dy\right)^{1/p'} \left(\int_{\mathbf{R}^{n}} |x-y|^{\gamma(1-n)p} f(y)^{p} \varrho(y)^{\beta} \, dy\right)^{1/p},$$

where $a = (1 - \gamma)p'$ and $b = -\beta p'/p$. Since -1 < b < 0 and

$$\frac{b}{a} < \frac{n}{a'} - 1 < 0, \qquad a' = \frac{a}{a - 1},$$

Lemma 4 yields

$$|u(x)| \leq M\varrho(x)^{(1-\gamma)(1-n)+n/p'-\beta/p} \left(\int_{\mathbf{R}^n} |x-y|^{\gamma(1-n)p} f(y)^p \varrho(y)^\beta \, dy\right)^{1/p}.$$

In view of Minkowski's inequality for integral we have

$$S_{q}(u,r) \leq M(1-r)^{(1-\gamma)(1-n)+n/p'-\beta/p} \\ \times \left[\int_{\mathbf{R}^{n}} \left(\int_{S(0,r)} |x-y|^{\gamma(1-n)q} \, dS(x) \right)^{p/q} f(y)^{p} \varrho(y)^{\beta} \, dy \right]^{1/p}$$

for $2^{-1} < r < 1$. Since $\gamma q > 1$, Corollary 4 gives

$$S_{q}(u,r) \leq M(1-r)^{(1-\gamma)(1-n)+n/p'-\beta/p} \\ \times \left(\int_{\mathbf{R}^{n}} \left| |y| - r \right|^{-(n-1)(\gamma q-1)p/q} f(y)^{p} \varrho(y)^{\beta} \, dy \right)^{1/p}.$$

For simplicity, set $d = (n-1)(\gamma q - 1)p/q$. Then we see that 0 < d < 1. Consider the function

$$K(s,t) = s^{p\omega} s^{p[(1-\gamma)(1-n) + n/p' - \beta/p]} |t-s|^{-d} t^{\beta - \alpha}$$

for $0 \leq s < 1$ and $0 \leq t < \infty$, where we set

$$\omega = (n - p + \alpha)/p - (n - 1)/q.$$

$$(1-r)^{\omega}S_q(u,r) \leq M\left(\int_{\mathbf{R}^n} K(1-r,\varrho(y))f(y)^p \varrho(y)^{\alpha} \, dy\right)^{1/p}.$$

Since $\omega + [(1 - \gamma)(1 - n) + n/p' - \beta/p] > 0$, we see that

$$\lim_{s \to 0} K(s, t) = 0$$

for all fixed t > 0. If $t \ge \frac{3}{2}s$, then

$$K(s,t) \leq M(s/t)^{(n-1)\gamma p + \alpha - \beta - p(n-1)/q} \leq M,$$

if $0 \leq t \leq \frac{1}{2}s$, then

$$K(s,t) \leq M(s/t)^{\alpha-\beta} \leq M$$

and if $\frac{1}{2}s < t < \frac{3}{2}s,$ then

$$K(s,t) \leq Ms^d |s-t|^{-d}.$$

Consequently, applying Lemma 5, we conclude that

$$\liminf_{r \to 1} (1-r)^{\omega} S_q(u,r) = 0.$$

Now the proof of Theorem 1 is completed.

5. Proof of Theorem 2

For a proof of Theorem 2, we need the following result, which gives an essential tool in treating monotone functions.

Lemma 6 (cf. [4, Lemma 7.1], [6, Remark, p. 9], [16, Section 16]). Let p > n - 1. If u is a monotone p-precise function on $B(x_0, 2r)$, then

(4)
$$|u(x) - u(y)|^p \leq Mr^{p-n} \int_{B(x_0, 2r)} |\nabla u(z)|^p dz$$
 whenever $x, y \in B(x_0, r)$.

Lemma 6 is a consequence of Sobolev's theorem, so that the restriction p > n-1 is needed; for a proof of Lemma 6, see for example [4, Lemma 7.1] or [15, Theorem 5.2, Chapter 8].

