REMARKS ON THE NONEXISTENCE OF DOUBLING MEASURES

Eero Saksman
University of Helsinki, Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5) FIN-00014 University of Helsinki, Finland; eero.saksman@helsinki.fi

Abstract

We establish that there are bounded Jordan domains $\Omega \subset \mathbf{R}^{n}(n \geq 2)$ that do not carry a (nontrivial) doubling measure with respect to the Euclidean distance. More generally, it is shown that every nonempty metric space (X, d) without isolated points has an open and dense subset A such that (A, d) does not carry a doubling measure.

1. Introduction

The fundamental result on the existence of doubling measures, due to Vol'berg and Konyagin [11], states that every doubling and compact metric space (X, d) carries a nontrivial doubling measure. This remains true also if instead of compactness one only requires that X is complete, see [4]. In particular, every closed subset of \mathbf{R}^{n} carries a nontrivial doubling measure. The existence question gains special interest from the fact that, in order to extend classical results of analysis to a setting of a metric space X, one is often forced to postulate a doubling measure on X (see e.g. [9, Chapter I]).

In the present note we show that one cannot replace compactness by local compactness in the theorem of Vol'berg and Konyagin, thus answering negatively a question posed in [4]. In fact, counterexamples contain remarkably 'nice' spaces that appear in analysis: Theorem 3 yields a bounded Jordan domain $\Omega \subset \mathbf{R}^{n}$ ($n \geq 2$) that carries no doubling measure with respect to the Euclidean distance. We also prove (Theorem 5) a more general result of nonexistence: for every nonempty metric space X which does not have isolated points there is an open and dense subset $\Omega \subset X$ such that Ω does not carry a doubling measure. Further observations are contained in Remarks 1 and 2 below.

We refer to [11], [3], [9, Chapter I, Section 8], [10], [12], [13], and [2] for additional results on doubling measures. In addition, the work of Staples and Ward [8] is directly related to Theorem 5, see Remark 3 below (we are grateful to J. Heinonen who noticed the connection between our results and [8]).

The research for this note was carried out during my visit to the University of Michigan, Ann Arbor. I thank F. Gehring and J. Heinonen for hospitality and for creating a stimulating mathematical atmosphere. Moreover, I thank J. Luukkainen for the careful reading of the manuscript and his valuable comments on it.

[^0]
2. Results

We first recall that if (X, d) is a metric space, then a Borel measure μ on X is doubling if there exists a constant $C \geq 1$ so that the inequality

$$
\begin{equation*}
0<\mu(B(x, 2 r)) \leq C \mu(B(x, r))<\infty \tag{1}
\end{equation*}
$$

holds for all $x \in X$ and $r>0$ (in this case we also say that μ is C-doubling). Here $B(x, r)=\{y \in X \mid d(x, y)<r\}$. If B is a ball in X with radius r, then for $k>0$ the abbreviation $k B$ denotes the ball with the same center and with radius $k r$. Moreover, we write $B_{c}(x, r)=\{y \in X \mid d(x, y) \leq r\}$.

A subset A^{\prime} of a metric space A is ε-dense in A for $\varepsilon>0$ if $A=\bigcup_{y \in A^{\prime}} B(y, \varepsilon)$. A metric space (X, d) is doubling (in the metric sense) if there is a constant $K>0$ such that for every set $A \subset B(x, 2 r)$ with $x \in X, r>0$ that satisfies $d(y, z) \geq r$ for distinct $y, z \in A$, the number of points in A is bounded from above by K. If X carries a doubling measure, then X is known to be doubling. The family of Borel sets of a metric space X is denoted by $\mathscr{B}(X)$.

The following simple lemma is essentially known, but for completeness we include a proof.

Lemma 1. Let A be a dense subset of a metric space X. Then every C doubling measure μ on A extends to a C-doubling measure $\tilde{\mu}$ on X for which $\tilde{\mu}(S)=\mu(S \cap A)$ for $S \in \mathscr{B}(X)$.

