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Abstract. A semilinear space S is homogeneous if, whenever the semilinear structures induced
on two finite subsets S1 and S2 of S are isomorphic, there is at least one automorphism of S
mapping S1 onto S2. We give a complete classification of all finite homogeneous semilinear
spaces. Our theorem extends a result of Ronse on graphs and a result of Devillers and Doyen
on linear spaces.
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1 Introduction

A semilinear space (or partial linear space) S is a non-empty set of elements called
points, provided with a collection of subsets called lines such that any pair of points is
contained in at most one line and every line contains at least two points. Semilinear
spaces are a common generalization of graphs (when all lines have exactly two points)
and of linear spaces (when any pair of points is contained in exactly one line). A
semilinear space which is neither a graph nor a linear space will be called proper.
If S 0 is a non-empty subset of S, the semilinear structure induced on S 0 is the semi-

linear space whose points are those of S 0 and whose lines are the intersections of S 0

with all the lines of S having at least two points in S 0.
Given a positive integer d, a semilinear space S is said to be d-homogeneous if,

whenever the semilinear structures induced on two subsets S1 and S2 of S of cardi-
nality at most d are isomorphic, there is at least one automorphism of S mapping S1
onto S2; if every isomorphism from S1 to S2 can be extended to an automorphism of
S, we shall say that S is d-ultrahomogeneous. S is called homogeneous (respectively ul-
trahomogeneous) if S is d-homogeneous (respectively d-ultrahomogeneous) for every
positive integer d.
Gardiner [13], Sheehan [25] and Gol’fand–Klin [15] proved independently (1976)
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that a finite ultrahomogeneous undirected graph is either a disjoint union tKn of t
isomorphic complete graphs Kn or a regular complete multipartite graph Kt;n or the
3� 3 lattice graph L3;3 on 9 vertices or the graph C5 of the pentagon. Ronse [23]
proved in 1978 that the list of finite homogeneous undirected graphs is exactly the
same. The homogeneous and ultrahomogeneous linear spaces have also been classi-
fied by Devillers and Doyen [12] without any finiteness assumption. We have recently
classified the finite ultrahomogeneous semilinear spaces [11]. Our goal now is to give
a complete classification of finite homogeneous semilinear spaces.
By U2;3ðnÞ we denote the semilinear space whose points are the 2-subsets of a non-

empty set X of cardinality n and whose lines are the 3-subsets of X, the incidence
being the natural inclusion of subsets.
The triangular space TðnÞ is the semilinear space whose points are the 2-subsets of

a set X of cardinality n and whose lines are the 1-subsets of X, the incidence being the
reversed inclusion.
The collinearity graph of a semilinear space S is the graph whose vertices are the

points of S and in which two vertices are adjacent if and only if the corresponding
points are collinear (i.e. contained in some line). S is said to be connected if its colli-
nearity graph is connected. The connected components of S are the connected com-
ponents of its collinearity graph.
Our main result is the following classification of all finite connected 4-homogeneous

semilinear spaces.

Theorem 1.1. (a) Any finite connected 6-homogeneous semilinear space is homogeneous
and is one of the following:

(i) a graph C5, L3;3, Kn or Kt;n ðt; nd 2Þ;
(ii) a single point or a single line;
(iii) the projective planes PGð2; 2Þ, PGð2; 3Þ or PGð2; 4Þ or the a‰ne plane

AGð2; 3Þ;
(iv) the 3� 3 grid, i.e. the unique generalized quadrangle of order ð2; 1Þ (on 9

points);
(v) the punctured AGð2; 3Þ (obtained from AGð2; 3Þ by removing a point and

all lines through that point), or AGð2; 3Þ with one parallel class of lines re-
moved;

(vi) the duals of AGð2; 3Þ and AGð2; 4Þ;
(vii) TðnÞ for any integer nd 4;
(viii) U2;3ðnÞ for any integer nd 5.

All these semilinear spaces are also ultrahomogeneous, except PGð2; 4Þ, AGð2; 3Þ,
the two examples under (v) obtained from AGð2; 3Þ, and the dual of AGð2; 4Þ.

(b) The only finite connected 5- but not 6-homogeneous semilinear spaces are the pro-
jective planes PGð2; 5Þ and PGð2; 8Þ.

(c) The only finite connected 4- but not 5-homogeneous semilinear spaces are the pro-
jective plane PGð2; 32Þ, the unique generalized quadrangle of order ð2; 4Þ (on 27
points), the Schläfli graph on 27 vertices and its complement.
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Note that the Schläfli graph is precisely the collinearity graph of the generalized
quadrangle of order ð2; 4Þ.
We can extend our classification to non-connected semilinear spaces, due to the

following proposition.

Proposition 1.2. (a) If dd 2 and if S is a d-homogeneous semilinear space which is not
connected, then the connected components of S are isomorphic d-homogeneous linear
spaces.
(b) If S is a 6-homogeneous semilinear space which is not connected, then S is

homogeneous and the connected components of S are isomorphic homogeneous linear

spaces.

This proposition can be proved as follows: for (a), the arguments in the proof of
Theorem 2.0.1 of [11] show that the connected components of S are pairwise iso-
morphic linear spaces. These connected components are d-homogeneous, because
they are blocks (sets of imprimitivity) for the automorphism group of S. For (b) we
use (a) and recall from [12] that any 6-homogeneous linear space is homogeneous,
hence the connected components of S are isomorphic homogeneous linear spaces.
It remains to prove Theorem 1.1. If S is a 6-homogeneous linear space (finite or

infinite), then S is one of the following (see [12]): a single point, a single line, a com-
plete graph, PGð2; 2Þ, PGð2; 3Þ, PGð2; 4Þ or AGð2; 3Þ. This yields (ii) and (iii) in
Theorem 1.1. If S is a finite linear space which is 5- but not 6-homogeneous, then S is
PGð2; 5Þ or PGð2; 8Þ, and if S is 4- but not 5-homogeneous, then S is PGð2; 32Þ (see
[10]).
The case where S is a graph (i.e. where all lines have size 2) is treated in Section 2.
It remains then to classify the finite connected 4-homogeneous proper semilinear

spaces S. In order to do this, we study the antiflags ðp;LÞ, where p is a point of S and
L is a line not containing p. The collinearity index of an antiflag ðp;LÞ is the number
of points of L which are collinear with p; the non-collinearity index is the number of
points of L which are not collinear with p.
In Section 3 we classify all finite connected 4-homogeneous proper semilinear

spaces S where the semilinear structures induced on the antiflags of S are all iso-
morphic; this leads to the Cases (iv), (vi), (vii) and the second space of (v) in Theorem
1.1. Note that our proof of 1.1 relies at two points (in Section 2 and in the proof of
Proposition 3.1) on the classification of finite simple groups. In Sections 4–7, we clas-
sify the remaining finite connected 4-homogeneous proper semilinear spaces S (those
with di¤erent semilinear structures induced on the antiflags). This will complete the
proof of Theorem 1.1.
As usual, the degree of a point p is the number of lines through p, and the neigh-

bourhood of p is the set of all points which are collinear with p and distinct from p.
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2 Graphs

