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Abstract. We study the predual spaces of a large family of analytic function spaces and
thereby extend the recently obtained results by Pavlović and Xiao.

1. Introduction

We denote by H(D) the space of analytic functions on the unit disk D. A general
family of analytic function spaces, called the F (p, α, β)-spaces, with p ∈ (1,∞),
α ∈ (−2,∞) and β ∈ [0,∞), were introduced in the dissertation paper of Zhao [Z1]
and consist of functions in H(D) such that

‖g‖F (p,α,β) := sup
a∈D

(∫

D

|g′(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z)

) 1
p

< ∞.

Here σa(z) = (a−z)/(1−az) is the automorphism of D that changes 0 and a, while
dA denotes the Lebesgue area measure on the plane, normalized so that A(D) = 1.
One way to make these spaces Banach spaces is to endow them with the norm
|g(0)|+ ‖g‖F (p,α,β). However, in this paper we will always assume that g(0) = 0 and
use the norm ‖·‖F (p,α,β) defined above. The closed subspace F0(p, α, β) of F (p, α, β)
consists of those functions g ∈ F (p, α, β) such that

lim
|a|→1

∫

D

|g′(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z) = 0,

where we define F0(p, α, 0) := F (p, α, 0).
Throughout the paper we will always assume that p ∈ (1,∞), α ∈ (−2,∞)

and β ∈ [0,∞) unless otherwise indicated. Furthermore, we will also assume that
α + β > −1 since otherwise F (p, α, β) reduces to the space of constant functions.
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The interest in the F (p, α, β)-spaces arises from the fact they cover a lot of well-
known function spaces, which can be seen from the following list:

(1)

• Qβ-spaces: F (2, 0, β) = Qβ

F0(2, 0, β) = Qβ,0

− The Bloch space: F (2, 0, β) = B (β > 1)
− The little Bloch space: F0(2, 0, β) = B0 (β > 1)
− BMOA : F (2, 0, 1) = BMOA
− VMOA : F0(2, 0, 1) = VMOA

• Bloch-type spaces: F (p, αp− 2, β) = Bα (β > 1)
F0(p, αp− 2, β) = Bα

0 (β > 1)
• BMOA-type spaces: F (p, αp− 2, 1) = BMOAα

p

F0(p, αp− 2, 1) = VMOAα
p

• Besov-type spaces: F (p, αp− 2, 0) = Bα
p

• Bergman spaces: F (p, p, 0) = Ap

• Weighted Dirichlet spaces: F (2, α, 0) = Dα

• A Hardy space: F (2, 1, 0) = H2

Note that B1 = B, B1
0 = B0, BMOA1

2 = BMOA and VMOA1
2 = VMOA.

Similarly, B1
p = Bp (the Besov space) and D0 = D (the Dirichlet space). Finally,

we want to mention that F0(p, α, β) contains all the polynomials. All these facts
about the F (p, α, β)-spaces can be found in [Z1] (see also [R] and [Z2]).

The Qβ-spaces were introduced by Aulaskari, Xiao and Zhao in [AXZ] and have
been studied intensively ever since. A good source for these spaces are the Springer
Lecture Notes by Xiao [X] and the related references therein. To see that there
are predual spaces of the Qβ-spaces is easy (see for example Corollary 2 in [LMT]).
However, to get a characterization of these spaces for β ∈ (0, 1) as Banach spaces
of analytic functions on the unit disk has been an open problem until recently. The
problem was solved by Pavlović and Xiao in [PX] (see also [ACS]).

The main aim of this paper is to extend the results in [PX] to the class of
F (p, α, β)-spaces. The paper is divided into several sections. We begin, in Section 2,
by giving some preliminary results about the F (p, α, β)-spaces and by introducing
the R(p, α, β)-spaces, while we in Section 3 show that the dual of F0(p, α, β) is
isomorphic to R(p, α, β). In Section 4 we show that E(p, α, β), a closed subspace
of the dual space of F (p, α, β), is the unique isometric predual of F (p, α, β) and
that E(p, α, β) is isomorphic to R(p, α, β). Moreover, we show that the bidual
of F0(p, α, β) is isometrically isomorphic to F (p, α, β). Finally, in Section 5, we
characterize the bounded multiplication operators on R(p, α, β).

2. Preliminaries

We will use the following notations throughout the paper: A . B means that
there is a positive constant c such that A ≤ cB, while A ≈ B means that there
are positive constants c1 and c2, such that c1A ≤ B ≤ c2A. In both cases, the
constants do not depend on crucial properties of A and B (which will be clear from
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the context). Also, if X and Y are Banach spaces, we will write X ∼= Y in the
meaning that X is isomorphic to Y .

Given a Banach space X, BX will denote the closed unit ball of X, while X∗

is the Banach space of all bounded linear functionals on X. Furthermore, co will
denote the compact-open topology, while ∂D and D will denote the unit circle and
the closed unit disk, respectively. For f ∈ H(D) and for r ∈ (0, 1), we denote by
fr the function defined by fr(z) := f(rz). Finally, the multiplication operator Mψ,
induced by ψ ∈ H(D), is the linear map on H(D) defined by Mψf = ψf .

