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Abstract. We consider a collection of balls in Euclidean space and the problem of determining
if Brownian motion has a positive probability of avoiding all the balls indefinitely.

1. Introduction

We consider a region Ω that is formed by removing a countable collection of
non-overlapping closed balls from Rd. We write B(c, r) for the open ball in Rd with
centre c and radius r; we write B(c, r) for the closed ball and S(c, r) for the sphere
of the same centre and radius. Then

Ω = Rd \
∞⋃

n=1

B(cn, rn),

and we assume, for convenience, that 0 lies in Ω. We say that such a collection
of balls is avoidable if there is a positive probability that Brownian motion in Rd,
starting from 0, never hits any of the balls. Thus the collection of balls is avoidable
if the balls do not have full harmonic measure with respect to the domain Ω, or if
infinity has positive harmonic measure with respect to Ω. We address the problem
of obtaining a geometric characterization of avoidable configurations of balls.

The genesis of this problem is to be found in the paper of Ortega-Cerdà and
Seip [2]. Motivated by a question of Akeroyd [1], the analogous problem in the
setting of the unit disk was solved when the centres of the removed disks form a
regular ‘uniformly dense sequence’.

In the plane, a single disk hides infinity from the origin. This reflects the fact
that Brownian motion in the plane is recurrent and that the sphere S(c, r) has full
harmonic measure with respect to R2 \ B(c, r). For this reason, our results are
set in Euclidean space of dimension three or more, in which Brownian motion is
transient. It is helpful to bear in mind that, in dimension three or more, (r/|c|)d−2

is the harmonic measure at 0 of the sphere S(c, r) with respect to the domain Ω =
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Rd\B(c, r). In fact, the harmonic measure of this sphere at x is u(x) = (r/|x−c|)d−2.
We begin with a straightforward result that has a Borel–Cantelli feel to it.

Proposition 1. We suppose that d ≥ 3. If

(1.1)
∞∑

n=1

(
rn

|cn|
)d−2

< ∞,

then the collection of balls {B(cn, rn)}n≥1 is avoidable.

In order to exclude situations in which a number of small balls packed very close
together can contribute significantly to the sum in (1.1) but contribute relatively
little to the overall harmonic measure, we now require a separation condition on the
balls:

(S) there is a positive number ε such that |cn − cm| ≥ 2ε for n 6= m.

Theorem 1. We suppose that d ≥ 3. We assume the separation condition (S)
and that there is a number M such that

(1.2) rd−2
n |cn|2 ≤ M for n ≥ 1.

If the collection of balls {B(cn, rn)}n≥1 is avoidable, then

(1.3)
∞∑

n=1

(
rn

|cn|
)d−2

< ∞.

The solid angle subtended by the sphere S(c, r) at 0 is comparable to (r/|c|)d−1.
The appropriate translation of Akeroyd’s question to the present setting is whether
there is an unavoidable sequence of balls for which the sum

∑
n(rn/|cn|)d−1 is finite.

If so, it is possible to hide infinity from the origin from the point of view of harmonic
measure even though geometrically there is a clear line of sight to infinity except for
a set of directions on the sphere Sd of arbitrarily small (d−1)-dimensional measure.
Consider md−1 balls of radius ρm, with ρd−2

m = 1/m2, arranged evenly on the sphere
S(0,m), this for each integer m greater than some large m0. These balls will be
non-intersecting and separated, and (1.2) will hold since ρd−2

m m2 = 1. But (1.3)
does not hold: in fact

∑
n

(
rn

|cn|
)d−2

=
∞∑

m=m0

md−1

(
ρd−2

m

md−2

)
=

∞∑
m=m0

1

m
.

By Theorem 1, the collection of balls is unavoidable. Yet,
∑

n(rn/|cn|)d−1 is finite
and can be made arbitrarily small by increasing m0.

We will now consider a more regular configuration of balls. We say that the
balls are regularly located if (i) the separation condition (S) is satisfied, (ii) the balls
are uniformly dense, in that there is a positive R such that any ball B(x,R) contains
at least one centre cn, (iii) the radius of any ball depends only on the distance from
the ball’s centre to the origin, with rn = φ(|cn|) where φ is a decreasing positive
function.
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Theorem 2. We suppose that d ≥ 3 and that the balls B(cn, rn), n ≥ 1, are
regularly located. Then the collection of balls is avoidable if and only if

∫ ∞
rφ(r)d−2 dr < ∞.