First we consider the semilinear spaces all of whose lines have size exactly 2, i.e.
the graphs. A graph S is called m-regular if, for any set M of at most m vertices, the
number of vertices of S adjacent to every vertex in M depends only on the isomor-
phism type of the subgraph induced on M. Obviously, any m-homogeneous graph is
m-regular. By the note added in [4], if S is a finite connected 5-homogeneous graph,
then S is isomorphic to C5, L3;3, Kn or Kt;n ðt; nd 2Þ.
Buczak [2] proved that any finite connected 4-regular graph is in this list or is an

extremal Smith graph or its complement. An extremal Smith graph B3ðrÞ (see [6]) is a
strongly regular graph with parameters

v ¼ ð2r2 þ 2r� 1Þð2rþ 1Þ2; k ¼ 2r3ð2rþ 3Þ;

l ¼ rð2r� 1Þðr2 þ r� 1Þ; m ¼ r3ð2rþ 3Þ;

where r is a nonnegative integer; the value of the parameter l ¼ 2ðrþ 1Þ3ð2r� 1Þ
follows easily. Such a graph B3ðrÞ has the property that its subconstituents and the
subconstituents of its subconstituents are also strongly regular (and their parameters
are known, see [2] page 33). Note that k ¼ 2m both in B3ðrÞ and in its complement.
B3ð1Þ is the Schläfli graph, which is 4-homogeneous (and even 4-ultrahomo-

geneous); it is the unique strongly regular graph with parameters ð27; 10; 1; 5Þ. B3ð2Þ
is the McLaughlin graph, the unique strongly regular graph with parameters
ð275; 112; 30; 56Þ) (see [14]); a computer check shows that its automorphism group is
not transitive on the set of cocliques of size 4, hence B3ð2Þ is not 4-homogeneous. For
r > 2, the existence of a graph B3ðrÞ is an unsolved problem.
Suppose that there exists a 4-homogeneous graph S which is a B3ðrÞ or the com-

plement of a B3ðrÞ, with rd 3. Let X be the graph consisting of 4 vertices and 2 edges
sharing a common vertex, and let X be the graph complement of X. The graph X
contains a non-edge whose vertices have degree 0 and 2 respectively. Let a and b be
two non-adjacent vertices of S. Using the parameters of the subconstituents of S, as
well as their subconstituents, it is easy to show that a and b are contained in a sub-
graph isomorphic to X in such a way that a has degree 0 and b has degree 2 in X.
Since S is 4-homogeneous, it follows that AutðSÞ is transitive on the ordered pairs of
non-adjacent vertices. A similar argument using X shows that AutðSÞ is transitive on
the ordered pairs of adjacent vertices. Therefore, S must be a rank 3 graph, and so
its automorphism group G must be a finite rank 3 permutation group. It is easily seen
that a connected 2-homogeneous graph with an imprimitive rank 3 group must be a
complete multipartite regular graph, which is not a B3ðrÞ. Hence G is a finite prim-
itive rank 3 group. These groups have been classified (as a corollary of the classifi-
cation of finite simple groups). They can be found for example in Buekenhout–Van
Maldeghem [3], together with (in most cases) the parameters of the associated rank 3
graphs (the missing parameters are given in Hubaut [18]). They fall into three cases:
the grid case, the a‰ne case and the almost simple case.
In the grid case, the number v of vertices must be a square, and so 2r2 þ 2r� 1 ¼

u2 for some integer u. But 2r2 þ 2r� 1 ¼ 2rðrþ 1Þ � 11 3 mod 4, which is never a
square.
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In the a‰ne case, the number of vertices v ¼ ð2r2 þ 2r� 1Þð2rþ 1Þ2 must be a
prime power pe. Clearly, d ¼ gcdð2r2 þ 2r� 1; 2rþ 1Þ is equal to 1 or 3. If d ¼ 1,
then ð2r2 þ 2r� 1Þð2rþ 1Þ2 cannot be a prime power. Hence d ¼ 3, and so p ¼ 3.
This means that both 2r2 þ 2r� 1 and 2rþ 1 are powers of 3, and so 2rþ 1 must be
equal to 3, otherwise d would be at least 9. Therefore r ¼ 1, contradicting the fact
that rd 3.
Finally, consider the almost simple case. Using the fact that v must be odd and that

k ¼ 2m, the rank 3 representations of classical, exceptional and sporadic groups are
easily ruled out: it turns out that the only possible graph B3ðrÞ in this case is B3ð2Þ,
the McLaughlin graph. Using the fact that v is odd, that m ¼ 4 is impossible and that
v ¼ 35 is also impossible, the rank 3 representations of the alternating groups are also
ruled out without any di‰culty. Using again the fact that v is odd, that k ¼ 2m, that
k and l cannot be powers of 2 for rd 3, together with a few simple divisibility argu-
ments, the rank 3 representations of the infinite families of Chevalley groups are also
ruled out: the only surviving parameters are those of B3ð1Þ, the Schläfli graph.
In conclusion, there is no B3ðrÞ which is a rank 3 graph for rd 3, and so the only

finite 4- but not 5-homogeneous finite graphs are the Schläfli graph and its comple-
ment.

3 Partial geometries

Let S be a finite connected 4-homogeneous proper semilinear space where the semi-
linear structures induced on the antiflags of S are all isomorphic. Then S is a partial
geometry with parameters s; t; a; b, i.e. the following conditions are satisfied:

(i) each line is incident with sþ 1 points (sd 1),

(ii) each point is incident with tþ 1 lines (td 1),

(iii) each antiflag has collinearity index a ðad 1Þ and non-collinearity index b

ðbd 1Þ, where aþ b ¼ sþ 1.

Since we exclude graphs, we have sd 2. Note that the case a ¼ 1 (i.e. general-
ized quadrangles) was already dealt with in [11] (section on polar spaces), where we
proved that the only 4-homogeneous proper polar spaces are the 3� 3 grid, which is
the unique generalized quadrangle of order ð2; 1Þ and which is ultrahomogeneous,
and the unique generalized quadrangle of order ð2; 4Þ, which is 4-ultrahomogeneous
but not 5-homogeneous. This yields Case (iv) and part of (c) in Theorem 1.1. The re-
maining cases a; bd 2 and b ¼ 1 are covered by the following results 3.2, 3.3, 3.4.

Proposition 3.1. If S is a finite 4-homogeneous partial geometry with ad 2 and bd 2,
then a ¼ 2 and t ¼ 1.

Proof. We claim that the automorphism group of S is transitive on the ordered pairs
of collinear points and on the ordered pairs of non-collinear points.
Let x1 and x2 be two collinear points of S, and let L be a line of S containing x1

but not x2. Since bd 2, L contains two points y and z non-collinear with x2. Because
of the 4-homogeneity of S, the automorphism group of S is transitive on the 4-subsets
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inducing the same semilinear structure as fx1; x2; y; zg, i.e. the semilinear space of
Figure 1. Since this semilinear space contains a unique point x1 of degree 2 and also
a unique point x2 whose neighbourhood has size 1, the automorphism group of S is
transitive on the ordered pairs ðx1; x2Þ of collinear points.
Let y1 and y2 be two non-collinear points of S, and let L be a line of S through

y1. Since ad 2, L contains two points u and v collinear with y2. Because of the 4-
homogeneity of S, the automorphism group of S is transitive on the 4-subsets induc-
ing the same semilinear structure as fy1; y2; u; vg, i.e. the semilinear space of Figure 2.
Since this semilinear space contains a unique point y1 of degree 1 and also a unique
point y2 which is not on the unique line of size 3, the automorphism group of S is
transitive on the ordered pairs ðy1; y2Þ of non-collinear points.
The dual S 
 of S, whose points are the lines of S and whose lines are the points

of S, with the same incidence as in S, is a linear space, because each point of S is in-
cident with at least two lines, and any two lines of S meet according to [11] Proposi-
tion 2.3.1. We have just shown that the automorphism group of S 
 is transitive on
the ordered pairs of intersecting lines and on the ordered pairs of disjoint lines.
So far, we have not yet used the finiteness of S. Delandtsheer [8] proved that a fi-

nite linear space with the transitivity properties obtained above for S 
 is isomorphic
to one of the following: (i) a single line; (ii) a Desarguesian a‰ne plane AGð2; qÞ; (iii)
a Desarguesian projective space PGðd; qÞ with dd 2; (iv) a linear space all of whose
lines have size 2. Note that the proof given in [8] relies on the classification of finite
simple groups.
Since the dual of a single line is not a semilinear space, Case (i) can be ruled out.

Since S contains a 3-subset inducing a semilinear space consisting of 3 points and one
line of size 2 (because bd 2), S 
 contains two intersecting lines both of which are dis-
joint from a third one, and so S 
 cannot be an a‰ne plane. Since S contains a pair of
non-collinear points, S 
 contains a pair of disjoint lines, and so S 
 cannot be a pro-
jective plane. The automorphism group of S is transitive on the subsets consisting of 3
collinear points (because S is 4-homogeneous, and so in particular 3-homogeneous),
therefore the automorphism group of S 
 is transitive on the sets consisting of 3 inter-
secting lines, which is obviously not the case if S 
 ¼ PGðd; qÞ with dd 3.
We conclude that S 
 is a linear space with lines of size 2. Hence t ¼ 1, and, since S

contains no pair of disjoint lines, it follows that a ¼ 2. r

The following theorem yields Case (vii) in Theorem 1.1.

