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Abstract. We show that for each cusp on the boundary of Maskit’s embedding M ⊂ H
of the Teichmüller space of punctured tori there is a sequence of parameters in the complement
ofM converging to the cusp such that the parameters correspond to discrete groups with elliptic
elements. Using Tukia’s version of Marden’s isomorphism theorem we identify them as cusps on
the boundary of certain deformation spaces of Koebe groups with a non-simply connected invariant
component.

1. Introduction

A Kleinian group G is a discrete group of Möbius transformations, that is, of
conformal bijections of the extended complex plane Ĉ= C∪{∞} . We use matrix
notation for Möbius transformations, identifying the transformation

(1.1) z �→ az + b
cz + d

with the matrix

(1.2)
(
a b
c d

)
∈ PSL(2,C).

The extended complex plane is divided into two disjoint sets according to the type
of the action of G on these sets: the set of discontinuity, or the ordinary set Ω(G)
where the group G acts discontinuously, and the limit set Λ(G) = Ĉ\Ω(G). For
material on Kleinian groups, we refer to Maskit [21].

Let G be a Kleinian group. If X ⊂ Ĉ, then

(1.3) Stab(X) = StabG(X) = {g ∈ G : g(X) = X}.
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is the stabilizer of X in G . A component of the ordinary set such that StabG(Ω0)
= G is called an invariant component of G . G is a Fuchsian group of the first kind
if Ω(G) consists of two G-invariant round disks. G is called a terminal b-group of
type (g, n) if it has a simply connected invariant component Ω0(G) ⊂ Ω(G) such
that Ω0/G is a Riemann surface of genus g with n punctures, and if (Ω \Ω0)/G
is a collection of 2g − 2 + n thrice punctured spheres.

The (quasiconformal) deformation space or Teichmüller space T (G) of a
Kleinian group G is
(1.4)
T (G) =

{
w: Ĉ →Ĉ quasiconformal : w ◦ g ◦ w−1 ∈ PSL(2,C) for all g ∈ G

}
/ ∼,

where w1 ∼ w2 if there is a Möbius transformation A ∈ PSL(2,C) such that

(1.5) w1 ◦ g ◦ w−1
1 = A ◦ w2 ◦ g ◦ w−1

2 ◦A−1 for all g ∈ G.
If G is finitely generated, then T (G) is a finite dimensional complex manifold.
If G is a torsion-free terminal b-group such that the quotient Riemann surface
Ω0(G)/G has genus g and n punctures, then T (G) is naturally isomorphic to
T (g, n), the Teichmüller space of Riemann surfaces with finite area, genus g ,
and n punctures. The complex dimension of this space is 3g − 3 + n . See [2],
[14], [17] and the references given there for more details on these spaces and the
identifications between the various related spaces.

The Maskit embedding [19], [15] of the Teichmüller space T (g, n) is defined
by first identifying T (g, n) with T (G), where G is a torsion-free terminal b-
group as above. T (G) is then analytically embedded in C3g−3+n using traces
and/or fixed points of a suitable collection of group elements.

In this paper we study the complex one-dimensional case of once-punctured
tori, (g, n) = (1, 1). This is essentially the only one-dimensional case; T (0, 4)
is canonically biholomorphic to T (1, 1). In fact, the conformal map identifying
T (1, 1) with T (0, 4) has a particularly simple form if one uses Maskit’s embedding
for both spaces. For more details on this we refer to Kra [15, Section 6].

Maskit’s embedding of T (1, 1) can be represented as the set M of parameters
µ ∈ H for which the group G[µ] generated by two transformations

(1.6) S =
(
1 2
0 1

)
or S(z) = z + 2,

and

(1.7) T [µ] =
(
−iµ −i
−i 0

)
or T [µ](z) =

1
z
+ µ,

is a terminal b-group representing a punctured torus on its invariant compo-
nent Ω0(G). Let

(1.8) S̃ = T [µ]−1S−1T [µ] =
(

1 0
−2 1

)
.
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From (1.6)–(1.8) we see that for any µ ∈ C , G[µ] contains a discrete Fuchsian
subgroup

(1.9) Γ0 = 〈S,S̃ 〉,

the level 2 principal congruence subgroup of PSL(2,Z), that keeps both H and
H∗ fixed. Moreover, Λ(Γ0) = R ∪ {∞} . For parameters µ ∈ M it is useful
to think of G = G[µ] as the HNN extension of 〈S,S̃ 〉 by T [µ] . It follows from
Maskit’s second combination theorem, [21, Theorem VII.E.5], that this is the case
for all parameters µ such that Imµ > 2, implying H+ 2i ⊂ M .

Let Ω0(G[µ]) = Ω0[µ] be the invariant component of G[µ] . The quotient sur-
face Ω(G[µ])/G[µ] consists of the disjoint union of a punctured torus Ω0(G[µ])/G[µ]
and a thrice punctured sphere. The punctures of the thrice punctured sphere
H∗/Stab(H∗) correspond to the three parabolic conjugacy classes of S , S̃ and

(1.10) K = S̃S =
(

1 2
−2 −3

)

in 〈S,S̃ 〉 . Note that for µ ∈ M there are only two parabolic conjugacy classes
in G[µ] : S and S̃ are conjugate in G[µ] by (1.8), and all parabolic elements of G[µ]
are conjugate to parabolics of 〈S,S̃ 〉 by Maskit’s second combination theorem,
[21, Theorem VII.E.5]. The parabolic transformation K = S̃S corresponds to the
puncture on the torus component of the quotient Riemann surface.

The set M and its boundary have been studied in detail by Keen and Series
in [10] and by Wright in the unpublished manuscript [31]. In this note we consider
discrete groups generated by S and T [µ] for parameters µ ∈ C \M . We can
restrict our attention to the case µ ∈ H \ M , as a simple calculation shows that
for all µ ∈ C

(1.11) G[µ] = EG[−µ]E,

for E(z) = −z , E2 = 1. In other words, G[−µ] is discrete if and only if G[µ] is
discrete.

We consider the following questions:
(1) For which parameters µ ∈ C \M is the group G[µ] discrete?
(2) If G[µ] is discrete, what is the geometry of the quotient spaces Ω(G[µ])/G[µ]

and H3/G[µ]?
If µ ∈ M , the geometry of the quotient space H3/G[µ] is well understood.

The boundary of the convex core (See Section 5 for the terminology used here)
is a pleated surface in the sense of Thurston [29] with two components, a totally
geodesic sphere with three punctures, and a punctured torus that is planar out-
side a measured geodesic lamination. Keen and Series [10] studied the associated
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pleating structure on M in detail. In particular, they showed that the pleating
ray, the locus of points in M with a fixed pleating lamination (fixed as a projec-
tive measured lamination) is homeomorphic to a line, with exactly one endpoint
on ∂M . If the pleating lamination is a simple closed geodesic, the associated
pleating ray is said to be rational. Each rational pleating ray Pp/q ends at a
cusp µp/q ∈ M , such that G[µp/q] is a geometrically finite Kleinian group that
represents the disjoint union of two thrice punctured spheres.

Keen and Series showed that each rational pleating ray is contained in the
real locus of a polynomial in µ , namely the trace of an element Wp/q of G[µ]
representing the pleating locus on Ω(G[µ])/G[µ] . Using a slight modification the
circle chain method of Keen and Series [10] and Wright [31] (see Sections 6 and 8),
a result of McShane, Parker and Redfern [23] on cusp groups, and Maskit’s second
combination theorem [22] we prove that if we only consider parameters in the real
locus associated with a pleating ray, we can determine which parameters close to
the cusp correspond to a discrete group.

9.4. Theorem. On the extension P+

p/q of each rational pleating ray there

is an open neighborhood U of the cusp µp/q on P+

p/q such that if µ ∈ P+

p/q ∩U

and | trWp/q| = 2 cos(π/n) for some n ∈ N , n ≥ 3 , then

(1.12) G[µ] = F ∗Wr/s[S,T [µ]] .

For these values of µ , G[µ] is a Kleinian group representing a thrice punctured
sphere and a sphere with a puncture and two branch points of order n on its
ordinary set.

If µ ∈
(
P+

p/q ∩ U
)
\M is not of this form, then G[µ] is not discrete.

A similar observation for the Bers embedding of Teichmüller space is made
by Kra and Maskit in [16], and for the so-called Riley slice of Schottky space by
Riley in the introduction to [27].

We do not have an estimate for the size of the neighborhood U or how big n
has to be for a fixed rational number p/q to guarantee that the group is discrete.
Computer experiments suggest that the groups should be discrete for all n ≥ 2.
See Remark 9.7 for a special case.

We also study groups that are HNN extensions of triangle groups that uni-
formize a pair of spheres with a puncture and two cone points of equal orders.
In Sections 2–5 we introduce a pleating structure on the deformation spaces Mn

of groups of this form, analogous to [10], concentrating on rational pleating rays.
The motivation for studying these groups is that we can show that the discrete
groups found in Theorem 9.4 are conjugate to groups that correspond to cusps on
the boundaries of the spaces Mn . The deformation spaces Mn are treated in [1]
and [26]. For details on the pleating structure on the Riley slice see [11] and [13].



The outside of T (1, 1) in Maskit’s embedding 309

9.6. Corollary. Let p/q ∈ Q , n ∈ N , n ≥ 3 , and p′ ∈ Z such that
pp′ = 1mod q . Let µp′/q,n be the boundary point of Mn on the ray Pn

p′/q . If

the group G[µp/q(n)] is discrete, then it is conjugate to Gn[µp′/q,n] by a Möbius
transformation.
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2. Deformation spaces of Koebe groups of type (1, 1,∞)

In this section we consider Kleinian groups that can be obtained from hy-
perbolic triangle groups by an HNN construction conjugating two maximal cyclic
subgroups. These groups include torsion-free terminal b-groups (see [15]) and a
class of Koebe groups (see [26]) where one simple closed geodesic on the corre-
sponding punctured torus is represented, respectively, by a parabolic or an elliptic
transformation.