Theorem 1 is a partial converse to Proposition 1 in that if the radii of the balls
decrease sufficiently rapidly then the collection of balls is avoidable only if (1.1)
holds. Theorem 2 will be proved by showing that condition (1.2) is automatically
satisfied if the collection of balls is both regularly located and avoidable. Hence these
results do not give rise to a configuration of separated balls that is both avoidable
and for which

∑ (
rn/|cn|

)d−2 is divergent: in fact, the possibility that condition
(1.2) in Theorem 1 is redundant has not been ruled out as yet. We address this gap
in our final result.

Theorem 3. Suppose that f is any increasing unbounded function on [0,∞).
Then there is a separated and avoidable collection of balls B(cn, rn), n ≥ 1, for
which

rd−2
n |cn|2 ≤ f(|cn|) and

∞∑
n=1

(
rn

|cn|
)d−2

= ∞.

We will write ω(x,E; D) to denote the harmonic measure at x of a Borel set E
on the boundary of a region D with respect to D.

2. Proof of Proposition 1

We suppose that (1.1) holds and choose N so large that

∞∑
n=N+1

(
rn

|cn|
)d−2

<
1

2
.

We write ΩN for Rd \ ⋃
n>N B(cn, rn). For n > N , the harmonic measure of the

sphere S(cn, rn) at 0 with respect to ΩN is less than its harmonic measure with
respect to the larger domain Rd\B(cn, rn), which is (rn/|cn|)d−2. Thus the combined
harmonic measure at 0 with respect to ΩN of the spheres S(cn, rn), n > N , is at
most 1/2. As a consequence, Brownian motion in Rd starting from 0 has a positive
probability (at least 1/2) of avoiding the set E =

⋃
n>N S(cn, rn) indefinitely.

We write u(x) for the harmonic measure ω(x,E; ΩN), so that u(0) < 1/2. The
set of points x in ΩN at which u(x) < 1/2 is unbounded. In fact, suppose that it
was the case that u ≥ 1/2 on S(0, R) ∩ ΩN . We could then apply the maximum
principle to the harmonic function u in B(0, R) ∩ ΩN , noting that u = 1 on the
boundary of ΩN inside B(0, R) (that is, on E ∩B(0, R)), and deduce that u ≥ 1/2
in B(0, R) ∩ ΩN .
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We now write F for the bounded set
⋃

n≤N S(cn, rn), and choose R so that
F ⊂ B(0, R). Then, for |x| > R,

ω(x, F ; Ω) ≤ ω
(
x, S(0, R);Rd \B(0, R)

)
=

(
R

|x|
)d−2

.

It follows that, as |x| → ∞ in Ω, the harmonic measure ω(x, F ; Ω) tends to 0.
Thus we may be sure that there is a point x0 in Ω for which both ω(x0, F ; Ω) <
1/2 and ω(x0, E; Ω) ≤ ω(x0, E; ΩN) < 1/2. The finite boundary of Ω, that is
E∪F =

⋃∞
n=1 S(cn, rn), does not have full harmonic measure at x0. By the maximum

principle, it does not have full harmonic measure at 0 either, and so the balls
B(cn, rn), n ≥ 1, do not hide infinity from the origin.

3. Proof of Theorem 1

Let us suppose that (1.2) holds and that
∑∞

n=1

(
rn/|cn|

)d−2 is divergent. We
wish to show that Brownian motion starting from 0 will never escape to infinity in
Ω.

We set Im = {n ∈ N : ε2m−1 < |cn| ≤ ε2m}. We note that there is a k0 between
1 and 4 inclusive for which

∞∑
j=0

∑
n∈Ik0+4j

(
rn

|cn|
)d−2

= ∞.

We ignore all balls whose index does not lie in Ik0+4j for some j: with fewer balls to
avoid, it is easier for Brownian motion starting from 0 to escape to infinity in this
new domain Ω. The balls that remain lie more or less in annuli whose inner radius
is half the outer radius but arranged so that the annuli are far apart, in that the
inner radius of each annulus is 16 times that of the previous annulus.

