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1 Introduction

Let CHPr be a reduced, irreducible, non-degenerate curve, not contained in a sur-
face of degree <s; when d ¼ degC is large with respect to s, the arithmetic genus
paðCÞ is bounded by a function Gðd; r; sÞ which is of type d 2

2s þOðdÞ.
The existence of such a bound for CHP3 was announced by Halphen in 1870

and proved by Gruson and Peskine in [6] for d > s2 � s; for curves in P r, rd 4, the
bound is stated and proved in [2] (for d > 2s

r�2

Q r�2
i¼1 ððr� 1Þ!sÞ1=ðr�1�iÞ).

The existence of curves of maximal genus, i.e., curves, the genus of which attains
the bound, is known in P3 for d > s2 � s, in P4 for d > 12s2 and in Pr, rd 5, at least
for dg s. [6] contains a precise description of those curves in P3 which do not lie on
surfaces of degree <s and whose genus is maximal: they are arithmetically Cohen–
Macaulay, lie on a surface S of degree s and they are directly linked to plane curves.
[1] contains the description of curves in P4 of maximal genus Gðd; 4; sÞ.

The complete description of curves CHP5, not contained in a surface of degree
<s, whose genus is Gðd; 5; sÞ has been given by the author in her PhD dissertation [3].
The main result of this note is the classification Theorem 1.1, which holds for sd 9.
Due to the long list of cases, some proofs are given only in some specific examples. We
already know [2] that such curves must be arithmetically Cohen–Macaulay and they
must lie on a surface S of degree s, whose general hyperplane section G is
a ‘‘Castelnuovo curve’’ in P4, i.e., a curve in P4 of maximal genus. When sd 9 the
surface S lies on a rational normal 3-fold X of degree 3 in P5, which can be singular.
Analogously to [6] and [1], we describe our curves C of genus Gðd; 5; sÞ in terms of
the curve C 0 obtained by linking C with S and a hypersurface F of minimal degree
passing through C and not containing S.

We state now the main theorem. In Propositions 4.1, 4.2 and 4.3 we will give a
closer description of Cases (2), (3) and (4) of the theorem.

Theorem 1.1. Let CHP5 be an integral non-degenerate curve of degree d not con-

tained in a surface of degree <s and let sd 9. Suppose that the arithmetic genus of C is

maximal among those curves not contained in a surface of degree <s, i.e., paðCÞ ¼
Gðd; 5; sÞ. Assume d > 2s

3

Q3
i¼1ð4!sÞ

1=ð4�iÞ.



Then C is arithmetically Cohen–Macaulay and lies on an irreducible surface S of

degree s contained in a cubic rational normal 3-fold X HP5.
Put d � 1 ¼ smþ e, 0c ec s� 1 and s� 1 ¼ 3wþ v, v ¼ 0; 1; 2; if e < wð4� vÞ,

write e ¼ kwþ d, 0c d < w; if edwð4� vÞ, write eþ 3� v ¼ kðwþ 1Þ þ d, 0c d <
wþ 1.

Then C is contained in a hypersurface F of degree mþ 1, not passing through S. If
C 0 is the curve linked to C by F and S, we have:

(1) when k ¼ 3, then C 0 ¼ q; i.e., C is a complete intersection on S;

(2) when k ¼ 2, then C 0 is a plane curve;

(3) when k ¼ 1, then C 0 lies on a surface of degree 2;

(4) when k ¼ 0, then C 0 lies on a surface of degree 3.

The proof is based on the analysis of the Hilbert function of a general hyperplane
section Z of C. The main technical problem that one does not find in the previous
cases (r ¼ 3; 4) is that for describing C 0 we have to perform a linkage by a complete
intersection on the scroll X , which is in general, if X is singular, a non-Gorenstein
scheme. To this purpose the author has proved in [4] and [5] some general results to
which we will refer in these note.

In the last section we prove the following result.

Theorem 1.2. For all s; d with sd 4 and d > 2s
3

Q3
i¼1ð4!sÞ

1=ð4�iÞ, there exists a smooth

curve CHP5 of degree d and arithmetic genus Gðd; 5; sÞ which does not lie on a sur-

face of degree <s. Moreover C is contained in an irreducible surface S of degree s.

It should be observed that in [1] the authors do not analyze the regularity of the
produced extremal curves in P4 and that in [2] the produced examples of curves of
maximal genus Gðd; r; sÞ in Pr for dg s are in general singular.

With the same techniques used for the classification in P5 it is possible to classify
curves in Pr of maximal genus Gðd; r; sÞ for every r and sd 2r� 1. In [5] the author
has given an example of the classification procedure for curves of maximal genus
Gðd; r; sÞ in Pr and of the construction of such smooth extremal curves.

Acknowledgments. The paper has been written while the author was supported by
a Post-Doc scholarship of Universitá di Roma Tre. The author thanks Ciro Ciliberto
for his patience and help.

2 Weil divisors on X

We will see in the next section that curves CHP5 of maximal genus Gðd; 5; sÞ which
we want to classify lie on a cubic rational normal 3-fold X HP5 about which we need
to fix some notation and mention some results. A rational normal 3-fold X HP5 is
the image of a projective bundle p : PðEÞ ! P1 over P1, via the morphism j defined
by the tautological line bundle OPðEÞð1Þ, where E is a locally free sheaf of rank 3 on
P1 of one of the following three kinds:
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(1) E ¼ OP1ð1ÞlOP1ð1ÞlOP1ð1Þ. In this case X GP1 � P2 is smooth and it is
ruled by y1 disjoint planes; we put X ¼ Sð1; 1; 1Þ.

(2) E ¼ OP1 lOP1ð1ÞlOP1ð2Þ. Here X is a cone over a smooth cubic surface in
P4 with vertex a point V and it is ruled by y1 planes intersecting at V ; we put
X ¼ Sð0; 1; 2Þ.

(3) E ¼ OP1 lOP1 lOP1ð3Þ. X is a cone over a twisted cubic in P3 with vertex a
line l, and it is ruled by y1 planes intersecting at l; we put X ¼ Sð0; 0; 3Þ.

Let us write PðEÞ ¼ ~XX . The morphism j : ~XX ! X is a rational resolution of sin-
gularities, called the canonical resolution of X . It is well known that the Picard group
Picð ~XX Þ of ~XX is isomorphic to Z½ ~HH�lZ½ ~RR�, where ½ ~HH� ¼ ½O ~XX ð1Þ� is the hyperplane

class and ½ ~RR� ¼ ½p�OP1ð1Þ� is the class of the fiber of the map p : ~XX ! P1. The inter-
section form on ~XX is determined by the rules:

~HH 3 ¼ 3; ~RR � ~HH 2 ¼ 1; ~RR2 � ~HH ¼ 0; ~RR3 ¼ 0: ð2:1Þ

The cohomology of the invertible sheaf O ~XX ða ~HH þ b ~RRÞ associated to a divisor@
a ~HH þ b ~RR in ~XX can be explicitly calculated using the Leray spectral sequence. In par-
ticular, for ad 0 and bd�1, the dimension h0ðO ~XX ða ~HH þ b ~RRÞÞ does not depend on
the type of the scroll and it is given by the formula ([4] 3.5):

h0ðO ~XX ða ~HH þ b ~RRÞÞ ¼ 3
aþ 2

3

� �
þ ðbþ 1Þ aþ 2

2

� �
: ð2:2Þ

Let H and R be the strict images in X of ~HH and ~RR respectively, i.e. the scheme-

theoretic closures jð ~HHj j�1XS
Þ and jð ~RRj j�1XS

Þ, where XS denotes the smooth part of X .
Let us consider on X the direct image of O ~XX ða ~HH þ b ~RRÞ, for every a; b A Z:

OX ðaH þ bRÞ :¼ j�O ~XX ða ~HH þ b ~RRÞ:

If the scroll X is smooth, then the sheaves OX ðaH þ bRÞ are the invertible sheaves
associated to the Cartier divisors@ aH þ bR, while when X is singular this is no
longer true. In this case we have the following proposition which has been proved
in [4] (Lemma 2.14, Cor. 3.10 and Theorem 3.17). The reader may refer to [10] for a
survey on divisorial sheaves associated to generalized divisors, in particular to Weil
divisors.

