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Abstract. We introduce a notion of the Euclidean and the Minkowski rank for arbitrary metric
spaces and we study their behaviour with respect to products. We show that the Minkowski
rank is additive with respect to metric products, while additivity of the Euclidean rank does not
hold in general.

1 Introduction

For Riemannian manifolds there are various definitions of a rank in the literature
(compare e.g. [1], [6], [3]). A notion which can easily be generalized to arbitrary metric
spaces is the rank as the maximal dimension of a Euclidean subspace isometrically
embedded into the manifold.
It is known that for Riemannian manifolds this Euclidean rank is additive with re-

spect to products. This is not the case for more general metric spaces, even for Finsler
manifolds (see Theorem 3 below).
In contrary it turns out that the Minkowski rank defined as the maximal dimension

of an isometrically embedded normed vector space has a better functional behaviour
with respect to metric products.

Definition. For an arbitrary metric space ðX ; d Þ the Minkowski rank is

rankMðX ; d Þ :¼ sup
ðV ;k�kÞ

fdimV j b isometric map iV : ðV ; k � kÞ ! ðX ; d Þg:

The Euclidean rank is defined as

rankEðX ; d Þ :¼ supfn A N j b isometric map iE n : En ! ðX ; d Þg:

In special cases, e.g. for Riemannian manifolds, these rank definitions coincide,
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since normed subspaces are forced to be Euclidean. This is well known under the
hypothesis of local one sided curvature bounds in the sense of Alexandrov and fol-
lows for example from the existence of angles in such spaces (compare [5] p. 302). For
the convenience of the reader we give a short proof of the following statement (see
Section 2):

Theorem 1. Let X be a locally geodesic metric space with the property that every

point x A X has a neighborhood U such that the curvature in the sense of Alexandrov

is bounded from below or from above in U. Then

rankMðXÞ ¼ rankEðX Þ:

For more general metric spaces, the ranks may be di¤erent and they even have
di¤erent functional behaviour with respect to metric products.
The Minkowski rank is additive, i.e., we have

Theorem 2. Let ðXi; diÞ, i ¼ 1; 2, be metric spaces and denote their metric product by

ðX1 
 X2; d Þ. Then

rankMðX1; d1Þ þ rankMðX2; d2Þ ¼ rankMðX1 
 X2; d Þ:

In general the additivity of the Euclidean rank does not hold. In Section 4 we give
an example of two normed vector spaces ðVi; k � kiÞ, i ¼ 1; 2, that do not admit an
isometric embedding of E2, although E3 may be embedded in their product. Thus
rankEðViÞ ¼ 1 for i ¼ 1; 2 but rankEðV1 
 V2Þd 3 and we obtain:

Theorem 3. Let ðXi; diÞ, i ¼ 1; 2, be metric spaces and denote their metric product by

ðX1 
 X2; d Þ. Then it holds

rankEðX1; d1Þ þ rankEðX2; d2Þc rankEðX1 
 X2; d Þ;

but there are examples such that the inequality is strict.

It is a pleasure to thank Andreas Bernig for useful discussions as well as the referee
for valuable improvements.

2 Minkowski rank for Alexandrov spaces

In this section we give a

Proof of Theorem 1. For the notion of (locally) geodesic metric spaces and bounds on
the curvature in the sense of Alexandrov we refer to [4]. We only recall that the idea
of curvature in the sense of Alexandrov is a comparison of triangles in X with trian-
gles in the standard 2-dimensional spaces M 2

k of constant curvature. In our proof we
need to compare the distance between a vertex of a triangle to the midpoint of the
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opposite side. Let therefore a; b; c be positive numbers such that there exists a triangle
in M 2

k with corresponding side lengths. Then let lkða; b; cÞ be the distance in M 2
k of

the midpoint of the side with length c to the opposite vertex. For t > 0 we have the
scaling property tlkða; b; cÞ ¼ lk=t2ðta; tb; tcÞ and for k ¼ 0 we have the Euclidean
formula

l0ða; b; cÞ ¼
1

2
ð2a2 þ 2b2 � c2Þ1=2:

In order to prove Theorem 1 we show that a normed vector space ðV ; k � kÞ such that
the curvature in the sense of Alexandrov is bounded below or above by some con-
stant k in a neighborhood U of 0 is indeed a Euclidean space. To consider both pos-
sible curvature bounds let@ be eitherc ord. Let x; y be arbitrary vectors in V and

let t > 0 be large enough such that the triangle 0;
x

t
;
y

t
is contained in U and we can

compare it with a triangle in M 2
k . We obtain

1

2
kxþ yk ¼ t

1

2

x

t
þ y

t

��� ���@ tlk

�
x

t

��� ���; y

t

��� ���; x

t
� y

t

��� ���
�

¼ t
1

t
lk=t2ðkxk; kyk; kx� ykÞ:

Note that for t ! y the last expression converges to

l0ðkxk; kyk; kx� ykÞ ¼ 1

2
ð2kxk2 þ 2kyk2 � kx� yk2Þ1=2:

Thus we have

kxþ yk2 þ kx� yk2@ 2kxk2 þ 2kyk2

and hence one inequality of the parallelogram equality for all x; y A V . Substituting
u ¼ xþ y and v ¼ x� y we get that the inequality holds in the opposite direction for
all u; v A V as well. Hence V is a Euclidean space.

3 Minkowski rank of products

In this section we prove that the Minkowski rank is additive for metric products. Let
therefore ðXi; diÞ, i ¼ 1; 2, be metric spaces and consider the product X ¼ X1 
 X2

with the standard product metric

dððx1; x2Þ; ðx 0
1; x

0
2ÞÞ ¼ ðd 2

1 ðx1; x 0
1Þ þ d 2

2 ðx2; x 0
2ÞÞ

1=2:

We need an auxiliary result: Let V be a real vector space and denote by A the
a‰ne space on which V acts simply transitively. Thus for a A A and v A V the point
aþ v A A and for a; b A A the vector b� a A V are defined. As usual a pseudonorm
on V is a function k � k which satisfies the properties of a norm with the possible ex-
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ception that kvk ¼ 0 does not necessarily imply v ¼ 0. A pseudonorm k � k on V in-
duces a pseudometric d on A via

dða; bÞ ¼ kb� ak for all a; b A A:

We denote the resulting pseudometric space by ðA; k � kÞ. With this notation we
have:

Proposition 1. Let ðXi; diÞ, i ¼ 1; 2, be metric spaces and j : A ! X1 
 X2, j ¼ ðj1; j2Þ
be an isometric map. Then there exist pseudonorms k � ki, i ¼ 1; 2, on V, such that

i) kvk2 ¼ kvk21 þ kvk22 and

ii) ji : ðA; k � kiÞ ! ðXi; diÞ, i ¼ 1; 2 are isometric.

For the proof of Proposition 1 we define ai : A
 V ! ½0;yÞ, i ¼ 1; 2, via

aiða; vÞ :¼ diðjiðaÞ; jiðaþ vÞÞ:

Since j is isometric, we have

a21ða; vÞ þ a22ða; vÞ ¼ d 2ðjðaÞ; jða; vÞÞ ¼ kvk2: ð1Þ

We will prove the following lemmata:

Lemma 1. aiða; vÞ ¼ aiðaþ v; vÞ for i ¼ 1; 2 and a A A, v A V .

Lemma 2. aiða; tvÞ ¼ jtjaiða; vÞ for i ¼ 1; 2 and a A A, v A V , t A R.

Lemma 3. aiða; vÞ ¼ aiðb; vÞ for i ¼ 1; 2 and a; b A A, v A V .

Lemma 4. aiðvþ wÞc aiðvÞ þ aiðwÞ for i ¼ 1; 2 and v;w A V , where aiðvÞ :¼ aiða; vÞ
with a A A arbitrary (compare with Lemma 3).