We will frequently use the following easily verified equality (without any further
reference):

1− |σa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2 .

We will also use the well-known integral formula (see for example Theorem 1.7
in [HKZ]), which states that for a ∈ D, c ∈ R and t > −1,

(2)
∫

D

(1− |z|2)t

|1− az|2+t+c
dA(z) .





1 for c < 0,

− log(1− |a|2) for c = 0,

(1− |a|2)−c for c > 0.

The F (p, α, β)-spaces. We will now state some preliminary results about the
F (p, α, β)-spaces that we will need later. Using the integral formula (2), we see that
for any f ∈ H(D) and for every r ∈ (0, 1), we have that fr ∈ F0(p, α, β).

Lemma 2.1.
(
BF (p,α,β), co

)
is compact.

Proof. By [Z1] we know that the norm-topology of F (p, α, β) is finer than the
compact-open topology. Indeed, we have that ‖g‖

B
α+2

p
. ‖g‖F (p,α,β) and hence, for

g ∈ F (p, α, β) and for all z ∈ D (see for example pp. 191–192 in [OSZ]),

|g(z)| . C(z)‖g‖F (p,α,β), where C(z) =





1 for p > α + 2,

− log(1− |z|) for p = α + 2,

(1− |z|)1−α+2
p for p < α + 2.

Thus, Montel’s theorem states that BF (p,α,β) is relatively compact with respect to
the compact-open topology. If {gn} is a sequence in BF (p,α,β), we conclude from
Fatou’s lemma that

sup
a∈D

∫

D

lim
n→∞

|g′n(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z) ≤ lim inf
n→∞

‖gn‖p
F (p,α,β) ≤ 1.

That is, BF (p,α,β) is co-closed and therefore also co-compact. ¤

Lemma 2.2. Let µ ∈ (0, 1). If g ∈ H(D) is such that

Iµ(a) :=

∫

µ<|z|<1

|g′(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z) < ∞ for all a ∈ D,

then Iµ(a) is a continuous function of a ∈ D.
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Proof. Fix a ∈ D and take a sequence {an} ⊂ D such that an → a. Define

Gn(z) := |g′(z)|p(1− |z|2)α(1− |σan(z)|2)β,

G(z) := |g′(z)|p(1− |z|2)α(1− |σa(z)|2)β.

Then Gn converges pointwise to G. Since an → a, we can choose n0 such that for
n ≥ n0, 1− |an| ≥ (1− |a|)/2. A straightforward computation shows that for all n,

1− |σan(z)|2
1− |σa(z)|2 ≤ 4

(1− |an|)(1− |a|) .

Using this we get that for n ≥ n0,

Gn(z) ≤ 8β

(1− |a|)2β
G(z).

Lebesgue’s dominated convergence theorem implies now that lim
n→∞

Iµ(an) = Iµ(a).
¤

The following result is known for p = 2 and α = 0 (see Proposition 2.3 in [ACS]),
but for completeness and for the convenience of the reader, we will give a proof.

Proposition 2.3. Let α ≥ 0 and g ∈ F (p, α, β). Then ‖g − gr‖F (p,α,β) → 0 as
r → 1 if and only if g ∈ F0(p, α, β).

Proof. Assume that ‖g − gr‖F (p,α,β) → 0 as r → 1. Clearly gr ∈ F0(p, α, β)
and since F0(p, α, β) is a closed subspace of F (p, α, β) the assumption implies that
g ∈ F0(p, α, β).

Conversely, assume that g ∈ F0(p, α, β). For any µ ∈ (0, 1) and any δ ∈ (0, 1),

‖g − gr‖p
F (p,α,β) = sup

a∈D

∫

D

|g′(z)− g′r(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z)

≤ sup
δ<|a|<1

∫

D

|g′(z)− g′r(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z)(3)

+ sup
|a|≤δ

∫

µ<|z|<1

|g′(z)− g′r(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z)(4)

+ sup
|a|≤δ

∫

|z|≤µ

|g′(z)− g′r(z)|p(1− |z|2)α(1− |σa(z)|2)β dA(z).(5)

Given ε > 0 we need to show that we can choose µ and δ in (0, 1), so that

lim
r→1

((3) + (4) + (5)) . ε.

We immediately notice that since g ∈ F0(p, α, β), we can choose δ ∈ (0, 1) such
that (3) . ε for r close enough to 1.

Let Iµ(a) be defined as in Lemma 2.2. For a ∈ D and µ ∈ (0, 1), we have
that Iµ(a) ≤ ‖g‖p

F (p,α,β) < ∞. For every a ∈ D, we can choose µa ∈ (0, 1) so that
Iµa(a) < ε. By the continuity of Iµa there is a neighborhood U(a) ⊂ D of a so
that Iµa(b) . ε for all b ∈ U(a). Since {a : |a| ≤ δ} is a compact set we can find
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µ ∈ (0, 1) such that sup|a|≤δ Iµ(a) . ε. Thus, with the chosen constants δ and µ, we
have that lim

r→1
(4) . ε.

