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Abstract. The upper set Ã of a metric space A is a subset of A × (0,∞) , consisting of
all pairs (x, |x − y|) with x, y ∈ A , x �= y . We consider various properties of Ã and a metric
of Ã , called the broken hyperbolic metric. The theory is applied to study basic properties of
quasisymmetric maps.

1. Introduction

1.1. Let A be a metric space, where the distance between points a, b is written
as |a − b| . The upper set of A is the subset

Ã =
{
(x, |x − y|) : x ∈ A, y ∈ A \ {x}

}
of A ×R+, R+ = (0,∞). We assume that A contains at least two points in order
that Ã be nonempty. If A ⊂ Rn , then Ã ⊂ Rn+1

+ = Rn ×R+ , and we can consider
the hyperbolic metric �h of Rn+1

+ in Ã . However, we find it convenient to replace
�h by another metric � , which is bilipschitz equivalent to �h , and which is easy
to consider also in the case where A is an arbitrary metric space. The precise
definition of � is given in 2.2.

For each λ > 0 we partition Ã into λ-components, where points z and
z′ belong to the same λ-component if they can be joined by a finite sequence
z = z0, . . . , zN = z′ in Ã with �(zj−1 , zj) ≤ λ for all j . The family Γ = Γλ(A)
of all λ-components of Ã is the main object of study in this paper. The case
λ ≥ 1 is the most interesting. There is a natural ordering of Γ, which gives Γ a
structure of a treelike graph.

If A is connected, then also Ã is connected, and Γ is the trivial graph con-
sisting of one vertex. More generally, Γ is trivial if A is c -uniformly perfect with
c < eλ ; see 4.12 for the definition of uniform perfectness. In the general case we
can roughly say that the structure of Γ describes in which way A is disconnected.
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In Section 6 we apply the theory of upper sets to quasisymmetric maps. Let
A and B be metric spaces and let f : A → B be η -quasisymmetric; see 6.2 for
the definition of quasisymmetry. It is well known that if A is uniformly perfect,
then η can be chosen to be of the form η(t) = C(tα ∨ t1/α); see [TV], [AT]. We
show that this is true for all η -quasisymmetric maps of A if and only if there
is λ such that Γλ(A) is trivial. This property can also be expressed in terms of
relative connectedness (Theorem 4.9).

The second author wants to make it clear that an early version of the theory of
upper sets was created and developed by the first author D.A. Trotsenko in the late
eighties and considered in the conference proceedings [Tr]. Also the application
to quasisymmetric maps was proved by him. The main part of this paper was
written during the visits of the first author at the University of Helsinki in 1997.
The second author has “polished up” the theory by writing and simplifying details
of proofs, introducing some terminology and auxiliary concepts, etc.

1.2. Notation. Throughout the paper, A will denote a metric space with
distance between points x, y written as |x − y| . For nonempty sets E,F ⊂ A ,
we let d(E) and d(E,F ) denote the diameter of E and the distance between
E and F . For r > 0, B(E, r) is the r -neighborhood {x : d(x,E) < r} of E .
Moreover, B(x, r) is the open ball with radius r centered at x ; the closed ball is
B(x, r). We let R and N denote the set of real numbers and the set of positive
integers, respectively, and we write N0 = N ∪ {0} . For real numbers s, t we use
the notation

s ∧ t = min(s, t), s ∨ t = max(s, t).

We make the convention that λ will always denote a real number with λ ≥ 1.

Acknowledgement. We thank Pekka Alestalo for careful reading of the manu-
script and for several valuable comments.

2. Broken hyperbolic metric

2.1. Summary. In this section we introduce the broken hyperbolic metric �
of the space A × R+ and prove some properties of it.

2.2. Definitions. The ordinary hyperbolic metric �h of the half space Rn+1
+ =

Rn × R+ is defined by the element of length

d�h(x, r) =
(|dx|2 + dr2)1/2

r
,

where x ∈ Rn , r ∈ R+ , n ≥ 1. We find it convenient to replace �h by the metric
� defined by the element of length

d�(x, r) =
|dx| + |dr|

r
.
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Thus for z, z′ ∈ Rn+1
+ we have

�(z, z′) = inf
γ

∫
γ

|dx| + |dr|
r

over all rectifiable arcs γ joining z and z′ in Rn+1
+ . Since d�h ≤ d� ≤

√
2 d�h ,

we have
�h(z, z′) ≤ �(z, z′) ≤

√
2 �h(z, z′)

for all z, z′ ∈ Rn+1
+ . The metric � is the broken hyperbolic metric of Rn+1

+ .
More generally, let A be an arbitrary metric space, and let z = (x, r), z′ =

(x′, r′) be points in A × R+ . Choose points y, y′ ∈ Rn with |y − y′| = |x − x′| .
Then the number

�(z, z′) = �
(
(y, r), (y′ , r′)

)
is independent of the choice of y and y′ , and it gives the broken hyperbolic metric
� of A × R+ . Since each triple of A can be isometrically embedded into R2 , we
see that � indeed is a metric in A × R+ .

Alternatively, the broken hyperbolic metric � of A × R+ can be defined as
follows. Let

π: A × R+ → A, π2: A × R+ → R+

be the projections. By a step we mean a pair of points in A×R+ . A step (z, z′) is
vertical if π(z) = π(z′), and (z, z′) is horizontal if π2(z) = π2(z′). The hyperbolic
length of a vertical step (z, z′) is

lh(z, z′) =
∣∣∣ log

π2(z)
π2(z′)

∣∣∣,
and the hyperbolic length of a horizontal step (z, z′) is

lh(z, z′) =
|π(z) − π(z′)|

π2(z)
.

A step path in A × R+ is a finite sequence z̄ = (z0, . . . , zN ) of points in A × R+

such that the step (zj−1 , zj) is either horizontal or vertical for all 1 ≤ j ≤ N .
The hyperbolic length of z̄ is the number

lh(z̄) =
N∑

j=1

lh(zj−1, zj).

In the special case A = Rn , lh(z̄) is the ordinary hyperbolic length of the path
consisting of the segmental paths [zj−1, zj ] , 1 ≤ j ≤ N . The broken hyperbolic
distance between points z, z′ ∈ A × R+ is defined as

�(z, z′) = inf
z̄

lh(z̄)

over all step paths z̄ from z to z′ . It is not difficult to show that the two definitions
for � are equivalent. However, in the sequel we shall use the second definition; the
first one was given to illustrate the connection between � and �h in Rn+1

+ .
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2.3. Geodesics. Let z = (x, r) and z′ = (x′, r′) be points in A × R+ . We
want to find a geodesic from z to z′ , that is, a step path z̄ = (z0, . . . , zN ) such
that z0 = z , zN = z′ , and lh(z̄) = �(z, z′).

Assume that r ≤ r′ and that z̄ is a step path from z to z′ . Let t =
max{π2(zj) : 0 ≤ j ≤ N} be the maximal height of z̄ . Then the sum of the
hyperbolic lengths of all vertical steps of z̄ is at least log(t/r) + log(t/r′). The
corresponding sum for the horizontal steps is at least |x − x′|/t . Hence lh(z̄) ≥
lh(ȳ), where ȳ is the step path (z, y1, y2, z

′) with y1 = (x, t), y2 = (x′, t). We
have

lh(ȳ) =
|x − x′|

t
+ 2 log t − log(rr′).

Using elementary calculus we see that the right-hand side attains its minimum at
t = |x − x′|/2. We obtain the following result:

2.4. Theorem. Let z = (x, r) and z′ = (x′, r′) be points in A × R+ with
r ≤ r′ and |x − x′| = s . If r′ ≤ s/2 , then the geodesic in the metric � from z to
z′ is the step path

(
z, (x, s/2), (x′ , s/2), z′

)
, and

�(z, z′) = 2 + log
s2

4rr′
.

If r′ ≥ s/2 , then the geodesic is the step path
(
z, (x, r′), z′

)
, and

�(z, z′) =
s

r′
+ log

r′

r
.