From Lemmata 1–4 it follows immediately, that k � ki defined via kvki :¼ aiðvÞ for
all v A V , i ¼ 1; 2, is a pseudonorm on V. Furthermore from

diðjiðaÞ; jiðbÞÞ ¼ diðjiðaÞ; jiðaþ ðb� aÞÞÞ

¼ aiðb� aÞ

¼ kb� aki for all a; b A A

it follows that

ji : ðA; k � kiÞ ! ðXi; k � kiÞ; i ¼ 1; 2;

are isometric mappings.
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Proof of Lemma 1. The di’s triangle inequality yields

aiða; vÞ þ aiðaþ v; vÞd aiða; 2vÞ ð2Þ

and thus

a2i ða; vÞ þ 2aiða; vÞaiðaþ v; vÞ þ a2i ðaþ v; vÞd a2i ða; 2vÞ: ð3Þ

Using Equation (1) the sum of the Equations (3) for i ¼ 1 and i ¼ 2 becomes

kvk2 þ 2
a1ða; vÞ
a2ða; vÞ

� �
;

a1ðaþ v; vÞ
a2ðaþ v; vÞ

� �� �
þ kvk2d 4kvk2;

where h� ; �i denotes the standard scalar product on R2. Thus we have

a1ða; vÞ
a2ða; vÞ

� �
;

a1ðaþ v; vÞ
a2ðaþ v; vÞ

� �� �
d kvk2:

The Euclidean norm of the vectors ða1ða; vÞ; a2ða; vÞÞ and ða1ðaþ v; vÞ; a2ðaþ v; vÞÞ
equals kvk, due to Equation (1). Therefore the Cauchy–Schwarz inequality yields

a1ða; vÞ
a2ða; vÞ

� �
¼ a1ðaþ v; vÞ

a2ðaþ v; vÞ

� �
:

Proof of Lemma 2. The di’s triangle inequality yields for all n A N

aiða; nvÞc
Xn�1
k¼0

aiðaþ kv; vÞ ¼ naiða; vÞ;

where the last equation follows from Lemma 1 by induction. Thus we find

n2kvk2 ¼ knvk2 ¼ a21ða; nvÞ þ a22ða; nvÞ

c n2ða21ða; vÞ þ a22ða; vÞÞ

¼ n2kvk2 for all n A N; v A V ; a A A

and therefore

aiða; nvÞ ¼ naiða; vÞ; i ¼ 1; 2; for all n A N; v A V ; a A A:

Thus for p; q A N, it follows

qai a;
p

q
v

� �
¼ aiða; pvÞ ¼ paiða; vÞ;

i.e.

aiða; tvÞ ¼ taiða; vÞ for all t A Qþ

and by continuity even for all t A Rþ.
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Finally note that for all t A Rþ

aiða;�tvÞ ¼ aiða� tv; tvÞ ¼ aiða; tvÞ ¼ taiða; vÞ; for i ¼ 1; 2;

where the first equality is just the symmetry of the metric di and the second equality
follows from Lemma 1.

Proof of Lemma 3. For n A N we have

jaiða; nvÞ � aiðb; nvÞj ¼ jdiðjiðaÞ; jðaþ nvÞÞ � diðjiðbÞ; jðbþ nvÞÞj

c diðjiðaÞ; jiðbÞÞ þ diðjiðaþ nvÞ; jiðbþ nvÞÞ

c dðjðaÞ; jðbÞÞ þ dðjðaþ nvÞ; jðbþ nvÞÞ

¼ 2kb� ak; for i ¼ 1; 2;

and therefore

aiða; vÞ ¼ lim
n!y

1

n
aiða; nvÞ ¼ lim

n!y

1

n
aiðb; nvÞ ¼ aiðb; vÞ; i ¼ 1; 2:

Proof of Lemma 4. The claim simply follows from

aiðvþ wÞ ¼ aiða; vþ wÞc aiða; vÞ þ aiðaþ v;wÞ ¼ aiðvÞ þ aiðwÞ;

where the inequality follows from the di’s triangle inequality and the last equation is
due to Lemma 3.