Theorem 3.2. The finite 4-homogeneous partial geometries S with ad 2 and bd 2
are exactly the triangular spaces. Every triangular space ( finite or infinite) is ultra-
homogeneous.

Figure 1 Figure 2
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Proof. By 3.1 we have a ¼ 2 and t ¼ 1, hence S contains no pair of disjoint lines. The
assertions follow from [11] Lemma 2.3.2 and Proposition 2.3.4. r

A transversal design TDðm; nÞ is a semilinear space with point set X � Y (where X
and Y are sets of cardinality m and n respectively) such that (i) each line of TDðm; nÞ
meets every set fxg � Y with x A X , and (ii) two points ðx1; y1Þ and ðx2; y2Þ of
TDðm; nÞ are joined by a line if and only if x10 x2. We will call equivalence classes
of the TDðm; nÞ the sets fxg � Y where x A X .

Lemma 3.3. Any 1-homogeneous partial geometry S with b ¼ 1 is a transversal design
TDðm; nÞ.

Proof. The relation ‘‘is non-collinear with’’ (defined on the point set of S) is an
equivalence relation. Indeed this relation is obviously reflexive and symmetric; it is
also transitive, otherwise there would exist three points a; b; c of S such that a is non-
collinear with b, b is non-collinear with c and a is collinear with c, which would force
the antiflag ðb; acÞ to have non-collinearity index bd 2, a contradiction.
Let X be the set of equivalence classes of this relation. By the transitivity of the

automorphism group on points, all the equivalence classes have the same cardinality.
Let Y be any set having this cardinality. We may identify the point set of S with
X � Y . It remains to check that S, identified with X � Y , satisfies properties (i) and
(ii) of a transversal design.
Let L be a line of S and let x A X . Since any two points of x are not collinear, L

meets x in at most one point. Suppose that L does not meet x; then any point p in
x would be collinear with all the points of L, contradicting the fact that S has non-
collinearity index b ¼ 1. Therefore L meets x in exactly one point, and so S satisfies
(i). Two points of S are collinear if and only if they lie in di¤erent equivalence classes,
and so S satisfies (ii). We conclude that S is a transversal design TDðm; nÞ. r

Note that, in order for a TDðm; nÞ to be proper, we have to require nd 2 (other-
wise t < 1) and md 3 (otherwise s < 2). The following theorem yields Case (vi) and
parts of Cases (v) and (vii) in 1.1.

Theorem 3.4. The only 5-homogeneous proper transversal designs TDðm; nÞ are the
following:

TDð3; 2Þ, which is isomorphic to Tð4Þ and to U2;3ð4Þ and to the dual of AGð2; 2Þ,
TDð3; 3Þ, which is AGð2; 3Þ with one parallel class of lines removed,
TDð4; 3Þ, which is the dual of AGð2; 3Þ, and
TDð5; 4Þ, which is the dual of AGð2; 4Þ.

All these transversal designs are homogeneous and uniquely determined by their pa-

rameters. There is no finite 4-homogeneous but not 5-homogeneous transversal design.

Proof. Suppose first that m ¼ 3. Since TDð3; 2Þ is isomorphic to the triangular space
Tð4Þ, it is ultrahomogeneous. On the other hand, TDð3; 3Þ is isomorphic to AGð2; 3Þ
from which one class of parallel lines has been removed and it is homogeneous.
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Now let S be a 4-homogeneous TDð3; nÞ with nd 4, and let X � Y be the point
set of S, where X ¼ fx0; x1; x2g. S contains two distinct lines L and L0 intersecting
in ðx0; y0Þ. Then by condition (i) in the definition of a transversal design, L has two
points a ¼ ðx1; y1Þ, b ¼ ðx2; y2Þ, and L0 has two points c ¼ ðx1; y 01Þ, d ¼ ðx2; y 02Þ; the
third point of ad (resp. bc) is ðx0;w1Þ (resp. ðx0;w2Þ), where w10 y00w2.
Since nd 4, there is an element u A Ynfy0;w1;w2g. Let e ¼ ðx0; uÞ and let f be the

third point of the line be. The point f is distinct from (and non-collinear with) a and
c. The semilinear structures induced on fa; b; d; f g and fa; b; c; dg are isomorphic. By
the 4-homogeneity of S, we deduce that the lines ab and df must intersect in S. Hence
df must contain the third point of ab, namely ðx0; y0Þ. This is a contradiction because
there are two lines through ðx0; y0Þ and d, namely cd and df . This proves that there is
no 4-homogeneous transversal design TDð3; nÞ with nd 4.
Suppose now that md 4. We claim that if S is 5-homogeneous or 4-homogeneous

and finite, then S is a dual a‰ne plane.
Let X � Y be the point set of a transversal design S ¼ TDðm; nÞ with md 4. Since

nd 2, S contains two distinct lines L and L0 intersecting in ðx0; y0Þ. Let x1; x2; x3 A
Xnfx0g. Then by condition (i) L has three points a ¼ ðx1; y1Þ, b ¼ ðx2; y2Þ and c ¼
ðx3; y3Þ, and L0 has two points d ¼ ðx1; y 01Þ and e ¼ ðx2; y 02Þ.
Suppose by way of contradiction that S contains two disjoint lines M and M 0.

By condition (i),M contains three points a 0 ¼ ðx1; z1Þ, b 0 ¼ ðx2; z2Þ and c 0 ¼ ðx3; z3Þ,
and M 0 contains two points d 0 ¼ ðx1; z 01Þ and e 0 ¼ ðx2; z 02Þ. The semilinear structures
induced on fa; b; c; d; eg and fa 0; b 0; c 0; d 0; e 0g are isomorphic. If there is an auto-
morphism a of S mapping the first set onto the second one, then a maps necessarily
fa; b; cg onto fa 0; b 0; c 0g, and so the pair fd; eg is mapped onto fd 0; e 0g, which implies
that a maps the lines L and L0 onto the lines M and M 0, a contradiction. Hence a
does not exist, contradicting the 5-homogeneity of S. It follows that there is no pair
of disjoint lines in S.
On the other hand, suppose that md 4 is finite and that S is 4-homogeneous.

Consider the points a 0, d 0 and e 0 on the disjoint lines M and M 0 as above, and let N
be the line a 0e 0. The point d 0 is collinear with all the points of M, except a 0. Among
the m� 1 lines through d 0 meeting M, at most m� 2 meet N (because none of these
lines meets N in a 0 or e 0). Hence there is a line N 0 through d 0 meeting M in f 0 and
disjoint from N. Assume that f 0 is not collinear with e 0. Then the semilinear struc-
tures induced on the sets fa; b; d; eg and fa 0; d 0; e 0; f 0g are isomorphic, but there is no
automorphism mapping the first set onto the second one, otherwise this automor-
phism would map a pair of intersecting lines onto a pair of disjoint lines. This con-
tradicts the 4-homogeneity of S, and so f 0 is collinear with e 0. Therefore the semi-
linear structures induced on the sets fa; c; d; eg and fa 0; d 0; e 0; f 0g are isomorphic, but
there is no automorphism mapping the first set onto the second one. This contradicts
again the 4-homogeneity of S, and so we have proved that there is no pair of disjoint
lines in S.
In both cases, we have proved that S is a dual a‰ne plane, hence m ¼ nþ 1.
Suppose that S is a 5-homogeneous TDðnþ 1; nÞ with nd 5 (n may be infinite)

and let X � Y be the point set of S (with jX jd 6 and jY jd 5). Let a ¼ ðx1; y1Þ,
b ¼ ðx1; y2Þ, c ¼ ðx2; y1Þ, d ¼ ðx2; y2Þ, where x1; x2 are two distinct elements of X
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and y1; y2 are two distinct elements of Y. The points a and b are non-collinear, as well
as c and d. The lines ac and bd meet in e A fx3g � Y (where x3 A X and x30 x1; x2)
and the lines ad and bc meet in f A fx4g � Y (where x4 A X is di¤erent from x1 and
x2 but might be equal to x3). If x3 ¼ x4, let g be a point distinct from e and f in
fx3g � Y , and if x30 x4, let g be a point of fx3g � Y distinct from e and not on the
lines ad and bc (such a point exists since jY jd 5). In both cases, let A ¼ fa; b; c; d; gg
and let x5 A Xnfx1; x2; x3; x4g. The four lines ac, ad, bc, bd intersect fx5g � Y in
four distinct points. Since jY jd 5, there is a point h in fx5g � Y distinct from these
four points. Let B ¼ fa; b; c; d; hg. The semilinear structures induced on A and B are
isomorphic, and any automorphism of S mapping A onto B must map g onto h and
leave invariant the set consisting of the four lines ac, ad, bc, bd. This contradicts the
5-homogeneity of S, because g is non-collinear with one of the points (namely e) lying
on two of the four lines ac, ad, bc, bd, but this is not the case for h.
Therefore, a 5-homogeneous transversal design TDðm; nÞ with md 4 must be a