Proof. Note that A need not be a Borel subset of X, so that one needs to verify that $\tilde{\mu}$ is a well-defined measure. For that end it is enough to note that $\{S \in \mathscr{B}(X) \mid S \cap A \in \mathscr{B}(A)\}=\mathscr{B}(X)$, and this follows by observing that the left-hand side is a σ-field that contains all open subsets of X. Let then $x \in X$ and $r>0$. Choose a sequence of points $x_{k} \in A$ so that $d\left(x_{k}, x\right)<\frac{1}{2} r$ and $d_{k}=d\left(x_{k}, x\right)$ decreases to 0 as $k \rightarrow \infty$. The inequality (1) follows by letting $k \rightarrow \infty$ in the estimate

$$
\begin{aligned}
\tilde{\mu}\left(B\left(x, 2 r-3 d_{k}\right)\right) & \leq \mu\left(B\left(x_{k}, 2 r-2 d_{k}\right) \cap A\right) \\
& \leq C \mu\left(B\left(x_{k}, r-d_{k}\right) \cap A\right) \leq C \tilde{\mu}(B(x, r))
\end{aligned}
$$

Our second lemma is a geometrically refined variant of known estimates (see e.g. [12, Lemma 1] for doubling measures. In what follows, the word rectangle (or square) refers to the closure of a rectangular domain.

Lemma 2. Let $S=[0, a]^{2} \subset \mathbf{R}^{2}$ and $R=[0, b] \times[0, a]$, where $0<b<\frac{1}{2} a$. Let μ be a C-doubling measure on a set $U \subset \mathbf{R}^{2}$ so that $U \cap S$ is (b/16)-dense in S. Then

$$
\frac{\mu(R \cap U)}{\mu(S \cap U)} \leq\left(1-C^{-4}\right)^{\log _{2}(a / b)-2}
$$

Proof. The claim clearly holds for $b \in\left[\frac{1}{4} a, \frac{1}{2} a\right)$. By induction it is then enough to prove it for $b \in\left(0, \frac{1}{4} a\right)$ assuming that it is true for $2 b$. Assume hence that $b \in\left(0, \frac{1}{4} a\right)$ and denote $R^{\prime}=[0,2 b] \times[0, a]$. By the density assumption it is easily verified that there are disjoint balls B_{1}, \ldots, B_{m} with centers in U so that $\bigcup_{i=1}^{m} B_{i} \subset R^{\prime} \backslash R$ and $R^{\prime} \subset \bigcup_{i=1}^{m} 2^{4} B_{i}$. The doubling property of μ implies

$$
\mu\left(U \cap R^{\prime}\right) \leq C^{4} \mu\left(U \cap\left(\bigcup_{i=1}^{m} B_{i}\right)\right)
$$

and hence

$$
\mu(U \cap R) \leq \mu\left(U \cap R^{\prime}\right)-\mu\left(U \cap\left(\bigcup_{i=1}^{m} B_{i}\right)\right) \leq\left(1-C^{-4}\right) \mu\left(U \cap R^{\prime}\right)
$$

The lemma now follows by applying the induction hypothesis on the rectangle R^{\prime} since the needed density assumption is satisfied.

Theorem 3. For each $n \geq 2$ there is a bounded Jordan domain $\Omega \subset \mathbf{R}^{n}$ (even the image of B^{n} under a homeomorphism of \mathbf{R}^{n}) which does not carry a doubling measure.

Proof. For reasons of clarity we first give a detailed proof in the case $n=2$. Let us start by constructing a standard Cantor set $F \subset \mathbf{R}$ corresponding to a sequence $\left(\lambda_{j}\right)_{j=1}^{\infty}$ of scalars, such that $\lambda_{j} \in\left(0, \frac{1}{8}\right)$ and $\lim _{j \rightarrow \infty} \lambda_{j}=0$. Thus $F=\bigcap_{j=0}^{\infty} F_{j}$, where $F_{0}=[0,1]$ and for each $j \geq 1$ the set F_{j} is obtained from F_{j-1} by dissecting a middle interval of length $\lambda_{j}|I|$ from each of the 2^{j-1} closed intervals I that comprise F_{j-1}. Finally we choose $\lambda_{j}=2^{-5 j}$ for $j \geq 1$ (however, we keep writing λ_{j} instead of $2^{-5 j}$ until to the very end of the argument, since we will later make another choice for (λ_{j}) in Remark 2).