Following the argument of Ortega-Cerdà and Seip [2, p. 909], we write mj for
k0+4j, Rj for ε2mj−1, Sj for S(0, Rj) and set Pj to be the probability that Brownian
motion in Ω starting from 0 hits Sj ∩ Ω. We need to show that Pj → 0 as j →∞.

We let Qj be the supremum of the probabilities that Brownian motion with
starting point on Sj ∩ Ω hits Sj+1 ∩ Ω. Then

Pj+1 ≤ Qj Pj

and so

Pn+1 ≤ P1

n∏
j=1

Qj.

If 0 < aj < 1 and
∑∞

j=1(1− aj) is divergent, then the infinite product
∏∞

j=1 aj = 0.
Theorem 1 therefore follows from the next lemma.

Lemma 1. We set C to be 1 + 4d+3Mε−d. Then, for all sufficiently large j,

(3.1) 1−Qj ≥ 1

2d−1 C

∑
n∈Imj

(
rn

|cn|
)d−2

.
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Proof. We write
Ωj = B(0, Rj+1) \

⋃
n∈Imj

B(cn, rn).

Then Qj ≤ Q̂j where Q̂j is the supremum of the probabilities that a Brownian
motion in Ωj with starting point on Sj ∩ Ωj hits Sj+1 ∩ Ωj. Lemma 1 may be
proved, therefore, by showing that

(3.2) inf
x∈Sj∩Ωj

ω
(
x,

⋃
n∈Imj

S(cn, rn) ; Ωj

)
≥ 1

2d−1 C

∑
n∈Imj

(
rn

|cn|
)d−2

.

We consider

u(x) =
∑

n∈Imj

(
rn

|x− cn|
)d−2

for x ∈ Ωj,

so that u is harmonic in Ωj. We suppose that x ∈ S(cm, rm) for some m ∈ Imj
.

Then rm/|x − cm| = 1. We now show that the assumption that rd−2
n |cn|2 ≤ M , for

each n, leads to

(3.3)
∑

n 6=m
n∈Imj

rd−2
n

|x− cn|d−2
≤ 4d+3Mε−d.

By (1.2), we may assume that rn < ε for n ∈ Imj
, once j is sufficiently large. The

separation condition (S) implies that there are at most 4d2kd balls whose centres lie
at a distance of more than 2kε but less than 2k+1ε from x, for k ≥ 1. Each putative
ball in this annulus contributes at most

M

|cn|2
1

|x− cn|d−2
≤ M

R2
j

1

(2kε)d−2
=

M4k

εd−2

1

R2
j 2kd

to the sum in (3.3). Since mj + 1 annuli centred at x will cover all balls B(cn, rn)
with n ∈ Imj

, we find that

∑

n 6=m
n∈Imj

rd−2
n

|x− cn|d−2
≤

mj+1∑

k=1

4d 2kd M4k

εd−2

1

R2
j 2kd

=
4d M

R2
j εd−2

mj+1∑

k=1

4k ≤ 4d+2M

R2
j εd−2

4mj .

Since R2
j = ε24mj−1, the estimate (3.3) follows. We have shown that the harmonic

function u satisfies

(3.4) u(x) ≤ 1 + 4d+3Mε−d = C for x ∈
⋃

n∈Imj

S(cn, rn).

We now need an estimate for the size of u on the sphere Sj+1. If |cn| ≤ 2Rj and
|x| = Rj+1, then

|x− cn| ≥ Rj+1 − 2Rj = (16− 2)Rj ≥ 23Rj.
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Thus, for x ∈ Sj+1,

u(x) =
∑

n∈Imj

(
rn

|x− cn|
)d−2

≤ 1

23(d−2)

∑
n∈Imj

(
rn

Rj

)d−2

≤ 1

4d−2

∑
n∈Imj

(
rn

|cn|
)d−2

≤ 1

2d−1

∑
n∈Imj

(
rn

|cn|
)d−2

.

(3.5)

It follows from (3.4), (3.5) and the maximum principle that, for x ∈ Ωj,

C ω
(
x,

⋃
n∈Imj

S(cn, rn); Ωj

)
≥ u(x)− 1

2d−1

∑
n∈Imj

(
rn

|cn|
)d−2

.