Proposition 2.3. Let X HP5 be a rational normal 3-fold and let j : ~XX ! X be its

canonical resolution. Let ClðXÞ be the group of Weil divisors on X modulo linear

equivalence. Then the following holds:

� If X is smooth or X ¼ Sð0; 1; 2Þ we have ClðXÞGZ½H�lZ½R�. The divisorial sheaf
associated to a divisor@ aH þ bR on X is OX ðaH þ bRÞ for every a; b A Z.

� If X ¼ Sð0; 0; 3Þ we have that H@ 3R and ClðXÞGZ½R�. The sheaves OX ðaH þ bRÞ
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with 3aþ b ¼ d and b < 3 are all isomorphic to the divisorial sheaf associated to a

divisor@ dR.

Remark 2.4. Since Rij�O ~XX ða ~HH þ b ~RRÞ ¼ 0 for i > 0 and for all a A Z and bd�1,
Formula (2.2) holds for h0ðOX ðaH þ bRÞÞ too. In particular we can use Formula
(2.2) to compute dimjDj for an e¤ective divisor D@ aH þ bR in X ¼ Sð1; 1; 1Þ or
X ¼ Sð0; 1; 2Þ with bd�1. When X ¼ Sð0; 0; 3Þ by Proposition 2.3 we can write the
divisorial sheaf associated to D@ dR in the form OX ðaH þ bRÞ with 0c b < 3;
therefore we can use Formula (2.2) to compute dimjDj for every e¤ective divisor D
in X ¼ Sð0; 0; 3Þ.

When X is smooth or X ¼ Sð0; 1; 2Þ the intersection form (2.1) on ~XX determines
via the isomorphism Picð ~XXÞGClðXÞ of Proposition 2.3 the intersection form on
X . In particular we use the intersection number D �D 0 �H of two e¤ective divisor
D@ aH þ bR and D 0 @ a 0H þ b 0R with no common components to compute the
degree of their scheme-theoretic intersection DVD 0.

When X ¼ Sð0; 0; 3Þ the computation of degðDVD 0Þ is more complicated and it
is explained in detail in [4]; here we want just to state the results that we need. So let
us first introduce the integral total transform of an e¤ective Weil divisor D@ dR:

Definition 2.5. Let X ¼ Sð0; 0; 3Þ. Let DHX be an e¤ective Weil divisor. Then the
integral total transform D� of D in ~XX is:

D� :¼ ~DDþ dqeE

where ~DD@ a ~HH þ b ~RR is the proper transform of D in ~XX , E@ ~HH � 3 ~RR is the excep-
tional divisor in ~XX and dqe is the smallest integerd q :¼ b

3 .

Then let us introduce, for every e¤ective Weil divisor D in Sð0; 0; 3Þ, the rational
number e :¼ dqe � q. We can compute the degree of the intersection scheme DVD 0

of two e¤ective divisors D@ dR and D 0 @ d 0R with no common components using
the following formula which has been proved in [4] Proposition 4.11:

degðDVD 0Þ ¼ D� �D 0� � ~HH if ½eþ e 0� ¼ 0;

D� �D 0� � ~HH þ 3ðeþ e 0 � 1Þ þ 1 if ½eþ e 0� ¼ 1:

�
ð2:6Þ

By abusing notation we will write the degree degðDVD 0Þ as the intersection number
D �D 0 �H. Moreover we compute the intersection multiplicity mðD;D 0; lÞ of D and
D 0 along the singular line l of X as follows:

mðD;D 0; lÞ ¼ D �D 0 �H � ~DD � ~DD 0 � ~HH: ð2:7Þ

Remark 2.8. To prepare the proof of the main theorem and of Propositions 4.1, 4.2,
4.3 we briefly describe all possible planes and surfaces of degree 2 and 3 contained in
a rational normal 3-fold X HP5.
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1. When X ¼ Sð1; 1; 1Þ. The only planes contained in X are the ones in the ruling
of X , otherwise the linear system jOX ðRÞj would cut on a plane pHX , which is not
in the ruling, a pencil of lines which of course intersect each other, while the planes
in jOX ðRÞj are pairwise disjoint. The surfaces of degree 2 contained in X are either
reducible and hence linearly equivalent to 2R, or irreducible and hence degener-
ate, therefore linearly equivalent to H � R. A reduced surface Y @ 2R is the disjoint
union of two planes in P5. A surface Q@H � R is a smooth quadric surface; the
two systems of lines on Q are cut by the linear system jOX ðRÞj (lines of type ð1; 0Þ on
Q) and by the linear system jOX ðH � RÞj (lines of type ð0; 1Þ on Q). The surfaces
of degree 3 contained in X are either reducible in the union of three planes and hence
linearly equivalent to 3R, or reducible in the union of an irreducible quadric surface
and of a plane, hence linearly equivalent to H � Rþ R@H, or finally irreducible,
therefore degenerate, and so linearly equivalent to a hyperplane section H. A reduced
surface@ 3R is the disjoint union of three planes in P5. A reducible hyperplane sec-
tion of X is the union of a smooth quadric surface and of a plane meeting along a line
of type ð1; 0Þ. An irreducible hyperplane section of X is a smooth rational normal
surface in P4. Lastly we recall that a surface@ aH þ bR on X is irreducible when
a ¼ 0 and b ¼ 1, or a > 0 and bd�a (by [9], V, 2.18, passing to general hyperplane
sections).