Set $K=F \times F \subset \mathbf{R}^{2}$. Since K is a Cantor set, it is well known that there is a planar Jordan curve J such that $K \subset J$, see e.g. [7, Theorems 12.8 and 13.7]. Let Ω be the bounded component of $\mathbf{R}^{2} \backslash J$. We claim that Ω carries no doubling measure. Towards the proof of the claim denote by U the closure of Ω and assume that μ is a C-doubling measure on U. Lemma 1 implies that it is enough to show that μ cannot be supported on Ω, and this follows if we establish that

$$
\begin{equation*}
\mu(K)>0 \tag{2}
\end{equation*}
$$

We may write $K=\bigcap_{j=0}^{\infty} K_{j}$ with $K_{j}=F_{j} \times F_{j}$ and, moreover,

$$
K_{j}=\bigcup_{i=1}^{4^{j}} S_{j}^{i}
$$

where each $S_{j}^{i}\left(i=1, \ldots, 4^{j}\right)$ is a square.

Choose $j_{0}=j_{0}(C) \geq 1$ so that $b_{j}>\frac{1}{2}$ for $j \geq j_{0}$, where

$$
\begin{equation*}
b_{j}=1-C^{4}\left(1-C^{-4}\right)^{-3+\log _{2}\left(\left(1-\lambda_{j}\right) / \lambda_{j}\right)} . \tag{3}
\end{equation*}
$$

Let then $j \geq j_{0}$ and $i_{0} \in\left\{1, \ldots, 4^{j}\right\}$ be arbitrary and let $S_{j+1}^{i_{r}}, r=1,2,3,4$, be the four squares that comprise $S_{j}^{i_{0}} \cap K_{j+1}$. We show that

$$
\begin{equation*}
\sum_{r=1}^{4} \mu\left(S_{j+1}^{i_{r}} \cap U\right) \geq b_{j+1} \mu\left(S_{j}^{i_{0}} \cap U\right) \tag{4}
\end{equation*}
$$

Before proving (4) we show how (2) follows from it. Note that (4) yields by induction the inequality $\mu\left(K_{j} \cap U\right) \geq \mu\left(K_{j_{0}} \cap U\right) \prod_{i=j_{0}+1}^{j} b_{i}$, and letting $j \rightarrow \infty$ we obtain

$$
\mu(K)=\mu(K \cap U) \geq\left(\prod_{j=j_{0}+1}^{\infty} b_{j}\right) \mu\left(K_{j_{0}} \cap U\right)
$$

We observe that evidently $\mu\left(K_{j_{0}} \cap U\right)>0$. Moreover, the elementary inequality $b \geq e^{-2(1-b)}$ for $b \in\left(\frac{1}{2}, 1\right)$ implies that

$$
\prod_{j=j_{0}+1}^{\infty} b_{j} \geq \exp \left(-2 C^{4} \sum_{j=j_{0}+1}^{\infty}\left(1-C^{-4}\right)^{-3+\log _{2}\left(\left(1-\lambda_{j}\right) / \lambda_{j}\right)}\right) \geq \exp \left(-C^{\prime} \sum_{j=j_{0}+1}^{\infty} \lambda_{j}^{d}\right),
$$

where the positive constants d and C^{\prime} depend only on C. Hence $\prod_{j=j_{0}+1}^{\infty} b_{j}>0$ (independently of the value of C) provided that the sequence $\left(\lambda_{j}\right)$ satisfies

$$
\begin{equation*}
\sum_{j=1}^{\infty} \lambda_{j}^{\delta}<\infty \quad \text { for all } \delta>0 \tag{5}
\end{equation*}
$$