With that we are now ready for the

Proof of Theorem 2. i) Superadditivity follows as usual: Let ij : ðVj; k � k jÞ ! ðXj; djÞ
be isometries of the normed vector spaces ðVj; k � kÞ into the metric spaces ðXj ; djÞ.
Then, with k � k : ðV1 
 V2Þ ! R defined via

kðv;wÞk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kvk21 þ kwk22

q
; for all v A V1;w A V2;

the map i :¼ i1 
 i2 : ðV1 
 V2; k � kÞ ! ðX ; d Þ :¼ X1 
 X2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2
1 þ d 2

2

q	 

is an iso-

metry. Thus rankMðX1;X2Þd rankM X1 þ rankM X2.
ii) Let rankMðX ; d Þ ¼ n and let j : A ! X be an isometric map, where A is the

a‰ne space for some n-dimensional normed vector space ðV ; k � kÞ. By Proposition 1
there are two pseudonorms k � ki, i ¼ 1; 2, on V such that k � k21 þ k � k22 ¼ k � k2 and
such that ji : ðA; k � kiÞ ! ðXi; diÞ are isometric. Let Vi be vector subspaces trans-
versal to kernk � ki. Then dimV1 þ dimV2d n and ji : ðVi; k � kiÞ ! X are isometric
maps. Thus rankMðXi; diÞd dimVi.
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4 Euclidean rank of products

In this section we prove Theorem 3. The superadditivity of the Euclidean rank is
obvious. Thus it remains to construct an example such that the equality does not
hold. Therefore we construct two norms k � ki, i ¼ 1; 2, on R3, such that

i) there does not exist an isometric embedding of E2 in ðR3; k � kiÞ, i ¼ 1; 2, i.e.,

rankEðR3; k � kiÞ ¼ 1; for i ¼ 1; 2; and

ii) the diagonal of ðR3; k � k1Þ 
 ðR3; k � k2Þ is isometric to the Euclidean space
E3 ¼ ðR3; k � keÞ, i.e.,

rankEððR3; k � k1Þ 
 ðR3; k � k2ÞÞd 3:

The norms will be obtained by perturbations of the Euclidean norm k � ke in the
following way:

kvki ¼ ji
v

kvke

� �
kvke; for all v A R3;

where the ji are appropriate functions on S 2 that satisfy ji
v

kvke

� �
¼ ji � v

kvke

� �
,

i ¼ 1; 2, and j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� j21

q
. Thus their product norm k � k1;2 satisfies

kðv; vÞk21;2 ¼ kvk21 þ kvk22 ¼ j21kvk
2
e þ ð2� j21Þkvk

2
e ¼ 2kvk2e

and the diagonal in ðR6; k � k1;2Þ is isometric to E3 and thus ii) is satisfied. It remains

to show that for ji suitable i) holds.

Note that for ji
v

kvke

� �
¼ 1þ ei

v

kvke

� �
, i ¼ 1; 2, with ei, Dei and DDei su‰ciently

bounded, the strict convexity of the Euclidean unit ball implies strict convexity of the
k � ki-unit balls. Since k � ki is homogeneous by definition it follows that k � ki, i ¼ 1; 2,
are norms.
In order to show that rankEðR3; k � kiÞ ¼ 1 for suitable functions ji ¼ 1þ ei we use

the following result:

Lemma 5. Let ðV ; k � kÞ be a normed vector space with strictly convex norm ball and let

i : E2 ! ðV ; k � kÞ be an isometric embedding. Then i is an a‰ne map and the image of

the unit circle in E2 is an ellipse in the a‰ne space iðE2Þ.