2. When X ¼ Sð0; 1; 2Þ, a plane contained in X is either one of the ruling of
X , therefore linearly equivalent to R, or it is the plane p@H � 2R, i.e., the plane
spanned by the vertex V of X and by the line image of the section defined by
ProjOP1ð1Þ ,! PðEÞ. The reducible surfaces of degree 2 contained in X are either
linearly equivalent to 2R (when reduced they are the union of two planes meeting at
the point V ), or linearly equivalent to H � R (the union of p and of a plane p@R

meeting along a line passing through V ), or linearly equivalent to 2ðH � 2RÞ (the
plane p counted with multiplicity 2). The irreducible ones are linearly equivalent to
H � R. An irreducible surface Q@H � R is a quadric cone with vertex V ; the pencil
of lines on Q is cut by the linear system jOX ðRÞj (or equivalently by the linear system
jOX ðH � RÞj). The surfaces of degree 3 contained in X are either reducible in the
union of three planes and hence linearly equivalent to 3R (when reduced they are the
union of three planes meeting at the point V ), or to 2RþH � 2R@H (when reduced
each plane@R meets the plane p along a line passing through the point V ), or to
Rþ 2ðH � 2RÞ ¼ 2H � 3R, or to 3ðH � 2RÞ (in the last two cases the surface is not
reduced). They may be also reducible in the union of an irreducible quadric cone and
of a plane, hence linearly equivalent to H � Rþ R@H (the cone and the plane meet
along a line passing through V ), or to H � RþH � 2R ¼ 2H � 3R (the cone and
the plane p meet at the point V ). Finally they can be irreducible, therefore degener-
ate and so linearly equivalent to a hyperplane section H, which is a rational normal
surface in P4. As in the previous case, since a general hyperplane section of X is
smooth, we have that a surface@ aH þ bR on X is irreducible when a ¼ 0 and
b ¼ 1, or a > 0 and bd�a.

3. When X ¼ Sð0; 0; 3Þ the situation is simpler since ClðXÞ ¼ Z½R�. A plane con-
tained in X is a plane of the ruling. A surface of degree 2 contained in X is always
linearly equivalent to 2R and it is always reducible in the union of two planes meeting
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along the line l (the vertex of X ). A surface of degree 3 contained in X is linearly
equivalent to 3R and it is reducible in the union of three planes meeting at l if the
proper transform is linearly equivalent to 3 ~RR, or it is irreducible, and hence a singular
rational normal surface in P4, if the proper transform is linearly equivalent to ~HH. In
this case, since a general hyperplane section of X is singular, by [9], V, 2.18 we have

that a surface SHX is irreducible if its proper transform is ~SS@ a ~HH þ b ~RR, with a ¼ 0
and b ¼ 1, or a > 0 and bd 0.

Remark 2.9. Finally we want to describe how plane curves contained in X look like.
Since X is an intersection of quadrics in P5, a plane curve of degree d3 contained
in X must lie in a plane of X . Therefore we are interested just in lines and conics.

1. Let X ¼ Sð1; 1; 1Þ. A line rHX which is not contained in a plane p@R of the
scroll is the base locus of a pencil of quadric surfaces@H � R, i.e., it is a line of type
ð0; 1Þ (take the pencil of hyperplane sections passing through r and a fixed plane@R

intersecting r). A conic CHX which does not lie on p@R is contained in a quadric
surface Q@H � R (take a hyperplane section passing through C and a plane@R

meeting C) Therefore it is a hyperplane section of Q, i.e., a curve of type ð1; 1Þ on Q.
2. Let X ¼ Sð0; 1; 2Þ. Every line rHX is contained in a plane of the scroll. In fact

if r passes through V , then it is obviously contained in some plane p@R. If r does
not pass through V , then the plane spanned by r and V is contained in X . A conic
CHX which is not contained in a plane of the scroll and that passes through V is
reducible in the union of two lines. If C does not pass through V , then the cone over
C with vertex V is a quadric cone Q@H � R, therefore C is a hyperplane section
of Q.

3. Let X ¼ Sð0; 0; 3Þ. A line rHX is always contained in a plane of the scroll
p@R. In fact it is contained in the hyperplane section passing through r and the
singular line l of X , which splits in the union of three planes @R. A conic CHX

which does not lie on p@R is a hyperplane section of a surface @2R, i.e., it is the
union of two lines meeting at a point.

3 Preliminaries

We start by recalling a few results of [2]. From now on, let C be an integral,
non-degenerate curve of degree d and arithmetic genus paðCÞ in P5, with
d > 2s

3

Q3
i¼1ð4!Þ

1=ð4�iÞ. Assume C is not contained in a surface of degree <s and de-
fine m; e;w; v; k; d as in the statement of Theorem 1.1.

Then the genus paðCÞ is bounded by the function:

Gðd; 5; sÞ ¼ 1þ d

2
ðmþ w� 2Þ �mþ 1

2
ðw� 3Þ þ vm

2
ðwþ 1Þ þ r;

where r ¼ �d
2 ðw� dÞ if e < wð4� vÞ and r ¼ e

2 � w
2 ð3� vÞ � d

2 ðw� dþ 1Þ if ed

wð4� vÞ ([2], Section 5).
If Z is a general hyperplane section of C and hZ is the Hilbert function of Z, then

the di¤erence DhZ must be bigger than the function Dh defined by:
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DhðnÞ ¼

0 if n < 0 or n > mþ wþ e;

3nþ 1 if 0c ncw;

s if w < ncm;

sþ k � 3ðn�mÞ if m < ncmþ d;

sþ k � 3ðn�mÞ � 1 if mþ d < ncmþ wþ e;

8>>>>><
>>>>>:

where e ¼ 0 if e < wð4� vÞ and e ¼ 1 otherwise.

Proposition 3.1. If paðCÞ ¼ Gðd; 5; sÞ, then DhZðnÞ ¼ DhðnÞ for all n and C is arith-

metically Cohen–Macaulay. Moreover Z is contained in a reduced curve G of degree

s and maximal genus Gðs; 4Þ ¼ 1
2wðw� 1Þðw� 2Þ þ wv in P4 (Castelnuovo’s curve).

Since d > s2, G is unique and, when we move the hyperplane, all these curves G patch

together giving a surface SHP5 of degree s through C.

Proof. See [2] 0.1, 6.1, 6.2, 6.3. r

S is a ‘‘Castelnuovo surface’’ in P5, i.e., a surface whose general hyperplane sec-
tion is a curve of maximal genus in P4. These surfaces are classified in [7].

Proposition 3.2. S is irreducible and when sd 9 lies on a cubic rational normal 3-fold X

in P5 where it is cut by a hypersurface G of degree wþ 1. As a divisor on X the surface

S is linearly equivalent to ðwþ 1ÞH � ð2� vÞR (or wH þ R if v ¼ 0).

Proof. S is irreducible because C is irreducible and is not contained in a surface of
degree <s.

If a general hyperplane section G of S is a special Castelnuovo curve in P4 of
degree s, then it lies on a rational normal cubic surface W in P4 which is the inter-
section of the quadric hypersurfaces containing G, hence also Z; since C is arith-
metically Cohen–Macaulay these quadrics must lift to quadric hypersurfaces in P5

containing C, hence also S. The intersection of these quadric hypersurfaces is a
rational normal cubic 3-fold X in P5 whose general hyperplane section is W .

Moreover G lies on a hypersurface of degree wþ 1 which does not contain W ; such
a hypersurface must lift to a hypersurface G of degree wþ 1 in P5, containing C,
hence containing S since d > s2, and not containing X . r

Proposition 3.3. There exists a hypersurface F of degree mþ 1, passing through C and

not containing S.

Proof. For a general hyperplane section G of S, the Hilbert function hG is known
(see e.g. [8]); in particular we have DhGðnÞ ¼ DhZðnÞ when 0c ncm and hence
h0ðICðnÞÞ ¼ h0ðISðnÞÞ when 0c ncm. For n ¼ mþ 1 one computes DhZðmþ 1Þ <
DhGðmþ 1Þ and this implies h0ðICðmþ 1ÞÞ > h0ðISðmþ 1ÞÞ. r

We recall here the definition of geometrical linkage.
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Definition 3.4. Let Y1, Y2, Y be subschemes of a projective space P. Then Y1 and Y2

are geometrically linked by Y if

(1) Y1 and Y2 are equidimensional, have no embedded components and have no
common components, and

(2) Y1 UY2 ¼ Y , scheme theoretically.