In particular, if r = r′ ≥ s/2 or if x = x′ , then the geodesic reduces to the single
step (z, z′) .

2.5. Remarks. 1. Observe that the first case of Theorem 2.4 can occur only
if �(z, z′) > 2.

2. In the case A = Rn , the geodesic from z to z′ can be considered as an
ordinary arc γ ⊂ Rn+1

+ . This arc consists of one, two or three line segments, and
it lies on the boundary of the unique square Q such that Q and a pair of its sides
are perpendicular to Rn , and the center of Q is in Rn . See Figure 1.

Geodesic of the metric � in R+
n+1

Rn

z

z´   

L(x0)

x0

The point z´ of L(x0) is closest to z  

Figure 1.
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2.6. Notation. For x ∈ A we let L(x) denote the ray {x} × R+ = π−1{x} ⊂
A × R+ .

2.7. Lemma. Let z = (x, r) ∈ A × R+ and x0 ∈ A . If |x − x0| ≥ r , then

�
(
z, L(x0)

)
= �

(
z, (x0, |x − x0|)

)
= 1 + log(|x − x0|/r).

If |x − x0| ≤ r , then

�
(
z, L(x0)

)
= �

(
z, (x0, r)

)
= |x − x0|/r.

Proof. The lemma follows from 2.4 by elementary calculus. Alternatively, we
can argue as follows. Without loss we may assume that A = R and that x0 = 0.
Let z′ ∈ L(x0) be the point closest to z . Then z′ must lie on the geodesic between
z and (−x, r), and the lemma follows from 2.4.

2.8. Remark. If A ⊂ Rn , then Lemma 2.7 means that the point z′ of L(x0)
closest to z is such that z lies on the boundary of a square with adjacent vertices
(x0, 0) and z′ . See Figure 1.

2.9. Lemma. If z = (x, r), z′ = (x′, r′) ∈ A×R+ , then |x−x′| ≤ re
(z,z′)−1 .

Proof. Set s = |x − x′| . Since 1 + log(s/r) ≤ s/r , Lemma 2.7 implies that

1 + log
s

r
≤ �

(
z, L(x′)

)
≤ �(z, z′),

and the lemma follows.

2.10. Remark. In a recent manuscript [BS], M. Bonk and O. Schramm con-
sider a metric �′ in A × R , defined by the explicit formula

�′((x, s), (y, t)
)

= 2 log
|x − y| + s ∨ t√

st
.

It is not difficult to show that this metric is bilipschitz equivalent to our metric � .
In fact, �′/2 ≤ � ≤ 2

√
2 �′ .

3. Upper sets and λ-components

3.1. Summary. In this section we develop the basic theory of the upper set Ã
of a metric space A . In particular, we study the properties of the family Γλ(A)
of the λ-components of Ã , λ ≥ 1.

3.2. Definitions. We recall from the introduction that the upper set of a
metric space A is

Ã =
{
(x, |x − y|) : x ∈ A, y ∈ A \ {x}

}
⊂ A × R+.
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Recall also that we always assume that A contains at least 2 points, and hence
Ã �= ∅ . The broken hyperbolic metric of A × R+ defines a metric � in Ã .

Recall from 1.2 that we always assume that λ ≥ 1. By a λ-sequence we
mean a finite sequence z̄ = (z0, . . . , zN ) in Ã such that �(zj−1, zj) ≤ λ for all
1 ≤ j ≤ N . Two points in Ã belong to the same λ-component of Ã if they can be
joined by a λ-sequence in Ã . If there is only one λ-component, Ã is λ-connected.
The family Γλ(A) of all λ-components of Ã is a partition of Ã . For brevity, we
shall write Γλ(A) as Γλ or simply as Γ if there is no danger of misunderstanding.

Recall the notation π: A×R+ → A and π2: A×R+ → R+ for the projections.
We define a partial ordering in A × R+ by setting z ≤ z′ if π(z) = π(z′) and
π2(z) ≤ π2(z′).

We also define a relation ≤ in Γ by setting γ ≤ γ′ if π(γ) ⊂ π(γ′).
In Theorem 3.4 we collect together several basic properties of Γ. In particular,

we show that the relation ≤ is a partial ordering of Γ and give two alternative
characterizations for this relation. Geometrically, γ ≤ γ′ means that γ lies below
γ′ in A × R+ .

3.3. Notation. If x, y ∈ A and x �= y , we set 〈x, y〉 = (x, |x−y|). Then 〈x, y〉
and 〈y, x〉 are in Ã , and �(〈x, y〉, 〈y, x〉) = 1 by 2.4. Hence the points 〈x, y〉 and
〈y, x〉 lie in the same λ-component. This simple observation is needed in several
arguments, and it is the reason for our convention λ ≥ 1.

3.4. Theorem. Let γ, γ′ ∈ Γ = Γλ(A) .
(1) If γ �= γ′ , z ∈ γ , z′ = 〈x, y〉 ∈ γ′ , and z < z′ , then y /∈ πγ . Moreover,

for each w ∈ γ we have �(z′, 〈πw, y〉) < 1 ≤ λ and w < 〈πw, y〉 ∈ γ′ .
(2) γ ≤ γ′ if and only if z ≤ z′ for some z ∈ γ , z′ ∈ γ′ .
(3) γ ≤ γ′ if and only if for each z ∈ γ there is z′ ∈ γ′ with z ≤ z′ .
(4) If γ �= γ′ , then either πγ and πγ′ are disjoint or one of them is a proper

subset of the other.
(5) ≤ is a partial ordering of Γ .
(6) If z1 ≤ z2 ≤ z3 are points of Ã with z1, z3 ∈ γ , then z2 ∈ γ .
(7) If 〈x, y〉 ∈ γ , then x, y ∈ πγ .
(8) π̃γ = ∪{β ∈ Γ : β ≤ γ} .
(9) If γ contains (x, r) and (x′, r′) , and if r ∧ r′ ≤ |x − x′| , then γ contains

〈x, x′〉 and 〈x′, x〉 .
(10) If x0, y ∈ πγ and x ∈ A with |x − x0| ≤ eλ|y − x0| , then x ∈ πγ .
(11) If d(πγ) = ∞ , then πγ = A , and γ is the greatest element of Γ .
(12) If d(πγ) < ∞ , then B

(
πγ, (eλ − 1)d(πγ)

)
= πγ .

(13) If γ < γ′ , then d(πγ′) ≥ (eλ − 1)d(πγ) .
(14) πγ is closed and open in A .
(15) If A is separable, then Γ is countable.

Proof. (1) Write z = (x, r), z′ = (x, r′), where r′ = |x − y| . Suppose that
w = (u, t) ∈ γ . We must show that u �= y and that w < 〈u, y〉 ∈ γ′ . We may
assume that �(z, w) ≤ λ , since the general case follows from this by induction.
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By 2.9 we have |x − u| ≤ reλ−1 , and hence

r′ − reλ−1 ≤ |u − y| ≤ r′ + reλ−1.

Since λ < �(z, z′) = log(r′/r), we have r′ > reλ , and hence |u − y| ≥ r(eλ −
eλ−1) > 0. Thus the point w′ = 〈u, y〉 is in Ã . Moreover,

�(z′, w′) ≤ |u − x|
r′

+ log
r′

r′ − reλ−1
≤ e−1 + log

e

e − 1
< 1 ≤ λ,

which yields w′ ∈ γ′ .
It remains to show that w < w′ , that is, t < |u−y| . Assume that t ≥ |u−y| .

Since �(w,w′) > λ , we then have t > eλ|u − y| > eλ(eλ − eλ−1)r . On the
other hand, �(z, w) ≤ λ implies that t ≤ reλ , and we get the contradiction
1 > eλ − eλ−1 ≥ e − 1. Part (1) is proved.

Observe that in the situation of (1) we have 〈y, x〉 ∈ γ′ by 3.3. Hence πγ �
πγ′ , and parts (2), (3), (4) follow easily. Furthermore, (4) implies (5), and (6)
follows from (2) and (5). Part (7) is clear in view of 3.3.