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let u be a monotone function on **B** satisfying (1) with $n-1 . If <math>|s-t| \leq r < \frac{1}{2}(1-t)$, then Lemma 6 yields

$$|S_q(u,s) - S_q(u,t)| \leq \left(\frac{1}{\sigma_n} \int_{S(0,1)} |u(s\xi) - u(t\xi)|^q \, dS(\xi)\right)^{1/q}$$
$$\leq M r^{(p-n)/p} \left(\int_{S(0,1)} \left(\int_{B(t\xi,2r)} |\nabla u(z)|^p \, dz\right)^{q/p} \, dS(\xi)\right)^{1/q},$$

so that Minkowski's inequality for integral yields

$$|S_q(u,s) - S_q(u,t)| \leq Mr^{(p-n)/p} (2r/t)^{(n-1)/q} \times \left(\int_{B(0,t+2r) - B(0,t-2r)} |\nabla u(z)|^p \, dz \right)^{1/p}.$$

Let $r_j = 2^{-j-1}$, $t_j = 1 - r_{j-1}$ and $A_j = B(0, 1 - r_j) - B(0, 1 - 3r_j)$ for j = 1, 2, ... As before, set

$$\omega = (n-p+\alpha)/p - (n-1)/q > 0.$$

Then we find

$$|S_q(u,t_j) - S_q(u,r)| \leq M r_{j+1}^{-\omega} \left(\int_{A_j} |\nabla u(z)|^p \varrho(z)^{\alpha} \, dz \right)^{1/p}$$

for $t_j \leq r < t_j + r_{j+1}$,

$$|S_q(u,t_j+r_{j+1}) - S_q(u,r)| \leq M r_{j+2}^{-\omega} \left(\int_{A_j} |\nabla u(z)|^p \varrho(z)^{\alpha} dz \right)^{1/p}$$

for $t_j + r_{j+1} \leq r < t_j + r_{j+1} + r_{j+2}$ and

$$|S_q(u,r) - S_q(u,t_{j+1})| \leq Mr_{j+2}^{-\omega} \left(\int_{A_{j+1}} |\nabla u(z)|^p \varrho(z)^{\alpha} dz \right)^{1/p}$$

for $t_j + r_{j+1} + r_{j+2} \leq r < t_{j+1}$. Collecting these results, we have

$$|S_q(u,t_j) - S_q(u,r)| \leq Mr_j^{-\omega} \left(\int_{A_j} |\nabla u(z)|^p \varrho(z)^{\alpha} dz \right)^{1/p}$$

+ $Mr_{j+1}^{-\omega} \left(\int_{A_{j+1}} |\nabla u(z)|^p \varrho(z)^{\alpha} dz \right)^{1/p}$

$$|S_q(u,t_j) - S_q(u,t_{j+m})| \leq M \sum_{l=j}^{j+m} r_l^{-\omega} \left(\int_{A_l} |\nabla u(z)|^p \varrho(z)^{\alpha} dz \right)^{1/p}.$$

Since $A_l \cap A_k = \emptyset$ when $l \ge k + 2$, Hölder's inequality gives

$$|S_{q}(u,t_{j})-S_{q}(u,t_{j+m})| \leq M \left(\sum_{l=j}^{j+m} r_{l}^{-p'\omega}\right)^{1/p'} \left(\sum_{l=j}^{j+m} \int_{A_{l}} |\nabla u(z)|^{p} \varrho(z)^{\alpha} \, dz\right)^{1/p}$$
$$\leq M r_{j+m}^{-\omega} \left(\int_{B(0,1-r_{j+m})-B(0,1-3r_{j})} |\nabla u(z)|^{p} \varrho(z)^{\alpha} \, dz\right)^{1/p}.$$

More generally, if $t_j \leq r < 1$, then we take m such that $t_{j+m-1} \leq r < t_{j+m}$, and establish

$$|S_q(u,t_j) - S_q(u,r)| \le M(1-r)^{-\omega} \left(\int_{\mathbf{B} - B(0,1-3r_j)} |\nabla u(z)|^p \varrho(z)^{\alpha} \, dz \right)^{1/p},$$

which implies that

$$\limsup_{r \to 1} (1-r)^{\omega} S_q(u,r) \leq M \left(\int_{\mathbf{B} - B(0,1-3r_j)} |\nabla u(z)|^p \varrho(z)^{\alpha} \, dz \right)^{1/p}$$

for all j. Therefore it follows that

$$\lim_{r \to 1} (1 - r)^{\omega} S_q(u, r) = 0,$$

as required.