We obtain (2) since (5) obviously holds for the choice $\lambda_{j}=2^{-5 j}$.
It remains to prove (4). Let $a_{j}=2^{-j} \prod_{i=1}^{j}\left(1-\lambda_{i}\right)$ be the sidelength of the square $S_{j}^{i_{0}}$, and write $S_{j}^{i_{0}}$ in an obvious manner as a union of nine sets:

$$
\begin{equation*}
S_{j}^{i_{0}}=S^{\prime} \cup\left(\bigcup_{r=1}^{4} R_{r}\right) \cup\left(\bigcup_{r=1}^{4} S_{j+1}^{i_{r}}\right) \tag{6}
\end{equation*}
$$

where each $R_{r}(r=1,2,3,4)$ is a rectangle with sides $\lambda_{j+1} a_{j}$ and $\frac{1}{2}\left(1-\lambda_{j+1}\right) a_{j}$, and S^{\prime} is a square with side $\lambda_{j+1} a_{j}$. Fix $r \in\{1,2,3,4\}$. With a possible (and harmless) relabeling of the rectangles we may denote by R_{r}^{\prime} the closed rectangle of the same size as R_{r}, having a common side with it, and contained in $S_{j+1}^{i_{r}}$. We now apply Lemma 2 and deduce that

$$
\mu\left(R_{r}^{\prime} \cap U\right) \leq\left(1-C^{-4}\right)^{-3+\log _{2}\left(\left(1-\lambda_{j+1}\right) / \lambda_{j+1}\right)} \mu\left(S_{j+1}^{i_{r}} \cap U\right)
$$

since the density hypothesis of Lemma 2 is satisfied owing to the construction of the Cantor set F and the fact that $\lambda_{j+2}=\lambda_{j+1} / 32$. Because of the density we may also choose disjoint balls B_{1}, \ldots, B_{m} with centers in U so that $\bigcup_{i=1}^{m} B_{i} \subset R_{r}^{\prime}$ and $S^{\prime} \cup R_{r} \subset \bigcup_{i=1}^{m} 2^{4} B_{i}$, which implies that

$$
\mu\left(\left(S^{\prime} \cup R_{r}\right) \cap U\right) \leq C^{4} \mu\left(R_{r}^{\prime} \cap U\right)
$$

Combining these observations we deduce that
$\mu\left(\left(S_{j}^{i_{0}} \backslash\left(\bigcup_{r=1}^{4} S_{j+1}^{i_{r}}\right)\right) \cap U\right) \leq C^{4}\left(1-C^{-4}\right)^{-3+\log _{2}\left(\left(1-\lambda_{j+1}\right) / \lambda_{j+1}\right)} \mu\left(\left(\bigcup_{r=1}^{4} S_{j+1}^{i_{r}}\right) \cap U\right)$,
which yields (4).
Finally, in the case $n \geq 3$ we choose $\Omega=\Omega_{2} \times(0,1)^{n-2}$, where Ω_{2} is the twodimensional domain constructed above. The proof of the theorem and a higher dimensional version of Lemma 2 remains the same almost verbatim if one replaces the two-dimensional sets A figuring in the proof by sets of the form $A \times[0,1]^{n-2}$. There are only minor differences: the power C^{4} has to be replaced by a power C^{k}, where k depends on the dimension n, and the density condition of Lemma 2 together with the choice of λ_{j} must be adjusted accordingly.

Remark 1. Under some additional conditions on the domain one can ensure the existence of a doubling measure on Ω with respect to the Euclidean distance. We give a simple example: every doubling measure on $\bar{\Omega}$ is supported on Ω if the domain Ω satisfies the following condition:
(A) There is a constant $k>1$ with the following property: For every $x \in \partial \Omega$ and for every $\varepsilon>0$ there is $y \in \Omega$ so that $d(y, \partial \Omega)<\varepsilon$ and $x \in k B(y, d(y, \partial \Omega))$.