(8) If β, γ ∈ Γ and z = 〈x, y〉 ∈ β ≤ γ , then x, y ∈ πβ ⊂ πγ by (7), and
hence x ∈ π̃γ . Conversely, assume that x, y ∈ πγ , x �= y . Choose w ∈ γ with
x = π(w). Let β ∈ Γ be the λ-component of Ã containing z = 〈x, y〉 . Since
x ∈ πβ ∩πγ , we have either β ≤ γ or β > γ by (4). The latter case is impossible,
since it implies that w < z by (2) and then y /∈ πγ by (1). Hence β ≤ γ .

(9) We may assume that r ≤ |x − x′| . Choose β ∈ Γ containing 〈x, x′〉 and
〈x′, x〉 . Then β ≤ γ by (8). Since z ≤ 〈x, x′〉 , we have γ ≤ β by (2).

(10) By (8) there is β ∈ Γ with 〈x0 , y〉 ∈ β ≤ γ . By (3) there is z = (x0, r) ∈ γ
with 〈x0 , y〉 ≤ z . If 〈x0, x〉 ≥ z , then

�(〈x0, x〉, z) = log
|x − x0|

r
≤ λ,

and hence 〈x0, x〉 ∈ γ , which gives x ∈ πγ by (7). If 〈x0, x〉 ≤ z , then 〈x0 , x〉 ∈
β ≤ γ for some β ∈ Γ by (2), and hence x ∈ πβ ⊂ πγ .

(11) follows directly from (10).
(12) Observe that d(πγ) > 0 by (7). Suppose that x ∈ B

(
πγ, (eλ −1)d(πγ)

)
.

We can choose ε > 0 and points x1, x0, y ∈ πγ such that

|x − x1| ≤ (eλ − 1)d(πγ) − ε,

|x0 − y| ≥ d(πγ) − εe−λ.

Then

|x − x0| ≤ |x − x1| + |x1 − x0| ≤ (eλ − 1)d(πγ) − ε + d(πγ) ≤ eλ|y − x0|,

which yields x ∈ πγ by (10).
(13) and (14) follow from (12).
(15) If A is separable, then so is A×R+ . Since the neighborhoods B(γ, λ/2)

of γ ∈ Γ are disjoint, Γ is countable.
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3.5. Remark. If A ⊂ Rn is infinite, then (Ã, �) is unbounded. Indeed, A
contains a sequence (xj) of distinct points converging to a point in Rn or to ∞ .
Then �(z1, zj) → ∞ , where zj = 〈xj , xj+1〉 in the first case, and zj = 〈x1, xj+1〉
in the second case.

This result is not true for arbitrary metric spaces. For example, if A is a
space with the discrete metric |x − y| = 1 for x �= y , then Ã = A × {1} , and
�(z, z′) = 1 for all z �= z′ .

4. Simple λ-sequences and relative connectedness

4.1. Summary. We show that each λ-sequence (z0, . . . , zN ) in the upper set Ã
can be embedded into a λ-sequence of a special kind, called a simple λ-sequence.
It turns out that the simple λ-sequences of Ã are in one-to-one correspondence
with certain sequences (x0, . . . , xN ) of A , called M -relative sequences and char-
acterized by the property

|xj−1 − xj |/M ≤ |xj − xj+1| ≤ M |xj−1 − xj |,
M = eλ . These lead to relatively connected metric spaces, which are closely
connected with uniformly perfect spaces.

4.2. Simple sequences. We say that a pair (z, z′) of points in the upper set Ã
of a metric space A is simple if π2(z) = π2(z′) = |π(z) − π(z′)| . In other words,
there are x, y ∈ A such that z = 〈x, y〉 , z′ = 〈y, x〉 . Recall that (z, z′) is vertical
if π(z) = π(z′). In particular, a pair (z, z) is always vertical (but never simple).
Observe that �(z, z′) = 1 for a simple pair (z, z′) and that

�(z, z′) =
∣∣∣log

π2(z)
π2(z′)

∣∣∣
for a vertical pair.

A finite sequence z̄ = (z0, . . . , zN ) in Ã is called simple if N is odd and if
the step (zj−1, zj) is simple for all odd j and (zj−1 , zj) is vertical for all even j .

We first show that every λ-sequence in Ã can be simplified to a simple λ-
sequence by adding new points.

4.3. Theorem. Every λ-sequence z̄ = (z0, . . . , zN ) of Ã can be embedded
into a simple λ-sequence ū = (u0, . . . , uN ′) . This means that u0 = z0 , uN ′ = zN ,
and z̄ is a subsequence of ū .

Proof. We first remark that if 〈x, y〉 ∈ Ã , then the sequence (〈x, y〉, 〈y, x〉 ,
〈y, x〉, 〈x, y〉) is a simple 1-sequence, called a trick sequence. It has three steps,
and it joins 〈x, y〉 to itself.

The theorem is proved by induction on N . Assume first that N = 1. Then
z̄ is a pair (z, z′) with �(z, z′) ≤ λ . Write z = 〈x, y〉 = (x, r) and z′ = 〈x′, y′〉 =
(x′, r′). If x = x′ , we can use two trick sequences to embed z̄ into a simple λ-
sequence with 7 steps. We may thus assume that |x− x′| = t > 0. By symmetry,
we may assume that r ≥ r′ . We consider two cases.
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Case 1. r ≤ eλt . Consider the sequence v̄ = (z, v1 , v2, z
′), where v1 = 〈x, x′〉 ,

v2 = 〈x′, x〉 . If r ≥ t , then �(z, v1) = log(r/t) ≤ λ . If r ≤ t , then 2.4 and 2.7
imply that

�(z, v1) < �(z, v1) + �(v1, v2) = �(z, v2) = �
(
z, L(x′)

)
≤ �(z, z′) ≤ λ.

A similar argument shows that �(v2, z
′) ≤ λ . Hence v̄ is a λ-sequence. Extending

v̄ by two trick sequences we obtain the desired simple λ-sequence ū from z to z′ .
Case 2. r ≥ eλt . We show that the sequence v̄ = (z, v1 , v2, v3, z

′) with
v1 = 〈y, x〉 , v2 = 〈y, x′〉 , v3 = 〈x′, y〉 is a λ-sequence.

Since

(4.4) r − t ≤ |y − x′| ≤ r + t,

we obtain
�(v1, v2) =

∣∣∣log
r

|y − x′|

∣∣∣ ≤ log
r

r − t
≤ log

e

e − 1
< 1.

To prove that �(v3, z
′) ≤ λ we consider two subcases.

Subcase 2a. r′ ≤ r − t . By (4.4) and by 2.4 we obtain

�(v3, z
′) = log

|y − x′|
r′

≤ log
r

r′
+ log

(
1 +

t

r

)
≤ log

r

r′
+

t

r
= �(z, z′) ≤ λ.

Subcase 2b. r′ ≥ r− t . Since r ≥ eλt , it follows from (4.4) that the numbers
r′ and |y − x′| are between r(1 − e−λ) and r(1 + e−λ). Hence

�(v3, z
′) ≤ log

1 + e−λ

1 − e−λ
≤ log

e + 1
e − 1

< 1.

We have proved that v̄ is a λ-sequence. Extending v̄ by a trick sequence
from z′ to z′ we obtain a simple λ-sequence from z to z′ .

Next assume that p is a positive integer and that the theorem is true whenever
N ≤ p . Suppose that N = p + 1. Applying the induction hypothesis to the λ-
sequences (z0, . . . , zN−1) and (zN−1, zN ) we embed them into simple λ-sequences.
Linking these sequences with the trivial vertical step (zN−1, zN−1) we obtain the
desired simple λ-sequence ū .