Finally, we use this inequality with x ∈ Sj ∩ Ωj. For such x, we have |x − cn| ≤
|x|+ |cn| ≤ 2|cn|, and so

u(x) ≥ 1

2d−2

∑
n∈Imj

(
rn

|cn|
)d−2

The estimate (3.2) follows immediately. This completes the proof of the lemma,
and hence of Theorem 1. ¤

Remark. If the centres of the balls lie on a (d − 1)-dimensional hyperplane,
then the conclusion of Theorem 1 still holds with the assumption (1.2) replaced by
the weaker assumption rd−2

n |cn| ≤ M . Working through the proof of Lemma 1, it
is still possible to conclude that u is bounded on the boundary of the balls with
index in Imj

by a constant that is independent of j, as in (3.4). (In fact, there are
at most 4d−12k(d−1) balls ‘whose centres lie at a distance of more than 2kε but less
than 2k+1ε from x, for k ≥ 1’.) The remainder of the proof of Lemma 1 is as before.

If the centres of the balls lie on a (d − 2)-dimensional hyperplane then one
may replace (1.2) by the weaker assumption rd−2

n log |cn| ≤ M and still retain the
conclusion of Theorem 1. For example, suppose that in R3 we put a ball of radius
rn at the point (n, 0, 0), for n ≥ 2. Under the assumption that rn ≤ M/ log n, this
string of beads in R3 is avoidable if and only if

∑
rn/n is finite.

If the centres of the balls lie on a (d−3)-dimensional hyperplane, then it suffices
to assume that the radii of the balls are uniformly bounded in order for Theorem 1
to hold. In this case, however, there can be at most about md−4 balls whose distance
from the origin is about m. Assuming that the radii of the balls are bounded by R,
say, it follows that

∑
n

(
rn

|cn|
)d−2

≤ Rd−2
∑

n

1

|cn|d−2
≤ CRd−2

∑
m

md−4 1

md−2

which is finite. A collection of balls of uniformly bounded radius whose centres lie
on a (d− 3)-dimensional hyperplane will always be avoidable.
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4. Proof of Theorem 2

To begin with we note that, in the case of a regularly located configuration
of balls, the sum

∑
n (rn/|cn|)d−2 and the integral

∫∞
rφ(r)d−2 dr are comparable.

The implication that the balls are avoidable if
∫∞

rφ(r)d−2 dr is finite is now an
immediate consequence of Proposition 1.

The reverse implication will follow from Theorem 1 once we check that the
condition (1.2) is automatically satisfied under the regularity assumption if the balls
are avoidable. We establish this in the next lemma, whose proof bears a certain
resemblance to that of Lemma 1.

Lemma 2. Suppose that the balls {B(cn, rn))}n≥1 are regularly located and
that r2φ(r)d−2 is an unbounded function of r. Then the collection of balls is un-
avoidable.

Proof. There is a sequence of radii {Rj}∞j=1 for which R2
jφ(2Rj)

d−2 → ∞ as
j → ∞. We put C = A2/2A3 where the particular numbers A2 and A3 that we
need depend on the dimension, on the separation number ε and on the density
number R but on nothing else, and may be worked out in principle from the proof
that follows. We assume that Rj+1 > 4Rj and that (Rj/Rj+1)

d−2 ≤ C for each
j. For a technical reason, we change the definition of φ in the following way: we
set φ̃(x) = φ(2Rj) if x ∈ [Rj, 2Rj] for some j and φ̃(x) = φ(x) elsewhere. We
take new balls B(cn, φ̃(|cn|)). The size of the balls is thereby decreased: thus if
the new balls are unavoidable then the original ones are also unavoidable. For
the sake of simplicity, we will still denote by φ the regularized φ̃ and the new
smaller balls will still be called B(cn, rn). We write Sj for the sphere S(0, Rj) and
φj = φ(Rj) = φ(2Rj).

Arguing as in the proof of Theorem 1, we let Qj be the supremum of the proba-
bilities that Brownian motion in Ω with starting point on Sj ∩Ω hits Sj+1 ∩Ω, and
wish to show that

∏∞
j=1 Qj = 0, that is that

∞∑
j=1

(1−Qj) = ∞.

We write Ij for
{
n : Rj ≤ |cn| ≤ 2Rj

}
, and write

Ωj = B(0, Rj+1) \
⋃
n∈Ij

B(cn, rn).