Finally, we have that lim
r→1

(5) = 0 for the δ and µ chosen above. ¤

The R(p, α, β)-spaces. We will now introduce the R(p, α, β)-spaces. Let Ek,j

be the pairwise disjoint sets given by

Ek,j :=

{
z ∈ D : 1− 1

2k
≤ |z| < 1− 1

2k+1
,

πj

2k+1
≤ arg z <

π(j + 1)

2k+1

}
,

where k = 0, 1, 2, . . . and j = 0, 1, 2, . . . , 2k+2 − 1, so that
∞⋃

k=0

2k+2−1⋃
j=0

Ek,j = D.

For simplicity we will rename these sets as Em, where m ∈ N. More precisely, we
denote m := j − 1 +

∑k
i=0 2i+1 so that

E1 = E0,0, . . . , E4 = E0,3, E5 = E1,0, . . . , E12 = E1,7, E13 = E2,0, . . . .

Furthermore, let am denote the center of Em (see Figure 1). Then R(p, α, β) consists
of those functions f ∈ H(D) for which f(z) =

∑∞
m=1 fm(z), where each fm ∈ H(D)

and
∞∑

m=1

(∫

D

|fm(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

< ∞.

The norm of R(p, α, β) is given by

‖f‖R(p,α,β) := inf
∞∑

m=1

(∫

D

|fm(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

,

where the infimum is taken over all such representations of f .

E13

a13

Figure 1. The disjoint sets and the center point a13 of the corresponding set E13.
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Remark 2.4. With some simple geometrical estimations, one can deduce that
there exists a constant δ ∈ (0, 1) such that

sup
w∈Em

|σam(w)| ≤ δ for all m ∈ N.

In particular, using the stronger version of the triangle inequality associated with
the pseudo-hyperbolic metric (see Lemma 1.4 in [Ga]), we then get that

1− δ

2(1 + δ)
≤ 1− |σw(z)|2

1− |σam(z)|2 ≤
2(1 + δ)

1− δ
, w ∈ Em, z ∈ D.

Remark 2.5. The R(2, 0, β)-spaces, with β ∈ (0, 1), were introduced in [PX]
as spaces which lie between the Hardy space H1 and the Bergman space A2. They
showed that R(2, 0, β) is the dual of Qβ,0 as well as the predual of Qβ.

Remark 2.6. For p > max {1, 1 + α + β} it is easy to see that ‖ · ‖R(p,α,β) .
‖ · ‖H∞ . Indeed, let f ∈ H∞. Then the representation of f can be chosen to be f
itself, since f satisfies

(∫

D

|f(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

≤ ‖f‖H∞

(
(1− |am|2)−

β
p−1

∫

D

(1− |z|2)−α+β
p−1

|1− amz|− 2β
p−1

dA(z)

) p−1
p

< ∞,

for any center point am.

Proposition 2.7. For f ∈ R(p, α, β) and for all z ∈ D,

|f(z)| . ‖f‖R(p,α,β)

(1− |z|)2−α+2
p

.

Proof. Fix z ∈ D. Using the inequality on p. 39 in [HKZ], which states that for
f ∈ H(D), s ∈ R and q ∈ (0,∞),

(6) (1− |z|2)s|f(z)|q .
∫

D

(1− |w|2)s−2|f(w)|qdA(w),

we obtain

|fm(z)| p
p−1 . 1

(1− |z|)2− α
p−1

∫

D

|fm(w)| p
p−1 (1− |w|2)− α

p−1 dA(w)
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and hence,

(1− |z|)2−α+2
p |f(z)| ≤ (1− |z|)2−α+2

p

∞∑
m=1

(
|fm(z)| p

p−1

) p−1
p

. (1− |z|)2−α+2
p

∞∑
m=1

(
1

(1− |z|)2− α
p−1

∫

D

|fm(w)| p
p−1 (1− |w|2)− α

p−1 dA(w)

) p−1
p

≤
∞∑

m=1

(∫

D

|fm(w)| p
p−1 (1− |w|2)− α

p−1 (1− |σam(w)|2)− β
p−1 dA(w)

) p−1
p

.

Taking infimum over all the representations of f finishes the proof. ¤

Remark 2.8. In particular, the norm-topology of R(p, α, β) is finer than the
compact-open topology. Moreover, using the completeness criterion (see for example
Lemma I.1.8 in [W]), one can verify that the normed space R(p, α, β) is complete.

3. The F0(p, α, β) – R(p, α, β) duality

Some of the results in this section are highly inspired by the corresponding ones
in [PX]. We begin by stating the main theorem of this section.

Theorem 3.1. Let p > max{1, 1 + α + β}. Then

R(p, α, β) ∼= F0(p, α, β)∗ under the pairing 〈f, g〉 =

∫

D

f(z)g′(z)dA(z).