4.5. Remark. The construction of the proof of 4.3 is not the most economical.
It gives the bound N ′ ≤ 10N .

4.6. Relative connectedness. We say that a finite sequence x̄ = (x0, . . . , xN )
in a metric space A is proper if N ≥ 1 and if xj−1 �= xj for all 1 ≤ j ≤ N . In
particular, a pair (x, y) is proper if x �= y . The sequence x̄ is called M -relative,
M ≥ 1, if x̄ is proper and if

|xj−1 − xj |/M ≤ |xj − xj+1| ≤ M |xj−1 − xj |
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or equivalently,

∣∣∣log
|xj − xj+1|
|xj−1 − xj |

∣∣∣ ≤ log M

for all 1 ≤ j ≤ N − 1. In the trivial case N = 1, x̄ is a pair (x0, x1), and the
condition for M -relativity is vacuously true for all M ≥ 1.

We say that the sequence x̄ = (x0, . . . , xN ) joins the pairs (x0, x1) and
(xN−1, xN ), and that A is M -relatively connected if each pair of proper pairs
(x, y) and (x′, y′) in A can be joined by an M -relative sequence in A . The space
A is relatively connected if it is M -relatively connected for some M ≥ 1.

A connected space is M -relatively connected for all M > 1, but so are many
other spaces as well, for example, the Cantor middle-third set.

4.7. Associated sequences. We shall show that the eλ -relative sequences of A
are in one-to-one correspondence with the simple λ-sequences of the upper set Ã .
Suppose that x̄ = (x0, . . . , xN ) is a proper sequence in A . Define a sequence
z̄ = (z0, . . . , z2N−1) in Ã by

z2j = 〈xj , xj+1〉, z2j+1 = 〈xj+1, xj〉

for 0 ≤ j ≤ N − 1. Thus z̄ is the sequence

(〈x0, x1〉, 〈x1 , x0〉, 〈x1, x2〉, 〈x2 , x1〉, . . . , 〈xN−1, xN 〉, 〈xN , xN−1〉).

Clearly z̄ is a simple sequence. Moreover, z̄ is a λ-sequence if and only if x̄ is
eλ -relative; remember that we always assume that λ ≥ 1. We write z̄ = As x̄ and
say that z̄ is the simple sequence associated with x̄ .
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Figure 2. z̄ = As x̄

Conversely, if z̄ = (z0, . . . , z2N−1) is a simple sequence in Ã , we associate
with z̄ the proper sequence x̄ = As−1z̄ = (x0 , . . . , xN ), where x0 = π(z0), xN =
π(z2N−1), and xj = π(z2j−1) = π(z2j) for 1 ≤ j ≤ N − 1. Then As As−1z̄ = z̄
and As−1 As x̄ = x̄ for all z̄ and x̄ . We have proved:

4.8. Theorem. The function x̄ �→ As x̄ gives a bijective correspondence
between the proper sequences of A and the simple sequences of Ã . Moreover, x̄
is eλ -relative if and only if As x̄ is a λ-sequence.

4.9. Theorem. For λ ≥ 1 , a metric space A is eλ -relatively connected if
and only if Ã is λ-connected.

Proof. This follows from 4.3 and 4.8.
4.10. Remark. In the case A ⊂ Rn , we can find As x̄ by erecting on each line

segment [xj−1, xj ] a square Qj , orthogonal to Rn (identified with Rn × {0} ⊂
Rn+1). The sequence z̄ = As x̄ consists of vertices of these squares as shown in
Figure 2.

We next give an alternative characterization for relative connectedness.

4.11. Theorem. For a metric space A , the following conditions are quanti-
tatively equivalent:

(1) A is M -relatively connected.
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(2) There is c ≥ 1 such that if x ∈ A and B(x, r) �= A , then either B(x, r) =
{x} or B(x, r) \ B(x, r/c) �= ∅ .

More precisely, (1) implies (2) with c = 2M + 1 , and (2) implies (1) with all
M > c .

Proof. Assume that A is M -relatively connected and that (2) is not true for
c = 2M + 1 ≥ 3. Then there are x and r such that {x} �=B(x, r) �= A and such
that B(x, r) \ B(x, r/c) = ∅ . Pick points y and y′ in A such that

0 < |x − y| < r/c, |x − y′| > r.

Since A is M -relatively connected, there is an M -relative sequence (x0, . . . , xN )
joining (x, y) to (x, y′). Let k be the smallest number with |xk − x| ≥ r . Then
k ≥ 2, and

M ≥ |xk − xk−1|
|xk−1 − xk−2|

>
r − r/c

2r/c
=

c − 1
2

,

which gives c < 2M + 1, a contradiction.
Conversely, assume that (2) is true, that M > c , and that (x, y) and (x′, y′)

are proper pairs in A . We show that they can be joined by an M -relative sequence.
We first assume that x = x′ . By symmetry, we may assume that |x−y′| ≤ |x−

y| . Applying condition (2) inductively, we find a sequence of points y = y0, . . . , yN

such that
|x − yj |/M ≤ |x − yj+1| ≤ c|x − yj |/M

for 0 ≤ j ≤ N−1 and |x−yN |/M ≤ |x−y′| ≤ |x−yN | . Now (x, y0 , x, y1, . . . , x, yN ,
x, y′) is an M -relative sequence from (x, y) to (x′, y′).

If x �= x′ , we can join the pairs (x, y) and (x′, y′) to (x, x′) and (x′, x),
respectively, by c -relative sequences. These can be joined in a natural way to a
c -relative sequence from (x, y) to (x′, y′).

4.12. Uniformly perfect spaces. A metric space A is c -uniformly perfect if
B(x, r) �= A implies that B(x, r) \ B(x, r/c) �= ∅ . The concept was introduced by
C. Pommerenke [Po] for closed unbounded sets in R2 , and it has turned out to be
useful in various questions in analysis.

A uniformly perfect set containing more than one point has no isolated points.
For example, a finite metric space containing more than one point is not uniformly
perfect although it is relatively connected. The following corollary of 4.11 gives
relations between uniform perfectness and relative connectedness.

4.13. Theorem. A c -uniformly perfect space is M -relatively connected for
all M > c . If a space A is M -relatively connected and has no isolated points,
then A is c -uniformly perfect with c = 2M + 1 .

We apply the results of this section to show that if points z < z′ can be joined
by a λ-sequence in Ã , they can be joined by a vertical (λ + 1)-sequence. Recall
the notation L(x) = {x} × (0,∞) from 2.6.
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4.14. Lemma. Suppose that z, z′ ∈ γ ∈ Γλ(A) and that π(z) = π(z′) = x .
Then z and z′ can be joined by a (λ + 1)-sequence in γ ∩ L(x) .

Proof. Write z = 〈x, y〉 , z′ = 〈x, y′〉 , and assume, for example, that z < z′ .
By 4.3 and 4.8, there is an eλ -relative sequence (x0 , . . . , xN ) in A joining the
pairs (x, y) and (x, y′). For 1 ≤ i ≤ N we set pi = max{|xk − x| : 1 ≤ k ≤ i} .
Then

|xi − xi−1| ≤ |xi − x| + |x − xi−1| ≤ 2pi,

and hence
|xi+1 − x| ≤ |xi+1 − xi| + |xi − x| ≤ 2pie

λ + pi,

which yields pi+1 ≤ (2eλ + 1)pi . Consequently,

log
pi+1

pi
≤ log(2eλ + 1) = λ + log(2 + e−λ) < λ + 1.

For each i ∈ [1, N ] choose j(i) ≤ i with |xj(i) − x| = pi , and set zi =
〈x, xj(i)〉 . Then zi ∈ Ã , z = z1 ≤ z2 ≤ · · · ≤ zN , and z′ ≤ zN . Choose k with
zk ≤ z′ ≤ zk+1 . Since

�(zi, zi+1) = log
pi+1

pi
< λ + 1,

(z1, . . . , zk, z′) is a (λ+1)-sequence joining z and z′ in Ã∩L(x). Since z, z′ ∈ γ ,
all zi lie in γ by 3.4(6).

We apply 4.14 to prove the following more general result.

4.15. Theorem. If z = (x, r) and z′ = (x′, r′) are in a λ-component γ ,
then z and z′ can be joined by a (λ + 1)-sequence in γ ∩

(
L(x) ∪ L(x′)

)
.