2.1. Definition. A Kleinian group G that has an invariant component
Ω0 ⊂ Ω(G) is called a Koebe group if any other component ∆′ ⊂ Ω(G) \ Ω0 is a
round disk. If the stabilizers of the disk components are hyperbolic triangle groups,
the Koebe group is terminal. If the invariant component Ω0 is simply connected,
the group is called a b-group. In this paper Koebe group usually means a terminal
Koebe group that is not a b-group.

In this paper a presentation of a Kleinian group contains, in addition to
the usual presentation of a group, a list of conjugacy classes that are assumed to
consist of parabolic transformations. Sometimes the group may contain additional
parabolic elements not included in this list.

A Fuchsian group F acting on the hyperbolic plane H is called a (hyperbolic)
triangle group if H/F is a sphere with p punctures and and e projections of
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fixed points of elliptic elements of F such that p + e = 3. We refer to the
projections of elliptic fixed points on Ω(G)/G as cone points. The signature of a
triangle group is a triple (n1, n2, n3), ni ∈ {2, 3, . . . ,∞} that records the orders
of the transformations of F corresponding to the cone points and punctures. In
particular, a puncture on H/F is denoted by ∞ in the signature.

Let G be a Kleinian group. An elliptic Möbius transformation g ∈ G is a
primitive element of G , if it is conjugate to a rotation by 2π/n , n ∈ Z , and if any
elliptic element in G with the same fixed points as g is a power of g . Let x ∈Ĉ
be the fixed point of a parabolic transformation of G . A parabolic transformation
g ∈ G is primitive if it is not a positive power of any other transformation of G .

2.2. Definition. Let Fn , 3 ≤ n ≤ ∞ , be a triangle group of signature
(n, n,∞). If 3 ≤ n < ∞ , two primitive elliptic transformations A and B are
canonical generators for Fn , if Fn has the presentation

(2.1) Fn = 〈An, Bn : Ann = Bnn = id, Kn = BnAn parabolic〉.

If n = ∞ , two primitive parabolic transformations A∞ and B∞ in F∞ are
canonical generators if F∞ has the presentation

(2.2) F∞ = 〈A∞, B∞ : A∞, B∞, and K∞ = B∞A∞ parabolic〉.

Let Fn be as above. We wish to construct a new Kleinian group G = 〈Fn, C〉
that represents a punctured torus on an invariant component of its set of disconti-
nuity. This amounts to the following gluing construction. Let X be a component
of the quotient Ω(Fn)/Fn . We cut out disks around the elliptic special points (for
n finite) or punctures (for n = ∞) on X corresponding to the canonical genera-
tors An and Bn , and glue the boundaries of the remaining surface together, thus
producing a punctured torus. This can be achieved by adding a new generator
Cn[τ ] satisfying

(2.3) C−1
n AnCn = B−1

n

such that the group Gn = 〈Fn, C〉 is discrete and Gn has the presentation

(2.4)
Gn = 〈An, Bn, Cn : Ann = Bnn = id, C−1

n AnCn = B−1
n ,

Kn = BnAn parabolic〉,

and similarly for n = ∞ ; see [15] or [26] for details. If Gn has the presentation
(2.4), then it is the HNN extension of Fn by Cn , denoted

(2.5) Gn = Fn ∗Cn .

There is a one complex parameter family of transformations Cn[µ] for each
n = 3, 4, . . . ,∞ satisfying condition (2.3). We describe the two cases briefly, and
refer to [15] and [26] for details.
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n = ∞ . It is convenient to normalize the torsion-free triangle group F∞ so
that it acts discontinuously on the union of the upper and lower half planes. We
use a normalization where the generators are

(2.6) S = A∞ =
(
1 2
0 1

)
and S̃ = B∞ =

(
1 0

−2 1

)
.

The HNN extensions of F∞ are groups of the form

(2.7) G[µ] = G∞[µ] = 〈S,S̃ 〉∗T [µ] = 〈S, T [µ]〉,

where

(2.8) T [µ] =
(
−iµ −i
−i 0

)
,

satisfying

(2.9) S̃ = T [µ]−1S−1T [µ].

It was shown in [15] that for Imµ > 2, G[µ] is a terminal b-group uni-
formizing a punctured torus. The Maskit embedding of the Teichmüller space
of once-punctured tori, M is the open set of parameters µ ∈ H , containing
{µ ∈ H | Imµ > 2} for which G[µ] is a terminal b-group. For these parameters

(2.10) G[µ] = F∞ ∗T [µ] .

3 ≤ n <∞ . After normalization we can assume that Fn is generated by two
elliptic transformations

(2.11) An =
(
e−iπ/n 0

0 eiπ/n

)
,

and

(2.12)
Bn =

(
i sin(π/n) cosh dn − cos(π/n) −i sin(π/n) sinh dn

i sin(π/n) sinh dn −i sin(π/n) cosh dn − cos(π/n)

)

=
(
2i/ sin(π/n)− eiπ/n −2i cot(π/n)

2i cot(π/n) −2i/ sin(π/n)− e−iπ/n
)
,

where

(2.13) dn = arcosh
cos2 π/n+ 1
sin2 π/n

= 2arcosh
1

sin(π/n)
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is the hyperbolic distance between the fixed points of A and B in D .
The general form of the transformation Cn satisfying (2.3) is

(2.14)
Cn[µ] =

( √
µ sinh(dn/2) −√

µ cosh(dn/2)√
µ−1cosh(dn/2) −√

µ−1sinh(dn/2)

)

=
( √

µ cot(π/n) −√
µ/ sin(π/n)

1/
(√
µ sin(π/n)

)
− cot(π/n)/

√
µ

)
.

Clearly the choice of the branch of the square root does not change C [µ] as a
Möbius transformation. It was shown in [26] that for

(2.15) |µ| > coth2(dn/4) =
(
1 + sin(π/n)
cos(π/n)

)2

,

the group

(2.16) Gn[µ] = 〈Fn, Cn[µ]〉
is a Koebe group that represents a punctured torus on its invariant component,
and that the map Gn[µ] �→ µ is a global coordinate for the deformation space of
any fixed Koebe group Gn[µ0] . We denote the image of the deformation space of
Gn[µ0] under this map by Mn .

Figure 1. The limit set of a Kleinian group from M4 corresponding to the parameter µ =
4.32 + 1.26i≈ 4.5 e0.28 .
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If µ ∈ Mn , n finite, the invariant component Ω0 of Gn[µ] is infinitely con-
nected, see Figure 1. There are homotopically nontrivial simple closed curves in
Ω0 that are stabilized by conjugates of the finite cyclic group generated by An .
These loops project n -to-1 to a non-dividing simple closed geodesic α on the
punctured torus Ω0/Gn[µ] .

The mapping class group of a Riemann surface Y is the group of orientation
preserving homeomorphisms of Y modulo those homotopic to the identity map.
The deformation space T (Gn[µ]) is T (1, 1) factored by the action of the subgroup
of the mapping class group generated by the nth power of the Dehn twist about
this special curve. Complex analytically T (Gn[µ]) , 3 ≤ n < ∞ , is a punctured
disk, in Mn the puncture is ∞ . More detailed treatments of these deformation
spaces can be found in [1] and [26].

The quotient space M = H3/Gn is a three-orbifold whose topology can be
described as follows: Let X = Ω0(Gn)/Gn be a punctured torus, and let α ⊂ X
be the simple closed curve on X corresponding to the elliptic element An . The
orbifold M is obtained from X× [0, 1] by adding a singular two-handle Dn× [0, 1] .
Here Dn is a disk with a metric cone singularity of order n in the origin, that
is, Dn is the quotient of the unit disk D by the action of a finite cyclic group
generated by a rotation z �→ e2πi/nz . The curve ∂Dn× 1

2
is identified with α×{0} ,

and ∂Dn × [0, 1] is identified with an annular neighborhood of α in X × {0} .
The line {0}× [0, 1] ⊂M is the singular locus of M , a line that connects the two
cone points of order n in Ω(Gn)/Gn .

Although a parameter µ ∈ Mn defines the transformation Cn[µ] uniquely as
a Möbius transformation, the trace of Cn is not a single-valued analytical function
on Mn . The expression of Cn involves τ =

√
µ in an essential way, and the choice

of the branch of the square root causes an ambiguity. Therefore, it is sometimes
convenient to work in a 2 − 1 covering space. This is the parameterization used
in Figure 2.

2.3. Lemma. Let

(2.17) M̃n = {µ̃ ∈ C : ∃µ ∈ Mn such that µ̃ = trC [µ]}.

The map µ̃ �→ µ is a 2− 1 analytical covering map M̃n → M .

Proof. Let µ = τ 2 . By Cn[τ ] we mean the expression of Cn[µ] with a fixed
choice of the square root. With this notation,

(2.18) trC [τ ] = cot(π/n)(τ − 1/τ ).

Mn is connected, and clearly no parameter from the unit circle can be contained
in Mn . Thus, Mn ⊂ {µ = τ 2 : |τ | > 1} . The map τ �→ τ − (1/τ ) maps the out-
side of the unit disk injectively onto the complement of the interval [−2i, 2i] ⊂ C .



314 Jouni Parkkonen

  .0

  .0

One tick = 10^  0

MU       =   .0500000000+i   .9300000000 Special words:  a AB b abAB
eps     =        .0100000000 bound  =    50.0000000000
No. of limit points:    58549   Max. level =      110
No. of limit points:    58549   Max. level =      110

Figure 2. This picture shows a 2 to 1 covering of M21 by “the trace plane” M̃n . The
plotted parameter is i trCn[τ ] = i cot(π/21)(τ − 1/τ ) . The lifts of integral pleating rays P21

m ,
m = 0, 1, . . . , 20 are shown. See Lemma 2.3 for more details on the covering, and Section 5 for the
definition of pleating rays.