That is, every f ∈ R(p, α, β) induces a bounded linear functional 〈f, ·〉 : F0(p, α, β) →
C. Conversely, if L ∈ F0(p, α, β)∗, then there exists f ∈ R(p, α, β) such that
L(g) = 〈f, g〉 for all g ∈ F0(p, α, β). Moreover, for every f ∈ R(p, α, β),

‖f‖R(p,α,β) ≈ sup
g∈BF0(p,α,β)

|〈f, g〉|.

Remark 3.2. Theorem 3.1 reduces to Theorem 1.2 in [PX] by choosing p = 2,
α = 0 and β ∈ (0, 1).

In order to prove Theorem 3.1 we will need the following two lemmas and
Theorem 3.5.

Lemma 3.3. Let g ∈ H(D) be given by g(z) =
∑∞

k=1 bkz
k and define the

invertible linear operator Dn : (H(D), co) → (H(D), co) by

Dng(z) :=
1

(n− 1)!

∞∑

k=0

(k + n)!

k!
bk+1z

k, where n ∈ N.

Then g ∈ F (p, α, β) if and only if

sup
a∈D

(∫

D

|Dng(z)|p(1− |z|2)(n−1)p+α(1− |σa(z)|2)β dA(z)

) 1
p

< ∞.
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Similarly, g ∈ F0(p, α, β) if and only if

lim
|a|→1

(∫

D

|Dng(z)|p(1− |z|2)(n−1)p+α(1− |σa(z)|2)β dA(z)

) 1
p

= 0.

Proof. A straightforward calculation shows that D1g(z) = g′(z) and that for
n ≥ 2, we have that

(7) Dng(z) =
1

(n− 1)!

(
zn−1g(n)(z) +

n−2∑
j=1

cn,jz
n−1−jg(n−j)(z) + nDn−1g(z)

)
,

where cn,j ∈ N. Theorem 4.2.1 and Theorem 4.2.3 in [R] state that g ∈ F (p, α, β)
if and only if

sup
a∈D

(∫

D

|g(n)(z)|p(1− |z|2)(n−1)p+α(1− |σa(z)|2)β dA(z)

) 1
p

< ∞

and g ∈ F0(p, α, β) if and only if

lim
|a|→1

(∫

D

|g(n)(z)|p(1− |z|2)(n−1)p+α(1− |σa(z)|2)β dA(z)

) 1
p

= 0,

respectively. Hence, by (7) the result follows by induction. ¤

Lemma 3.4. For p > max{1, 1 + α + β} and

n ∈ N, with n > max

{
2β

p− 1
, 1 +

β − α− 1

p

}
,

we define the linear operator S on the set of Borel measurable functions H on D by

S(H)(w) := (1− |w|2)γ

∫

D

H(z)
(1− |z|2)n−1−γ

(1− zw)n+1
dA(z),

where w ∈ D and γ ∈ (
max {0 , β − α− (n− 1)(p− 1)} , min {n , p− 1− α− β} )

.
Then S maps L∞(D, dµa) and L1(D, dµa) boundedly into L∞(D, dµa) and L1(D, dµa),
respectively, where

dµa(z) :=
(1− |z|2)−α+β+γp

p−1

|1− az|− 2β
p−1

dA(z), a ∈ D.

Proof. Note that the assumptions made on p and n guarantee that we can
always find γ in the interval specified above. Since γ > 0 and γ < n, the integral
formula (2) gives

‖S(H)‖L∞(D,dµa) ≤ ‖H‖L∞(D,dµa) sup
w∈D

(1− |w|2)γ

∫

D

(1− |z|2)n−1−γ

|1− wz|n+1
dA(z)

. ‖H‖L∞(D,dµa).
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On the other hand, we have that

‖S(H)‖L1(D,dµa)

≤
∫

D

(1− |w|2)γ

∫

D

|H(z)|(1− |z|
2)n−1−γ

|1− zw|n+1
dA(z)

(1− |w|2)−α+β+γp
p−1

|1− aw|− 2β
p−1

dA(w)

=

∫

D

|H(z)|(1− |z|2)n−1−γ

∫

D

(1− |w|2)−α+β+γ
p−1

|1− zw|n+1|1− aw|− 2β
p−1

dA(w)

︸ ︷︷ ︸
=:M(a)

dA(z).

Thus, it suffices to show that

M(a) . (1− |z|2)−(n−1)−α+β+γ
p−1

|1− az|− 2β
p−1

.