6. Proof of Theorem 3

Let u be a monotone function on **B** satisfying (3) with $n-1 . If <math>B(x,2r) \subset \mathbf{B}$ and $0 < \delta < 1$, then, applying Lemma 6 and dividing the domain of integration into two parts

$$E_1 = \{ z \in B(x, 2r) : |\nabla u(z)| > r^{-\delta} \},\$$

$$E_2 = B(x, 2r) - E_1,$$

we have

$$|u(x) - u(y)|^{p} \leq Mr^{p-n-\delta p} \int_{E_{2}} dz + Mr^{p-n} [\varphi(r^{-\delta})]^{-1} \int_{E_{1}} \Phi_{p} (|\nabla u(z)|) dz.$$

Since $\varphi(r^{-\delta}) \ge M \varphi(r^{-1})$ for r > 0, it follows that

(5)
$$|u(x) - u(y)|^p \leq Mr^{(1-\delta)p} + Mr^{p-n} [\varphi(r^{-1})]^{-1} \int_{B(x,2r)} \Phi_p(|\nabla u(z)|) dz$$

for $y \in B(x,r)$.

Let $x_0 = 0$ and $r_j = 2^{-j-1}$, j = 0, 1, ... For $\xi \in S(0, 1)$, let $x_j = (1-2r_j)\xi$. Then we find with the aid of (5)

$$|u(x_j) - u(y_1)|^p \leq Mr_j^{(1-\delta)p} + Mr_j^{p-n}[\varphi(r_j^{-1})]^{-1} \int_{B(x_j,r_j)} \Phi_p(|\nabla u(z)|) dz$$

for $y_1 \in S(x_j, \frac{1}{2}r_j)$,

$$|u(y_1) - u(y_2)|^p \leq Mr_j^{(1-\delta)p} + Mr_j^{p-n} [\varphi(r_j^{-1})]^{-1} \int_{B(x_j, r_j)} \Phi_p(|\nabla u(z)|) dz$$

for $y_2 \in S(y_1, \frac{1}{4}r_j)$ and

$$|u(y_2) - u(x_{j+1})|^p \leq Mr_{j+1}^{(1-\delta)p} + Mr_{j+1}^{p-n} [\varphi(r_{j+1}^{-1})]^{-1} \int_{B(x_{j+1}, r_{j+1})} \Phi_p(|\nabla u(z)|) dz$$

for $y_2 \in S(x_{j+1}, \frac{1}{2}r_{j+1})$. Thus it follows that

$$\begin{aligned} |u(x_{j}) - u(x_{j+1})| &\leq Mr_{j}^{1-\delta} + Mr_{j+1}^{1-\delta} \\ &+ Mr_{j}^{(p-n)/p} [\varphi(r_{j}^{-1})]^{-1/p} \left(\int_{B(x_{j},r_{j})} \Phi_{p} (|\nabla u(z)|) \, dz \right)^{1/p} \\ &+ Mr_{j+1}^{(p-n)/p} [\varphi(r_{j+1}^{-1})]^{-1/p} \left(\int_{B(x_{j+1},r_{j+1})} \Phi_{p} (|\nabla u(z)|) \, dz \right)^{1/p} \\ &\leq Mr_{j}^{1-\delta} + Mr_{j+1}^{1-\delta} + Mr_{j}^{(p-n-\alpha)/p} [\varphi(r_{j}^{-1})]^{-1/p} \\ &\times \left(\int_{B(x_{j},r_{j})} \Phi_{p} (|\nabla u(z)|) \varrho(z)^{\alpha} \, dz \right)^{1/p} \\ &+ Mr_{j+1}^{(p-n-\alpha)/p} [\varphi(r_{j+1}^{-1})]^{-1/p} \left(\int_{B(x_{j+1},r_{j+1})} \Phi_{p} (|\nabla u(z)|) \varrho(z)^{\alpha} \, dz \right)^{1/p}, \end{aligned}$$