Definition 3.5. Call C 0 the curve residual to C on S by F ; degC 0 ¼ s� e� 1. Call C 00

the curve residual to C on X by F and G.

We note that C 0 is well defined since S is irreducible and F does not contain S,
degC 0 ¼ sðmþ 1Þ � d ¼ s� e� 1. Moreover since degC 0 < degC the curve C 0 does
not contain C, which is irreducible; therefore C and C 0 are geometrically linked by
S VF . Also C 00 is well defined and C 0 HC 00:

If s ¼ 3wþ 3 ðv ¼ 2Þ, then

C 00 ¼ C 0:

If s ¼ 3wþ 2 ðv ¼ 1Þ, we can choose the plane p1 @R linked to S on X by G such
that it is not contained in F , then

C 00 ¼ C 0 þ C1;

where C1 H p1 is a plane curve of degree mþ 1.
If s ¼ 3wþ 1 ðv ¼ 0Þ and S@ ðwþ 1ÞH � 2R, we can choose the divisor@ 2R

linked to S on X by G such that it is the union of two distinct plane p1 and p2 not
contained in F , then

C 00 ¼ C 0 þ C1 þ C2;

where C1 H p1 and C2 H p2 are two plane curves of degree mþ 1.
If s ¼ 3wþ 1 and S@wH þ R, we can choose the divisor q@H � R linked to S

by X and G such that it is not contained in F , then

C 00 ¼ C 0 þ Cq;

where Cq is the intersection of q and F .
C and C 00 are geometrically linked by X VF VG since they are equidimensional,

have no common components (C is irreducible and C 00 does not contain C) and with
no embedded components (X VF VG is arithmetically Cohen–Macaulay).

Definition 3.6. Call Z;Z 0;Z 00;W general hyperplane sections of C;C 0;C 00;X respec-
tively.

The next result is Lemma 4.4 of [5]. It is the main tool in the classification
procedure.
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Lemma 3.7. Let C 00 HX and Z 00 HW be as in Definition 3.5 and Definition 3.6
respectively. Then for icminfw;mg:

h0ðIC 00 jX ðiH þ RÞÞd h0ðIZ 00 jW ðiH þ RÞÞ ¼
Xy

r¼mþw�iþ1

DhðrÞ:

Moreover if h0ðIZ 00 jW ðði � 1ÞH þ RÞÞ ¼ 0 and h0ðIZ 00 jW ðiH þ RÞÞ ¼ h > 0, then

h0ðIC 00 jX ðði � 1ÞH þ RÞÞ ¼ 0 and h0ðIC 00 jX ðiH þ RÞÞ ¼ h.

The next result is a formula which relates the arithmetic genera of the curves C, C 00

and Y ¼ X VF VG.

Lemma 3.8. Let X be smooth or X ¼ Sð0; 1; 2Þ. Let C, C 00 and Y ¼ X VF VG be as

usual. Then we have the following relation:

paðC 00Þ ¼ paðCÞ � paðYÞ þ ðmþ w� 1Þ � degC 00 þ degðRjC 00 Þ þ 1 ð3:9Þ

Proof. We apply [5] Proposition 4.6. r

4 The classification

At this point we are able to prove the main theorem. The techniques that we use to
prove Theorem 1.1 are the same for the three cases: X ¼ Sð1; 1; 1Þ, X ¼ Sð0; 1; 2Þ
and X ¼ Sð0; 0; 3Þ; therefore we do not want to give a proof for all cases. On the
other side the analysis is slightly di¤erent case by case, therefore, to be impartial, we
will give the proof of Theorem 1.1(2) in case X ¼ Sð0; 1; 2Þ, of Theorem 1.1(3) in case
X ¼ Sð1; 1; 1Þ and of Theorem 1.1(4) in case X ¼ Sð0; 0; 3Þ. For a complete proof
the reader may consult [3]. We will give a more precise description of such curves
C 0 in the next propositions. The reader may go back to Remark 2.8 where we have
described planes and surfaces of degree 2 or 3 contained in X , and to the previous
section where we have introduced some notation.

Proof of the Theorem 1.1. (1) Let k ¼ 3. This happens if and only if e ¼ s� 1. It fol-
lows degC 0 ¼ s� e� 1 ¼ 0 and we are done.

(2) Let k ¼ 2 and let X ¼ Sð0; 1; 2Þ. We treat separately the cases v ¼ 0; 1; 2.
Let v ¼ 2, i.e., S@ ðwþ 1ÞH. Then e ¼ 1 and we have eþ 1 ¼ 2ðwþ 1Þ þ d with

0c d < wþ 1. By Lemma 3.7 we compute

h0ðIC 0 jX ðRÞÞ ¼ 1:

Hence C 0 is contained in a plane p@R and has degree wþ 1d degC 0 ¼
3wþ 2� ed 1.

Let v ¼ 1, i.e., S þ p1 @ ðwþ 1ÞH. If e ¼ 0 (i.e., if e < 3w) we have e ¼
2wþ d with 0c d < w. By Lemma 3.7 we compute h0ðIC 00 jX ðRÞÞ ¼ 0 and
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h0ðIC 00 jX ðH þ RÞÞ ¼ 3. Since ðH þ RÞ � p1 �H ¼ 1 and degC1 ¼ mþ 1 > 1, all the
surfaces@H þ R containing C 00 split in the plane p1 IC1 and in surfaces@H

containing C 0. Therefore

h0ðIC 0 jX ðHÞÞ ¼ 3;

i.e., C 0 is contained in a plane p and has degree wþ 1d degC 0 ¼ 3wþ 1� e > 1.
When v ¼ 1 we have e ¼ 1 only if e ¼ 3w. In this case degC 0 ¼ 1, i.e., C 0 is a line.

Let v ¼ 0, then e ¼ 0 and we have e ¼ 2wþ d with 0c d < w. By Lemma 3.7
we compute h0ðIC 00 jX ðRÞÞ ¼ 0 and h0ðIC 00 jX ðH þ RÞÞ ¼ 2. In case S þ p1 þ p2 @
ðwþ 1ÞH, since ðH þ RÞ � p1 �H ¼ ðH þ RÞ � p2 �H ¼ 1 and degC1 ¼ degC2 ¼
mþ 1 > 1, we find that

h0ðIC 0 jX ðH � RÞÞ ¼ 2:

If d < w� 1, then degC 0 ¼ 3w� e ¼ w� d > 1; since ðH � RÞ � ðH � RÞ �H ¼ 1,
the linear system jIC 0 jX ðH � RÞj has a fixed part which is necessarily the plane
p@H � 2R. If d ¼ w� 1, then C 0 is a line. Therefore C 0 is contained in the plane
p@H � 2R or it is a line.
In case S þ q@ ðwþ 1ÞH, since ðH þ RÞ � q �H ¼ 3 and degCq ¼ mþ 1 > 3, we

find that

h0ðIC 0 jX ð2RÞÞ ¼ 2:

Therefore C 0 is contained in a plane p@R, which is the fixed part of jIC 0 jX ð2RÞj.
(3) Let k ¼ 1 and let X be smooth.
Let v ¼ 2 and e ¼ 0; we have e ¼ wþ d with 0c d < w. By Lemma 3.7 we com-

pute h0ðIC 0 jX ðRÞÞ ¼ 0 and

h0ðIC 0 jX ðH þ RÞÞ ¼ 3:

Since degC 0 ¼ s� e� 1d 5 and ðH þ RÞ � ðH þ RÞ �H ¼ 5 we deduce that the
linear system jIC 0 jX ðH þ RÞj has a fixed part which has degree at most 2 as
one can easily verify (if we suppose, for example, that the fixed part is L@H,
then h0ðOX ðH þ R� LÞÞ ¼ h0ðOX ðRÞÞ ¼ 2, and we have a contradiction since
h0ðIC 0 jX ðH þ R� LÞÞ ¼ 3). Therefore the fixed part can be of the following types:

(a) p@R. In this case C 0 is the union of a plane curve C 0
1 on p and of a curve C 0

2

contained in the base locus of a net of hyperplane sections, i.e. in a plane s. If s@R,
then the fixed part of jIC 0 jX ðH þ RÞj is @2R and we are in the next Case (b). The
other possibility is that s does not belong to X . Since degC 0 dwþ 3 and p � S �H ¼
wþ 1 this is possible only when degC 0 ¼ wþ 3, i.e., d ¼ w� 1 and C 0

2 is a curve of
type ð1; 1Þ on a quadric surface@H � R. In this case C 0 is contained in the surface
of degree two pU s.

(b) Y @ 2R. Then jIC 0 jX ðH þ RÞj ¼ Y þ jOX ðH � RÞj (in fact h0ðOX ðH � RÞÞ ¼
3). Since jOX ðH � RÞj is free, C 0 is contained in the surface of degree two Y @ 2R.
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(c) Q@H � R, i.e., jIC 0 jX ðH þ RÞj ¼ Qþ jOX ð2RÞj. Since jOX ð2RÞj is free C 0 is
contained in the smooth quadric surface Q.

When v ¼ 2, then e ¼ 1 only if e ¼ 2w, i.e., degC 0 ¼ wþ 2. In this case we write
eþ 1 ¼ wþ 1þ d with d ¼ w. By Lemma 3.7 and we compute h0ðIC 0 jX ðRÞÞ ¼ 0 and

h0ðIC 0 jX ðH þ RÞÞ ¼ 4:

Since degC 0 ¼ wþ 2d 4 and ðH þ RÞ � ðH þ RÞ �H ¼ 5 we deduce that the linear
system jIC 0 jX ðH þ RÞj has a fixed part which is, as one can easily verify, p@R. In
this case C 0 is the union of a plane curve of degree wþ 1 on p and of a line.

Let v ¼ 1. Then e ¼ 0 and we have e ¼ wþ d with 0c d < w. By Lemma 3.7 we
compute h0ðIC 00 jX ðRÞÞ ¼ 0 and h0ðIC 00 jX ðH þ RÞÞ ¼ 2: With the same computation
we have done previously (case k ¼ 2 and v ¼ 1) one can deduce that

h0ðIC 0 jX ðHÞÞ ¼ 2:

Since degC 0 > wþ 1d 3 and H 3 ¼ 3 the linear pencil jIC 0 jX ðHÞj should have a
fixed part, which can be of the following types:

(a) p@R. In this case C 0 is the union of a plane curve of degree wþ 1 ¼ p � S �H
on p and of a line, which is the base locus of a pencil of quadric surfaces @H � R.
This is possible only when degC 0 ¼ wþ 2, i.e., d ¼ w� 1.

(b) Q@H � R, i.e., jIC 0 jX ðHÞj ¼ Qþ jOX ðRÞj. Since jOX ðRÞj is free C 0 is con-
tained in the smooth quadric surface Q.

The fixed part of jIC 0 jX ðHÞj cannot be Y @ 2R since in this case we would have
jIC 0 jX ðHÞj ¼ Y þ jOX ðH � 2RÞj, while h0ðOX ðH � 2RÞÞ ¼ 0.

Let v ¼ 0, then e ¼ 0 and we have e ¼ wþ d with 0c d < w. By Lemma 3.7
we compute h0ðIC 00 jX ðRÞÞ ¼ 0 and h0ðIC 00 jX ðH þ RÞÞ ¼ 1. In case S þ p1 þ p2 @
ðwþ 1Þ, one easily deduces that

h0ðIC 0 jX ðH � RÞÞ ¼ 1;

i.e., C 0 is contained in a smooth quadric surface Q@H � R. In case S þ q@
ðwþ 1ÞH, one finds that

h0ðIC 0 jX ð2RÞÞ ¼ 1;

therefore C 0 is contained in a reducible surface of degree two Y @ 2R.
(4) Let k ¼ 0 and let X ¼ Sð0; 0; 3Þ. Then e ¼ 0 and we write e ¼ d with 0c d < w.
Let v ¼ 2. By Lemma 3.7 we compute

h0ðIC 0 jX ð4RÞÞ ¼ 2:

Since degC 0 d 2wþ 3d 7 and 4R � 4R �H ¼ 6 by (2.6), we deduce that the linear
system jIC 0 jX ð4RÞj has a fixed part.

We exclude that the fixed part is p@R. Indeed in this case C 0 would be the union
of a curve contained in p of degree at most p � S �H ¼ wþ 1, and of a curve con-
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tained in the base locus of a pencil of hyperplane sections of degree at most H 3 ¼ 3.
But this is not possible since degC 0 dwþ 5.

Also Y @ 2R is not possible. In fact in this case C 0 would be contained in Y (since
the reduced singular line of X , which is the base locus of the residual system
jIC 0 jX ð4RÞj � Y H jOX ð2RÞj, is contained in Y ). This cannot happen since this
would imply dimðjIC 0 jX ð4RÞjÞ ¼ dimðY þ jIC 0 jX ð2RÞjÞ ¼ 2 while we know that
dimðjIC 0 jX ð4RÞjÞ ¼ 1.

(a) The only possibility is that the fixed part is L@ 3R. In this case we claim that
C 0 is contained in L. In this case we prove that C 0 is contained in a surface of degree
3 which is a hyperplane section of X . C 0 is the union of a curve contained in L and
possibly of the reduced singular line l of X , which is the base locus of the residual
system jIC 0 jX ð4RÞj � Y ¼ jOX ðRÞj. If L is reducible, then lHL and we are done. If
L is irreducible, i.e., L does not contain l, then C 0 would contain l with multiplicity 1,
but this is not possible, as the following computation shows. Let ~SS@ ðwþ 1� aÞ ~HH þ
3a ~RR ð0c acwÞ and ~FF @ ðmþ 1� bÞ ~HH þ 3b ~RR ð0c bcmÞ be the proper trans-
forms of S and F in ~XX . When ad 1 and bd 1 by (2.7) C 0 contains l with multiplicity
mðF ;S; lÞ ¼ 3ab.