Since γ < p − 1 − α − β, we have that the function a 7→ M(a)|1 − az|− 2β
p−1 is

continuous on D and subharmonic on D. By the maximum principle we can (and
will) assume that |a| = 1. A change of variable, w 7→ σz(w) gives

M(a) =

∫

D

(1− |σz(w)|2)−α+β+γ
p−1

|1− zσz(w)|n+1|1− aσz(w)|− 2β
p−1

|σ′z(w)|2 dA(w)

=

∫

D

(1− |z|2)−(n−1)−α+β+γ
p−1 (1− |w|2)−α+β+γ

p−1

|1− zw|−(n−3)− 2(α+γ)
p−1 |1− az + w(a− z)|− 2β

p−1

dA(w)

≤ 2
2β

p−1
(1− |z|2)−(n−1)−α+β+γ

p−1

|1− az|− 2β
p−1

∫

D

(1− |w|2)−α+β+γ
p−1

|1− zw|−(n−3)− 2(α+γ)
p−1

dA(w),

where we in the inequality have estimated |1 − az + w(a − z)| ≤ 2|1 − az|. Using
the integral formula (2) we notice that the last integral is bounded in z due to the
fact that γ > β − α− (n− 1)(p− 1). ¤

Theorem 3.5. For p > max{1, 1 + α + β} and

n ∈ N, with n > max

{
2β

p− 1
, 1 +

β − α− 1

p

}
,

we define the Banach spaces Xm ⊆ H(D) and Ym ⊆ H(D) by

‖g‖Xm :=

(∫

D

|Dng(z)|p(1− |z|2)(n−1)p+α(1− |σam(z)|2)β dA(z)

) 1
p

< ∞,

‖f‖Ym :=

(∫

D

|f(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

< ∞,
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where Dng is defined as in Lemma 3.3 and where we always assume that g(0) = 0.
Then

(Xm)∗ = Ym under the pairing 〈f, g〉 =

∫

D

f(z)g′(z) dA(z).

Moreover, for every f ∈ Ym,

‖f‖Ym ≈ sup
g∈BXm

|〈f, g〉|,

where the constants do not depend on m.

Remark 3.6. Using inequality (6) we get that for g ∈ Xm and for all z ∈ D,

|Dng(z)| . (1− |am|)−
β
p

‖g‖Xm

(1− |z|2)n−1+α+β+2
p

.

Thus, using the invertibility of Dn : (H(D), co) → (H(D), co), we conclude that the
norm-topology of Xm is finer than the compact-open topology. Hence, by Fatou’s
lemma Xm is complete. Since Ym is a space of Bergman type, it is clearly a Banach
space.

Proof of Theorem 3.5. For f(z) =
∑∞

k=0 akz
k ∈ Ym and g(z) =

∑∞
k=1 bkz

k ∈ Xm,
a straightforward calculation, using the Cauchy product, shows that

∫

D

f(z)g′(z) dA(z) =
∞∑

k=0

akbk+1 =

∫

D

f(z)Dng(z)(1− |z|2)n−1 dA(z).

Using this and Hölder’s inequality we obtain

|〈f, g〉| ≤
(∫

D

|Dng(z)|p(1− |z|2)(n−1)p+α(1− |σam(z)|2)β dA(z)

) 1
p

×
(∫

D

|f(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

= ‖g‖Xm‖f‖Ym .

That is, Ym ⊆ (Xm)∗.
Conversely, let L ∈ (Xm)∗ and consider T : Xm → Lp given by

T (g) := Dng(z)(1− |z|2)n−1+α
p (1− |σam(z)|2)β

p .

Let G := T (Xm). Then, using the Hahn–Banach theorem, L ◦ T−1 : G → C can be
extended (preserving the norm) to a bounded linear functional on Lp, denoted here
by L̃ ◦ T−1. Thus, we can find h0 ∈ L

p
p−1 such that

(L̃ ◦ T−1)(f) =

∫

D

f(z)h0(z) dA(z) for all f ∈ Lp

and

‖L ◦ T−1‖ =

(∫

D

|h0(z)| p
p−1 dA(z)

) p−1
p

.
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Especially we have that

L(g) =

∫

D

Dng(z) h0(z)(1− |z|2)α
p (1− |σam(z)|2)β

p︸ ︷︷ ︸
=:h(z)

(1− |z|2)n−1 dA(z)

for all g ∈ Xm and

‖L‖ =

(∫

D

|h(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

.

For s > −1, every analytic f in L1 (D, (1− |z|2)sdA(z)) has the following re-
producing formula (see Corollary 1.5 in [HKZ]):

f(z) = (s + 1)

∫

D

f(w)
(1− |w|2)s

(1− zw)s+2
dA(w).

We now claim that Dng ∈ L1 (D, (1− |z|2)n−1 dA(z)) whenever g ∈ Xm. Indeed,∫

D

|Dng(z)|(1− |z|2)n−1 dA(z)

=

∫

D

|Dng(z)|(1− |z|2)n−1+α
p (1− |σam(z)|2)β

p (1− |z|2)−α
p (1− |σam(z)|2)−β

p dA(z)

≤ ‖g‖Xm

(
(1− |am|2)−

β
p−1

∫

D

(1− |z|2)−α+β
p−1

|1− amz|− 2β
p−1

dA(z)

) p−1
p

.