so that

$$|u(x_{j+m}) - u(x_j)| \leq M \sum_{l=j}^{j+m} r_l^{1-\delta} + M \sum_{l=j}^{j+m} r_l^{(p-n-\alpha)/p} [\varphi(r_l^{-1})]^{-1/p} \left(\int_{B(x_l,r_l)} \Phi_p(|\nabla u(z)|) \varrho(z)^{\alpha} dz \right)^{1/p}.$$

Since $B(x_l, r_l) \cap B(x_k, r_k) = \emptyset$ when $l \ge k + 2$, Hölder's inequality gives

$$|u(x_{j}) - u(x_{j+m})| \leq Mr_{j}^{1-\delta} + M \left(\sum_{l=j}^{j+m} r_{l}^{p'(p-n-\alpha)/p} [\varphi(r_{l}^{-1})]^{-p'/p} \right)^{1/p'} \left(\sum_{l=j}^{j+m} \int_{B(x_{l},r_{l})} \Phi_{p} \left(|\nabla u(z)| \right) \varrho(z)^{\alpha} dz \right)^{1/p} \leq Mr_{j}^{1-\delta} + M\kappa(r_{j+m}) \left(\int_{B(0,1-r_{j+m})-B(0,1-3r_{j})} \Phi_{p} \left(|\nabla u(z)| \right) \varrho(z)^{\alpha} dz \right)^{1/p}.$$

If $x \in B(x_{j+m}, r_{j+m})$ with $x_j = (1 - 2r_j)x/|x|$, then

$$|u(x) - u(x_j)| \leq Mr_j^{1-\delta} + M\kappa(\varrho(x)) \left(\int_{\mathbf{B} - B(0, 1-3r_j)} \Phi_p(|\nabla u(z)|) \varrho(z)^{\alpha} dz\right)^{1/p},$$

which implies that

$$\limsup_{|x|\to 1} \left[\kappa(\varrho(x))\right]^{-1} |u(x)| \leq M\left(\int_{\mathbf{B}-B(0,1-3r_j)} \Phi_p(|\nabla u(z)|)\varrho(z)^{\alpha} dz\right)^{1/p}$$

for all j. Therefore it follows that

$$\lim_{|x|\to 1} \left[\kappa(\varrho(x))\right]^{-1} u(x) = 0,$$

as required.

7. Remarks

Remark 1. Let $\{e_j\}$ be a sequence in **B** which tends to a boundary point. For a number a > 0 and a sequence $\{\varepsilon_j\}$ of positive numbers, consider the function

$$u(x) = \sum_{j} \varepsilon_j |x - e_j|^{-a}.$$

If a < (n-p)/p, then we can choose $\{\varepsilon_j\}$ such that

$$\int_{\mathbf{B}} |\nabla u(x)|^p \, dx < \infty.$$

Further, if a > (n-1)/q, then we have

$$S_q(u, |e_j|) = \infty.$$

This implies that the lower limit in Theorem 1 can not be replaced by the upper limit.

Remark 2. Let $-1 < \alpha < p - 1$. For $\delta > 0$, consider the function

$$f(y) = ||y| - 1|^{a}|y - e|^{-b},$$

where $a = \delta - (\alpha + 1)/p$, b = (n - 1)/p and e = (1, 0, ..., 0). Then

$$\int_{B(2e,1)} f(y)^p \varrho(y)^\alpha \, dy < \infty.$$

We consider the harmonic function u on **B** defined by

$$u(x) = \int_{B(2e,1)} (y_1 - x_1) |x - y|^{-n} f(y) \, dy.$$

Then we apply [13, Lemmas 12.1 and 12.2] to establish

$$\int_{\mathbf{R}^n} |\nabla u(x)|^p \varrho(x)^\alpha \, dx < \infty$$

by considering Lipschitz transformations from neighborhoods of boundary points of **B** to half spaces. If $x \in \mathbf{B}$, then