Then Qj is bounded above by Q̂j, the supremum of the probabilities that Brownian
motion with starting point on Sj ∩ Ωj hits Sj+1 ∩ Ωj. We will show that, for all
sufficiently large j,

(4.1) 1− Q̂j = inf
x∈Sj∩Ωj

ω
(
x,

⋃
n∈Ij

S(cn, rn); Ωj

)
≥ δ,
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for some positive δ. Again we consider

u(x) =
∑
n∈Ij

(
rn

|x− cn|
)d−2

, x ∈ Ωj,

so that u is harmonic in Ωj. Since φ is constant on [Rj, 2Rj], we have rn = φ(Rj) =
φj for n ∈ Ij and

u(x) = φd−2
j

∑
n∈Ij

1

|x− cn|d−2
.

Suppose that x lies on the boundary of a ball S(cm, rm) with m ∈ Ij. It is a
consequence of the separation condition that there can be at most A2kd balls with
centre at a distance that is between ε2k−1 and ε2k from x, with k ≥ 1. Each
such ball contributes at most A2−k(d−2) to the above sum, making for a combined
contribution of at most A22k. We need only count those k with ε2k ≤ 6Rj, as there
are no balls under consideration that are more distant than 6Rj from x. The ball
B(cm, rm) itself contributes 1 to u(x), which leads to the estimate

u(x) ≤ 1 + φd−2
j

∑

k : ε2k≤6Rj

A22k ≤ 1 + AR2
jφ

d−2
j .

As R2
jφ

d−2
j ≥ 1 for sufficiently large j,

(4.2) u(x) ≤ A1R
2
jφ

d−2
j for x ∈

⋃
n∈Ij

S(cn, rn).

Here A1 is some appropriate number that depends only on the dimension and on
the separation number ε.

For x ∈ Sj, we have |x − cn| ≤ 4Rj. At this point we use the assumption that
the balls are uniformly dense to deduce that

u(x) = φd−2
j

∑
n∈Ij

1

|x− cn|d−2
≥ φd−2

j

1

(4Rj)d−2

∑
n∈Ij

1 ≥ φd−2
j

A2

Rd−2
j

Rd
j

where the number A2 depends only on the dimension and on the number R that
appears in the definition of ‘regularly located’. Thus,

(4.3) u(x) ≥ A2R
2
j φd−2

j for x ∈ Sj.

Finally, for x on the sphere Sj+1 and n ∈ Ij, we have |x− cn| ≥ Rj+1 − 2Rj ≥
Rj+1/2. Hence on Sj+1 the function u satisfies

u(x) ≤ φd−2
j

2d−2

Rd−2
j+1

∑
n∈Ij

1 ≤ A3φ
d−2
j

Rd
j

Rd−2
j+1

.

Since (Rj/Rj+1)
d−2 ≤ C, we obtain that

(4.4) u(x) ≤ 1

2
A2 R2

jφ
d−2
j for x ∈ Sj+1.
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It follows from (4.2), (4.4) and the maximum principle that, for x ∈ Ωj,

A1R
2
jφ

d−2
j ω

(
x,

⋃
n∈Ij

S(cn, rn); Ωj

)
≥ u(x)− 1

2
A2 R2

jφ
d−2
j .

Making use of (4.3), we deduce from this last estimate that, for x ∈ Sj,

A1 ω
(
x,

⋃
n∈Ij

S(cn, rn); Ωj

)
≥ 1

2
A2.

Thus (4.1) has been proven. ¤
Remark. With the same proof, one may consider a slightly more general sit-

uation where one changes the metric. Assume that a function ψ : R+ → R+ satis-
fies the smoothness condition ψ(y) ' ψ(x) whenever y < x < 2y. We say that
a sequence {cn} is ψ-regularly located if there is a δ > 0 such that the balls
B(cn, δψ(|cn|)) are pairwise disjoint and there is an R > 0 such that any ball
B(x,Rψ(x)) contains at least one centre cn. Assume finally that we have a se-
quence of disjoint balls with ψ-regularly located centres and the radii of the balls
depend on the centre, rn = φ(|cn|), where φ is a decreasing positive function. Then
the balls are avoidable if and only if

∫ ∞ xφ(x)d−2

ψ(x)d
dx < ∞.