(2.19){
τ ∈ C : |τ | > 1

}
z �→z2 2−1

��

τ �→τ−(1/τ)

1−1
�� C \

[
−2i cot π

n
, 2i cot

π

n

]
⊃

{
trC [τ ] : τ 2 ∈ Mn

}

{
τ : |τ | > 1

}
⊃ Mn.

Combining these observations, it is clear that the map trC [τ ] �→ µ is 2 to 1 from
M̃n =

{
trC [τ ] : µ ∈ Mn

}
.

3. Spaces of measured laminations

Keen and Series studied the Maskit embedding M of T (1, 1) in [10]. They
related the parameters in M to the geometry of the quotient of H3 by the action of
the group G∞[µ] . In order to do the same kind of investigation for Mn we study
the space of measured geodesic laminations on the punctured torus, and define
the appropriate space of measured laminations associated with Mn , n finite. The
main difference to M comes from the fact that there is a simple closed geodesic
γ on Ω(Gn)/Gn that is represented by an elliptic element of Gn . On the orbifold
M = H/Gn , γ is a loop that winds once around the singular locus of M .
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3.1. Definition. Let Y be a hyperbolic Riemann surface. A geodesic
lamination on Y is a closed subset of Y that is the disjoint union of a collection
of simple (not necessarily closed) geodesics on Y . A transverse measure σ on a
geodesic lamination λ assigns to any embedded image I of [0, 1] transversal to λ ,
a Borel measure with finite total mass such that the measure is supported on I∩λ ,
and the measure is invariant under isotopies that preserve the lamination λ . The
pair (λ, σ) is a measured geodesic lamination. The lamination λ is the support
of σ .

We denote the space of measured geodesic laminations on a Riemann surface
Y by ML (Y ). We use the weak topology for measures on the space ML (Y ):
A sequence (λn, σn) ∈ ML (Y ) converges (weakly) to (λ, σ) ∈ ML (Y ) if

(3.1) lim
n→∞

∫
I

ϕdσn =
∫
I

ϕdσ

for any interval I transversal to λ and λn for all n , and for all compactly sup-
ported continuous functions ϕ . The space of projective measured laminations on
Y is

(3.2) PML (Y ) = ML (Y ) \ {0}/(γ, σ) ∼ (γ, r σ),

where r > 0. Using the topology induced from ML (Y ) by the above projection,
PML (Y ) is homeomorphic to S6g−7+2p , where g is the genus of Y and p is the
number of punctures on Y .

The structure of those geodesic laminations that support a transverse measure
is more restricted than that of a general geodesic lamination.

3.2. Proposition. Let X be a punctured torus. Let λ ⊂ X be the support
of a nonzero measured geodesic lamination. Then either

(1) λ is a simple closed geodesic and X \ λ is a sphere with a puncture and two
geodesic boundary components of equal length , or

(2) λ is the closure of an infinite simple geodesic, and X \λ is a punctured bigon.

Proof. [29, Proposition 9.5.2].

For the general case we refer the reader to Thurston [29, Section 9] and to
Otal [25, Section A.3]. For the rest of the paper we will only be concerned with
the case of a punctured torus. If Y and Y ′ are two homeomorphic Riemann sur-
faces of finite area, the associated spaces of measured laminations are canonically
isomorphic. We denote the space of measured laminations on a punctured torus
by ML (1, 1), and the corresponding projectivized space by PML (1, 1).

The space PML (1, 1) is naturally identified with R̂= R∪ {∞} : a geodesic
lamination on a punctured torus can be identified with a geodesic on the square
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Euclidean torus, and the geodesics on the Euclidean torus are in 1 to 1 correspon-
dence with their slopes r ∈ R∪{∞} in the standard uniformization of the square
torus as C/Z2 . This identifies simple closed geodesics on the punctured torus
with Q̂= Q∪ {∞} . We will call a simple closed geodesic on the punctured torus
that is identified with r ∈ Q the r -curve. For more details on this identification
see e.g. Birman and Series [3] Appendix, or Series [28].

4. Gn and simple closed curves on punctured tori

The set of simple closed curves on a Riemann surface Y can be embedded
into PML (Y ), by associating a Dirac mass to each intersection of the simple
closed curve with a transversal. With this identification, simple closed curves
form a dense countable subset in PML (Y ). In this section we describe methods
from combinatorial group theory that will be used for bookkeeping of group ele-
ments that correspond to simple closed curves in the groups Gn . In the following
definition the “relation” a∞2 = 1 means that the element a2 ∈ G has infinite
order.

4.1. Definition. Let

(4.1) G = 〈a1, a2 : an2 = 1〉 =: 〈a1〉 ∗ 〈a2 : an2 = 1〉,

n = 2, 3, . . . ,∞ . A word

(4.2) W = aα1
ν1 a

α2
ν2 · · · aαp

νp
,

where p ∈ N , αi ∈ Z , ν1 = ±1, is cyclically reduced in G (with generators a1 ,
a2 ) if
(1) νi �= νi+1 for 1 ≤ i ≤ p− 1, ν1 �= νp , and
(2) 1 ≤ αi ≤ n if νi = 2.

It is easy to see from the presentation (2.4) that for parameters µ ∈ Mn ,

(4.3) Gn[µ] = 〈An〉 ∗ 〈Cn[µ]〉.

We will make use of the following fact:

4.2. Theorem. Two cyclically reduced words in the group Gn[µ] for µ ∈ Mn

are conjugate if and only if they are cyclic permutations of each other.

Proof. [18, Theorem 1.4].

Let us first consider the case of terminal b-groups. A simple closed curve on
the punctured torus corresponds to a conjugacy class of transformations of G[µ] .
As described in Section 3, the free homotopy classes of simple closed curves on



The outside of T (1, 1) in Maskit’s embedding 317

a punctured torus that are not parallel to the puncture, can be enumerated by
Q ∪ {∞} . We will sketch a method of producing a representative

(4.4) Wp/q = Wp/q[µ] =Wp/q

[
S, T [µ]

]
called the p/q -word that is cyclically reduced in G[µ] with the generators S−1

and T [µ] such that Wp/q represents the p/q -curve on Ω0[µ]/G[µ] . See e.g. [10],
[24], or [4] for proofs.

The special words can be defined inductively using the Farey sequence as
follows. Two rational numbers p/q and p′/q′ (where q, q′ > 0 and (p, q), (p′, q′)
are relatively prime) are called (Farey) neighbors if

(4.5) pq′ − p′q = ±1.

In the construction of the p/q -words, we first set

(4.6) W1/0 =W∞ = S−1 and W0/1 = W0 = T.

If a/b < c/d (with the convention 1/0 = ∞ > r for all r ∈ Q) are neighbors, we
require

(4.7) W(a+c)/(b+d) = Wc/dWa/b.

Note that we get the words for negative integers n = −1,−2, . . . by solving the
equations

(4.8) Wn+1 = W∞Wn.

This process assigns a unique word Wp/q to each rational number p/q ∈ Q . It is
easy to see from the construction of the words that for p ≥ 0, p is the number of
S−1 ’s and q is the number of T ’s in Wp/q . For p < 0, −p is the number of S ’s
in the word Wp/q .

4.3. Proposition. Let p/q and r/s be Farey neighbors. Then
(1) G[µ] = 〈Wp/q,Wr/s〉 , and
(2) If p/q < r/s , then

(4.9) W−1
r/sW

−1
p/qWr/sWp/q = T−1S−1TS = K,

where

(4.10) K = S̃S =
(

1 2
−2 −3

)
.

Proof. See [10].
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Let us now consider the case of finite n . There is a canonical surjective
homomorphism

(4.11) Φn: 〈a〉 ∗ 〈b〉 → 〈a〉 ∗ 〈b : bn = 1〉.

Clearly some of the different words project to the same group element under Φn .
In particular, this means that we do not get a 1-1 correspondence between the
elements of Gn represented by the words Wp/q and free homotopy classes of
simple closed curves on the punctured torus. However, the identifications take
place in a controlled manner.

4.4. Proposition. Let n ∈ {3, 4, . . . ,∞} , and µ ∈ Mn . The transforma-
tions Wp/q

[
An, C [µ]

]
and Wp′/q′

[
An, C [µ]

]
are conjugate in Gn[µ] if and only

if p′/q′ = p/q + kn for some k ∈ Z . Wp/q[An, C
[
µ]

]
is not conjugate with any

W−1
p′/q′

[
An, C [µ]

]
, p′/q′ ∈ Q ∪ {∞} .

Proof. Let [p/q] be the integral part of p/q . If we write Wp/q

[
An, C [µ]

]
in

terms of W[p/q]

[
An, C [µ]

]
and W[p/q]+1

[
An, C [µ]

]
as a word Vp/q

[
W[p/q],W[p/q]+1

]
,

then clearly Vp/q[W0/1,W1/1] = Wp/q−[p/q]

[
An, C [µ]

]
. As Wm+kn = Wm for all

k ∈ Z as elements of Gn , the words Wp/q

[
An, C [µ]

]
and Wkn+p/q

[
An, C [µ]

]
rep-

resent the same element in Gn . We claim there are no further conjugacies among
the special words.

The group Gn is isomorphic to the free product 〈An : Ann = 1〉∗ 〈C〉 . Clearly
we can restrict our attention to the case 0 ≤ p/q < n . The words Wp/q , p/q ∈
Q∩[0, n) are cyclically reduced in Gn . By Theorem 4.2, two elements of the group
Gn = 〈An : Ann = 1〉 ∗ 〈C〉 are conjugate if their cyclically reduced presentations
are cyclic permutations of one another. For a word Wp/q , p is the number of
C−1 ’s and q is the number of An ’s. Both of these quantities are invariant under
cyclic permutation, implying that Wp/q is conjugate with Wp′/q′ , with 0 ≤ p/q ,
p′/q′ < n , only if p/q = p′/q′ .