TDð4; 3Þ or a TDð5; 4Þ. Each of them is unique up to isomorphism: indeed, they are
both obtained by deleting one point (and all the lines through this point) from a pro-
jective plane whose lines have size 4 or 5; moreover, PGð2; 3Þ and PGð2; 4Þ are unique
up to isomorphism and have an automorphism group acting transitively on points. It
is easily checked by computer that TDð4; 3Þ is ultrahomogeneous and that TDð5; 4Þ is
homogeneous (but not ultrahomogeneous, as shown in [11]).
Suppose now that S is a finite 4-homogeneous transversal design. We already

know that S is a dual a‰ne plane TDðnþ 1; nÞ. If we add to S one new pointy, and
nþ 1 new lines consisting of the union of the pointy with each equivalence class of
S, we obtain a non-trivial linear space with no pair of disjoint lines, i.e. a projective
plane P. Hence S is a punctured projective plane of order n. If n ¼ 2; 3; 4, we know
that TDðnþ 1; nÞ is homogeneous; so we assume nd 5 and aim for a contradiction.
AutðSÞ is a collineation group of the dual projective plane P
 of P which acts tran-

sitively on the lines of P
 which are distinct fromy (by the 1-homogeneity of S). By
a theorem of Wagner [28] (see also [9], p. 214), P
 is a translation plane with transla-
tion line y. Furthermore AutðSÞ is also doubly transitive on the equivalence classes
of the transversal design S (use the 3-homogeneity and consider a 3-subset consisting
of one point in the first equivalence class and two points in the second). Therefore
AutðSÞ is doubly transitive on the points of the liney of P
. By results of Czerwinski
[7], Schulz [24] and Kallaher ([19], Theorem (16) page 181), a finite translation plane
with this property is either Desarguesian or a Lüneburg plane. In addition, the struc-
ture induced on any set of 4 points in one equivalence class of S is always the same
(namely 4 points with no line), hence the stabilizer in AutðSÞ of an equivalence class
(i.e. the stabilizer of a point on the line y of P
) is 4-homogeneous on that equiva-
lence class. We show that this leads to a contradiction in both cases.
If P
 is Desarguesian, then n ¼ pe is a prime power, and the stabilizer of an

equivalence class of TDðnþ 1; nÞ is isomorphic to the group AGLð1; nÞ of order
nðn� 1Þe. This group can be 4-homogeneous on an equivalence class only if n

4

� �
divides nðn� 1Þe, i.e. if ðpe � 2Þðpe � 3Þ divides 24e, and it is easy to see that this
holds only for nc 5 (note that the inequality ðpe � 2Þðpe � 3Þc 24e already implies
n ¼ pec 9). Therefore, we are left with TDð6; 5Þ. A computer check shows that the
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automorphism group of TDð6; 5Þ is not transitive on the set of 4-subsets whose in-
duced semilinear structure consists of 4 points and 5 lines of size 2. Indeed, this
semilinear structure contains two pairs of disjoint lines. Since TDð6; 5Þ is a dual a‰ne
plane, the lines inducing each of these two pairs intersect in TDð6; 5Þ. These two
points of intersection may or may not belong to the same equivalence class of
TDð6; 5Þ. Therefore TDð6; 5Þ is not 4-homogeneous either (note that we do not have
such a problem with TDð5; 4Þ because in PGð2; 4Þ the three diagonal points of a
quadrangle are always collinear, and so the two ‘‘diagonal’’ points of the induced
semilinear structure described above cannot belong to the same equivalence class).
The Lüneburg planes LðqÞ [21, 22] are translation planes of order q2 (where

q ¼ 22mþ1d 8) associated with the Suzuki groups SzðqÞ. The automorphism group
of LðqÞ is T :G0, where T is the subgroup of translations (of order q4) and G0, the
stabilizer of an a‰ne point, is isomorphic to AutðSzðqÞÞ. Hence, by Suzuki [26],
the order of the automorphism group of LðqÞ is

ðq2Þ2ðq2 þ 1Þq2ðq� 1Þð2mþ 1Þ ¼ q6ðq2 þ 1Þðq� 1Þð2mþ 1Þ:

Suppose that P
 is a Lüneburg plane LðqÞ. The stabilizer of a point of P
 on y

has order q6ðq� 1Þð2mþ 1Þ. By 4-homogeneity, q 2

4

� �
divides q6ðq� 1Þð2mþ 1Þ, i.e.

ðqþ 1Þðq2 � 2Þðq2 � 3Þ divides 24q4ð2mþ 1Þ. Since q2 � 3 ¼ 42mþ1 � 3 is coprime to
24, we obtain that 42mþ1 � 3 divides 2mþ 1d 3, which is absurd.
This contradiction proves that there is no finite 4- but not 5-homogeneous trans-

versal design. r

4 Types of antiflags

In this section, we prepare the treatment of semilinear spaces with di¤erent semilinear
structures induced on the antiflags.

Proposition 4.1. (a) If S is a connected 4-homogeneous proper semilinear space, then all
the antiflags of S with collinearity index at least 3 are isomorphic.
(b) If S is a connected 3-homogeneous proper semilinear space, then all the antiflags

of S with non-collinearity index at least 2 are isomorphic.

Proof. (a) Suppose that S contains two non-isomorphic antiflags ðp;LÞ and ðp 0;L0Þ
with collinearity index at least 3. Let a; b; c be three points of L collinear with p,
and a 0; b 0; c 0 three points of L0 collinear with p 0. The semilinear structures induced on
A ¼ fa; b; c; pg and A 0 ¼ fa 0; b 0; c 0; p 0g are isomorphic, and any automorphism of
S mapping A onto A 0 must clearly map p onto p 0 and the three points a, b, c onto
a 0, b 0, c 0, and so the line L onto L0, contradicting the 4-homogeneity of S and our
assumptions on ðp;LÞ and ðp 0;L0Þ. This proves that all the antiflags of S with col-
linearity index at least 3 are isomorphic.
(b) follows with the same argument as (a) with A ¼ fa; b; pg and A 0 ¼ fa 0; b 0; p 0g,

where a; b (resp. a 0; b 0) are two points of L (resp. L0) non-collinear with p (resp.
p 0). r
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If S is a connected 4-homogeneous proper semilinear space with at least two non-
isomorphic antiflags, it follows from Proposition 4.1 that

(i) if the lines of S have size 3, then S may have antiflags whose collinearity indices
are all in the set f0; 2; 3g or in f1; 2; 3g,

(ii) if the lines of S have size at least 4, then S has at most two non-isomorphic types
of antiflags: one with collinearity index 0, 1 or 2 and one with non-collinearity
index 0 or 1 (altogether, this yields 6 di¤erent cases).

Proposition 4.2. Let S be a proper connected semilinear space having exactly two iso-

morphism types of antiflags. The following situations cannot occur:

(i) S has an antiflag with collinearity index 0 and an antiflag with non-collinearity
index 0;

(ii) S is 3-homogeneous and has an antiflag with collinearity index 1 and an antiflag
with non-collinearity index 1;

(iii) S is 4-homogeneous and has an antiflag with collinearity index 1 and an antiflag
with non-collinearity index 0;

(iv) S is 4-homogeneous, with all lines of size at least 4, and has an antiflag with col-
linearity index 2 and an antiflag with non-collinearity index 1.