Proof. By 4.14 we may assume that x �= x′ . Choose β ∈ Γ containing 〈x, x′〉
and 〈x′, x〉 . If β �= γ , then β < γ by 3.4(9). Choose y ∈ A with z = 〈x, y〉 .
Writing z1 = 〈x′, y〉 we have �(z, z1) ≤ λ by 3.4(1). Then z1 ∈ γ , and z′ can be
joined to z1 by a (λ + 1)-sequence in γ ∩ L(x′) by 4.14.

5. Order properties of Γλ(A)

5.1. Summary. We continue the study of the set Γ = Γλ(A), especially from
the order-theoretic point of view. To this end, we introduce the order-theoretic
concept of a family tree and show that Γ has this property.

5.2. Family trees. We consider an arbitrary partially ordered set (P,≤). We
recall that P is (upwards) directed if for each pair x, y ∈ P there is z ∈ P with
x ≤ z ≥ y . If P is directed, then a maximal element in P is also the greatest
element of P , written as maxP if it exists.

We say that P is a family tree if
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(1) P is directed,
(2) for each pair a, b ∈ P , the set [a, b] = {x ∈ P : a ≤ x ≤ b} is finite and

linearly ordered.
Suppose that P is a family tree and that a ∈ P , a �= maxP . We show

that the set P+(A) = {x ∈ P : x > a} has the least element, written as p(a).
Choosing b ∈ P with b > a we can write [a, b] = {x0, . . . , xN} , where a = x0 <
x1 < · · · < xN = b . If y > a , there is z ∈ P with y ≤ z ≥ x1 . Since [a, z] is
linearly ordered, we have either x1 ≤ y or x1 > y . The second case is impossible,
since [a, x1] = {a, x1} . Hence x1 is the least element of P+(a).

If b = p(a), we say that b is the parent of a and a is a child of b . An
element a �= maxP has precisely one parent, but each element of P may have
several children. Writing p2(a) = p

(
p(a)

)
etc., we have

(5.3) P+(a) = {p(a), p2(a), p3(a), . . .}.

The sequence may be infinite or finite. The latter case occurs if and only if maxP
exists; then the sequence ends with maxP . We see that P+(a) is always linearly
ordered.

A family tree is obviously a semilattice, that is, each pair a, b ∈ P has the
least upper bound a ∨ b .

We remark that the Hasse diagram of a family tree is a tree in the graph-
theoretic sense: it is connected and contains no cycles.

We now return to the family Γ = Γλ(A) of all λ-components of the upper
set Ã of a metric space A . We recall from 3.2 and from 3.4 the following three
equivalent characterizations for the ordering γ ≤ γ′ of elements of Γ:

(1) πγ ⊂ πγ′ .
(2) z ≤ z′ for some z ∈ γ and z′ ∈ γ′ .
(3) For each z ∈ γ there is z′ ∈ γ′ with z ≤ z′ .

5.4. Theorem. Γλ(A) is a family tree.

Proof. To show that Γ is directed, assume that γ and γ′ are incomparable
elements of Γ. Choose 〈x, y〉 ∈ γ and 〈x′, y′〉 ∈ γ′ . Then x, y ∈ πγ . By 3.4(10),
we have |x − x′| ≥ eλ|x − y| > |x − y| , and hence 〈x, y〉 ≤ 〈x, x′〉 . Similarly
〈x′, y′〉 ≤ 〈x′, x〉 . Since there is γ′′ ∈ Γ containing 〈x, x′〉 and 〈x′, x〉 , Γ is
directed.

Next assume that γ, γ′ ∈ Γ with γ < γ′ . We can choose points (x, r) ∈ γ
and (x, r′) ∈ γ′ with r < r′ . If β ∈ Γ with γ < β < γ′ , then β contains a point
(x, s) with r < s < r′ . Hence [γ, γ′] is linearly ordered. Moreover, [γ, γ′] is finite,
since | log(s/s′)| > λ whenever (x, s) and (x, s′) belong to different λ-components
of Ã .

5.5. Remark. It follows from 5.4 that each γ ∈ Γ with γ �= maxΓ has a
parent p(γ). To find p(γ), choose an arbitrary point (x, r) ∈ γ . Then (x, r′) ∈
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p(γ) whenever (x, r′) ∈ Ã and t ≤ r′ < teλ , where t = inf{s : r < s, (x, s) ∈
Ã \ γ} .

In the next result we give an alternative way to find p(γ). Observe that
γ = maxΓ if and only if πγ = A .

5.6. Lemma. Let γ ∈ Γ , and let x ∈ πγ , y′ ∈ A \ πγ be such that
|x − y′| ≤ ed(πγ,A \ πγ) . Then 〈x, y′〉 ∈ p(γ) .

Proof. Choose y ∈ πγ and γ′ ∈ Γ such that 〈x, y〉 ∈ γ and 〈x, y′〉 ∈ γ′ .
By 3.4(10) we have |x − y′| > eλ|x − y| , and hence 〈x, y〉 < 〈x, y′〉 . This implies
γ < γ′ , and thus p(γ) ≤ γ′ . If p(γ) �= γ′ , then p(γ) contains a point 〈x, y′′〉 such
that

|x − y′′| < e−λ|x − y′| ≤ e1−λd(πγ,A \ πγ) ≤ d(πγ,A \ πγ).

By 3.4(1) we have y′′ ∈ A \ πγ . Since x ∈ πγ , this gives a contradiction.

5.6. Lemma. Let γ ∈ Γ , and let x, y ∈ πγ , z ∈ A \ πγ . Then

|x − y| ≤ e−
(γ,p(γ))|x − z|.

Proof. Let β and γ′ be the members of Γ containing 〈x, y〉 and 〈x, z〉 ,
respectively. By 3.4(8), we have β ≤ γ . Since x ∈ πγ ∩ πγ′ and since z /∈ πγ ,
we have γ < γ′ by 3.4(4). Hence p(γ) ≤ γ′ . By 3.4(3), there is w ∈ p(γ) with
〈x, y〉 < w ≤ 〈x, z〉 . Consequently,

�
(
γ, p(γ)

)
≤ �(〈x, y〉, w) ≤ log

|x − z|
|x − y| ,

and the lemma follows.

The following order-theoretic result is needed in Section 6.

5.8. Lemma. Let (P,≤) be a family tree, and let g: P → [0,∞) be an
unbounded function. Then there is a sequence (xj) in P such that g(xj) → ∞
and such that one of the following three conditions is satisfied:

(1) x1 > x2 > · · · ;
(2) x1 < x2 < · · · ;
(3) xi and xj are incomparable for all i �= j .

Proof. For x ∈ P we set

h(x) = sup{g(y) : y < x} ∈ [0,∞]

with the agreement that h(x) = 0 for all minimal elements x of P . We consider
three cases.
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Case 1. h(x) < ∞ for all x ∈ P . Now maxP does not exist. Fix an arbitrary
y1 ∈ P and set yn+1 = pn(y1) for n ∈ N . Then yn < yn+1 and h(yn) ≤ h(yn+1)
for all n . We first show that h(yn) → ∞ . Let M > 0, and choose x ∈ P with
g(x) > M . Setting y = p(x∨y1) we have y ∈ P+(y1), and hence y = yn for some
n by (5.3). Thus h(yn) ≥ g(x) > M .

If sup{g(yn) : n ∈ N} = ∞ , there is a subsequence (xn) of (yn) such that
g(xn) → ∞ and (2) is true. Suppose that sup{g(yn) : n ∈ N} = c < ∞ . Since
h(yn) → ∞ , there is a sequence n0 < n1 < n2 < · · · in N such that h(yn0) > c
and h(yni+1) > h(yni) for all i ≥ 0. Choose elements x1, x2, . . . in P such that
xi+1 < yni+1 and g(xi+1) > h(yni) for all i ≥ 0. Then g(xi) → ∞ . It suffices to
show that xj and xi+1 are incomparable whenever 1 ≤ j ≤ i .