To prove the second statement, we observe that we get a cyclically reduced
word W̃−1

p′/q′ from W−1
p′/q′ , without changing the group element that the words

represent in Gn , by formally inverting Wp′/q′ , and then replacing each A−j ,
1 ≤ j ≤ n − 1, by An−j . Wp/q has only negative powers of C , and W̃−1

p′/q′ has
only positive powers of C , so by the same reasoning as above, no Wp/q can be
conjugate to any W−1

p′/q′ .

The mapping class group has a natural action on ML (Y ) and on PML (Y ).
On PML (1, 1) this action is the same as the action of PSL(2,Z) on R̂ if we use
the identification of PML (1, 1) with R̂ indicated in Section 3. In particular,
the Dehn twist Dehnα about the simple closed curve on Ω0/G[µ] that corre-
sponds to the conjugacy class of the parabolic transformation S , acts on R̂ as
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a translation by 1. Proposition 4.4 means that if two simple closed curves on
the punctured torus Ω0/Gn differ by a power of Dehnnα , they correspond to the
same group element in Gn . The action of 〈Dehnnα〉 fixes ∞ , which corresponds
to the projective measured lamination with support α , and it is discontinuous on
R = PML (1, 1) \ {α} . The quotient space

(4.12) PML n(1, 1) = PML (1, 1)/〈Dehnnα〉.

is the natural space of laminations associated with the deformation spaces Mn .

5. Pleating structure for Mn

Let Gn[µ] , n ∈ {3, 4, . . . ,∞} , µ ∈ Mn , be a Koebe group uniformizing a
punctured torus as in Section 2. Let C

(
Λ(Gn[µ])

)
⊂ H3 be the hyperbolic convex

hull of the limit set of Gn[µ] . C
(
Λ(Gn[µ])

)
is invariant under the action of Gn[µ]

in H3 , and the quotient

(5.1) CM [µ] = C
(
Λ(Gn[µ])

)
/Gn[µ]

is the convex core of the orbifold M [µ] = H3/Gn[µ] .
The boundary of CM [µ] is homeomorphic to ∂M [µ] . Let ∂ C0 = ∂ C0

(
Λ(Gn)

)
⊂ H3 be the component of the boundary of the convex hull of the limit set that
lies above the invariant component Ω0(Gn). The quotient surface S = ∂ C0/Gn
is a punctured torus. S inherits a geometric structure from the embedding of
∂ C0 in H3 , in which it is planar outside a geodesic lamination. We say that S [µ]
is pleated along this lamination, called the pleating locus on S [µ] . The pleating
locus carries a natural transverse measure, the bending measure that measures the
bending along any interval transversal to the pleating locus. A good reference for
this material is [5].

The Teichmüller space T (Gn) is naturally isomorphic with T (1, 1)/〈Dehnnα〉 ,
and the natural space of laminations associated with T (Gn) is PML n(1, 1) as
defined at the end of Section 4. The pleating map associated with the family
{Gn[µ]}µ∈Mn is

(5.2) pl: Mn → PML n(1, 1),

where pl(µ) is the projective class in PML n(1, 1) of the pleating lamination
of Mn[µ] . Keen and Series [12] showed that the pleating map is continuous.

5.1. Remark. For the groups Gn[µ] , µ ∈ Mn , the convex core CM [µ] has
a singular locus homeomorphic to an interval, that connects the two cone points
on the sphere component of ∂ CM [µ] . Two simple closed curves are considered
to be homotopic on M [µ] (or on CM [µ] ) if they can be mapped to each other by
a sequence of operations consisting of homotopies of the underlying space of M
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fixing the singular locus of M , and of “tightening” an arc that winds around the
singular line exactly n times in a small neighborhood. See Figure 3. We define
PML n(1, 1) to be the space of geodesic measured laminations on ∂ (H3/Gn[µ])
with this definition of homotopy on the orbifold. Another way to describe the
simple closed curves in this space is to note that if the regular covering space of a
surface (in our case the invariant component Ω0(G[µ])) is not simply connected, it
is natural to consider as equivalent all the simple closed curves that are represented
by the same covering transformation.

Figure 3. Tightening an arc that winds three times around a singular line where the local
structure is the product of an interval with D/z �→ z3 . The figure shows a projection where the
singular line is represented by the dot in the middle.

5.2. Definition. A geodesic measured lamination is rational if it is sup-
ported on a simple closed curve. In particular, the laminations in PML (Gn),
n = 3, 4, . . . ,∞ , that correspond to words Wm/1 , m ∈ Z are called integral lami-
nations.

5.3. Definition. Let n = 3, 4, . . . ,∞ , and let λ ∈ PML (Gn). The set

(5.3) Pn
λ = {µ ∈ Mn | pl(µ) = λ}

is the λ-pleating ray in Mn . Let p/q ∈ Q , and let γp/q ∈ PML n be the projec-
tive equivalence class represented by the transformation Wp/q[An, C ] ∈ Gn[µ] .

(5.4) Pn
p/q = Pn

γp/q

is a rational pleating ray.

The trace of the transformation Wp/q

[
An, C [µ]

]
is not uniquely defined as

an analytical function of µ ∈ Mn if n is finite. However, the ambiguity of the
choice of the branch of the square root does not affect the Möbius transformation,
in particular, whether the transformation is hyperbolic or not. See Figure 2 for a
collection of pleating rays.
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5.4. Definition. Let n = 3, 4, . . . ,∞ . The real locus of Wp/q

[
An, C [µ]

]
is

(5.5) V n
p/q =

{
µ ∈ Mn : trWp/q

[
An, C [µ]

]
∈ R

}
.

5.5. Proposition. Pn
p/q is a union of connected components of V n

p/q ∩Mn .

Proof. For n = ∞ this is Proposition 5.4 of [10]. The same proof applies
for finite n ; one needs to observe that the proofs of Lemma 4.6 and Lemma A.2
of [10] do not use their assumption that the groups under consideration in [10] are
free.

In Section 6 we observe, analogously to the case n = ∞ , that Pn
p/q is a single

component of V n
p/q .

6. Circle chains

In this section we generalize the definition of circle chains used in [10] and [31]
for groups with elliptic elements. For n = ∞ the chains defined here are the same
as in [10] and [31]. For finite values of n they retain most of the useful properties
of the case n = ∞ , the difference being the fact that the chains will consist of
a finite number of disks. We will sometimes refer to these cases as finite chains.
In order to simplify notation, we will use the following convention: the notation
i ∈ Zmodnq should be read i ∈ Z if n = ∞ .

6.1. Definition. Let n = 3, 4, . . . ,∞ , and µ ∈ C . Let G[µ] = 〈Fn, Cn[µ]〉
be a group of Möbius transformations (not necessarily discrete), where Fn =
〈An, Bn〉 as earlier, and C is a transformation satisfying

(6.1) C−1AnC = B−1
n

as in Section 2. Let Wp/q =Wp/q[An, C ] be the p/q -word defined in Section 4. A
collection {δi} , i ∈ Zmod nq of closed, round disks is a combinatorial p/q -chain
for Gn (with generators An and C ) if it satisfies the following conditions:
(1) δ0 is tangent to Λ(F ), the limit set of F , at the fixed point of the parabolic

element

(6.2) Kn =W−1
r/sW

−1
p/qWr/sWp/q,

(2) Wp/qδ0 = δ0 ,
(3) C(δj) = δj+p for all j = 0, . . . , q , and
(4) A(δj) = δj+q for all j ∈ Z .

If a circle chain {δi} satisfies (1)–(4), we say {δi} connects fixK to A(fixK).
The chain is tangent if δi and δi+1 are tangent and the interiors int δi and int δi+1

are disjoint for every i ∈ Z . If we know that the group is discrete, we say that the
chain is proper if
(1) the interiors of the disks δi are contained in Ω(G) for all i ,
(2) the interiors of adjacent disks δi and δi+1 intersect for all i , and
(3) intδi ∩ intδj = ∅ for |i− j| > 1.
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δ0

δ5

= δ20

δ
δ

δ
δ1

2

3
4

δ19

Figure 4. A tangent 3
5 circle chain for G4 .

6.2. Remarks. (1) The combinatorial p/q chain is associated to a group
with a fixed pair of generators. For a different choice of generators there may be a
chain with different combinatorics. We use this fact in the proof of Theorem 9.4,
see also McShane, Parker and Redfern [23].

(2) The disks δ0, . . . , δp+q−1 form a combinatorially interesting set: this part
of the chain can be generated starting from δ0 by the following process:
(i) if 0 ≤ i < q , set δi+p = C(δi),
(ii) if q ≤ i < p+ q , set δi−q = A−1(δi).

(3) Unlike Keen and Series [10] we do not require that the group G is dis-
crete. In fact, in Section 9, we use the existence of special circle chains with some
additional properties to prove that the group G[µ] defined in Section 2 is discrete
for a number of the parameters µ found in Lemma 7.3.

(4) The dependence on n of the definition of the circle chain is a result of the
fact that Ann = id. This implies that the chain is actually finite, consisting of nq
circles. See Figure 4.

The results in this section are analogs of some of the results of [10, Sections 4
and 5]. The proofs are essentially the same. We only give some of the arguments
and calculations for the case of finite n , and refer to [10] for the details.

6.3. Proposition. Let n = 3, 4, . . . ,∞ , and µ ∈ C . The group Gn[µ] has
a proper p/q chain if and only if µ ∈ Pn

p/q .

Proof. [10, Proposition 4.11].

6.4. Lemma. Let 0 ≤ m < n . The integral pleating ray Pn
m/1 is the radial

half line

(6.3) Pn
m/1 = Mn ∩ {µ = t2e−i2πm/n : t > 0}
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in T (Gn[µ]) .