The existence of a doubling measure on Ω satisfying (A) follows from the Vol'berg-Konyagin theorem applied to $\bar{\Omega}$ (or from [4] if Ω is unbounded). Notice that (A) is satisfied e.g. by John domains, but also by some bounded domains that are not John (for the definition of a John domain, see [5, 2.1]). In order to prove our claim, we assume for simplicity that Ω is bounded. Denote $A_{\varepsilon}=$ $\{x \in \Omega \mid d(x, \partial \Omega) \leq \varepsilon\}$. Given $\varepsilon>0$, assumption (A) and an application of a standard covering theorem (see e.g. [6, Theorem 2.1]) to the ball family $\mathscr{B}=$ $\left\{B(y, d(y, \partial \Omega)) \mid y \in A_{\varepsilon}\right\}$ yield a constant k_{0} (that does not depend on ε) and disjoint balls B_{1}, B_{2}, \ldots from the family \mathscr{B} so that $\bigcup_{i=1}^{\infty} B_{i} \subset A_{2 \varepsilon}$ and $\partial \Omega \subset$ $\bigcup_{i=1}^{\infty} 2^{k_{0}} B_{i}$. Let μ be C-doubling on $\bar{\Omega}$. It follows that $\mu(\partial \Omega) \leq C^{k_{0}} \mu\left(A_{2 \varepsilon}\right)$, where the right-hand side can be made arbitrarily small since $\bigcap_{j=1}^{\infty} A_{2^{-j}}=\emptyset$.

Remark 2. There are domains that are 'nearly John' but which do not carry a doubling measure. More precisely, there is a bounded domain $\Omega \subset \mathbf{R}^{2}$ which does not carry a doubling measure but whose boundary is accessible in the following sense:
(B) Let $\varepsilon>0$. For every boundary point $x \in \partial \Omega$ there is a path $\gamma:[0,1] \rightarrow \bar{\Omega}$ with finite length, and such that $\gamma(0)=x$ and $\gamma(1)=x_{0}$, where $x_{0} \in \Omega$ is fixed. Moreover, for all $t \in(0,1]$ it holds that

$$
B\left(\gamma(t), C_{\varepsilon} s^{1+\varepsilon}\right) \subset \Omega
$$

where s is the length of the subarc $\gamma([0, t])$.
(Compare with the previous remark.) In fact, we may choose $\Omega=B(0,3) \backslash K$, where K is the planar Cantor set constructed in the proof of Theorem 3 with the choice $\lambda_{j}=2^{-j / \log (j+2)}$. The proof for our claim is practically equal to the proof of Theorem 3, now only the density conditions are automatically satisfied (independently of the choice of $\left(\lambda_{j}\right)$) so that it remains to verify (5), which is immediate. Finally, it is not difficult to verify that Ω fulfils (B) with the choice $x_{0}=\left(\frac{1}{2}, \frac{1}{2}\right)$.

Question. Suppose that Ω is a bounded domain in \mathbf{R}^{n} and $\partial \Omega$ is piecewise given by the graph of a continuous function. Does Ω support a doubling measure?

We next turn to a general observation about nonexistence.
Lemma 4. Let X be a metric space without isolated points and assume that the set $I=\{C \geq 1 \mid$ there is a C-doubling measure on $X\}$ is nonempty (notice that I is a half-line). Let $y \in X$. Then there are functions $f_{1}, f_{2}:(0,1) \times I \rightarrow$ $(0, \infty)$ with the following properties:
(i) f_{1} is decreasing with respect to the second variable and f_{2} is increasing with respect to both variables. Moreover, $\lim _{r \rightarrow 0^{+}} f_{2}(r, C)=0$ for every $C \in I$.
(ii) Every C-doubling measure μ on X satisfies

$$
f_{1}(r, C) \mu(B(y, 1)) \leq \mu(B(x, r)) \leq f_{2}(r, C) \mu(B(y, 1))
$$

for $x \in B(y, 1)$ and $r \in(0,1)$.
Proof. We first conclude that X is doubling, since $I \neq \emptyset$. Assume that μ is a C-doubling measure on X. The existence of the lower bound is obtained by a standard argument: given $r \in(0,1)$ and $x \in B(y, 1)$, choose $k_{0}=\left[\log _{2}(1 / r)\right]+2$ and notice that $\mu(B(y, 1)) \leq \mu\left(B\left(x, 2^{k_{0}} r\right)\right) \leq C^{k_{0}} \mu(B(x, r))$. Hence an appropriate choice for f_{1} is $f_{1}(r, C)=C^{-2} r^{\log _{2} C}$, which is clearly decreasing which respect to C since $r<1$.