Proof. (i) Suppose that S has all its antiflags with collinearity index 0 or with
non-collinearity index 0. Let ðp;LÞ be an antiflag with collinearity index 0. Since S is
connected, there is a minimal path p0; p1; p2; . . . ; pd ¼ p where p0 A L and pi is col-
linear with piþ1 for every i ¼ 0; 1; . . . ; d � 1. The point p0 is non-collinear with p2
(because the path is minimal) and collinear with p1, and so the antiflag ðp0; p1p2Þ has
collinearity index at least 1 and non-collinearity index at least 1, contradicting our
assumptions on S.
(ii) Suppose that S contains an antiflag ðp;LÞ with collinearity index 1 and an an-

tiflag ðp 0;L0Þ with non-collinearity index 1. There exists a point a of L (resp. a 0 of L0)
non-collinear with p (resp. p 0) and a point o of L (resp. o 0 of L0) collinear with p
(resp. p 0). The semilinear structures induced on A ¼ fo; a; pg and A 0 ¼ fo 0; a 0; p 0g are
isomorphic. Since the antiflags ðp;LÞ and ðp 0;L0Þ are not isomorphic, any automor-
phism of S mapping A onto A 0 cannot map p onto p 0, and so must map a onto p 0.
Hence the antiflag ða; opÞ has non-collinearity index 1. Let b be a point of the line op
distinct from o and p. Since b is collinear with o and a, the antiflag ðb;LÞ has non-
collinearity index 1, and so b is non-collinear with a unique point of L ¼ oa, say c.
Since c is non-collinear with b and p, the antiflag ðc; opÞ has collinearity index 1. The
semilinear structures induced on the sets C ¼ fo; c; pg and A 0 are isomorphic. By the
3-homogeneity of S, one of the antiflags ðp;LÞ or ðc; opÞmust be mapped onto ðp 0;L0Þ
by some automorphism of S. This is impossible because both ðp;LÞ and ðc; opÞ have
collinearity index 1, while ðp 0;L0Þ has non-collinearity index 1.
(iii) Suppose that S has all its antiflags with collinearity index 1 or with non-
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collinearity index 0. Then S is a polar space. We have proved in [11] that all the an-
tiflags of a 4-homogeneous proper polar space have collinearity index 1, contradicting
the fact that S contains an antiflag with non-collinearity index 0.
(iv) Note first that this case obviously makes no sense if the lines of S have size 3.

Suppose that S contains an antiflag ðp;LÞ with collinearity index 2 and an antiflag
ðp 0;L0Þ with non-collinearity index 1. Since the lines of S have size at least 4, these
two antiflags are non-isomorphic. There exist two points a; b of L (resp. a 0; b 0 of L0)
collinear with p (resp. p 0) and a point c (resp. c 0) non-collinear with p (resp. p 0). The
semilinear structures induced on A ¼ fa; b; c; pg and A 0 ¼ fa 0; b 0; c 0; p 0g are isomor-
phic, and any automorphism of Smapping A onto A 0 must clearly map p onto p 0 and
L onto L0. By the 4-homogeneity of S, this is a contradiction since ðp;LÞ and ðp 0;L0Þ
are non-isomorphic antiflags. r

Corollary 4.3. If S is a 4-homogeneous proper connected semilinear space having
exactly two isomorphism types of antiflags, then either all the antiflags of S have colli-
nearity index 2 or non-collinearity index 0, or all the antiflags of S have collinearity
index 0 or non-collinearity index 1.

The two cases arising in this corollary will be examined in Sections 5 and 6, and the
remaining case, where S has three isomorphism types of antiflags (and hence all lines
of S have size 3), will be considered in Section 7.

5 Copolar spaces

A semilinear space whose antiflags have either collinearity index 0 or non-collinearity
index 1 is called a copolar space [16]. In this section we classify all proper finite con-
nected copolar spaces which are 4-homogeneous.
In addition to the copolar spaces U2;3ðnÞ defined in the introduction, we will also

need the copolar spaces NQGð2nþ 1; 2Þ and Wð2nþ 1;KÞ, as well as the Moore
spaces MðkÞ. The points of NQGð2nþ 1; 2Þ are those of a finite odd-dimensional
projective space over GF ð2Þ which are not on a fixed non-degenerate quadric Q, and
the lines of NQGð2nþ 1; 2Þ are the lines of PGð2nþ 1; 2Þ disjoint from Q (with þ or
� according as Q is hyperbolic or elliptic). The points ofWð2nþ 1;KÞ are those of a
finite odd-dimensional projective space over a field K, and the lines of Wð2nþ 1;KÞ
are the hyperbolic lines for some fixed non-degenerate symplectic polarity (i.e. the
lines which are not totally isotropic). If K is of order q, we will writeWð2nþ 1; qÞ in-
stead of Wð2nþ 1;KÞ. A Moore graph is a graph of diameter 2, containing no cir-
cuit of length 3 or 4 and having no vertex adjacent to all the others. Ho¤man and
Singleton [17] proved that a finite Moore graph is regular of valency k ¼ 2; 3; 7 or 57.
In the first three cases, it is well known that such a graph exists and is unique up to
isomorphism. The points of the Moore space MðkÞ corresponding to a given Moore
graphMðkÞ are the vertices of the graph, and the lines are the neighbourhoods of the
vertices (hence the lines have size k). The given Moore graph is the non-collinearity
graph of the corresponding Moore space ([16] p. 424).
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Proposition 5.1. For n ¼ 5; 6; 8, U2;3ðnÞ is isomorphic to NQ�ð3; 2Þ, Wð3; 2Þ and
NQþð5; 2Þ, respectively.

Proof. These isomorphisms can be deduced from isomorphisms between copolar
graphs, given in [16]. However we will give here direct and self-contained proofs of
these isomorphisms.
It is well known that the symplectic space Wð3; 2Þ, also known as the generalized

quadrangleWð2Þ, can be constructed as follows: the points are the unordered pairs of
elements of the set X ¼ f1; 2; 3; 4; 5; 6g and the (totally isotropic) lines are the parti-
tions of X into three pairs. So, a hyperbolic line consists of three pairs which mutually
intersect. Moreover, these three pairs are disjoint from three other pairs which also
form a hyperbolic line (correspondence under the symplectic polarity). Hence the
union of the three pairs forming a hyperbolic line is a 3-subset of X. This shows
thatWð3; 2ÞGU2;3ð6Þ.
U2;3ð5Þ is the substructure of U2;3ð6Þ obtained from the latter by deleting 6 and all

the pairs of X containing 6; it is well known that this translates to Wð2Þ as deleting
an ovoid, which is an elliptic quadric Q in PGð3; 2Þ. Hence U2;3ð5Þ contains all the
points of PGð3; 2Þ except those of Q, and the lines of U2;3ð5Þ are exactly the lines of
U2;3ð6Þ which are disjoint from Q. Moreover, all lines of PGð3; 2Þ not meeting Q are
obviously hyperbolic lines ofWð3; 2Þ (because any totally isotropic line is a partition
of f1; 2; 3; 4; 5; 6g into three pairs, and so has necessarily a pair containing 6). The
isomorphism NQ�ð3; 2ÞGU2;3ð5Þ follows.
Finally, consider NQþð5; 2Þ. The quadric Qþð5; 2Þ encodes (by the Klein corre-