The case ψ = 1 is the case previously considered.

5. Construction of the examples: Proof of Theorem 3

We wish to show by examples that the assumption (1.2) in Theorem 1 is neces-
sary. The examples are of avoidable and separated configurations of balls for which
the series

∑ (
rn/|cn|

)d−2 is divergent, in which case rd−2
n |cn|2 must be unbounded

by Theorem 1. In Theorem 3 it is asserted that such configurations of balls are
possible even with a growth restriction on rd−2

n |cn|2. Leaving the growth restriction
to one side for the moment, we first give the details of a plain vanilla example that
illustrates the idea behind the general construction.

Proposition 2. There is an avoidable, separated configuration of balls, B(cn, rn),
n ≥ 1, in R3 for which

∞∑
n=1

rn

|cn| = ∞.

Proof. Consider a string of closed balls B1, B2, . . . B2k, each of radius 1/4 and
with centres ci on the x1-axis at m + i, i = 1, 2, . . . 2k. We write Hm,k =

⋃2k
i=1 Bi

and wish to estimate ω
(
0, ∂Hm,k;R

3 \Hm,k

)
. We consider, as ever,

u(x) =
2k∑
i=1

1

|x− ci|
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Suppose that x lies on the boundary of one of the balls Bj. Then |x − ci| ≤
|i− j|+ 1/4 ≤ 2|i− j| for i 6= j, and there are at least k balls to one side or other
of any one ball. It follows that

u(x) ≥ 1

2

k∑
i=1

1

i
≥ 1

2
log k, x ∈ ∂Hm,k.

By the maximum principle,

ω
(
0, ∂Hm,k;R

3 \Hm,k

) ≤ 2

log k
u(0) =

2

log k

2k∑
i=1

1

m + i
≤ 4k

m log k
.

We construct our counterexample as follows. Let Hn = Hn2,bn/ log nc, where bxc
denotes the largest integer less than or equal to x, and

Ω = R3 \
∞⋃

n=n0

Hn.

Then

ω(0, ∂Ω; Ω) =
∞∑

n=n0

ω
(
0, ∂Hn; Ω

) ≤
∞∑

n=n0

ω
(
0, ∂Hn;R3 \Hn

)

≤ 4
∞∑

n=n0

n/ log n

n2 logbn/ log nc ≤ 8
∞∑

n=n0

1

n log2 n
.

Thus n0 may be chosen to be sufficiently large so that the balls are separated and
so that ω(0, ∂Ω; Ω) < 1, in which case the balls are avoidable.

On the other hand, the contribution of each string of balls Hn to the series∑
rn/|cn| is comparable to 1/(n log n), and this sum is divergent. ¤
In the examples that follow the balls are arranged in clusters rather than in

higher dimensional strings, though the reason the examples work is the same: the
cluster of balls as a whole contributes somewhat less to the harmonic measure than
if each ball was treated individually.

Proof of Theorem 3. We consider a cluster of kd balls, each of radius r less than
1/4, whose centres have integer coordinates and are evenly distributed in a large
ball that has radius approximately k and is centred at a distance m/2 from the
origin. We assume that k ≤ m/4 and refer to this cluster of balls as Cm,k,r. The
centre of any ball in Cm,k,r is within a distance m of the origin. We again use the
function

(5.1) u(x) =
∑

i

1

|x− ci|d−2
,

the ci being the centres of the balls. If x is a point on the boundary of one of these
balls and 1 ≤ i ≤ k, there are at least a id−1 balls whose centres lie at a distance at
most 2i from x. Here a represents a number that depends only on the dimension.
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Moreover, no ball needs to be chosen twice, that is for two different values of i. We
find that, for a point x on the boundary of any ball in the cluster,

u(x) ≥
k∑

i=1

1

(2i)d−2
aid−1 ≥ ak2.

By the maximum principle,

ω
(
0, ∂Cm,k,r;R

d \ Cm,k,r

) ≤ A

k2
u(0) ≤ A

kd

md−2

1

k2
= A

(
k

m

)d−2

.