Towards the upper bound, we first consider the case where X is complete. Then, since metric doubling clearly implies total boundedness for bounded sets, we see that every closed ball of X is compact. For $r \in(0,1)$ and $C \in I$ define

$$
f_{2}(r, C)=\sup _{x \in B(y, 1)}\{\mu(B(x, r)) \mid \mu \text { is } C \text {-doubling on } X \text { with } \mu(B(y, 1))=1\} .
$$

Clearly f_{2} is well-defined since the supremum is bounded from above by C, and it is increasing with respect to both variables. We show that $\lim _{r \rightarrow 0^{+}} f_{2}(r, C)=0$, where $C \in I$ is fixed. Assuming the contrary we deduce the existence of a sequence $\left(x_{j}\right)$ with $x_{j} \in B(y, 1)$, a sequence $\left(r_{j}\right)$ of positive radii with $r_{j}<1 / j$, and a sequence of C-doubling measures μ_{j} on X with $\mu_{j}(B(y, 1))=1$, and such that $\mu_{j}\left(B\left(x_{j}, r_{j}\right)\right) \geq c_{0}>0$ for all $j \geq 1$. Note that $1 \leq \mu_{j}\left(B_{c}(y, 3)\right) \leq C^{2}$. We may extract a subsequence $\left(j_{k}\right)$ such that $\mu_{j_{k}} \rightarrow \mu$ in the weak ${ }^{*}$-topology of Borel measures on the compact ball $B_{c}(y, 3)$ and $x_{j_{k}} \rightarrow a$ as $k \rightarrow \infty$. A simple reasoning (compare the proof of [4, Theorem 1]) shows that μ is nonzero and satisfies the doubling property (1) (with possibly a larger doubling constant) for $x \in B_{c}(y, 1)$ and $r \in(0,1)$. Next, let $\varepsilon \in(0,1)$. There are arbitrarily large k such that $B\left(x_{j_{k}}, r_{j_{k}}\right) \subset B\left(a, \frac{1}{2} \varepsilon\right)$. It follows that $\mu(B(a, \varepsilon)) \geq c_{0}$ and hence $\mu(\{a\})>0$. However, this is clearly impossible since μ is doubling (for small radii) on a neighborhood of the nonisolated point a.

Consider finally the general case where X may possibly be noncomplete. Let Y be the completion of X. Then Y is doubling and perfect so that the above reasoning yields an appropriate f_{2} for Y and $y \in X \subset Y$. If μ is a C-doubling measure on X, then Lemma 1 yields a C-doubling extension $\tilde{\mu}$ on Y. Then $\mu\left(B^{X}(x, r)\right) \leq f_{2}(r, C) \mu\left(B^{X}(y, 1)\right)$ for $x \in B^{X}(y, 1)$ and $r \in(0,1)$, by the definition of the extension $\tilde{\mu}$. Hence f_{2} (or a suitable restriction of it) will do the job for X. -

Theorem 5. Let X be a nonempty metric space without isolated points. Then there is a dense open set $A \subset X$ such that A does not carry a doubling measure.