Since p > 1 + α + β, the last integral is bounded.
In other words, if g ∈ Xm, then

L(g) =

∫

D

Dng(z)h(z)(1− |z|2)n−1 dA(z)

=

∫

D

n

∫

D

Dng(w)
(1− |w|2)n−1

(1− zw)n+1
dA(w) h(z)(1− |z|2)n−1 dA(z)

=

∫

D

Dng(w)(1− |w|2)n−1 n

∫

D

h(z)
(1− |z|2)n−1

(1− zw)n+1
dA(z)

︸ ︷︷ ︸
=:f0(w)

dA(w).

Using Theorem 1.10 in [HKZ] and the assumptions made on n, we notice that the
function f0 defined above is analytic. Thus, it remains to show that ‖f0‖Ym . ‖L‖,
where the constant does not depend on m. To do this, it suffices to show that

‖f0‖
p

p−1

Ym
.

∫

D

|h(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z),

which reduces to

(8)
∫

D

|f0(w)| p
p−1

(1− |w|2)−α+β
p−1

|1− amw|− 2β
p−1

dA(w) .
∫

D

|h(z)| p
p−1

(1− |z|2)−α+β
p−1

|1− amz|− 2β
p−1

dA(z).
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So fix γ ∈ (
max {0 , β − α− (n− 1)(p− 1)} , min {n , p− 1− α− β} )

. Again, the
assumptions made on p and n guarantee that the interval is non-empty. Define the
functions F and H by

F (w) := f0(w)(1− |w|2)γ and H(z) := h(z)(1− |z|2)γ.

Then equation (8) reduces to

(9)
∫

D

|F (w)| p
p−1

(1− |w|2)−α+β+γp
p−1

|1− amw|− 2β
p−1

dA(w) .
∫

D

|H(z)| p
p−1

(1− |z|2)−α+β+γp
p−1

|1− amz|− 2β
p−1

dA(z),

where

F (w) = n(1− |w|2)γ

∫

D

H(z)
(1− |z|2)n−1−γ

(1− zw)n+1
dA(z).

To prove equation (9), we use the combination of Lemma 3.4 and the Riesz–Thorin
interpolation theorem. Note that the constants obtained are independent of m. ¤

Proof of Theorem 3.1. Let f ∈ R(p, α, β) and g ∈ F0(p, α, β). Given ε > 0,
there exists a representation of f such that

∞∑
m=1

∫

D

|fm(z)g′(z)| dA(z)

≤ ‖g‖F (p,α,β)

∞∑
m=1

(∫

D

|fm(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

≤ ‖g‖F (p,α,β)

(‖f‖R(p,α,β) + ε
)
.

Thus,

(10) |〈f, g〉| ≤ ‖g‖F (p,α,β)‖f‖R(p,α,β).

Conversely, take L ∈ F0(p, α, β)∗. Let Xm and Ym be the Banach spaces intro-
duced in Theorem 3.5 and define

X :=

( ∞⊕
m=1

Xm

)

c0

and Y :=

( ∞⊕
m=1

Ym

)

`1

.

Instead of taking the supremum over D in the definition of the F (p, α, β)-norm
it suffices to take it over the set {am : m ∈ N} (see Remark 2.4). This norm is
equivalent to the complete norm supm ‖ · ‖Xm on F (p, α, β) (see Lemma 3.3 and
Remark 3.6). Moreover, by endowing F0(p, α, β) with this new norm it becomes a
normed subspace of X. Since X∗ is isometrically isomorphic to (

⊕∞
m=1(Xm)∗)`1 ,

Theorem 3.5 implies that X∗ ∼= Y under the pairing
∞∑

m=1

〈fm, gm〉, fm ∈ Ym, gm ∈ Xm.
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By the Hahn–Banach theorem, L can now be extended (preserving the norm) to a
functional L̃ ∈ X∗. Hence, there exist fm ∈ Ym, m ∈ N, such that

L(g) =
∞∑

m=1

〈fm, g〉, g ∈ F0(p, α, β) and
∞∑

m=1

‖fm‖Ym . ‖L‖.

By the proof of Proposition 2.7, we know that for all z ∈ D,

(1− |z|2)2−α+2
p |fm(z)| . ‖fm‖Ym .

This implies that f(z) :=
∑∞

m=1 fm(z) converges uniformly on compact subsets
of D. Thus, f ∈ H(D), ‖f‖R(p,α,β) ≤

∑∞
m=1 ‖fm‖Ym and L(g) = 〈f, g〉 for all

g ∈ F0(p, α, β). ¤

Lemma 3.7. For p > max{1, 1+α+β}, the polynomials are dense in R(p, α, β).

Proof. Using Theorem 3.5 and the second part of the proof of Lemma 4.2 in [PX]
the result follows directly. ¤

Proposition 3.8. Let α ≥ 0, p > 1 + α + β and f ∈ R(p, α, β). Then ‖f −
fr‖R(p,α,β) → 0 as r → 1.