spondence) the projective space PGð3; 2Þ in such a way that the points of Qþð5; 2Þ
correspond to the lines of PGð3; 2Þ. Any point p of NQþð5; 2Þ can be identified with
the intersection of its polar hyperplane pðpÞ (with respect to the polarity p related
to Qþð5; 2Þ) and the Klein quadric Qþð5; 2Þ. This intersection is a quadric Qð4; 2Þ,
and it is mapped by the Klein correspondence to a symplectic spaceWð2Þ in PGð3; 2Þ
(see for example [27], p. 64). This geometry is obtained from a symplectic polarity rp
of PGð3; 2Þ. Symplectic polarities are outer automorphisms of order 2 of PGLð4; 2Þ.
Using the exceptional isomorphism PGLð4; 2ÞGA8, we see that rp corresponds to
an outer automorphism of order 2 of A8, i.e. an involution in S8nA8; it cannot be an
involution using three disjoint transpositions since there are 420 of them, and this is
too many compared with the number of symplectic spaces in PGð3; 2Þ, which is 28.
Hence rp corresponds to a transposition in S8, and hence to a unique point of U2;3ð8Þ,
and conversely each point of U2;3ð8Þ corresponds to a unique point of NQþð5; 2Þ. If
two points of NQþð5; 2Þ are collinear, then the corresponding quadrics Qð4; 2Þ meet
in an elliptic quadric Q�ð3; 2Þ; hence the corresponding symplectic spaces meet in a
spread of PGð3; 2Þ (see for example [5] p. 109). If the corresponding polarities ði; jÞ
and ðk; lÞ would centralize each other, then their product would be an involution
s fixing the spread elementwise. s would obviously fix one point per line, and so a
plane pointwise. Therefore s would be a perspectivity. Since the only lines fixed by a
perspectivity are the lines in the axis or through the center, s could not fix a spread.
This contradiction proves that the polarities corresponding to collinear points do not
commute (i.e. i ¼ k). An easy counting argument shows that any point p ofNQþð5; 2Þ
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has exactly 12 neighbours. If p corresponds to ð1; 2Þ, any neighbour of p must be of
the form ð1; iÞ or ð2; iÞ with i A f3; 4; 5; 6; 7; 8g. Hence two points corresponding to
ði; jÞ and ði; kÞ must be collinear. If the third point of the line containing the points
ði; jÞ and ði; kÞ is of the form ði; lÞ (where i; j; k; l are pairwise distinct), then the point
ði;mÞ (with m distinct from i; j; k; l) is collinear with all the points of this line, which
is not possible. Therefore, the third point must be of the form ð j; kÞ, and so every
line corresponds to a 3-subset of f1; 2; 3; 4; 5; 6; 7; 8g. This shows the isomorphism
NQþð5; 2ÞGU2;3ð8Þ. r

Proposition 5.2. The only 4-homogeneous connected spaces NQGð2nþ 1; 2Þ are
NQ�ð3; 2ÞGU2;3ð5Þ and NQþð5; 2ÞGU2;3ð8Þ.

Proof. The spaces NQGð1; 2Þ are trivially non-connected. The space NQþð3; 2Þ, con-
sisting of two disjoint lines, is also non-connected.
Suppose that S is a 4-homogeneous connected copolar space NQ�ð2nþ 1; 2Þ

for nd 2 or NQþð2nþ 1; 2Þ for nd 3, and let Q be the corresponding quadric of
PGð2nþ 1; 2Þ. Let p be a point of Q and let Qp be the tangent hyperplane at p. There
is a subspace W of PGð2nþ 1; 2Þ such that p BW and such that the subspace gen-
erated by p and W is Qp.
It is well known (see for example [1]) that W VQ is a non-degenerate quadric of

the same type (i.e. hyperbolic or elliptic) as Q, in the subspace WFPGð2n� 1; 2Þ.
Hence the semilinear structure induced by S on the points of W not on Q is an
NQGð2n� 1; 2Þ. It is easy to show (for instance by induction on n) that with the
prescribed conditions on n, the points of NQGð2n� 1; 2Þ have degree at least 2.
Hence W contains two lines L1 and L2 intersecting in a point t and disjoint from Q.
Let x be a point on one of these two lines. Since x A Qp, the line px is tangent to Q,
and so meets Q in a single point, namely p. Therefore, the plane pi generated by p
and Li ði ¼ 1; 2Þ meets Q only in p. The semilinear structure induced by S on pinfpg
consists of the 6 points of pi di¤erent from p and of the 4 lines not passing through p.
Let t 0 be the third point of the line pt, which is the intersection of p1 and p2. Denote
the other four points of pi by ai; bi; ci; di in such a way that Li ¼ aibi, aibi V cidi ¼ t
and aici V bidi ¼ t 0.
Now consider the two subsets A ¼ fa1; b1; c1; d1g and B ¼ fa1; b1; a2; c2g of S.

Since S is copolar and since a2 is collinear with t, a2 is collinear with exactly one other
point of L1, say a1 without loss of generality. In the antiflag ðb1; a2c2t 0Þ, b1 is col-
linear with t 0 and non-collinear with a2, and so b1 is collinear with c2. In the antiflag
ðc2;L1Þ, c2 is collinear with t and b1, and so is non-collinear with a1. Hence the semi-
linear structure induced by S on B is isomorphic to the one induced on A. But the
lines a1b1 and a2c2 are disjoint in S, while a1b1 V c1d10q and a1c1 V b1d10q. This
contradicts the 4-homogeneity of S.
Hence S must be NQ�ð3; 2Þ or NQþð5; 2Þ. The isomorphisms with U2;3ð5Þ and

U2;3ð8Þ have been described in Proposition 5.1. r

Proposition 5.3. The only 4-homogeneous space Wð2nþ 1;KÞ is Wð3; 2Þ, which is
isomorphic to U2;3ð6Þ.
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Proof. Wð2nþ 1;KÞ contains two lines L and L0 intersecting in a point o. Let x and
y be two points of L distinct from o. There are unique distinct points x 0; y 0 of L0 non-
collinear with x; y, respectively. Let A ¼ fx; y; x 0; y 0g. In a suitable coordinate sys-
tem, the symplectic polarity maps a point ½a1; a2; . . . ; a2nþ1; a2nþ2� to the hyperplane
with equation a2x1 � a1x2 þ � � � þ a2nþ2x2nþ1 � a2nþ1x2nþ2 ¼ 0.
Assume first that K contains at least 3 elements. Let X be the set of points

of PGð2nþ 1;KÞ all of whose coordinates are 0, except the first four. The semi-
linear structure induced by Wð2nþ 1;KÞ on X is a subspace of Wð2nþ 1;KÞ which
is clearly isomorphic to Wð3;KÞ. On the other hand, X together with its totally iso-
tropic lines is isomorphic to Wð3;KÞ, which is a generalized quadrangle. Let M and
M 0 be two disjoint totally isotropic lines in X and let a; b be two points of M. In
Wð3;KÞ, a (resp. b) is collinear with exactly one point of M 0, say a 0 (resp. b 0). Since
the lines of PGð2nþ 1;KÞ have size at least 4, there are two points of M 0 distinct
from a 0 and b 0, say c and d. Let B ¼ fa; b; c; dg. The semilinear structure induced by
Wð2nþ 1;KÞ on B consists of exactly 4 lines of size 2, namely ac; ad; bc and bd. Note
that acV bd ¼ q and ad V bc ¼ q in X, otherwise B would be contained in a plane
of PGð2nþ 1;KÞ, which is impossible since M and M 0 are disjoint.
If K ¼ F2 and nd 2, we define B as the set consisting of the following 4 points of

PGð2nþ 1; 2Þ:

a ¼ ½0; 0; 0; 0; 1; 0; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
2n�4

�; b ¼ ½1; 0; 0; 0; 1; 0; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
2n�4

�;

c ¼ ½0; 0; 0; 0; 0; 1; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
2n�4

�; d ¼ ½0; 0; 1; 0; 0; 1; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
2n�4

�:

In both cases, the semilinear structures induced on A and B are isomorphic,
contradicting the 4-homogeneity of Wð2nþ 1;KÞ (because xyV x 0y 0 0q, while
acV bd ¼ q and ad V bc ¼ q). The only possibility left is Wð3; 2Þ, which is iso-
morphic to U2;3ð6Þ by Proposition 5.1. r

Figure 3 is a representation of this ultrahomogeneous space.

Proposition 5.4. The only 4-homogeneous proper Moore space is Mð3ÞGU2;3ð5Þ.