Proof. We may assume that X carries a C_{0}-doubling measure for some $C_{0} \geq 1$ since otherwise we may choose $A=X$. Fix $y \in X$ and select functions f_{1} and f_{2} that satisfy the conditions stated in Lemma 4. Choose a dense sequence $\left(y_{k}\right)_{k=1}^{\infty}$ of points in X (because X is doubling it is separable) so that $y_{k} \neq y$ for $k \geq 1$. The set A will be constructed in the form $A=\bigcup_{k=1}^{\infty} B\left(x_{k}, r_{k}\right)$, where the positive radii $r_{k} \in\left(0, \frac{1}{8}\right)$ and the points $x_{k} \in X$ are chosen inductively in such a way that the following conditions are satisfied for each $n \geq 1$:
(i) $x_{n}=y_{k_{n}}$, where $k_{n}=\inf \left\{k \mid y_{k} \notin \overline{\bigcup_{j=1}^{n-1} B\left(x_{j}, r_{j}\right)}\right\}$,
(ii) $d\left(x_{n}, \overline{\bigcup_{j=1}^{n-1} B\left(x_{j}, r_{j}\right)}\right) \geq 3 r_{n}$ if $n>1$,
(iii) $y \notin \overline{\bigcup_{j=1}^{n} B\left(x_{j}, r_{j}\right)}$,
(iv) $f_{2}\left(r_{n}, n\right) \leq \frac{1}{2 n} \min \left\{f_{1}\left(r_{n-1}, n-1\right), f_{2}\left(r_{n-1}, n-1\right)\right\}$ if $n \geq C_{0}+1$,
(v) $\left\{z \in X \mid d\left(z, x_{n}\right)=2 r_{n}\right\} \neq \emptyset$.

In order to start the induction set $x_{1}=y_{1}$, and since x_{1} is not an isolated point we may choose $r_{1}>0$ satisfying (v) and with $r_{1}<\min \left\{\frac{1}{2} d\left(y_{1}, y\right), \frac{1}{8}\right\}$. Assume then that $n \geq 2$ and that x_{1}, \ldots, x_{n-1} together with r_{1}, \ldots, r_{n-1} have
been chosen so that conditions (i)-(v) hold for the respective indexes. We next choose x_{n} according to (i). This is possible according to the induction hypothesis since (iii) implies that $\left\{y_{k} \mid k \geq 1\right\} \backslash \overline{\bigcup_{j=1}^{n-1} B\left(x_{j}, r_{j}\right)} \neq \emptyset$. Then (ii)-(iv) hold once r_{n} is chosen small enough, and also (v) may be satisfied since x_{n} is not isolated in X. The induction argument is complete. Note that (iv) implies for $n \geq C_{0}$ the estimate

$$
\begin{equation*}
f_{1}\left(r_{n}, n\right) \geq 2 n f_{2}\left(r_{n+1}, n+1\right) \geq n \sum_{k=n+1}^{\infty} f_{2}\left(r_{k}, k\right) \tag{iv}
\end{equation*}
$$

since the infinite series is bounded from above by a geometric majorant which is obtained from the observation

$$
f_{2}\left(r_{k}, k\right) \leq f_{2}\left(r_{k-1}, k-1\right) / 2 k \leq f_{2}\left(r_{k-1}, k-1\right) / 2 .
$$

Assume then that μ is a C-doubling measure on A. Note that (i) implies the density of A in X, and hence Lemma 1 extends μ to a C-doubling measure $\tilde{\mu}$ on X. We may assume that $\tilde{\mu}(B(y, 1))=1$ and $C \geq C_{0}$. By the fact $\bar{A}=X$ and (iii) we may choose $n \geq 2 C^{2}$ so that $x_{n} \in B\left(y, \frac{1}{2}\right)$. According to (v) there is $z \in X$ satisfying $d\left(x_{n}, z\right)=2 r_{n}$. Write $B_{1}=B\left(x_{n}, r_{n}\right)$ and $B_{2}=B\left(z, r_{n}\right)$. Then $B_{1} \cap B_{2}=\emptyset$ and (ii) implies that also $B_{2} \cap B\left(x_{k}, r_{k}\right)=\emptyset$ for all $k<n$. Hence we may apply Lemma 4 and (vi) in order to deduce that