Proof. It is easy to check that

(6.4) Wm/1 =
(
eiπm/n sinh(d/2)

√
µ ∗

∗ −e−iπm/n sinh(d/2)/√µ

)
,

so if we set µ = t2e2iϕ , we get

(6.5) Im trWm/1 =
(
t +

1
t

)
sinh(d/2) sin

(
ϕ+

πm

n

)
.

Thus

(6.6) V n
m/1 ⊂ {µ ∈ Mn : arg(µ) = −2πm/n}.

It remains to show the existence of an m/1 chain. Here we can follow the argument
of [10, Lemma 5.2].

6.5. Proposition. Let n ∈ {3, 4, . . .} , and p/q ∈ Q \ Z . Then
(1) Pn

p/q �= ∅ for all p/q ∈ QmodnZ .
(2) The pleating ray Pn

p/q is contained in the sector

(6.7) {µ ∈ Mn : −2π([p/q] + 1)/n ≤ arg µ ≤ −2π[p/q]/n}

bounded by the integral rays Pn
[p/q] and Pn

[p/q]+1 , where [p/q] is the integral
part of p/q .

(3) Pn
p/q is the component of V n

p/q ∩ Mn asymptotic to the line

(6.8) {µ ∈ Mn : argµ = −2πp/(qn)}.

Proof. (1): By Lemma 6.4, the half-lines {µ ∈ Mn : argµ = 2πk/n} , k ∈ Z ,
are mapped to the integral values in Q/Z , and no other points are mapped to
these values. Let S be a large circle in Mn centered at 0. The restriction of
the pleating map, pl |S is a continuous map of degree 1 of a circle to a circle, in
particular, a surjective map.

(2) and (3): The fact that the radial lines (6.3) contain all points of Mn that
are mapped to integral values implies that the nonintegral rays are contained in
the sectors (6.7), because we assumed n ≥ 3.

Let µ = τ 2 . An easy induction argument as in [10, Proposition 3.1] shows
that

(6.9) Wp/q[µ] =
(
ep iπ/nτ q sinh(d/2)q +O(|τ q−1|) O(|τ |q)

O(|τ |q−2) O(|τ |q−2)

)
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as |τ | → ∞ . When |τ | → ∞ the condition trWp/q ∈ R , that defines V n
p/q ,

approaches

(6.10) argµ = arg τ 2 = −2π
(
p

nq
+
k

q

)
, k ∈ Z.

For large values of n there are several branches in the sector (6.7) that qualify
as candidates for points in Pn

p/q . Clearly it is enough to consider the case 0 <
p/q < 1. To rule out all but one of the branches of V n

p/q we do an induction
argument on q :

(a) Let p/q = 1/2. Then the branch of V n
1/2 asymptotic to the radial line with

argument −π/n is the only one asymptotically contained in the sector between
Pn

0 and Pn
1 . By Proposition 5.5 this implies that Pn

1/2 equals this component.
(b) Assume that Pn

k/q , k = 0, 1, . . . , q satisfy the claims (2) and (3) of the
theorem. Let p ∈ {1, 2, . . . , n−1} such that p and q+1 are relatively prime. Then,
(6.10) and elementary properties of the rationals imply that there is exactly one
component of V n

p/(q+1)∩Mn contained between the correct rays of denominator q .
Continuity of the pleating map now implies, as above, that this component is
exactly the pleating ray.

Combining these observations with the analysis of Keen and Series [10, Sec-
tion 5] we get the following theorem. Here we use the notation µp/q,∞ = µp/q .

6.6. Theorem. Let n ∈ {3, 4, . . . ,∞} , and p/q ∈ Q . If n is finite, the
pleating ray Pn

p/q coincides with the branch of V n
p/q asymptotic with the half line

of argument argµ = −2πip/(qn) . P∞
p/q coincides with the vertical component of

V ∞
p/q∩M∞ asymptotic to the line {µ ∈ C : Imµ = 2p/q} . For all n ∈ {3, 4, . . . ,∞}
the pleating ray Pn

p/q is homeomorphic to R , and P
n

p/q ∩ ∂Mn consists of a

single point µp/q,n such that the transformation Wp/q

[
An, C [µp/q,n]

]
is parabolic.

Furthermore, the group Gn[µp/q,n] is geometrically finite, and it has a tangent
circle chain connecting fixKn to An fixKn .

Proof. One can copy the arguments of [10, Theorem 5.1], with only insignifi-
cant changes resulting from the fact that the trace function in [10] is a polynomial
in µ , and for finite n it is a polynomial in

√
µ and 1/

√
µ . We refer to [10] for

details.

7. Extensions of pleating rays and disk-preserving subgroups

In this section we consider an extension of a rational pleating ray across the
boundary of M . We will use the fact that the rational pleating rays coincide
with the asymptotically vertical components of the real locus of the trace of the
corresponding special word in M .
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7.1. Definition. P+

p/q , the connected component of

(7.1) Pp/q ∪ {µ ∈ Vp/q ∩ (H \M )}

containing Pp/q is the extended p/q ray.

7.2. Remarks. (1) The trace function, trWp/q: C → C , may have a critical
point close to the boundary, even at µp/q , that is, P+

p/q might have a branching
point. The somewhat awkward definition of the extended ray is used in this form
so that we only get the correct ray corresponding to the pleating ray inside M ,
and we avoid discussing the issue of critical points. In particular, the extended
ray is not necessarily homeomorphic to R .

(2) Similarly, one could define extended rays for Mn , n = 3, 4, . . . . However,
the methods used in Sections 8 and 9 to study the discreteness of groups in H\M
cannot be directly applied to treat the corresponding cases for finite n .

Figure 5. Parts of the real loci V0/1 and V2/7 . The cusped, nonsmooth curve in the figure
is an approximation part of the boundary of M , M is the region above this boundary. P+

0/1 =
V0/1 = {µ ∈ H : Reµ = 0} , and the curve passing through the point labeled 2/7 is contained in
the extended ray P+

2/7 . The third smooth curve in the figure is part of V2/7 \ P+

2/7 .

7.3. Lemma. There are points µp/q(n) ∈ P+

p/q for all large values of n such

that Wp/q[µp/q(n)] is elliptic of order n , and

(7.2) lim
n→∞

µp/q(n) = µp/q.

Proof. The function µ �→ trWp/q[µ] is holomorphic. Thus, the image of a
small neighborhood of µp/q covers a small neighborhood of trWp/q = ±2, thus
for large n the values trWp/q[µ] = ±2 cos(π/n) are attained.
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Let p/q and r/s > p/q be Farey neighbors, µ ∈ C . Let

(7.3) F = Fp/q[µ] = 〈Wp/q,K〉 = 〈Wp/q,W
−1
r/sW

−1
p/qWr/s〉.

In most of what follows we aim at proving that for big n the groups G[µp/q(n)]
are discrete. The method is based on a ‘reconstruction’ of G[µ] starting from
a Fuchsian subgroup. In Section 2 we presented G[µ] as the HNN-extension of
the torsion-free Fuchsian group 〈S,S̃ 〉 . In Section 9 we will use a different set of
generators, in terms of which the group is the HNN-extension of Fp/q for µ ∈
P+

p/q .
Keen and Series, [10, Proposition A.1], show that if µ ∈ Pp/q , then Fp/q is

a Fuchsian group of the second kind, that represents a punctured cylinder with
boundary geodesics of equal length. For parameters in the extension of the p/q
ray we have:

7.4. Lemma. If µ ∈ P+

p/q and trWp/q = 2 cos(π/n) for some n ∈ N ,
n ≥ 3 , then F = Fp/q[µ] is a triangle group of signature (n, n,∞) .

Proof. The elements W−1
p/q , W

−1
r/sWp/qWr/s and their product

(7.4) W−1
r/sWp/qWr/sW

−1
p/q = K

all have real traces. It follows from [6, Lemma 5.23] that F preserves a disk D .
The quadrilateral with vertices at the fixed points of Wp/q , W−1

r/sWp/qWr/s , K
and

(7.5) K̃ =K̃p/q = W−1
p/qKWp/q =W−1

p/qW
−1
r/sWp/qWr/s

in D satisfies the conditions of Poincaré’s theorem.

7.5. Lemma. If µ ∈ P+

p/q and trWp/q ∈ (−2, 2) \ {2 cos(π/n) : n ∈ N, n ≥
2} , then F = Fp/q[µ] is not discrete.

Proof. If Wp/q is an infinite order elliptic, the group is trivially non-discrete,
so we can assume Wp/q is a non-primitive elliptic. Let Wprim be a primitive
generator of 〈Wp/q〉 . F has parabolic elements, so any fundamental polygon has
cusps extending to the circle at infinity. The commutator relation implies that the
isometric circles of Wp/q and W−1

r/sW
−1
p/qWr/s are tangent at the fixed points of

K and K . Clearly the isometric circles of W±1
prim and W−1

r/sW
∓1
primWr/s intersect

inside D . The Ford fundamental region of F would thus be bounded away from
the circle at infinity, which is impossible because there are parabolic elements in
the group.

Lemma 7.5 has the following immediate corollary.
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7.6. Proposition. Let µ ∈ P+

p/q \M . If G[µ] is discrete, then | trWp/q| =
2 cos(π/n) for some n = 2, 3, . . . .

This argument uses the disk-preserving subgroup Fp/q in an essential way.
We can only find a subgroup like this for rational rays, and do not know how to
treat groups corresponding to parameters that are not contained in an extended
rational ray. However, we have the following result as an application of Jørgensen’s
inequality [7] which implies that the discrete groups we can find in H \ M are
isolated. A Kleinian group is elementary if its limit set has fewer than two points.

7.7. Proposition. For each µp/q(n) there is an open neighborhood Up/q(n)
⊂ C such that if µ ∈ Up/q(n) \ {µp/q(n)} , then G[µ] is not discrete.

