Annales Academię Scientiarum Fennicę
Mathematica
Volumen 32, 2007, 269-277
Universite u Beogradu, Katedra Matematike RGF-a
Dusina 7, 11000 Beograd, Serbia; ivic 'at' rgf.bg.ac.yu
Abstract. Let \Delta(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of |\zeta(1/2 + it)|. If E*(t) = E(t) - 2\pi\Delta*(t/2\pi) with \Delta*(x) = -\Delta(x) + 2\Delta(2x) - 1/2 \Delta(4x), then we obtain the asymptotic formula
where P3 is a polynomial of degree three in log T with positive leading coefficient. The exponent 7/6 in the error term is the limit of the method.
2000 Mathematics Subject Classification: Primary 11N37, 11M06.
Key words: Dirichlet divisor problem, Riemann zeta-function, mean square of |\zeta(1/2 + it)|, mean square of E*(t).
Reference to this article: A. Ivic: On the mean square of the zeta-function and the divisor problem. Ann. Acad. Sci. Fenn. Math. 32 (2007), 269-277.
Full document as PDF file
Copyright © 2007 by Academia Scientiarum Fennica