If xi+1 ≤ xj , then xi+1 < ynj , and we obtain the contradiction

h(yni) < g(xi+1) ≤ h(ynj ) ≤ h(yni).

Assume that xj < xi+1 . Now xi+1 and ynj are in P+(xj). Since this is linearly
ordered by (5.3), either xi+1 < ynj or ynj ≤ xi+1 . As above, the first case is
impossible. In the second case, xi+1 = yk for some k , and we get the contradiction

c < h(yn0) ≤ h(yni) < g(xi+1) = g(yk) ≤ c.

Case 2. There is y ∈ P such that h(y) = ∞ and such that h(z) < ∞ for
every child z of y . Let C = p−1{y} be the set of all children of y . If g is
unbounded in C , we choose a sequence (xn) in C with g(xn) → ∞ ; then (xn)
satisfies (3). If g is bounded in C , then h is unbounded in C , and there is a
sequence z0, z1, . . . in C such that h(zi+1) > h(zi) and h(zi) → ∞ . For i ≥ 0 we
choose elements xi+1 < zi+1 with g(xi+1) > h(zi). Now g(xi) → ∞ . For i �= j
we have xi ∨ xj = y , and hence xi and xj are incomparable.

Case 3. Cases 1 and 2 do not occur. Then there is a sequence y1, y2, . . . in P
such that h(yn) = ∞ and yn = p(yn+1) for all n ∈ N . If sup{g(yn) : n ∈ N} = ∞ ,
then (yn) has a subsequence (xn) such that g(xn) → ∞ and (1) holds. Suppose
that

sup{g(yn) : n ∈ N} = c < ∞.

We define a sequence n1 < n2 < · · · in N and elements xi < yni inductively as
follows. Set n1 = 1 and choose x1 < y1 with g(x1) > c . Assume that ni and
xi < yni have been defined. Since [xi, yni ] is finite, there is ni+1 > ni such that
xi is not smaller than yni+1 . Choose xi+1 < yni+1 such that g(xi+1) > g(xi) + 1.
Now g(xi) → ∞ , and it suffices to show that xj and xi+1 are incomparable
whenever 1 ≤ j ≤ i .

If xj ≤ xi+1 , then xj < yni+1 ≤ ynj+1 , a contradiction. If xj > xi+1 , then xj

and yni+1 are in the linearly ordered set P+(xi+1), and hence either xj < yni+1

or xj ≥ yni+1 . In the first case we again get the contradiction xj < ynj+1 . In the
second case, xj ∈ [yni+1, y1] , and hence xj = yk for some k . This is impossible,
since g(yk) ≤ c < g(xj).
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6. Quasisymmetric maps

6.1. Summary. We characterize the spaces A such that every quasisymmetric
map of A is power quasisymmetric.

6.2. Quasisymmetric maps. By a triplet in a metric space A we mean a triple
T = (x, a, b) of distinct points in A . For a triplet T we write

|T | =
|a − x|
|b − x| .

If A′ is another metric space and if f : A → A′ is injective, we let fT denote the
triplet

(
f(x), f(a), f(b)

)
.

Let η: [0,∞) → [0,∞) be a homeomorphism. An injective map f : A → A′

is η -quasisymmetric if

(6.3) |fT | ≤ η(|T |)

for all triplets T in A , and f is quasisymmetric if it is η -quasisymmetric for
some η . If f is η -quasisymmetric with η(t) = C(tα ∨ t1/α) where C > 0 and
0 < α ≤ 1, we say that f is (C,α)-quasisymmetric. If f is (C,α)-quasisymmetric
for some (C,α), then f is power quasisymmetric.

A quasisymmetric map is always an embedding. The basic theory of quasi-
symmetric maps is given in [TV]. A (C,α)-quasisymmetric map f : A → A′ of a
bounded space A satisfies a Hölder condition

|fx − fy| ≤ c|x − y|α,

where c = 2Cd(fA)/d(A)α ; see the proof of [TV, 3.14], where α denotes our 1/α .

6.4. Remark. An η -quasisymmetric map f : A → A′ satisfies the double
inequality

ηL(|T |) ≤ |fT | ≤ η(|T |)

for all triplets T in A , where the lower bound is ηL(t) = η(t−1)−1 . On the other
hand, it suffices that this condition holds for all triplets T with |T | ≤ 1. More
precisely, assume that f : A → A′ is injective and that

ϕ(|T |) ≤ |fT | ≤ ψ(|T |)

for all triplets T with |T | ≤ 1, where ϕ,ψ: [0, 1] → R are continuous strictly
increasing functions with φ(0) = ψ(0) = 0. Then (6.3) holds with η(t) defined
as ψ(t) for t ≤ 1 and as ϕ(t−1)−1 for t ≥ 1. To get a continuous η , set K =
ϕ(1)ψ(1). If K ≤ 1, we replace η(t) by η(t)/K for all t ≤ 1. If K ≥ 1, we
replace η(t) by Kη(t) for all t ≥ 1.
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Recall from 4.9 that A is eλ -relatively connected if and only if Ã is λ-
connected, that is, Γ = Γλ(A) consists of one element. Relative connectedness
was defined in 4.6, and an alternative characterization was given in 4.11.

We show that a metric space A is relatively connected if and only if every
quasisymmetric map of A is power quasisymmetric. The ‘only if’ part is not
essentially new:

6.5. Theorem. Suppose that A is M -relatively connected. Then every η -
quasisymmetric map f : A → A′ is (C,α)-quasisymmetric with (C,α) depending
only on η and M .

Proof. Suppose that A is M -relatively connected and that f : A → A′ is
η -quasisymmetric. Then condition 4.11(2) holds for c = 2M + 2. Set q = 1/c .
It follows that if a �= b are points in A and if B(a, q|a − b|) �= {a} , then there is
x ∈ A with q2|a − b| ≤ |a − x| ≤ q|a − b| . This is all that is needed for the proof
of [TV, 3.10], and we obtain the theorem.

6.6. Theorem. Suppose that E is a Banach space and that A ⊂ E is not
relatively connected. Then there is an η -quasisymmetric map f : A → E with a
universal η such that f is not power quasisymmetric.

Proof. Since the closure of A is not relatively connected, we may assume
that A is closed and hence complete. We consider the family Γ = Γ1(A) of all
1-components of the upper set Ã . As in 5.5, we let p(γ) denote the parent of a
nonmaximal member γ ∈ Γ. Define g: Γ → R by g(γ) = �

(
γ, p(γ)

)
. If maxΓ

exists, we set g(maxΓ) = 0.
If g(γ) ≤ M for all γ ∈ Γ, then Ã is 2M -connected, and hence A is e2M -

relatively connected, a contradiction. Hence g is unbounded. By Theorem 5.8 we
can find a sequence γ1, γ2, . . . in Γ such that g(γj) → ∞ and such that either
(γj) is strictly monotone or the elements γj are pairwise incomparable. Passing
to a subsequence we may assume that

4 ≤ g(γ1) < g(γ2) < · · · .

Writing ti = e−g(γi) we have e−4 ≥ t1 > t2 > · · · . We consider three cases.
Case 1. γ1 > γ2 > · · · . We have d(πγj) ≤ d(πγj−1)/(e − 1) < ∞ by (11)

and (13) of 3.4, and hence d(πγj) → 0. Since A is complete, the intersection of
all πγj contains precisely one point. We may assume that this point is the origin
of E .

We express A as the disjoint union of {0} and the nonempty sets

A0 = A \ πγ1, Ai = πγi \ πγi+1,

i ∈ N . We first observe that if i < j and if x, y ∈ πγj , z ∈ A \ πγi+1 , then we
can apply Lemma 5.7 j − i times to obtain

(6.7) |x − y| ≤ ti+1 · · · tj |x − z|.
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Define a homeomorphism ϕ: (0, 1] → (0, 1] by ϕ(t) = 1/(1− log t). It is easy
to see that ϕ has the following properties:

(1) ϕ(st) ≥ ϕ(s)ϕ(t) for all s, t ∈ (0, 1] .
(2) ϕ(t)/t in decreasing in t .
(3) limt→0 t−αϕ(t) = ∞ for each α > 0.