We suppose that an increasing unbounded function f on [0,∞) is given. To each
positive integer n there corresponds a choice of variable mn for which f(mn) ≥ n2d

and mn > 2mn−1. We then choose kn to be mn/n2 and choose the radius rn so that
rd−2
n m2

n = f(mn). [We assume that the function f satisfies f(x) ≤ 42−dx2, so that
rn < 1/4.] We set

Ω = Rd \
∞⋃

n=n0

Cmn,kn,rn

and write ωn(x) for the harmonic measure at x of the finite boundary of Cmn,kn,rn

with respect to the domain Rd \ Cmn,kn,rn . Then

ω(0, ∂Ω; Ω) ≤
∞∑

n=n0

wn(0) ≤
∞∑

n=n0

A

(
kn

mn

)d−2

= A

∞∑
n=n0

1

n2(d−2)
,

which we can arrange to be strictly less than 1 by taking n0 to be sufficiently large.
The sum in (1.1) for this collection of balls is comparable to

∞∑
n=n0

kd
n

(
rn

mn

)d−2

Since rd−2
n m2

n = f(mn) ≥ n2d, the general term in this last sum exceeds n2d(kn/mn)d,
which in turn exceeds n2d(1/n2)d = 1. The sum in (1.1) is therefore divergent. ¤

6. Addendum: the union of two avoidable sets is avoidable

At a certain point in our research, it seemed that it might be helpful to know
if the union of two avoidable collections of balls would again be avoidable. Put
another way, is it possible to split an unavoidable collection of balls into two disjoint
avoidable collections? Though the solution to this problem is no longer an essential
ingredient in the proofs we have presented here, we cannot resist including the
elegant solution to this problem found by Professor Rosay. We are grateful to him
for granting us permission to include his proof in this article.

A set A is called avoidable from p if Brownian motion in Rd starting at p has
a probability smaller than one of hitting A. We assume that Rd \ A is connected:
then, by the maximum principle, if A is avoidable from one point it is avoidable from
any other point. In this case we just say that the set A is avoidable. Equivalently,



234 Tom Carroll and Joaquim Ortega-Cerdà

A is avoidable whenever there is a positive harmonic function u in Rd \A such that
u ≡ 1 q.e. (that is, apart from a polar set) on the boundary of A but inf u = 0.

Proposition 3. If two avoidable sets A and B satisfy Rd\(A∪B) is connected
then A ∪B is avoidable.

The basic lemma required to prove this proposition is the following:

Lemma 3. If E is avoidable and uE is the associated positive harmonic function
in Rd \ E, with uE ≡ 1 q.e. on the boundary of E and inf uE = 0, then there is an
R0 such that for all R ≥ R0 the set of points

SR
E = {x ∈ S(0, R) \ E : uE(x) ≤ 1/4}

satisfies |SR
E | > 3

4
|S(0, R)|. Here the measure indicated by | · | is Lebesgue area

measure on S(0, R).

Proof. We take a point q where uE(q) < 1/32. For any R with R > |q|, we
denote by µR the harmonic measure on the boundary of B(0, R) \ E with respect
to q. Then, since uE = 1 q.e. on ∂E ∩B(0, R), we have

1

32
> µR

(
∂E ∩B(0, R)

)
+

1

4

[
1− µR

(
∂E ∩B(0, R)

)− µR(SR
E )

]

from which it follows that µR(SR
E ) > 7/8. We denote by σR harmonic measure with

base point q with respect to the ball B(0, R), so that σR ≥ µR on S(0, R). Thus,
σR(SR

E ) > 7/8 for all R > |q|. The harmonic measure σR can be given explicitly, but
the key property is that as R → ∞ it is more and more similar to the normalized
area measure on S(0, R). Thus |SR

E | > 3
4
|S(0, R)| for all large R. ¤

Proof of Proposition 3. For the sets A and B we take the corresponding functions
uA and uB. We take R so that |SR

A | > 3
4
|S(0, R)| and |SR

B | > 3
4
|S(0, R)|. This means

that there is point p that lies in the intersection SR
A ∩ SR

B . We define u = uA + uB:
it is a positive and bounded harmonic function defined outside A ∪ B. On the
boundary of A∪B it satisfies u ≥ 1 and on the other hand u(p) ≤ 1/2. Thus A∪B
is avoidable from p. Since the complement Rd \ (A ∪ B) is connected, then it is
avoidable from any point. ¤
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