$$u(x) > \int_{B(x^*, |x-e|/4)} (y_1 - x_1) |x - y|^{-n} f(y) \, dy > M |x - e|^{1+a-b},$$

where $x^* = (1 + \frac{1}{2}|x - e|)e$. Hence, if $k(x) = |x - e|^{1+a-b}$ and $\delta < (n - p + \alpha)/p - (n - 1)/q$, then

$$S_q(u,r) \ge MS_q(k,r) \ge M(1-r)^{(p-n-\alpha)/p+(n-1)/q+\delta}$$

This implies that the exponent $(n - p + \alpha)/p - (n - 1)/q$ is sharp in Theorems 1 and 2.

Remark 3. Let u be a locally p-precise function on **B** satisfying

(6)
$$\int_{\mathbf{B}} |\nabla u(x)|^p \varrho(x)^{\alpha} \, dx < \infty.$$

We see that if $0 \leq \alpha and$

$$\frac{1}{q} = \frac{n-p+\alpha}{p(n-1)} > 0,$$

then

(7)
$$S_q(u,r) \leq M\left(\int_{\mathbf{R}^n} |\nabla u(x)|^p \varrho(x)^\alpha \, dx\right)^{1/p}.$$

Yamashita [27] derived the above inequality for harmonic functions u on **B** satisfying (6) with p = 2 and $0 \leq \alpha \leq 1$. In the hyperplane case, we refer to [16, Theorem 2.2], and the present result will be proved similarly. In fact, to prove (7), we apply Sobolev's integral representation (Lemma 2 and Corollary 3) and write

$$u(x) = c \sum_{j=1}^{n} \int_{\mathbf{R}^{n}} \frac{x_{j} - y_{j}}{|x - y|^{n}} \frac{\partial \overline{u}}{\partial y_{j}}(y) \, dy.$$

Here we may assume that the extension \overline{u} vanishes outside B(0,2). As in the proof of Theorem 2.2 of [16], we have by Hölder's inequality

$$\begin{aligned} |u(x)| &\leq M \int_{S(0,1)} \left(\int_{0}^{2} |x - ty^{*}|^{(1-n)p'} ||t| - 1|^{-\alpha p'/p} t^{n-1} dt \right)^{1/p'} \\ &\times \left(\int_{\mathbf{R}^{1}} |\nabla \overline{u}(ty^{*})|^{p} ||t| - 1|^{\alpha} t^{n-1} dt \right)^{1/p} dS(y^{*}) \\ &\leq M \int_{S(0,1)} |x^{*} - y^{*}|^{1-n+1/p'-\alpha/p} \\ &\times \left(\int_{\mathbf{R}^{1}} |\nabla \overline{u}(ty^{*})|^{p} ||t| - 1|^{\alpha} t^{n-1} dt \right)^{1/p} dS(y^{*}), \end{aligned}$$

where $x^* = x/|x|$ and $y^* = y/|y|$. Now it suffices to apply Sobolev's inequality.

The case $\alpha = p - 1$ remains open.

Remark 4. Let u be a locally p-precise function on **B** satisfying (3). Note here that if

(8)
$$\int_0^1 \left[r^{n-p} \varphi(r^{-1}) \right]^{-1/(p-1)} \frac{dr}{r} < \infty,$$

then u is continuous on **B** and satisfies (5) on the basis of [10, Lemma 3], so that the conclusions of Theorems 2 and 3 are also valid for u. If in addition

(9)
$$\int_{0}^{1} \left[r^{n-p+\alpha} \varphi(r^{-1}) \right]^{-1/(p-1)} \frac{dr}{r} < \infty,$$

then u has a continuous extension to \mathbb{R}^n , according to [10, Theorem 2]. For these facts, see also [13], [15] and [20].

References

- GARDINER, S.J.: Growth properties of *p*th means of potentials in the unit ball. Proc. Amer. Math. Soc. 103, 1988, 861–869.
- [2] GILBARG, D., and N.S. TRUDINGER: Elliptic Partial Differential Equations of Second Order, Second Edition. - Springer-Verlag, 1983.