Moreover, 1/5 ≥ ϕ(t1) > ϕ(t2) > · · · . We set s0 = 1 and

si =
ϕ(t1) · · ·ϕ(ti)

t1 · · · ti

for i ∈ N . Then 1 < s1 < s2 < · · · .
Define f : A → E by f(0) = 0 and by f(x) = six for x ∈ Ai , i ∈ N0 . We

show that f has the desired properties.
Let x ∈ Ai and y ∈ Aj . We first show that

(6.8) si∧j |x − y|/2 ≤ |f(x) − f(y)| ≤ 2si∧j |x − y|.

If i = j , this is clear. Suppose that i < j . Since ϕ(tk) ≤ 1/5 for all k ∈ N , we
can apply (6.7) to the triple (0, y, x) to get

sj |y|/si ≤ ϕ(ti+1) · · ·ϕ(tj)|x| ≤ |x|/5.

Consequently,

|f(x) − f(y)| = |six − sjy| ≤ si(|x| + sj |y|/si) ≤ 6si(|x − y| + |y|)/5.

Since
|y| ≤ tj |x| ≤ e−4|x| < |x|/5 ≤ |x − y|/5 + |y|/5,

we have |y| ≤ |x−y|/4, and we get the second inequality of (6.8). Similar estimates
yield the first inequality:

|f(x) − f(y)| ≥ si(|x| − sj |y|/si) ≥ 4si(|x − y| − |y|)/5 ≥ 3si|x − y|/5.

To prove that f is quasisymmetric we assume that T = (x, y, z) is a triplet
in A with |T | = |x − y|/|x − z| ≤ 1. By 6.4 it suffices to show that

(6.9) |T |/4 ≤ |fT | ≤ 4ϕ(|T |).

We assume that x ∈ Ai , y ∈ Aj , z ∈ Ak . The case where one of the points
is the origin follows then by continuity. Setting h = si∧j/si∧k we obtain by (6.8)

(6.10) h|T |/4 ≤ |fT | ≤ 4h|T |.
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It is not possible that j < i∧ k , since then x, z ∈ πγj+1, y ∈ A \ πγj+1 , and (6.7)
gives the contradiction |x − z| ≤ tj |x − y| < |x − y| . Hence i ∧ j ≥ i ∧ k , which
implies that h ≥ 1, and the first inequality of (6.9) follows from (6.10).

If i ≤ k , then i ≤ j and h = 1. Since ϕ(t) ≥ t for all t , (6.9) follows
from (6.10). Assume that i > k . If j = k , we again have h = 1. It remains to
consider the case i > k , j > k . Setting n = i ∧ j we have n > k , x, y ∈ πγn and
z ∈ A \ πγk+1 . Writing t = tk+1 · · · tn we have |T | ≤ t by (6.7). By (1) and (2)
this implies

h =
sn

sk
=

ϕ(tk+1) · · ·ϕ(tn)
tk+1 · · · tn

≤ ϕ(t)
t

≤ ϕ(|T |)
|T | ,

which yields the second inequality of (6.9) by (6.10). Thus f is η -quasisymmetric
with a universal η .

We assume that f is (C,α)-quasisymmetric for some (C,α) and show that
this leads to a contradiction. Fix j ∈ N and set

r = sup{|x| : x ∈ πγj}, R = inf {|x| : x ∈ A \ πγj}.

We show that

(6.11) tj/3 ≤ r/R ≤ tj .

The second inequality follows from (6.7). It implies that r ≤ e−4R < R/3. For
the first inequality, choose u ∈ γj and z ∈ p(γj). We must show that

(6.12) �(z, u) ≥ log(R/3r).

First observe that π2(u) ≤ d(πγj) ≤ 2r . If |π(z)| > r , then |π(z)| ≥ R , and
hence |π(z) − π(u)| ≥ R − r ≥ 2R/3. By 2.9 we obtain

2R/3 ≤ π2(u)e
(z,u)−1 < 2re
(z,u),

and (6.12) follows.
If |π(z)| ≤ r , then z = 〈x, y〉 with |x| ≤ r , y ∈ A \ πγj . Now |y| ≥ R , and

hence
π2(z) = |x − y| ≥ |y| − |x| ≥ R − r ≥ 2R/3,

which yields

�(z, u) ≥ log
π2(z)
π2(u)

≥ log
2R/3
2r

= log
R

3r
,

and (6.12) is proved.
Pick a ∈ πγj and b ∈ A \ πγj with |a| ≥ r/2 and |b| ≤ 2R . Then a ∈ Aj

and b ∈ Aj−1 by (6.7). Setting |T | = (0, a, b) we obtain in view of (6.11)

|T | =
|a|
|b| ≤

r

R
≤ tj < 1, |T | ≥ r

4R
≥ tj

12
.
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Hence

|fT | =
|f(a)|
|f(b)| =

sj |a|
sj−1|b|

=
ϕ(tj)|T |

tj
≥ ϕ(tj)

12
.

Since |fT | ≤ C |T |α , these inequalities imply that t−α
j ϕ(tj) ≤ 12C . As j → ∞ ,

the left-hand side tends to ∞ , and we obtain a contradiction.
Case 2. γ1 < γ2 < · · · . Corresponding to (6.7), we have now

(6.13) |x − y| ≤ ti · · · tj |x − z|

whenever i ≤ j and x, y ∈ πγi , z ∈ A \ πγj .
Let ψ = ϕ−1: (0, 1] → (0, 1] , ψ(t) = e1−1/t , be the inverse of the function ϕ

of Case 1. The following properties of ψ are easily verified:
(i) ψ(st) ≤ ψ(s)ψ(t) for all s, t ∈ (0, 1] .
(ii) ψ(t)/t is increasing in t .
(iii) limt→0 t−αψ(t) = 0 for all α > 0.
We may assume that 0 ∈ πγ1 . Writing

A0 = πγ1, Ai = πγi+1 \ πγi

we express A as the disjoint union of the sets Ai , i ∈ N . Set r0 = 1 and

ri =
t1 · · · ti

ψ(t1) · · ·ψ(ti)

for i ∈ N , where ti = e−g(γi) as before. Observe that 1 < r1 < r2 < · · · . We show
that the desired map f : A → E is obtained by setting f(x) = rix for x ∈ Ai .

We first show that

(6.14) ri∨j |x − y|/2 ≤ |f(x) − f(y)| ≤ 2ri∨j |x − y|

whenever x ∈ Ai , y ∈ Aj .
If i = j , this is clear. Assume that i < j . Applying (6.13) to the triple

(0, x, y) we get

|x| ≤ tj |y| ≤ t1|y| < |y|/5 ≤ |x − y|/5 + |x|/5,

and hence |x| ≤ |x − y|/4. Consequently,

|f(x) − f(y)| = |rix − rjy| ≤ ri|x| + rj |y| ≤ rj(|x − y| + 2|x|) < 2rj |x − y|.

Similarly

|f(x) − f(y)| ≥ rj(|y| − |x|) ≥ rj(|x − y| − 2|x|) ≥ rj |x − y|/2,
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and (6.14) is proved.
Let T = (x, y, z) be a triplet in A with |T | ≤ 1, x ∈ Ai , y ∈ Aj , z ∈ Ak .

To prove that f is η -quasisymmetric it suffices to show that

(6.15) ψ(|T |)/4 ≤ |fT | ≤ 4|T |.

Setting h = ri∨j/ri∨k we obtain from (6.14)

(6.16) h|T |/4 ≤ |fT | ≤ 4h|T |.

The case i ∨ k < j is impossible, since then x, z ∈ πγj , y ∈ A \ πγj , and (6.13)
would give |x − z| ≤ tj |x − y| < |x − y| . Hence i ∨ j ≤ i ∨ k , which gives h ≤ 1,
and the second inequality of (6.15) follows from (6.16).