Remark. We recall that the notion of an ellipse in a 2-dimensional vector space is
a notion of a‰ne geometry. It does not depend on a particular norm. Let A be a
2-dimensional a‰ne space on which V acts simply transitively. A subset W HV is
called an ellipse, if there are linearly independent vectors v1; v2 A V and a point a A A

such that

W ¼ faþ ðcos a v1 þ sin a v2Þ j a A ½0; 2p�g:
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Proof of Lemma 5. In a normed vector space ðV ; k � kÞ the straight lines are geodesics.
If the norm ball is strictly convex, then these are the unique geodesics.
The isometry i maps geodesics onto geodesics and hence straight lines in E2 onto

straight lines in V. Note that the composition of i with an appropriate translation of
V yields an isometry that maps the origin of E2 to the origin of V. Let us therefore
assume that i maps 0 to 0. It follows that i is homogeneous. Furthermore it is easy to
see that parallels are mapped to parallels and this finally yields the additivity of i and
thus the claim.

Now we define functions ji ¼ 1þ ei on S 2 in a way such that the intersection of
the unit ball in ðR3; k � kiÞ with a 2-dimensional linear subspace is never an ellipse.
Therefore we will define the ei’s such that their null sets are 8 circles, 4 of which are
parallel to the equator g, the other 4 parallel to a great circle d that intersects the
equator orthogonally; these null sets being su‰ciently close to g and d such that each
great circle of S 2 intersects those circles in at least 8 points.
Furthermore no great circle of S 2 is completely contained in the null set.
Using spherical coordinates Y A ½0; p�, F A ½0; 2p�, r A Rþ, we define

~ee1ðY;F; rÞ :¼ 1

n

Y3
k¼2

sin Yþ kp

8

� �
sin Yþ ð8� kÞp

8

� �
;

with n A N su‰ciently large, such that the norm k � k1 we will obtain admits a strictly
convex unit ball.
One can easily check that ~eek1 ðY;F; rÞ ¼ sin Yþ kp

8

� �
sin Yþ ð8� kÞp

8

� �
, k A N,

satisfies ~eek1 ðY;F; rÞ ¼ ~eek1 ð�Y;F; rÞ and so does ~ee1. Since ~ee1 is independent of F it

satisfies ~ee1
v

kvk

� �
¼ ~ee1 � v

kvk

� �
. Its null set is the union of the circles parallel to the

equator g at Y ¼ 1
4 p;

3
8p;

5
8 p;

3
4 p

� 
.

Define êe1 analogous to ~ee1 but with the null set consisting of circles parallel to d

instead of the equator g.
With that we set j1 ¼ 1þ ~ee1êe1 and k � k1 defined via

kvk1 :¼ j1
v

kvke

� �
kvke

is a norm on R3 whose unit ball coincides with the k � ke-unit ball exactly on the null
set of ~ee1êe1. Obviously

k � k2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� j21

q
k � ke

is another norm on R3 whose unit ball also intersects the k � ke-unit ball on the null
set of ~ee1êe1.
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Y ¼ p
4

Y ¼ 3p
8

Y ¼ 5p
8

Y ¼ 3p
4

Figure 1. The dashed circles in this figure are the sections of the k � k1-, k � k2- and
k � ke-unit balls.

We finally conclude that rankEðR3; k � k jÞ ¼ 1, j ¼ 1; 2.
Assume to the contrary, that there exists an isometric embedding i : E2 !

ðR3; k � k jÞ. By Lemma 5 we can assume (after a translation) that i is a linear iso-
metry and that the image of the unit circle SHE2 is an ellipse in the linear sub-
space iðE2Þ which is in addition contained in the unit ball Bj of k � k j. Note that
iðE2ÞVBj and iðE2ÞVS 2 are ellipses which coincide by construction in at least
8 points. Since two ellipses with more than 4 common points coincide, we have
iðE2ÞVBj ¼ iðE2ÞVS 2. This contradicts the fact that by construction iðE2ÞVBj VS 2

is a discrete set.
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