Let v ¼ 1. By Lemma 3.7 we compute

h0ðIC 00 jX ð4RÞÞ ¼ 1:

Since by (2.6) 4R � p1 �H ¼ 2 and degC1 ¼ mþ 1 > 2, a surface@ 4R which con-
tains C 00 splits in the union of p1 @R and a surface@ 3R@H which contains C 0.
Therefore we have:

h0ðIC 0 jX ðHÞÞ ¼ 1:

Let v ¼ 0. By Lemma 3.7 we compute

h0ðIC00 jW ð7RÞÞ ¼ 4 if e ¼ w� 1;

h0ðIC 00 jW ð7RÞÞ ¼ 3 if e < w� 1:

(

Since by (2.6) we find 7R � p1 �H ¼ 7R � p2 �H ¼ 3 and degC1 ¼ degC2 ¼ mþ 1 >
3, we deduce that

h0ðIC 0 jW ð5RÞÞ ¼ 4 if e ¼ w� 1;

h0ðIC 0 jW ð5RÞÞ ¼ 3 if e < w� 1:

(

We claim that the linear system jIC 0 jW ð5RÞj has a fixed part. To prove the claim
we need first to analyze when C 0 may contain the singular line l of X as a component.
Let ~SS@ a ~HH þ ð3w� 3aþ 1Þ ~RR ð0 < acwÞ and ~FF @ ðmþ 1� bÞ ~HH þ 3b ~RR ð0c bc

mÞ be the proper transforms of S and F in ~XX . When bd 1 by (2.7) C 0 contains l with
multiplicity mðF ;S; lÞ ¼ 3bðw� aÞ þ bd b. On the other hand C 0 is contained in
the scheme S VD for some D A jIC 0 jW ð5RÞj; since S VD contains l with multiplicity

mðD;S; lÞ ¼ 2ðw� aÞ þ 1 if ~DD@ ~HH þ 2 ~RR or mðD;S; lÞ ¼ 5ðw� aÞ þ 2 if ~DD@ 5 ~RR,
then mðF ;S; lÞ should be less or equal than these values. Therefore when bd 1, since
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3bðw� aÞ þ b > 2ðw� aÞ þ 1, we exclude the possibility ~DD@ ~HH þ 2 ~RR; when bd 2,
since 3bðw� aÞ þ b > 5ðw� aÞ þ 2, we exclude the possibility ~DD@ 5 ~RR. Hence C 0

may contain l only if b ¼ 1, i.e., ~FF @m ~HH þ 3 ~RR, and the divisors in the linear sys-
tem jIC 0 jX ð5RÞj are all reducible in the union of five planes. In this case C 0 con-
tains l with multiplicity mðF ;S; lÞ ¼ 3ðw� aÞ þ 1, which has to be less or equal than
mðF ; 5R; lÞ, that is 5 by (2.7). This is possible only if either a ¼ w� 1, or a ¼ w.

When a ¼ w� 1 we have ~SS@ ðw� 1Þ ~HH þ 4 ~RR and C 0 contains l with multiplicity 4.
When a ¼ w we have ~SS@w ~HH þ ~RR and C 0 contains l with multiplicity 1.

Now we are able to prove that jIC 0 jX ð5RÞj has a fixed part. Let us suppose first
that C 0 contains l. In this case if the linear system jIC 0 jX ð5RÞj has no fixed part, then
C 0 is supported on the line l. Our previous computation implies that degC 0 c 4,
while we know that degC 0 d 7. Therefore jIC 0 jX ð5RÞj has a fixed part as claimed.
Let us suppose that C 0 does not contain l. If jIC 0 jX ð5RÞj has no fixed part, then
the generic element D in jIC 0 jX ð5RÞj is irreducible and has proper transform ~DD@
~HH þ 2 ~RR, therefore for D;D 0 in the linear system we have mðD;D 0; lÞ ¼ 1. In this case,
since by (2.6) 5R � 5R �H ¼ 8, the base locus of a pencil in jIC 0 jX ð5RÞj not supported
on l has degree 7. Since degC 0 d 7 and h0ðIC 0 jX ð5RÞÞ ¼ 3 we have a contradiction.
Therefore jIC 0 jX ð5RÞj has a fixed part.

We claim first that this fixed part cannot be p@R. In this case C 0 would be the
union of a curve C 0

1 H p and of a curve C 0
2 contained in the base locus of a linear

subsystem jajH jIC 0 jX ð4RÞj of projective dimension 3 if e ¼ w� 1; 2 if e < w� 1.
We want to prove that jaj has a fixed part. Let us suppose first that C 0 contains l,
with multiplicity 4 (if a ¼ w� 1) or 1 (if a ¼ w) by our previous computation. If
jaj has no fixed part then C 0

2 is supported on l, and since the component of C 0
1 dis-

joint from the line l has degree equal to ~pp � ~SS � ~HH ¼ a, we should have degC 0 ¼
4þ w� 1 ¼ wþ 3 (if a ¼ w� 1) or degC 0 ¼ 1þ w (if a ¼ w), but this is not possible
since degC 0 ¼ s� e� 1 ¼ 3w� e > 2wdwþ 3. Therefore we have a contradiction
and jaj has a fixed part. With similar arguments it is easy to prove that jaj has a fixed
part if we suppose that C 0 does not contain l. The fixed part of jIC 0 jX ð5RÞj can be of
the following types:

(a) Y @ 2R. In this case C 0 ¼ C 0
1 UC 0

2, where C 0
1 HY and C 0

2 is contained in the
base locus of a linear system jbjH jOX ðHÞj of projective dimension 3 if e ¼ w� 1; 2
if e < w� 1. If e ¼ w� 1, then C 0

2 is a line rH p@R. Therefore C 0 is contained in
the cubic surface Y U p@ 3R. If e < w� 1, then C 0

2 H s is a plane curve contained
in a plane s. If C 0 contains l, the divisors in jbj are reducible in the union of 3
planes, therefore s@R is a fixed part for jIC 0 jX ð5RÞj and we are in the next Case
(b). If C 0 does not contain l, then degC 0

1 c 2w; therefore if ecw� 3 we have
degC 0

2 d 3 which implies s@R. If e ¼ w� 2 and degC 0
1 ¼ 2w (i.e., ~SS@w ~HH þ ~RR),

then degC 0
2 ¼ 2 and s may be a plane not contained in X . C 0 is contained in the

cubic surface Y U s.
(b) L@ 3R. Here we must put e < w� 1, since for e ¼ w� 1 we have

h0ðIC 0 jX ð5RÞÞ ¼ 4, while h0ðOX ð5R� LÞÞ ¼ h0ðOX ð2RÞÞ ¼ 3. In this case C 0 is con-
tained in a cubic surface L@ 3R, a hyperplane section of X . r

In the next propositions we give a closer description of Case (2), (3) and (4) of
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Theorem 1.1. We omit the proofs which are quite long and repetitive, the reader may
look at [1] Proposition 8 and Proposition 9 to have an idea of the general arguments
used. When X ¼ Sð0; 1; 2Þ we use the genus Formula (3.9) to understand whether the
curve C 0 does pass through the vertex V or does not; when we don’t specify, it means
that C 0 may indi¤erently pass or not through V . In case X ¼ Sð0; 0; 3Þ, when it is not
specified otherwise C 0 does not contain l as a component. If C 0 contains l, the explicit
computation for the multiplicity of the singular line l as a component of C 0 is similar
to the one appearing in the proof of Theorem 1.1 Part (4). For some notation used in
the statements of the following propositions the reader may go back to Remark 2.9.