$$
\begin{aligned}
\tilde{\mu}\left(B_{2}\right) & \leq \mu\left(\bigcup_{\left\{k \geq n+1 \mid x_{k} \in B(y, 1)\right\}} B\left(x_{k}, r_{k}\right)\right) \leq \sum_{\left\{k \geq n+1 \mid x_{k} \in B(y, 1)\right\}} f_{2}\left(r_{k}, C\right) \\
& \leq \sum_{k=n+1}^{\infty} f_{2}\left(r_{k}, k\right) \leq \frac{1}{n} f_{1}\left(r_{n}, n\right) \leq \frac{1}{2 C^{2}} f_{1}\left(r_{n}, C\right) \leq \frac{1}{2 C^{2}} \tilde{\mu}\left(B_{1}\right) .
\end{aligned}
$$

This contradicts the facts that $\tilde{\mu}$ is C-doubling and $B_{1} \subset 4 B_{2}$. Hence A carries no nontrivial doubling measure. ㅁ

Remark 3. In the case where $X=[0,1]$, the existence of a dense open subset of X without a doubling measure may in fact be deduced as a simple consequence of a result due to Staples and Ward [8, Theorem 1.2]. Namely, in [8] a subset $K \subset[0,1]$ is called quasisymmetrically thick if there is no quasisymmetric map ϕ from $[0,1]$ onto $[0,1]$ such that $|\phi(K)|=0$ (for the definitions and properties of quasisymmetric maps on the real line we refer to [1]). Here $|\cdot|$ refers to the Lebesgue measure. Choose a closed and quasisymmetrically thick subset $K \subset[0,1]$ with dense complement K^{c} (such sets are provided by [8, Theorem 1.2] and, not surprisingly, our reasoning for Theorem 5 partly resembles their proof). Assume that K^{c} carries a normalized doubling measure μ. Let $\tilde{\mu}$ be the extension of μ onto $[0,1]$ provided by Lemma 1 . For $x \in[0,1]$ define $\phi(x)=\tilde{\mu}([0, x])$. Then ϕ is a quasisymmetric map of $[0,1]$ onto itself such that $|\phi(K)|=0$, which is impossible. Hence K^{c} carries no doubling measures.

References

[1] Beurling, A., and L. Ahlfors: The boundary correspondence under quasiconformal mappings. - Acta Math. 96, 1956, 125-142.
[2] Buckley, S.M., B. Hansen, and P. MacManus: Doubling conditions for general sets. - In preparation.
[3] Kaufman, R., and J.-M. Wu: Two problems on doubling measures. - Rev. Math. Iberoamericana 11, 1995, 527-545.
[4] LuUkKainen, J., and E. SakSman: Every complete doubling metric space carries a doubling measure. - Proc. Amer. Math. Soc. (to appear).
[5] Martio, O., and J. Sarvas: Injectivity theorems in plane and space. - Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 1979, 383-401.
[6] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. - Cambridge University Press, 1995.
[7] Moise, E.M.: Geometric Topology in Dimensions 2 and 3. - Springer-Verlag, 1977.
[8] Staples, S.G., and L.A. Ward: Quasisymmetrically thick sets. - Ann. Acad. Sci. Fenn. Math. (to appear).
[9] Stein, E.M.: Harmonic Analysis. - Princeton University Press, 1993.
[10] Tukia, P.: Hausdorff dimension and quasisymmetric mappings. - Math. Scand. 65, 1989, 152-160.
[11] Vol'berg, A.L., and S.V. Konyagin: On measures with the doubling condition. - Math. USSR-Izv. 30, 1988, 629-638.
[12] Wu, J.-M.: Null sets for doubling and dyadic doubling measures. - Ann. Acad. Sci. Fenn. Ser. A I Math. 18, 1993, 77-91.
[13] Wu, J.-M.: Hausdorff dimension and doubling measures on metric spaces. - Proc. Amer. Math. Soc. (to appear).

Received July 1997

[^0]: 1991 Mathematics Subject Classification: Primary 28A12; Secondary 28A75.
 Supported by the Academy of Finland.