Proof. Consider the subgroup

(7.6) Hp/q(n) = 〈K,Wn
p/q〉,

where

(7.7) K =
(

1 2
−2 −3

)
.

By Jørgensen’s inequality, [7, Lemma 1], we know that if

(7.8) τ (µ) = | tr(KWp/q[µ]nK−1Wp/q[µ]−n − 2| < 1,

then either Hp/q(n) is elementary or it is not discrete. If µ = µp/q(n), then
KWp/q[µ]nK−1Wp/q[µ]−n is the identity, τ (µ) = 0, and Hp/q(n) = 〈K〉 is dis-
crete. If Wp/q[µ] is loxodromic, Hp/q(n) cannot be elementary. Also, if Wp/q[µ] is
elliptic and Hp/q(n) is elementary, then it has to be of order 2, 3, 4, or 6 by the
classification of elementary groups (see [21, Section V.D]). This can only happen
for a finite number of values of µ . The combination of these observations gives
the desired neighborhood.

8. Tangent circle chains and discreteness

In this section we prove Theorem 8.3, a technical result used in the proof
of Theorem 9.4. We show how to use the existence of a tangent circle chain to
establish the discreteness of a group of the form

(8.1) Gn = 〈Fn, C〉,

where Fn = 〈A,B〉 is a triangle group of signature (n, n,∞), and C conjugates
the canonical generators A and B of Fn as in Section 2. A tangent circle chain
with an additional property (8.3) will be used to construct the closed topological
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disks required in Maskit’s fourth version of his second combination theorem, [22,
Theorem II], Theorem 8.1 below. The full statement of the combination theorem
is quite long and general, and we will only state a much weaker version that will be
sufficient for our application. Condition (B) in the theorem below is a restatement
of the condition “cyclic stabilizers are parabolic” of [22, Theorem II]. When we
replace the original condition by (B), we restrict to the case when new parabolics
are created by the combination of F and C . This is exactly the situation we have
in Section 9.

Let H be a nonelementary Kleinian group. The set of discontinuity Ω(H)
has a natural hyperbolic metric of curvature −1. We will denote the hyperbolic
area of Ω(H)/H by area(H).

8.1. Theorem. Let F = 〈An, Bn〉 be a Fuchsian group of signature
(n, n,∞) , n ≥ 3 , with canonical generators An and Bn , and let J1 = 〈An〉
and J2 = 〈Bn〉 be finite cyclic subgroups of F . Let Wp/q be the word defined in
Section 4. Assume the following
(A) For m = 1, 2 , there is a Jm -invariant closed topological disk Bm , with bound-

ary loop Wm ⊂ Ω(F ); there is a finite Jm -invariant set of points Θm ⊂ Wm

such that Wm is locally circular at points of Θm ; and there is a Möbius
transformation, C , mapping the exterior of B1 onto the interior of B2 , so
that
(A1) for all g ∈ F \ Jm and all points x ∈Wm ∩ g(Wm) , both x and g−1(x)

are points of Θm ,
(A2) if there is an x ∈ B1 ∩ g(B2) for some g ∈ F then x ∈ Θ1 ∩ g(Θ2) , and
(A3) C conjugates J1 onto J2 and C(Θ1) = Θ2 .

(B) Wp/q[An, C ] is parabolic, and
(C) Ĉ\ (B1 ∪B2) �= ∅ .
Then,

(1) G = 〈F,C〉 = F∗C ,
(2) G is discrete,
(3) every element of G that is not a conjugate of an element of F and is not a

conjugate of Wp/q[An, C ] is loxodromic,
(4) if D0 is a fundamental set of F such that D0 ∩Bm is a fundamental set for

the action of Jm in Bm , for m = 1, 2 , then the set

(8.2) D = D0 \
(
intB1 ∪B2 ∪G(fixWp/q)

)
is a fundamental set of G , and

(5) area(G) = area(F ) + 4π/n .

Clearly, there can be non-discrete groups Gn that possess tangent circle
chains. We will work with tangent circle chains that satisfy the additional property

(8.3) δi ∩ δj = ∅ if |i− j| > 1modnq.
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In an infinite tangent circle chain satisfying (8.3), only the circle δi intersects the
two circles δi−1 and δi+1 , and for finite chains the same holds with the modifica-
tions caused by the fact that δj = δj+nq for all j ∈ Z .

In Proposition 9.2 we show that the circle chains of cusp groups G[µp/q]
of M satisfy (8.3). In fact, they have two disjoint circle chains with closely
related combinatorics, see Proposition 9.1 and [23]. In the proof of Theorem 9.4
we produce circle chains satisfying (8.3) for parameters on P+

p/q by perturbing
one of the chains of G[µp/q] .

Let n = 3, 4, . . . , and let {δi} , i ∈ Z be a tangent p/q circle chain for
Gn = 〈An, C〉 satisfying (8.3). We will now construct two closed topological disks
DB and DA that will be the disks B1 and B2 required to apply Theorem 8.1.
Let γi ⊂ δi be the unique circular arc orthogonal to ∂ δi connecting the points of
tangency of δi with δi−1 and δi+1 , i ∈ Zmodnq . Let

(8.4) WA,0 =
⋃
i∈Z

γi,

and

(8.5) WB,0 = C−1(WA,0).

See Figure 6 for the construction. If p/q /∈ Z , then

(8.6) WA,0 ∩ WB,0 =
q−1⋃
i=1

γi.

δ0

δ5 δ

δ3

4

δ1 δ2

W

A

B

W

Figure 6. The construction of the Jordan curves WA,0 and WB,0 from a circle chain for G4

satisfying (8.3).
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Condition (8.3) implies that WA,0 and WB,0 are Jordan curves. Next we will
modify the Jordan curves so that they meet the requirements of Theorem 8.1. The
boundaries of the disks in (8.1) are only allowed to meet at the points of tangency
of the disks δ0, . . . , δq , not along a union of circular arcs as above. If p/q ∈ Z ,
then WA,0 and WB,0 are round disks, tangent at exactly one point, and we do not
change them.

Let p/q ∈ Q\Z . In our application of Theorem 8.1, we are mainly interested
in the discreteness of the group in question, so we can assume after a change of
generators that 0 < p/q < 1.

Let γ be a directed geodesic in D connecting the points z1 and z2 on ∂D ,
z a point on γ , and ε > 0. Let z(ε) be the point on the geodesic perpendicular
to γ at z that lies the distance ε to the right from z . We denote by γ(ε) the
union of the geodesic rays connecting z1 to z(ε) and z(ε) to z2 , including the
end points z1, z2 ∈ ∂D .

��

��z

z

γ(ε)

z

(ε)

z1
2

γ

Figure 7. The modification of WA inside a disk of the circle chain.

Let i ∈ {1, 2, . . . , q} , and define Vi to be the word in A and C constructed
as in 6.2(2) such that Vi(δ0) = δi . Let k(i) be the number of C ’s in the word Vi .
Set

(8.7)

γAi = γi
(
k(i)− 1)ε

)
, for i = 1, 2, . . . , q,

WA =
⋃
j∈Z

q⋃
i=1

Ajn(γ
A
i ), and

WB = C−1(WA).

Let DA be the component of Ĉ\WA contained in the same component of Ĉ\Λ(F )
as WA . Let DB be the component of Ĉ\WB contained in the same component of
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Ĉ\Λ(F ) as WB . Similarly, DA,0 and DB,0 denote the corresponding components
of Ĉ\WA,0 and Ĉ\WB,0 . For use in Lemma 8.2 we extend k to Z as a q -periodic
function.

δ

γ

1

γ

γ

−1

(γ )C 1
−1

0

2

1
= (γ )C 2 γ A1γ B1

γ A2

Figure 8. An example of the modification of WA and WB in the case p/q = 1/2 .

8.2. Lemma. If intDA,0 ∩ intDB,0 = ∅ , then DA ∩ DB =
⋃q
i=1 δi ∩ δi−1 .

Proof. The only thing to check is that the modification has separated DA

and DB from each other inside the disks δi , i = 1, 2, . . . , q − 1. Let us denote by
γBi the part of WB contained in δi . By definition,

(8.8)
γAi = γ

(
(k(i)− 1)ε

)
and,

γBi = C−1(γAi+p) = γ
((
k(i+ p)− 1

)
ε
)
.

Clearly, k(i) = k(i+ p)− 1, and this gives the claim.

8.3. Theorem. Let Gn = 〈F,C〉 , where F = 〈An, Bn〉 is a triangle group
of signature (n, n,∞) (n ∈ N ∪ {∞} , n ≥ 3) with canonical generators An and
Bn , and let C be a transformation satisfying

(8.9) C−1AnC = B−1
n .

If Gn has a tangent p/q -chain satisfying (8.3) such that
(i) the interiors of the disks DA and DB , as constructed above, are disjoint, and
(ii) the transformations Wp/q[An, C ] are parabolic,
then

(1) Gn = F∗C ,
(2) Gn is discrete,
(3) Gn is geometrically finite,
(4) Ω(Gn)/Gn = S1 ∪ S2 , where S1 has signature (0, 3;n, n,∞) , and S2 has

signature (0, 3;∞,∞,∞) .
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To prove this theorem we need to check that the existence of a chain satisfy-
ing (8.3) implies that the assumptions of Theorem 8.1 are satisfied. We use the
following terminology in the proof:

8.4. Definition. Let G and H ⊂ G be Kleinian groups. A set E ⊂ Ĉ is
precisely invariant under H in G , or precisely H -invariant, if h(E) = E for all
h ∈ H and if g(E) ∩E = ∅ for all g ∈ G \H .

Proof of Theorem 8.3. Without loss of generality we can assume that F is
normalized as in Section 2. Set

(8.10) ΘA =
⋃
i∈Z

Ai(WA ∪ WB), ΘB =
⋃
i∈Z

Bi(WA ∪ WB).