Proof. Mð2Þ is isomorphic to the graph C5 of the pentagon, and so is not proper.
Mð3Þ is the Petersen graph andMð3Þ is is easily seen to be isomorphic to U2;3ð5Þ, the
Desargues configuration.
Suppose now that kd 4. If k is finite, then MðkÞ has exactly k2 þ 1 vertices, and

so MðkÞ is finite. By the result of Ho¤man and Singleton [17], we know that kd 7.
Of course, if k is infinite, we also have kd 7. Denote by Lp the line of MðkÞ which
corresponds to the neighbourhood of p in the graph MðkÞ. It follows easily from the
properties of MðkÞ that any antiflag ðp;LpÞ has collinearity index 0 and that any
antiflag ðq;LpÞ with p0 q has non-collinearity index 1.
We claim that if ðp;LÞ is an antiflag of MðkÞ with non-collinearity index 1, then

there is exactly one line through p which is disjoint from L. Indeed, let q be the only
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point of L which is non-collinear with p. Since p and q are adjacent inMðkÞ, p A Lq.
The line Lq is disjoint from L, otherwise the antiflag ðq;LqÞ would not have colli-
nearity index 0. Suppose that there exists another line Lr through p disjoint from
L ðr0 qÞ. The point r is non-collinear with p, and so r is on the line Lp (which con-
tains also q). Consider any line joining p to a point of L. Such a line cannot be equal
to Lr, and so r must be non-collinear with exactly one point of this line, namely p.
Hence r is collinear with all the points of L, contradicting the fact that MðkÞ is a
copolar space. This proves our claim.
Let p be a point of MðkÞ and let Lq be a line through p. Obviously Lq is disjoint

from Lp and q A Lp. Let r and s be two points of Lq distinct from p. Each of the
antiflags ðr;LpÞ and ðs;LpÞ has non-collinearity index 1, and so r and s are collinear
with all the points of Lp except q. Let t be one of these points. The antiflag ðs; rtÞ
has non-collinearity index 1, and so (as we have seen before) there is exactly one line
through s which is disjoint from rt. This line must intersect Lp in some point u, other-
wise there would be two lines (namely this one and Lq) passing through s and disjoint
from Lp, which is impossible since the antiflag ðs;LpÞ has non-collinearity index 1.
Let A ¼ fr; s; t; ug. The semilinear structure induced on A consists of 4 points and 6
lines of size 2, and at least two pairs of disjoint lines of size 2 are induced by disjoint
lines in MðkÞ (namely rsV tu ¼ f and rtV su ¼ f).
Let L and L0 be two lines ofMðkÞ intersecting in a point o. Each point of L (except

o) is non-collinear with exactly one point of L0, and conversely. Let a; b; c be three
points of L, and let a 0 (resp. b 0; c 0) be the unique point of L0 which is non-collinear
with a (resp. b; c). Let E be the set L0nfo; a 0; b 0; c 0g. E contains at least 3 points (be-
cause the lines of MðkÞ have size at least 7) and c is collinear with all the points of
E. The antiflag ðc; ab 0Þ has non-collinearity index 1, and so there is exactly one line

Figure 3. U2; 3ð6ÞGWð3; 2Þ
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through c which is disjoint from ab 0. Hence there exists a point d 0 of E such that
the line cd 0 meets the line ab 0 (actually there are at least two such points). Let
B ¼ fa; b 0; c; d 0g. The semilinear structure induced on B consists of 4 points and 6
lines of size 2, and at least two pairs of disjoint lines of size 2 are induced by inter-
secting lines in MðkÞ (namely acV b 0d 0 0 f and ab 0 V cd 0 0 f).
The semilinear structures induced on A and on B are isomorphic, but there is ob-

viously no automorphism mapping A onto B. ThereforeMðkÞ is not 4-homogeneous
for kd 4. r

A copolar space S is said to be reduced if it is connected and if distinct points have
distinct neighbourhoods. A reduced tower of length m in a reduced copolar space S is
a set fSi j i ¼ 0; 1; . . . ;mg of connected subspaces of S such that S0WS1W � � � WSm.
The reduced rank of S is the supremum of all cardinal numbers m for which S con-
tains a reduced tower of length m. S has finite reduced rank if it has reduced rank m
for some integer m.
We now prove the following theorem, which yields Case (viii) and part of (vii) and

(c) in Theorem 1.1.

Theorem 5.5. Let S be a 4-homogeneous proper connected copolar space. If S is
reduced and of finite reduced rank, then S is isomorphic to U2;3ðnÞ for some integer
nd 4, and if S is not reduced, then S is isomorphic to a transversal design TDðm; nÞ as
in 3.4. Moreover, U2;3ðnÞ is homogeneous for any cardinal number n.

Proof. According to Proposition 2.2.1 in [11], every 2-homogeneous connected co-
polar space which is not reduced is a transversal design. By Hall [16], any proper re-
duced connected copolar space S of finite reduced rank is included in the following
list: NQGð2nþ 1; 2Þ, Wð2nþ 1; qÞ, a Moore space, or U2;3ðnÞ. The first three cases
are covered by 5.2, 5.3 and 5.4, and so S must be a U2;3ðnÞ. We have proved in [11]
that every space U2;3ðnÞ is ultrahomogeneous (and so a fortiori homogeneous) for any
cardinal number n. U2;3ðnÞ is not proper for 1c nc 3, and U2;3ð4Þ is not reduced (it
is isomorphic to TDð3; 2Þ and also to Tð4Þ). r

6 Two types of antiflags, concluded

In this section we complete the treatment of semilinear spaces with exactly two types
of antiflags.

Lemma 6.1. If S is a 4-homogeneous proper connected semilinear space having exactly
two isomorphism types of antiflags, one with collinearity index 2 and one with non-
collinearity index 0, then all the lines of S have size 3.

Proof. Suppose on the contrary that the lines of S have kd 4 points. Let ðp;LÞ be
an antiflag with collinearity index 2 and ðp 0;L0Þ an antiflag with non-collinearity
index 0. There are two points a; b of L (resp. a 0; b 0 of L0) collinear with p (resp. p 0).
The semilinear structures induced on fa; b; pg and fa 0; b 0; p 0g are isomorphic. Using
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the 3-homogeneity of S, we deduce that either ðb; apÞ or ða; bpÞ must have non-
collinearity index 0. Without loss of generality, we may assume that it is ðb; apÞ.
Let c A Lnfa; bg. Since c is non-collinear with p, the antiflag ðc; apÞ has collinearity

index 2. Let d be the unique point of ap distinct from a and collinear with c. The anti-
flag ðd;LÞ has non-collinearity index 0. Let f A apnfa; p; dg and g A Lnfa; b; cg ( f and
g exist since kd 4). Since f is non-collinear with c, the antiflag ð f ;LÞ has collinearity
index 2, and so f is non-collinear with g. Let A ¼ fc; f ; g; pg.
Since the degree of p 0 is at least k and since all the points of S have the same

degree, there exists a line M through p which is disjoint from L. The point c is non-
collinear with p, and so the antiflag ðc;MÞ has collinearity index 2. Let r; s be the two
points of M collinear with c. Let t AMnfp; r; sg. The point t is non-collinear with c,
and so the antiflag ðt;LÞ has collinearity index 2.
If there exists a point u A Lnfa; b; cg which is non-collinear with t, then the semi-

linear structure induced on B ¼ fc; p; t; ug is isomorphic to the one induced on A.
This contradicts the 4-homogeneity of S because pf V cg0q and ptV cu¼ LVM ¼
q. Therefore such a point u does not exist.
If kd 6, the set Lnfa; b; cg has cardinality at least 3 and, since t is collinear with

exactly two points of L, such a point u would exist. Therefore k ¼ 4 or 5.
If k ¼ 5, t is collinear with g and h, which are the only points of Lnfa; b; cg. Let t 0

be the only point of Mnfp; r; s; tg. Since t 0 is non-collinear with c, the antiflag ðt 0;LÞ
has collinearity index 2. If u ¼ g or h is non-collinear with t 0, we get a contradiction
by using the same argument as above with A and B 0 ¼ fc; u; p; t 0g. Therefore t 0 must
be collinear with g and h, and non-collinear with the other points of L. It follows that
t and t 0 are both non-collinear with b and c, and we get a contradiction by using the
same argument as above with A and B 00 ¼ fb; c; t; t 0g.
Hence k ¼ 4 and t is collinear with g, the only point of Lnfa; b; cg. Since g is

non-collinear with p and collinear with t, the antiflag ðg;MÞ has collinearity index 2,
and so we may assume, without loss of generality, that g is collinear with r. Let C ¼
fc; g; p; rg and D ¼ fc; g; d; f g. The semilinear structures induced on C and D are
isomorphic, and any automorphism of S mapping C onto D must fix the line cg ¼ L
and map the line pr ¼M onto df . This contradicts the 4-homogeneity of S, because
LVM ¼ q and LV df 0q.
We can now conclude that all the lines of S must have size 3. r

Lemma 6.2. Let S be a 4-homogeneous proper connected semilinear space all of whose
lines have size 3, having at least one antiflag with collinearity index 2 and at least one
antiflag with collinearity index 3, but no antiflag with collinearity index 1. Then S is the
punctured a‰ne plane AGð2; 3Þ.