If i ≥ k or if i < k = j , then h = 1, and (6.15) follows from (6.16). It
remains to consider the case i < k , j < k . Setting n = i∨ j we have n < k . Now
x, y ∈ πγn+1 and z ∈ A \ πγk . Writing t = tn+1 · · · tk we have |T | ≤ t by (6.13).
By (i) and (ii) this implies

h =
rn

rk
=

ψ(tn+1) · · ·ψ(tk)
tn+1 · · · tk

≥ ψ(t)
t

≥ ψ(|T |)
|T | ,

which yields the first part of (6.15) by (6.16).
We assume that f is (C,α)-quasisymmetric and show that this leads to a

contradiction. Fix j ∈ N and define r and R as in Case 1. The formula (6.11) is
again valid. Pick a ∈ Aj , b ∈ Aj−1 with |a| ≤ 2R , |b| ≥ r/2. Setting T = (0, a, b)
we obtain by (6.11)

|T | =
|a|
|b| ≥

R

r
≥ 1

tj
> 1, |T | ≤ 4R

r
≤ 12

tj
,

|fT | =
rj |a|

rj−1|b|
=

tj |T |
ψ(tj)

≥ 1
ψ(tj)

.

Since |fT | ≤ C |T |1/α , these estimates yield

t
−1/α
j ψ(tj) ≥ 12−1/αC−1.

As j → ∞ , the left-hand side tends to 0 by (iii), and we reach a contradiction.
Case 3. γi and γj are incomparable for i �= j . We express A as a disjoint

union A = ∪{Ai : i ∈ N0} , where Ai = πγi for i ∈ N and A0 = A\∪{Ai : i ∈ N} .
Let ϕ be as in Case 1, and set s0 = 1, si = ϕ(ti)/ti for i ∈ N . Fix arbitrary
points xi ∈ Ai , i ∈ N , and define f : A → E by f(x) = x for x ∈ A0 and by

f(x) = xi + si(x − xi)
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for x ∈ Ai , i ≥ 1. If x, y ∈ Ai , i ≥ 1, and z ∈ A \ Ai , then 5.7 gives

(6.17) |x − y| ≤ ti|x − z|.

If x, y ∈ Ai for some i , then |f(x) − f(y)| = si|x − y| . We show that

(6.18) |x − y|/2 ≤ |f(x) − f(y)| ≤ 2|x − y|

whenever x ∈ Ai and y ∈ Aj , i �= j . We assume that 1 ≤ i < j ; the case i = 0
is similar but easier. By (6.17) we have |x − xi| ≤ ti|x − y| , and hence

|f(x) − x| ≤ |f(x) − xi| = si|x − xi| ≤ ϕ(ti)|x − y| ≤ |x − y|/5,

and similarly |f(y) − y| ≤ |x − y|/5. These estimates imply (6.18).
Let T = (x, y, z) be a triplet in A with |T | ≤ 1, x ∈ Ai , y ∈ Aj , z ∈ Ak .

To prove that f is η -quasisymmetric it suffices to show that

(6.19) |T |/4 ≤ |fT | ≤ 4ϕ(|T |).

If j �= i �= k , then (6.18) implies that |T |/4 ≤ |fT | ≤ 4|T | , and (6.19) holds. If i =
j = k , then |fT | = |T | . The case 1 ≤ i = k �= j is impossible, since then |T | > 1
(6.17). If 0 = i = k �= j or 0 = i = j �= k , then (6.18) gives |T |/2 = |fT | ≤ 2|T | .
It remains to consider the case 1 ≤ i = j �= k . Now |fT | = si|x−y|/|f(x)−f(z)| .
Since si ≥ 1, this and (6.18) give |fT | ≥ |T |/2. Since |T | ≤ ti by (6.17) and
since ϕ(t)/t is decreasing in t , we obtain si = ϕ(ti)/ti ≤ ϕ(|T |)/|T | , and hence
|fT | ≤ 2ϕ|T | .

Finally, assume that f is (C,α)-quasisymmetric. Arguing as in Case 1 we can
find points a ∈ Aj and b ∈ A \Aj such that the triplet T = (xj , a, b) satisfies the
inequalities tj/12 ≤ |T | ≤ tj and |fT | ≥ ϕ(tj)/24, which give the contradicition
as in Case 1.

6.20. Theorem. A metric space A is relatively connected if and only if every
quasisymmetric map of A is power quasisymmetric.

Proof. Since A can be isometrically embedded into a Banach space [Du,
XIII.5.2], the theorem follows from 6.5 and from 6.6.

We next give a quantitative version of 6.20. The proof is easier than in 6.6.

6.21. Theorem. The following conditions are quantitatively equivalent for a
metric space A :

(1) A is M -relatively connected,
(2) Every η -quasisymmetric map of A is (C,α)-quasisymmetric with (C,α)

depending only on η .
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Proof. Observe that the data for (1) is M , and the data for (2) is the function
η �→ (C,α).

By Theorem 6.5, (1) implies (2). Conversely, assume that (2) is true. We may
again assume that A lies in a Banach space E .

Let ϕ: (0, 1] → (0, 1] be the function ϕ(t) = 1/(1 − log t), considered in
the proof of 6.6. By 6.4, there is η such that an injective map f : A → E is
η -quasisymmetric whenever it satisfies the inequalities

(6.22) |T |/4 ≤ |fT | ≤ 4ϕ(|T |)
for each triplet T in A with |T | ≤ 1. Let (C,α) be the pair given by (2) for this η .
Choose q such that 0 < q ≤ 1/4 and such that t−αϕ(t) ≥ 13C for 0 < t ≤ q . Set
c = 1/q and M = c + 1. Then M depends only on the function η �→ (C,α).

We show that A is M -relatively connected. Assume that this is not true.
Since M > c , condition 4.11(2) is not true with this c . Hence there are x0 ∈ A
and r > 0 such that

A �⊂B(x0, r), A ∩B(x0, r) �= {x0}, A ∩
(
B(x0, r) \ B(x0, qr)

)
= ∅.

Replacing r by a larger number we may assume that A meets B(x0 , 2r)\B(x0 , r).
With an auxiliary similarity map of E we can further assume that x0 = 0 and
r = 1.

Setting h = sup {|x| : x ∈ A ∩ B(0, 1)} we have 0 < h ≤ q ≤ 1/4. Write
s = ϕ(3h)/3h and define f : A → E by f(x) = x for |x| ≥ 1 and by f(x) = sx
for |x| ≤ h . We show that f is η -quasisymmetric but not (C,α)-quasisymmetric,
which will give a contradiction.

If |x| ≤ h , then |f(x)| ≤ sh = ϕ(3h)/3 < 1/3. Hence

|x − y|/2 ≤ |f(x) − f(y)| ≤ 2|x − y|
whenever x, y ∈ A and |x| ≤ h , |y| ≥ 1. Let T = (x, y, z) be a triplet in A with
|T | ≤ 1. We have |T |/4 ≤ |fT | ≤ 4|T | except for the second inequality in the case
x, y ∈B(0, h), |z| ≥ 1. In this case we have

|T | =
|x − y|
|x − z| ≤

2h

1 − h
< 3h,

since h ≤ 1/4. Since ϕ(t)/t is decreasing in t , this implies that s ≤ ϕ(|T |)/|T | ,
and hence

|fT | ≤ s|x − y|
|x − z|/2

≤ 2ϕ(|T |).

We have proved that (6.22) holds, and hence f is η -quasisymmetric.
Choose points a, b ∈ A with h/2 ≤ |a| ≤ h and 1 ≤ |b| ≤ 2. For the triplet

T = (0, a, b) we have |T | = |a|/|b| ≤ h and

|fT | =
s|a|
|b| ≥ sh

4
=

ϕ(3h)
12

>
ϕ(h)
12

.

Since ϕ(h) ≥ 13Chα , we obtain |fT | > 13C |T |α/12, and hence f is not (C,α)-
quasisymmetric.
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