Note that the curves WA and WB are not locally circular at ΘA and ΘB , re-
spectively. However, as remarked in [22, Section 0.2.3], this requirement can be
weakened considerably. In our situation (see Figures 7 and 8) the curves WA and
WB consist of circular arcs that are perpendicular to the boundaries of the disks
δi and C−1(δi) at the points of ΘA and ΘB . Also, we can make a small local
perturbation of the curves WA and WB at their points of tangency such that
the curves are locally circular at these points without introducing new points of
tangency, or changing the mapping properties (8.7) of the disks DA and DB .

(B) of Theorem 8.1 is assumption (ii). Also, D ⊂ Ĉ \ (DA ∪ DB), and thus
(C) holds.

Let us check that assumption (A) of Theorem 8.1 is satisfied. The disks DA

and DB are by definition invariant under the cyclic groups generated by A and
B , respectively. The same applies to WA , WB , ΘA and ΘB . The transformation
C maps WB onto WA . Also, C maps the fixed points of B onto the fixed points
of A . The conjugation relation (8.9) is chosen in such a way that the fixed point
of B contained in D is mapped to ∞ ∈ DA . Thus,

(8.11) C
(
int(Ĉ\ DB)

)
= intDA,

as required.
Let us now consider the conditions (A1)–(A3) of Theorem 8.1. (A3) is clear

from (8.9) and (8.10). (A1) holds if and only if the set

(8.12) D ′
A = DA \ΘA

is precisely invariant under 〈A〉 , and

(8.13) D ′
B = DB \ΘB

has the the corresponding property. (A2) is true if we can show that for all g ∈ F ,

(8.14) g(D ′
A) ⊂ Ĉ\ D ′

B.
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If, in addition to (8.12)–(8.14), we have for all g ∈ F ,

(8.15) g(D ′
B) ⊂ Ĉ\ D ′

A,

and

(8.16) C(Ĉ\ DB) ⊂ D ′
A

and

(8.17) C−1(Ĉ\ DA) ⊂ D ′
B,

then the triple
(
D ′
B,D

′
A,Ĉ\(DA∪DB)

)
is called an interactive triple ([21, VII.D.7]).

We will show that this is the case.
By Maskit [21, Propositions VII.E.3 and VII.E.4], it is enough to show that

(i) D ′
A is precisely 〈A〉-invariant,

(ii) D ′
B is precisely 〈B〉-invariant in F , and

(iii) C maps Ĉ\ D ′
B onto intDA ∪ΘA .

Clearly, (iii) follows from (8.11) and the fact that C(ΘB) = ΘA . By [21,
Proposition II.I.3], (i) and (ii) are equivalent with the existence of a fundamental
set P for F such that P ∩D ′

A is a fundamental set for the action of 〈A〉 in D ′
A ,

and P ∩ D ′
B is a fundamental set for the action of 〈B〉 in D ′

B .

Figure 9. The disks δ0 , . . . , δ229 of the circle chain for G∞[µ21/229] . δ21 = C(δ0) is the disk
tangent to the line Im z = Imµ21 ≈ 1.92 . The curve WA intersects the disk {|z − 1

2 | <
1
2 } . One

obtains the fundamental set P by adding the set DA ∩{|z− 1
2 | <

1
2} to the standard fundamental

polygon P0 = {z ∈ C : −1 ≤ Im z < 1, |z + 1
2
| ≥ 1

2
, |z − 1

2
| > 1

2
} and by removing its image

B(DA ∩ {|z − 1
2 | <

1
2 }) .
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We now construct this fundamental set. The property (8.11) implies

(8.18) C(DA) ⊂ DA.

By the A-invariance of DA

(8.19) A−1C(DA) ⊂ DA.

The basic combinatorial properties of circle chains (see Definition 6.1) imply

(8.20) A−1C(δq−1) = δp−1.

Thus, C−1A−1C(δq−1) is a disk that meets WB , but not WA . Similarly, we see
that for all i = 1, . . . , q− 1 the part of the boundary of DA inside δi , namely γAi ,
is mapped by B into the part of WB not touching WA . For B−1 we have the
corresponding result by the same kind of reasoning: for i = 1, . . . , q − 1, we have

(8.21) AC(δi) = δp+q+i.

As i > 0, the combinatorial properties of the p/q chain imply that the part
of WA inside δi is mapped into the part of WB not touching WA . Thus, the
images B±1(intDA) are disjoint from DA . We can now modify the ‘standard’ Ford
fundamental polygon of the triangle group F to obtain the required fundamental
set (see Figure 6 for an illustration, and Figure 9 for a complicated case for n = ∞).

Now, claims (1)–(3) follow directly from Theorem 8.1.

Proof of claim (4). Theorem 8.1 gives

(8.22) area(G) = 2 · 2π
(
1− 2

n

)
+ 4π/n = 2π

(
1− 2

n

)
+ 2π.

By (1) we know that the parabolics A , AB , and Wp/q define different conjugacy
classes in G . Theorem 8.1(4) implies that the action of the stabilizer of D in G is
the same as the action of F on D . Thus, the quotient Ω(G)/G contains one sphere
with a puncture and two cone points of order n , contributing 2π(1− 2/n) to the
area (8.22). Furthermore, the fundamental set D given by Theorem 8.1(4) shows
that AB corresponds to one puncture, and Wp/q to two distinct punctures on the
remainder of the quotient. The area of a surface with genus g and n punctures is
2π(2g − 2 + n). There are at least three punctures in

(
Ω(G)/G

)
\

(
D/Stab(D)

)
.

(8.22) now implies that the quotient is as in claim (4).
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9. The discreteness and conjugacy theorems

In this section we study a tangent combinatorial circle chain {∆i[µ]}i∈Z for
G∞[µ] , such that the disks in the chain are translates of H∗ . Keen and Series [10]
and Wright [31] showed that there is an infinite p/q -combinatorial circle chain
{δi[µ]}i∈Z for G[µ] , µ ∈ Pp/q ⊂M , with δ0[µ] ⊂ H one of the invariant disks of

(9.1) Fp/q[µ] = 〈Wp/q[µ],W̃ p/q[µ]〉.

Here p/q, r/s ∈ Q are Farey neighbors and we use the notation

(9.2) W̃ p/q =W−1
r/sW

−1
p/qWr/s .

If µ ∈ Pp/q , then the chain {δi[µ]} is proper, and for the cusp parameter µp/q it
is a tangent chain. The chains {∆i} are “dual” to the chains {δi}i∈Z in a sense
that is made precise in Proposition 9.1.

In this section the roles of the subgroups Fp/q and Γ0 = StabH∗ are inter-
changed and we view the group G as an extension of Fp/q by Wp/q . This has the
following advantage: the chains {∆i[µ]}i∈Z constructed below are tangent for all
µ ∈ C (see Proposition 9.2), and for large values of n we can use these chains and
Theorem 8.3 to prove the discreteness of the groups G[µp/q(n)] .

Recall that at the cusp µp/q , Fp/q[µp/q] is a torsion-free triangle group. The
quotient Ω(G[µp/q])/G[µp/q] is the union of two thrice punctured spheres, one cor-
responding to H∗/〈S,S̃ 〉 , the other to δ0/Fp/q . McShane, Parker and Redfern [23]
made the following useful observation:

9.1. Proposition. G[µp/q] is the HNN extension of the torsion-free triangle
group Fp/q by W

−1
r/s . In particular, if pp

′ = 1mod q , then G[µp/q] is the p′/q cusp
in the deformation space of terminal b-groups of the form Fp/q∗T ′ representing a
punctured torus on their invariant component.

Proof. [23, Proposition 7.1].

Proposition 9.1 involves writing the group element S (that is parabolic for
all µ) in terms of the new generators Wp/q and U = W−1

r/s . Note that the
conjugates of Wp′/q[Wp/w, U ] in G[µ] , being conjugates of S , are parabolic for
all µ . This turns out to be quite useful for our purposes.

Proposition 9.1 implies that, in addition to a tangent p/q -chain {δi}i∈Z for
the generators S and T , there is an infinite tangent p′/q combinatorial circle
chain {∆i}i∈Z for 〈Wp/q[µp/q], U [µp/q]〉 , where ∆0 = H∗ . The two chains {δi}
and {∆i} do not intersect. Thus,

(9.3) ∆1 = T (H∗) = H+ µ,
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-1=Fix(K)

Fix(K)
~

∆

∆ 3

0

Wδ0

W
~

∆ 2

∆ 1

δ1

δ2

δ−1

-1=Fix(K)

Fix(K)
~

∆

∆ 3

0

Wδ0

W
~

∆ 2

∆ 1

δ1

δ2

δ−1

Figure 10. A schematic picture of how the two circle chains fit together for a cusp group (on
the left) and for a parameter µp/q(5) . For the cusp group, the grey disks form part of the chain
{∆i} that accumulates at the fixed point of Wp/q .

see Figure 10. When the parameter µ moves on P+

p/q \ M away from the cusp,
Proposition 9.2 below shows that the chain {∆i} remains tangent. On the other
hand, the transformation Wp/q[µ] is elliptic for these parameters, and it cannot
stabilize two tangent circles. Thus, the circle chain {δi} separates, as in Figure 10.
We will use the chain {∆i} and Theorem 8.3 to prove Theorem 9.4.

Let Γi be the stabilizer of ∆i in G[µp/q] . The map µ �→ 〈S, T [µ]〉 = G[µ]
induces a homomorphism from G[µp/q] (isomorphic to the free group on two gen-
erators) onto any G[µ] , µ ∈ C . Let us denote by Γi[µ] the image of Γi = Γi[µp/q]
by this homomorphism. As the group

(9.4) Γ0[µ] = StabG[µ] H
∗ = 〈S,S̃ 〉 = Γ0

does not depend on the parameter µ , the groups Γi[µ] , as conjugates in G[µ] of
Γ0 , are discrete for all µ ∈ C . Thus, there is a naturally defined disk ∆i[µ] for
each µ ∈ H , bounded by the limit set of Γi[µ] . In particular,

(9.5) ∆i[µp/q] = ∆i.