Proof. Let ðg;LÞ be an antiflag of S having collinearity index 2; let a; b be the two
points of L collinear with g, and let c be the unique point of L non-collinear with g.
S contains at least one antiflag ðp 0;L0Þ with collinearity index 3; let a 0; b 0 be two

points of L0 collinear with p 0. The semilinear structures induced on fa; b; gg and
fa 0; b 0; p 0g are isomorphic and any automorphism of S mapping the first set onto the
second one must map a or b onto p 0; without loss of generality, we may assume that
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it is b. Hence, by the 3-homogeneity of S, the antiflag ðb; agÞ has collinearity index 3,
and so b is collinear with h, the third point of the line ag. Since c is collinear with a
and non-collinear with g, and since S contains no antiflag with collinearity index 1,
the antiflag ðc; agÞ has collinearity index 2, and so c is collinear with h.
The semilinear structures induced on fa; b; gg and fa; b; hg are isomorphic. Since

the antiflag ðg; abÞ has collinearity index 2 and since the antiflags ðh; abÞ and ðb; ahÞ
have collinearity index 3, the 3-homogeneity of S implies that the antiflag ða; bhÞmust
have collinearity index 2. It follows that a is non-collinear with e, the third point of bh.
Hence the antiflags ðe; agÞ and ðe; acÞ have collinearity index 2, and so e is collinear
with g and c. The two lines eg and ec are distinct since c and g are non-collinear.
Therefore d, the third point of ce, is distinct from f , the third point of eg. The antiflag
ða; ceÞ has also collinearity index 2, and so a is collinear with d.
Let A ¼ fa; b; g; eg and B ¼ fb; c; e; gg. The semilinear structures induced on A and

B are isomorphic. Note that a and e (resp. c and g) is the only pair of non-collinear
points in A (resp. in B). Note also that the lines ab and ge are disjoint in S, and that
the lines ag and be intersect in h. By the 4-homogeneity of S and since the lines bc and
ge are disjoint in S, the lines bg and ce must meet in S. Therefore the third point of
the line bg is necessarily d.
The same type of argument, applied to the set C ¼fc; e; g; hg (resp.D¼fa; d; e; gg),

shows that the lines ge and ch (resp. ge and ad) meet in S, and so f is the third point
of the line ch (resp. ad).
The semilinear structure induced on fb; e; gg (resp. fa; d; gg) is the same as the

one induced on fg; a; bg. By the 3-homogeneity of S and since the antiflag ðg; abÞ
has collinearity index 2 while the antiflags ðg; ebÞ and ðe; bgÞ (resp. ða; dgÞ and ðg; ad Þ)
have collinearity index 3, we see that the antiflag ðb; egÞ (resp. ðd; agÞ) must have col-
linearity index 2. Therefore b and f (resp. d and h) are non-collinear.
We conclude that the semilinear structure induced on the set S 0 ¼

fa; b; c; d; e; f ; g; hg is the punctured a‰ne plane AGð2; 3Þ (see Figure 4).
Suppose by way of contradiction that S is larger than S 0. Since S is connected,

there is a point p of S outside of S 0, which is collinear with a point of S 0 (without

Figure 4. The punctured AGð2; 3Þ
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loss of generality, we may assume that p is collinear with a). The antiflag ðp; abÞ has
collinearity index at least 2 (because S contains no antiflag with collinearity index 1).
Since the automorphism group of the punctured a‰ne plane AGð2; 3Þ is transitive on
the ordered pairs of collinear points, we may assume without loss of generality that p
is also collinear with b.
Suppose that p is non-collinear with h. The semilinear structure induced on

fa; b; h; pg is isomorphic to the one induced on fa; b; g; eg. By the 4-homogeneity of
S, either the lines ap and bh or the lines ah and bp must intersect in S. This implies
that either e A ap or g A bp. The first case is impossible since a and e are non-collinear;
the second case is also impossible since the third point of the line bg is d and not p.
Hence p is collinear with h.
If we suppose that p is non-collinear with f , we get a contradiction by applying a

similar argument to the sets fa; f ; h; pg and fa; b; g; eg. Hence p is also collinear with f .
Consider now the set fa; b; f ; pg. The semilinear structure induced on this set is

isomorphic to the one induced on fa; b; g; eg. As before, this implies that ab meets pf
or that af meets pb. In the first case, c would be on the line pf , which is impossible
since the third point of the line cf is h and not p. In the second case, d would be on
the line pb, which is impossible since the third point of the line bd is g and not p.
This shows that S has no point outside of S 0, and so S is the punctured a‰ne plane

AGð2; 3Þ. It is easily checked that the punctured a‰ne plane AGð2; 3Þ is indeed
homogeneous. r

The following result follows from Lemmas 6.1 and 6.2 and yields part of Case (v)
in Theorem 1.1.

Corollary 6.3. Let S be a 4-homogeneous proper connected semilinear space having
exactly two isomorphism types of antiflags, one with collinearity index 2 and one with
non-collinearity index 0. Then S is the punctured a‰ne plane AGð2; 3Þ, which is
homogeneous.

7 Three types of antiflags

Let S be a 4-homogeneous connected proper semilinear space with at least three iso-
morphism types of antiflags. From Section 4 we know that the lines of S have size 3,
and S has exactly three isomorphism types of antiflags, whose collinearity indices are
in f0; 2; 3g or in f1; 2; 3g. Both cases are impossible:

Theorem 7.1. There is no 4-homogeneous proper connected semilinear space having
exactly three isomorphism types of antiflags, whose collinearity indices are 0, 2 and 3.

Proof. By Lemma 6.2 such a semilinear space is isomorphic to the punctured a‰ne
plane AGð2; 3Þ, but the punctured AGð2; 3Þ does not contain an antiflag with colli-
nearity index 0. r

Theorem 7.2. There is no 3-homogeneous proper connected semilinear space having
exactly three isomorphism types of antiflags, whose collinearity indices are 1, 2 and 3.
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Proof. Suppose on the contrary that such a semilinear space S exists. All the lines of
S have size 3. Let ðd;LÞ be an antiflag of S having collinearity index 1. Let a; b be
the two points of L which are non-collinear with d, and let c be the unique point of L
collinear with d.
Since S contains an antiflag ðp 0;L0Þ with collinearity index 2, there is a point a 0 of L0

non-collinear with p 0 and a point c 0 of L0 collinear with p 0. The semilinear structures
induced on E ¼fa; c; dg and E 0 ¼ fa 0; c 0; p 0g are isomorphic. Since the antiflags ðd;LÞ
and ðp 0;L0Þ are non-isomorphic and since S is 3-homogeneous, the antiflag ða; cd Þ
must have collinearity index 2, and so a is collinear with e, the third point of the line
cd. The same argument, applied to the sets fb; c; dg and E 0, implies that b is also
collinear with e.
Since the semilinear structures induced on the sets E and fa; d; eg are isomorphic,

we may use the same type of argument as above to conclude that d is non-collinear
with f , the third point of the line ae. Comparing the semilinear structures induced on
the sets fd; e; f g and E 0, we get that f is collinear with c.
Suppose that f is non-collinear with b. Consider the set fa; b; f g. Each of the an-

tiflags ð f ; abÞ and ðb; af Þ has collinearity index 2. Hence there is no automorphism
of S mapping fa; b; f g onto E, contradicting the fact that the semilinear structures
induced on E and fa; b; f g are isomorphic. Therefore, b must be collinear with f .
The semilinear structures induced on fb; c; eg and fa; b; eg are isomorphic. Since

the antiflag ðb; ceÞ has collinearity index 2 and the antiflags ðe; abÞ, ðb; aeÞ have col-
linearity index 3 and since S is 3-homogeneous, the antiflag ða; beÞ must have colli-
nearity index 2, and so a is non-collinear with g, the third point of the line be.
Comparing the sets fa; b; gg and E, an argument similar to the one used above

shows that g must be non-collinear with c.
The semilinear structures induced on fa; c; eg and fb; c; eg are isomorphic.

Among the 3 antiflags defined by fa; c; eg, two have collinearity index 3 and one
has collinearity index 2. On the other hand, among the 3 antiflags defined by fb; c; eg,
one has collinearity index 3 and two have collinearity index 2. This contradicts the 3-
homogeneity of S and therefore the existence of S. r
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