Proof. Clearly, fr ∈ R(p, α, β) whenever f ∈ R(p, α, β). A direct computation
with polynomials gives that 〈f, gr〉 = r〈fr, g〉. Hence, Theorem 3.1 and inequal-
ity (10) give that

‖fr‖R(p,α,β) ≈ sup
g∈BF0(p,α,β)

|〈fr, g〉| = 1

r
sup

g∈BF0(p,α,β)

|〈f, gr〉|

≤ 1

r
sup

g∈BF0(p,α,β)

‖f‖R(p,α,β)‖gr‖F (p,α,β).

Since ‖gr‖F (p,α,β) ≤ ‖g‖F (p,α,β) we get that for given δ > 0, ‖fr‖R(p,α,β) . ‖f‖R(p,α,β)

for all f ∈ R(p, α, β) and for all r ∈ (δ, 1). Thus, let f ∈ R(p, α, β) and fix ε > 0.
According to Lemma 3.7 we can find a polynomial p0 such that ‖f − p0‖R(p,α,β) < ε.
By the continuity of p0 on D we can choose r0 close enough to 1 so that

‖p0 − (p0)r‖R(p,α,β) . ‖p0 − (p0)r‖H∞ < ε whenever r ≥ r0.

Hence, for r ≥ r0,

‖f − fr‖R(p,α,β) ≤ ‖f − p0‖R(p,α,β) + ‖p0 − (p0)r‖R(p,α,β) + ‖(p0)r − fr‖R(p,α,β)

. ‖f − p0‖R(p,α,β) + ‖p0 − (p0)r‖R(p,α,β) . ε. ¤

4. The E(p, α, β) – F (p, α, β) duality

Let
E(p, α, β) := {L ∈ F (p, α, β)∗ : L|(BF (p,α,β),co) is continuous}
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be the closed subspace of F (p, α, β)∗. Since
(
BF (p,α,β), co

)
is compact by Lemma 2.1,

the Dixmier-Ng theorem [N] gives that

J : F (p, α, β) → E(p, α, β)∗, J : f 7→ (L 7→ L(f)), g ∈ F (p, α, β), L ∈ E(p, α, β),

is an isometric isomorphism. Hence, we have

Theorem 4.1. The E(p, α, β)-space is a Banach space and J : F (p, α, β) →
E(p, α, β)∗ is an isometric isomorphism.

For z ∈ D, let δz : F (p, α, β) → C be the point evaluation defined by δz(f) :=
f(z). Clearly, δz ∈ E(p, α, β). We claim that the closed linear span of the set
{δz : z ∈ D} coincides with E(p, α, β). Indeed, if not, then by the Hahn–Banach
theorem there is a J(g) 6≡ 0, where g ∈ F (p, α, β), such that J(g)δz = g(z) = 0
for all z ∈ D, which is a contradiction. In particular, this shows that E(p, α, β) is
separable.

For L ∈ F0(p, α, β)∗ and r ∈ (0, 1) we denote by Lr the functional given by

Lr(g) := L(gr).

Since ‖gr‖F (p,α,β) ≤ ‖g‖F (p,α,β) for every g ∈ F (p, α, β), we have that Lr ∈ F (p, α, β)∗

and that ‖Lr‖ ≤ ‖L‖. Hence, by Alaoglu’s theorem the net {Lr} has a weak∗-cluster
point. Define L̃ ∈ F (p, α, β)∗ to be any such point. By Proposition 2.3, we know
that limr→1 Lr(g) exists for all g ∈ F0(p, α, β). Therefore the restriction of L̃ to
F0(p, α, β) is equal to L and ‖L̃‖ = ‖L‖.

Theorem 4.2. For α ≥ 0 and p > 1+α+β, the restriction map E(p, α, β) →
F0(p, α, β)∗, L 7→ L|F0(p,α,β), is an isometric isomorphism. In particular, every L ∈
F0(p, α, β)∗ has an extension L̃ ∈ F (p, α, β)∗ such that L̃|(BF (p,α,β),co) is continuous.

Proof. The restriction map is clearly well-defined, linear and bounded. Next we
show that it is surjective. For L ∈ F0(p, α, β)∗ we claim that

‖L̃− Lr‖ → 0 as r → 1,

where L̃ ∈ F (p, α, β)∗ is the weak∗-cluster point of the net {Lr}. This is proved
by showing that {Lr} is a Cauchy net. Using Theorem 3.1 and inequality (10) we
obtain that for some f ∈ R(p, α, β),

|Ls(g)− Lr(g)| = |L(gs)− L(gr)| = |〈f, gs〉 − 〈f, gr〉|
= |〈sfs − rfr, g〉| ≤ ‖sfs − rfr‖R(p,α,β)‖g‖F (p,α,β).

In other words,

sup
g∈BF (p,α,β)

|Ls(g)− Lr(g)| . ‖f − fs‖R(p,α,β) + |s− r| ‖f‖R(p,α,β) + ‖f − fr‖R(p,α,β),

which by Proposition 3.8 tends to zero as r and s tend to 1. Therefore L̃ must be
the limit of the net {Lr}.