60	Yoshihiro Mizuta and Tetsu Shimomura
[3]	HEINONEN, J., T. KILPELÄINEN and O. MARTIO: Nonlinear Potential Theory of Degen- erate Elliptic Equations Clarendon Press, 1993.
[4]	HERRON, D.A., and P. KOSKELA: Conformal capacity and the quasihyperbolic metric Indiana Univ. Math. J. 45, 1996, 333–359.
[5]	LEBESGUE, H.: Sur le probléme de Dirichlet Rend. Circ. Mat. Palermo 24, 1907, 371–402.
[6]	MANFREDI, J.J., and E. VILLAMOR: Traces of monotone Sobolev functions J. Geom. Anal. (to appear).
[7]	MATSUMOTO, S., and Y. MIZUTA: On the existence of tangential limits of monotone BLD functions Hiroshima Math. J. 26, 1996, 323–339.
[8]	MEYERS, N.G.: A theory of capacities for potentials in Lebesgue classes Math. Scand. 26, 1970, 255–292.
[9]	MIZUTA, Y.: Integral representations of Beppo Levi functions of higher order Hiroshima Math. J. 4, 1974, 375–396.
[10]	MIZUTA, Y.: Boundary limits of locally $n\mbox{-}precise$ functions Hiroshima Math. J. 20, 1990, 109–126.
[11]	MIZUTA, Y.: On the existence of weighted boundary limits of harmonic functions Ann. Inst. Fourier (Grenoble) 40, 1990, 811–833.
[12]	MIZUTA, Y.: Spherical means of Beppo Levi functions Math. Nachr. 158, 1992, 241–262.
[13]	MIZUTA, Y.: Continuity properties of potentials and Beppo–Levi–Deny functions Hiroshima Math. J. 23, 1993, 79–153.
[14]	MIZUTA, Y.: Tangential limits of monotone Sobolev functions Ann. Acad. Sci. Fenn. Ser. A I Math. 20, 1995, 315–326.
[15]	MIZUTA, Y.: Potential Theory in Euclidean Spaces Gakkōtosho, Tokyo, 1996.
[16] [17]	MIZUTA, Y.: Hyperplane means of potentials J. Math. Anal. Appl. 201, 1996, 226–246. OHTSUKA, M.: Extremal length and precise functions in 3-space Lecture Notes at
	Hiroshima University, 1972.
[18]	RESHETNYAK, YU.G.: Space Mappings with Bounded Distortion Amer. Math. Soc. Transl. 73, 1989.
[19]	SERRIN, J.: Local behavior of solutions of quasi-linear equations Acta Math. 111, 1964, 247–302.
[20]	SHIMOMURA, T., and Y. MIZUTA: Taylor expansion of Riesz potentials Hiroshima Math. J. 25, 1995, 323–339.
[21]	STEIN, E.M.: Singular Integrals and Differentiability Properties of Functions Princeton Univ. Press, Princeton, 1970.
[22]	STOLL, M.: Boundary limits of subharmonic functions in the unit disc Proc. Amer. Math. Soc. 93, 1985, 567–568.
[23]	STOLL, M.: Rate of growth of p th means of invariant potentials in the unit ball of C^n J. Math. Anal. Appl. 143, 1989, 480–499.
[24]	STOLL, M.: Rate of growth of p th means of invariant potentials in the unit ball of C^n , II J. Math. Anal. Appl. 165, 1992, 374–398.
[25]	VUORINEN, M.: On functions with a finite or locally bounded Dirichlet integral Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 177–193.
[26]	VUORINEN, M.: Conformal Geometry and Quasiregular Mappings Lecture Notes in Math. 1319, Springer-Verlag, 1988.
[27]	YAMASHITA, S.: Dirichlet-finite functions and harmonic functions Illinois J. Math. 25, 1981, 626–631.
[28]	ZIEMER, W.P.: Extremal length as a capacity Michigan Math. J. 17, 1970, 117–128.

Received 24 March 1997