Proposition 4.1. Let k ¼ 2. Then C 0 is a plane curve of degree s� e� 1 and we have

the following possibilities:
1. When v ¼ 2 or v ¼ 0 and S@wH þ R, then C 0 has degree 1c degC 0 cwþ 1

(resp. 1c degC 0 cw) and it is contained in a plane p@R. If X ¼ Sð0; 1; 2Þ and

v ¼ 2, C 0 does not pass through the vertex V of X.
2. When v ¼ 1:
(a) If X ¼ Sð1; 1; 1Þ, then C 0 has degree 1c degC 0 cwþ 1 and it is contained in

a plane p@R. If degC 0 ¼ 1 there is the further possibility that C 0 lies on a plane s

which does not belong to the scroll, i.e., it is a line of type ð0; 1Þ.
(b) If X ¼ Sð0; 1; 2Þ and 1c degC 0 cw, i.e., 2w < ec 3w, then C 0 lies either in

p@R or in p@H � 2R. If degC 0 ¼ wþ 1, i.e., e ¼ 2w, then C 0 H p@R and passes

through the vertex V of X.
(c) If X ¼ Sð0; 0; 3Þ and 1c degC 0 cw, then C 0 is contained in a plane p@R. If

e ¼ 2w ðdegC 0 ¼ wþ 1Þ there are no curves of maximal genus on Sð0; 0; 3Þ.
(d) If degC 0 ¼ 2 there is the further possibility that C 0 lies on a plane s which does

not belong to the scroll. In this case C 0 is a conic hyperplane section of a quadric

surface@H � R.
3. When v ¼ 0 and S@ ðwþ 1ÞH � 2R:
(a) If X ¼ Sð1; 1; 1Þ and e ¼ 3w� 1, then C 0 is a line of type ð0; 1Þ, while if

e0 3w� 1 there are no curves of maximal genus on Sð1; 1; 1Þ.
(b) If X ¼ Sð0; 1; 2Þ and 1c degC 0 cw� 1 (i.e., 2w < ec 3w� 1), then C 0 is con-

tained in p@H � 2R. When degC 0 ¼ 1, i.e., if e ¼ 3w� 1, there is the further possi-

bility that C 0 is a line contained in a plane p@R and passing through V. If e ¼ 2w (i.e.,
degC 0 ¼ w) there are no curves of maximal genus on Sð0; 1; 2Þ.

Proposition 4.2. If k ¼ 1, then C 0 is a curve of degree s� e� 1 contained in a surface

of degree two and we have the following possibilities:
1. If v ¼ 2 or v ¼ 0 and S@wH þ R, the surface may be reducible in the union of

two planes p1 @R and p2 @R. In this case C 0 ¼ C 0
1 UC 0

2, where C
0
1 is a curve of degree

2wþ 1� e if v ¼ 2 (resp. of degree 2w� e if v ¼ 0) on p1 and C 0
2 is a curve of degree

wþ 1 (resp. w) on p2. If X ¼ Sð0; 1; 2Þ and S@wH þ R, then C 0 passes through the

vertex V. If X ¼ Sð0; 0; 3Þ, C 0
1 intersects C

0
2 in 2wþ 1� e (resp. 2w� e) points on l.

2. If X ¼ Sð0; 0; 3Þ, v ¼ 1 and e > w (i.e., degC 0 < 2wþ 1), the surface is reducible
in the union of two planes p1 @R and p2 @R. In this case C 0 ¼ C 0

1 UC 0
2, where C 0

1 is

a curve of degree 2wþ 1� e on p1 and C 0
2 is a curve of degree w on p2. C

0
1 intersects
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C 0
2 in 2wþ 1� e points on l. If v ¼ 1 and e ¼ w there are no curves of maximal genus

Gð5; d; sÞ in X ¼ Sð0; 0; 3Þ.
3. If X ¼ Sð0; 1; 2Þ, SSwH þ R and e0w;wþ 1 the surface may be reducible in

the union of a plane p@R and of the plane p@H � 2R meeting along a line r. In this

case C 0 ¼ C 0
1 UC 0

2, where C
0
1 is a curve of degree wþ 1 on p and C 0

2 is a curve of degree

2w� e� 1þ v on p. C 0
1 and C 0

2 meet each other in 2w� e� 1þ v points over r.
4. If X ¼ Sð1; 1; 1Þ or X ¼ Sð0; 1; 2Þ, SSwH þ R and e ¼ w;wþ 1 the surface

may be an irreducible quadric surface Q@H � R. In this case if X ¼ Sð1; 1; 1Þ and

e ¼ w, then C 0 is a curve of type ðw� 1þ v;wþ 1Þ on Q, (resp. of type ð2wþ vÞ if

X ¼ Sð0; 1; 2Þ); if e ¼ wþ 1 then C 0 is of type ðw� 1þ v;wÞ on Q (resp. of type

ð2w� 1þ vÞ).
5. (a) When v ¼ 2 and e ¼ 2w� 1 the surface may be the union of a plane p@R and

a plane s not contained in the scroll X. In this case C 0 ¼ C 0
1 UC 0

2, where C 0 H p has

degree wþ 1 and C 0
2 H s is a hyperplane section of a quadric surface @H � R (@2R,

if X ¼ Sð0; 0; 3Þ).
(b) When X ¼ Sð1; 1; 1Þ, v ¼ 2 and e ¼ w or v ¼ 1 and e ¼ 2w� 1, as in the previ-

ous case C 0 ¼ C 0
1 UC 0

2 where C
0
2 is a line of type ð0; 1Þ.

6. If X ¼ Sð1; 1; 1Þ, v ¼ 1 and e0w;wþ 1; 2w� 1 or S@ ðwþ 1ÞH � 2R and

e0w;wþ 1 there are no curves of maximal genus Gð5; d; sÞ on X.

Proposition 4.3. If k ¼ 0, then C 0 is a curve of degree s� e� 1 contained in a surface

of degree 3. We have the following possibilities:
1. The surface is a hyperplane section L of X. More precisely:
(a) if e ¼ 0, then C 0 is linked to a line by the intersection S VL;
(b) if e ¼ 1, then C 0 is linked to a conic by the intersection S VL;
(c) if e > 1 we have these cases:
i. If X ¼ Sð1; 1; 1Þ, then L splits in the union of a smooth quadric surface

Q@H � R with a plane p@R. If SSwH þ R, C 0 is the union of a curve C 0
1 HQ of

type ðwþ 1;w� 1þ vÞ and of a plane curve C 0
2 H p of degree w� e > 0 that intersect

each other in w� e points over the line r ¼ QV p. If v ¼ 0 and S@wH þ R, C 0 is the
union of a curve C 0

1 HQ of type ðw;wþ 1Þ and of a plane curve C 0
2 H p of degree

w� e� 1 that intersect each other in w� e� 1 points over the line r (in this case, if
e ¼ w� 1, C 0 is contained in the smooth quadric Q).

ii. If X ¼ Sð0; 1; 2Þ, then L may split in the union of an irreducible quadric cone