Note that Lr ∈ E(p, α, β) for every r with r ∈ (0, 1). Indeed, let Lr ∈ F (p, α, β)∗

and take a sequence {gn} ∈ BF (p,α,β) which converges to g on compact subsets of
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D. Then
|Lr(g)− Lr(gn)| ≤ ‖L‖ ‖gr − (gn)r‖F (p,α,β)

≤ ‖L‖
(

sup
a∈D

∫

D

|g′(rz)− g′n(rz)|p(1− |z|2)α(1− |σa(z)|2)βdA(z)

) 1
p

. ‖L‖ sup
z∈D

|g′(rz)− g′n(rz)|,

which tends to zero by assumption.
Hence, we conclude that L̃ ∈ E(p, α, β) and the surjectivity is thereby proved.
Finally, we show that the restriction map is an isometry. For any g ∈ BF (p,α,β),

the net {gr} ⊂ BF0(p,α,β) and converges to g uniformly on compact subsets of D. If
L ∈ E(p, α, β), then L(gr) → L(g) and therefore

sup
g∈BF (p,α,β)

|L(g)| = sup
g∈BF0(p,α,β)

|L(g)|

and we are finished. ¤

Corollary 4.3. Let α ≥ 0 and p > 1+α+β. Then F0(p, α, β)∗∗ is isometrically
isomorphic to F (p, α, β) and R(p, α, β) is isomorphic to E(p, α, β).

Remark 4.4. Since E(p, α, β) is a separable dual space it has the Radon–
Nikodym property. Hence, by p. 144 in [Go], we get that E(p, α, β) is the unique
isometric predual of F (p, α, β).

Remark 4.5. Due to the restriction p > max{1, 1 + α + β}, the results in
sections 3 and 4 cannot be applied to all of the spaces mentioned in list (1). However,
for the spaces that the results do not apply to, there are in fact easier ways to obtain
similar results.

5. Multiplication operators on R(p, α, β)

Multiplication operators on F (p, α, β)-spaces and subspaces thereof have been
studied in many papers. For example in [Z2], the author used the F (p, α, β)-spaces
to characterize the pointwise multipliers from weighted Bergman spaces and Hardy
spaces to weighted Bergman spaces. It is still an open problem to give a complete
characterization of the bounded multiplication operators on the Qβ-spaces for β ∈
(0, 1) (see [X]). In this section we characterize the bounded multiplication operators
on R(p, α, β).

Theorem 5.1. Let p > max{1, 1 + α + β}. Then Mψ is bounded on R(p, α, β)
if and only if ψ ∈ H∞.

Proof. Assume that ψ ∈ H∞ and let f ∈ R(p, α, β). Then
‖Mψf‖R(p,α,β)

≤ ‖ψ‖H∞

∞∑
m=1

(∫

D

|fm(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

.
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Taking infimum over all the representations of f on both sides gives that Mψ is
bounded on R(p, α, β).

Conversely, assume that Mψ is bounded on R(p, α, β). Fix

η >
β

p
and define fw(z) :=

(1− |w|2)η

(1− wz)η+2−α+2
p

, w ∈ D.

Trivially, fw ∈ H(D). We now claim that

(11) sup
w∈D

‖fw‖R(p,α,β) . 1.

Fix w ∈ D. Then w ∈ Em for some m ∈ N. By Remark 2.4 there exists δ ∈ (0, 1)
(which does not depend on w and m) such that |σam(w)| ≤ δ. Therefore we obtain
(with a change of variable z 7→ σw(z)) that

‖fw‖R(p,α,β)

≤
(∫

D

|fw(z)| p
p−1 (1− |z|2)− α

p−1 (1− |σam(z)|2)− β
p−1 dA(z)

) p−1
p

=

(∫

D

(1− |w|2) ηp
p−1

+2

|1− wσw(z)| (η+2)p−α−2
p−1

(1− |σw(z)|2)− α
p−1

|1− wz|4 (1− |σam(σw(z))|2)− β
p−1 dA(z)

) p−1
p

=

(∫

D

(1− |z|2)− α
p−1

|1− wz|2−α+ηp
p−1

(1− |σσw(am)(z))|2)− β
p−1 dA(z)

) p−1
p

≤ 2
2β
p (1− |σw(am)|2)−β

p︸ ︷︷ ︸
≤(1−δ2)

−β
p

(∫

D

(1− |z|2)−α+β
p−1

|1− wz|2−α+ηp
p−1

dA(z)

) p−1
p

.

Since η > β/p, the integral formula (2) shows that the last integral is bounded in
w. Hence, (11) is valid.

Since fw ∈ R(p, α, β), we have that ψfw ∈ R(p, α, β) by assumption. Thus,
using Proposition 2.7 and (11), we obtain

|ψ(z)fw(z)| . ‖ψfw‖R(p,α,β)

(1− |z|)2−α+2
p

. ‖fw‖R(p,α,β)

(1− |z|)2−α+2
p

. 1

(1− |z|)2−α+2
p

for all z ∈ D.

Especially for z = w we get that |ψ(w)| . 1 for all w ∈ D. ¤
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