This defines a p′/q -combinatorial circle chain {∆i[µ]}i∈Z for µ ∈ P+

p/q as a
perturbation of the chain {∆i}i∈Z .

9.2. Proposition. (1) ∆i[µ] and ∆i+1[µ] are tangent for any µ ∈ H .
(2) If |i − j| > 1 , then ∆i[µp/q] ∩ ∆j [µp/q] = ∅ , that is, the circle chain

{∆i}i∈Z satisfies (8.3).
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Proof. (1) ∆i[µ] and ∆i+1[µ] are stabilized by the same parabolic transfor-
mation conjugate in G[µ] to Wp′/q[Wp/q, U ] , which is conjugate to S±1 in G[µ] ,
and therefore parabolic for all µ . Thus the disks are tangent at the fixed point of
this element.

(2) Assume j > i+ 1 and that there is a point x ∈ ∆i[µp/q] ∩∆j[µp/q] . By
Maskit [20, Theorem 3]:

(9.6) Λ(Γi) ∩ Λ(Γj) = Λ(Γi ∩ Γj).

∆i[µp/q] and ∆j [µp/q] are round disk components of G[µp/q] , so they can intersect
in at most one point. Thus Γi∩Γj = 〈P 〉 , where P is a parabolic element fixing x .
There are exactly three conjugacy classes of parabolic elements in G[µp/q] . Thus
P has to be conjugate to one of Wp/q , K or S . All of these elements correspond
to punctures on H∗/Γq or δ0/Fp/q . Two translates of H∗ = ∆0 meet at x ∈ Ĉ,
the fixed point of P , implying that the transformation P can only correspond
to punctures on ∆i/Γi . This implies that K and Wp/q are not possible because
they correspond to at least one puncture on δ0/Fp/q . The only remaining pos-
sibility is that the disks ∆i[µp/q] and . . .∆j [µp/q] are tangent at the fixed point
of a parabolic P [µp/q] , where P [µp/q] is conjugate in G[µp/q] to S . The homo-
morphism induced by µ �→ G[µ] induces an isomorphism for parameters µ ∈M .
Thus, there is a uniquely determined parabolic transformation

(9.7) P [µ] ∈ Γi[µ] ∩ Γj [µ] ⊂ G[µ]

for all µ ∈M . But then, because the groups Γi[µ] = Stab(∆i[µ]) are Fuchsian
groups of the first kind for all µ ∈ C , there is a closed curve

(9.8) C ⊂
⋃
∂∆i[µ] ⊂ Λ(G[µ])

that divides Ĉ\C into two disjoint open sets E and E′ such that Λ(G[µ])∩E �= ∅ ,
and Λ(G[µ]) ∩ E′ �= ∅ . But this is a contradiction; if µ ∈ M , then G[µ] has a
simply connected invariant component Ω0 , and ∂Ω0 = Λ(G[µ]) .

We need to show that for µ ∈ P+

p/q \ M close to the cusp µp/q , the disks
∆0[µ], . . . ,∆q[µ] still satisfy (8.3). This will be a consequence of the following
lemma. If K and K ′ are compact sets, we denote by d(K,K ′) the Hausdorff
distance of K and K ′ , that is,

(9.9) d(K,K ′) = inf{r > 0 : K ⊂ K ′
r and K

′ ⊂ Kr},

where

(9.10) Kr = {z ∈ C : |z − z0| < r for some z0 ∈ K}.
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9.3. Lemma. Let p/q ∈ Q , and ε > 0 . There is an η > 0 such that if
|µ− µp/q| < η , then for all i = 1, 2, . . . , q ,

(9.11) d
(
Λ

(
Γi[µp/q]

)
,Λ

(
Γi[µ]

))
< ε.

Proof. Let p = p(µp/q) ∈ Λ(Γi[µp/q]) be a fixed point of a hyperbolic trans-
formation of Γi[µp/q] , and let c = c(µp/q) be the center of Λ(Γi[µp/q]) . c(µ)
can be expressed as a continuous function of three distinct points on Λ(Γi[µ]) .
Thus, there is a neighborhood U ⊂ C of µp/q such that the maps p: U → C
and c: U → C induced by the map µ �→ G[µ] , are continuous. This implies
that there is an η > 0 such that for |µ − µp/q| < η , |p(µ) − p(µp/q)| < 1

3ε , and
|c(µ)− c(µp/q)| < 1

3ε . Now, using the fact that Λ(Γi[µ]) is a circle, we have

(9.12)

|z − c(µp/q)| ≤ |z − c(µ)|+ |c(µ)− c(µp/q)|
= |p(µ)− c(µ)| + |c(µ)− c(µp/q)|
= |p(µ)− p(µp/q)|+ |p(µp/q)− cµp/q)|+ 2|c(µ)− c(µp/q)|
< |p1(µ0)− c(µ0)| + ε

for any point z ∈ Λ(Γi[µ]) . The claim follows from this by another easy application
of the triangle inequality, and by observing that the same holds for the difference
|z − c(µ)| for points z ∈ Λ(Γi[µp/q]) .

9.4. Theorem. On the extension P+

p/q of each rational pleating ray there

is an open neighborhood U of the cusp µp/q on P+

p/q such that if µ ∈ P+

p/q ∩U

and | trWp/q| = 2 cos(π/n) for some n ∈ N , n ≥ 3 , then

(9.13) G[µ] = F ∗Wr/s[S,T [µ]] .

For these values of µ , G[µ] is a Kleinian group representing a thrice punctured
sphere and a sphere with a puncture and two branch points of order n on its
ordinary set.

If µ ∈
(
P+

p/q ∩ U
)
\M is not of this form, then G[µ] is not discrete.

Proof. The idea of the proof is to show that we can apply Theorem 8.3 in
our situation. The finite tangent circle chains are obtained by perturbing the dual
chain {∆i}i∈Z . At the cusp µp/q ∈ ∂M the tangent combinatorial (p′/q)-chain
(∆i)i∈Z can be written as the collection

(9.14) {W i
p/q(∆j) : i ∈ Z, 0 ≤ j ≤ q − 1}.

By Proposition 9.2 we have

(9.14) ∆i ∩∆j = ∅
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if |i−j| > 1. By Lemma 9.3 the finite piece ∆0, . . . ,∆q−1 is deformed continuously
in µ , and no new intersections of the q first disks ∆0[µ], . . . ,∆q−1[µ] are produced
if |µp/q − µ| is small. Thus, we can change µ in a small open set U containing
µp/q such that

(9.16) ∆i ∩∆j = ∅

holds for all µ ∈ U and all i = 0, . . . , q− 1. Let µp/q(n) be a parameter on P+

p/q

such that Wp/q is primitive elliptic as in Lemma 7.3. If µp/q(n) ∈ U ∩P+

p/q , then
the disks

(9.17)
{
Wp/q[µp/q(n)]i

(
∆j [µp/q(n)]

)
: i ∈ Zmodn, 0 ≤ j ≤ q − 1

}
form a finite combinatorial (p′/q)-chain. Also, after possibly making U slightly
smaller, the interiors of the topological disks DA and DB , as constructed in Sec-
tion 8, are disjoint.

In order to apply apply Theorem 8.3 on discreteness and circle chains we need
that the word Wp′/q [Wp/q[S, T [µ]],Wr/s

[
S, T [µ]]

]
is parabolic for µ = µp/q(n).

But this is so, because it is a conjugate of S .

Figure 11. The limit set the Kleinian group on the extended ray P+
1/2 for the parameter µ

such that W1/2 is an elliptic of order 4 .
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The proof of Corollary 9.6 is similar to that of Theorem III of Keen, Maskit
and Series [8] on the uniqueness of maximally parabolic groups.

9.5. Theorem. Let G and G′ be geometrically finite Kleinian groups. If
f : Ω(G) → Ω(G′) is a conformal homeomorphism that induces an isomorphism
ϕ: G→ G′ , then f is a Möbius transformation.

Proof. Tukia [30, Theorem 4.2].

9.6. Corollary. Let µp′/q,n be the boundary point of Mn on the ray Pn
p′/q .

Then the group G[µp/q(n)] is conjugate to Gn[µp′/q,n] by a Möbius transforma-
tion.

Proof. Let n ∈ {3, 4, . . .} be such that Theorem 9.4 applies, and the group
G[µp/q] is discrete. By Theorem 9.4, G[µp/q] is the HNN-extension of a triangle
group of signature (n, n,∞). Thus it is of the form Gn[µ0] for some µ0 ∈ C \
D . Furthermore, Gn[µ0] has a tangent p′/q -circle chain. Using this fact, we
can construct a conformal map Pn: Ω(Gn[µ0]) → Ω(Gn[µp′/q ]) that induces an
isomorphism between these groups. By Theorem 9.5, Pn is the restriction of a
Möbius transformation.

9.7. Remark. It is easy to check using (2.14) and (2.15) that for all n =
3, 4, . . . , the end points of the integral rays in Mn are of the form

(9.18) µm,n = e2πi/n
(
1 + sin(π/n)
cos(π/n)

)2

= e2πi/n
1 + sin(π/n)
1− sin(π/n)

.

Now one can check Theorem 9.4 for integral values of p/q by conjugating the
groups Gn[µm,n] in such a way that C [µm,n] is conjugated to S and An is con-
jugated to T [µ0(n)] , where An , C , S and T are as in Section 2 and

(9.19) µ0(n) = 2 cos(π/n)

is as in Lemma 7.3.
G[µ0(n)] is discrete for all n ≥ 2: T [µ0(2)](z) = G[0](z) = 1/z is an elliptic

of order 2. Thus, G[0] ⊂ PSL(2,Z[i]) is a discrete group. It is easy to see that
Ω(G[0])/G[0] consists of a single sphere with three punctures.
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