Q@H � R with a plane p@R, and we have a similar description of C 0 as in the pre-

vious case. Otherwise L may split in the union of three planes p1 @R, p2 @R and

p@H � 2R. If SSwH þ R and ecw� 2þ v, C 0 is the union of a plane curve

C 0
1 H p1 of degree wþ 1, of a plane curve C 0

2 H p2 of degree wþ 1 and of a plane curve

C 0
3 H p of degree w� e� ð2� vÞ (if v ¼ 1 and e ¼ w� 1 or v ¼ 0 and e ¼ w� 2 then

C 0 is contained in the union of two planes). C 0
1 intersects C 0

3 in w� e� ð2� vÞ points
along r1 ¼ p1 V p. C 0

2 intersects C
0
3 in w� e� ð2� vÞ points along r2 ¼ p2 V p. If v ¼ 0

and S@wH þ R, C 0 is the union of a plane curve C 0
1 H p1 of degree w, of a plane

curve C 0
2 H p2 of degree w and of a plane curve C 0

3 H p of degree w� e. C 0
1 intersects

C 0
3 in w� e points along r1 and C 0

2 intersects C
0
3 in w� e points along r2.

iii. If X ¼ Sð0; 0; 3Þ, then L splits in the union of three planes pi @R ði ¼ 1; 2; 3Þ. In
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this case, when v ¼ 2 the proper transform of S is ~SS@ ðwþ 1� aÞ ~HH þ 3a ~RR with 0c
acw� e. C 0 is the union of the line l counted with multiplicity 3a, of a curve C 0

1 H p1
of degree wþ 1� a, of a curve C 0

2 H p2 of the same degree, and of a curve C 0
3 H p3 of

degree w� e� a. C 0
1 and C 0

2 intersect each other in wþ 1� a points on l. C 0
1 and C 0

2

both intersect C 0
3 in w� e� a points on l.

When v ¼ 1 the proper transform of S is ~SS@ ðw� aÞ ~HH þ ð3aþ 2Þ ~RR with

0c acw� e� 1. C 0 is the union of the line l counted with multiplicity 3aþ 2, of a
curve C 0

1 H p1 of degree w� a, of a curve C 0
2 H p2 of the same degree, and of a curve

C 0
3 H p3 of degree w� a� e� 1. C 0

1 and C 0
2 intersect each other in a points on l. C 0

1

and C 0
2 both intersect C 0

3 in w� a� e� 1 points on l.
When v ¼ 0 the proper transform of S is ~SS@w ~HH þ ~RR. If e ¼ w� 1, then C 0 is the

union of a curve C 0
1 H p1 of degree w, of a curve C 0

2 H p2 of the same degree, and of

a curve C 0
3 H p3 of degree w� e. C 0

1 and C 0
2 intersect each other in w points on l. C 0

1

and C 0
2 both intersect C 0

3 in w� e points on l. If e < w� 1, then C 0 may contain l with

multiplicity 1. In this case C 0 is the union of l, of C 0
1, of C

0
2, and of a curve C 0

3 H p3
of degree w� e� 1. C 0

1 and C 0
2 intersect each other in w points on l. C 0

1 and C 0
2 both

intersect C 0
3 in w� e� 1 points on l.

2. If X ¼ Sð1; 1; 1Þ or X ¼ Sð0; 1; 2Þ, v ¼ 0 and S@wH þ R the cubic surface may

be non-degenerate and@3R. In this case C 0 is the union of a plane curve C 0
1 H p1 @R

of degree w� e, of a plane curve C 0
2 H p2 @R of degree w and of a plane curve

C 0
3 H p3 @R of degree w. If X ¼ Sð1; 1; 1Þ and e ¼ w� 1 there is the further possibil-

ity that C 0
1 is a line which does not lie on a plane@R, i.e., it is of type ð0; 1Þ.

3. If X ¼ Sð0; 1; 2Þ, e > 0, v ¼ 0 and S@ ðwþ 1ÞH � 2R the cubic surface may be

non-degenerate and@2H � 3R. In this case C 0 is the union of a plane curve C 0
1 H p of

degree w� e and of a curve C 0
2 HQ of degree 2w on a quadric cone Q.

4. If X ¼ Sð1; 1; 1Þ or X ¼ Sð0; 1; 2Þ, v ¼ 0, S@ ðwþ 1ÞH � 2R and e ¼ w� 2, the
surface may be reducible in the union of a quadric surface@H � R (if X ¼ Sð0; 1; 2Þ it
may be the union of a plane p@R and the plane p) and of a plane s not contained in

the scroll. C 0 is the union of a curve C 0
1 of type ðwþ 1;w� 1Þ in Q and of a conic in s.

If X ¼ Sð1; 1; 1Þ and e ¼ w� 1, C 0 is the union of C 0
1 and of a line of type ð0; 1Þ.

5. If v ¼ 0, S@wH þ R and e ¼ w� 2 the surface may split in the union of a plane

p1 @R, of a plane p2 @R and of a plane s which is not contained in the scroll. C 0 is
the union of a curve C 0

1 H p1 of degree w, of a curve C 0
2 H p2 of the same degree, and of

a conic in s. If X ¼ Sð1; 1; 1Þ and e ¼ w� 1, C 0 is the union of C 0
1, C

0
2 and of a line of

type ð0; 1Þ.

5 The existence

Lastly we need an e¤ective construction for curves of degree d, genus Gðd; 5; sÞ in P5,
not lying on a surface of degree <s. It should be noted that in case k ¼ v ¼ 1 it is not
possible to construct curves of maximal genus on a smooth rational normal 3-fold (see
Proposition 4.2 Case 6)). In this case the construction is possible only on a rational
normal 3-fold whose vertex is a point. Before the construction we state the following
result (see [11] Lemma 1 p. 133), that we will use. Since [11] is an unpublished work
we give a quick proof.
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Lemma 5.1. Let X be a smooth 3-fold. Let S be a linear system of surfaces of X and let

g be a curve contained in the base locus of S. Suppose that the generic surface of S is

smooth at the generic point of g and that it has at least a singular point which is variable

in g. Then all the surfaces of S are tangent along g.

Proof. Let p : ~XX ! X be the blowup of X along g and let E be the exceptional divi-
sor. Let ~SS be the linear system in ~XX of the proper transforms f ~SS ¼ p�S � EgS AS. Let
S 0 be the linear system in E given by S 0 ¼ f ~SS VEg ~SS A ~SS. Let S A S be a surface and let
x1; . . . ; xn be the points of g where S is singular with multiplicities ri; . . . ; rn. Let S

0 ¼
~SS VE ¼ Dþ

Pn
1 riEi be the corresponding divisor in E, where Ei is the fiber of E

over xi and D is the curve that is unisecant E and that represents the tangent plane to
S in the generic point of g. The lemma is proved if we show that D is fixed when ~SS
moves in ~SS.

Let S 00 the movable part of S 0. Every curve in S 00 contains the fiber of E over the
singular point of S that moves in g. By Bertini’s theorem the generic curve in S 00 is
irreducible or S 00 is composed with a pencil. In the first case we conclude that D is
part of the base locus of S 0 and we are done. We show now that the second case
is impossible. In fact two curves of S 00 intersect each other because they both contain
a unisecant and a fiber, moreover by hypothesis the fiber moves, therefore the inter-
section points move and describe a curve. This is not possible since two generic divi-
sors of a system composed with a pencil intersect each other only in a finite number
of fixed points. r

Proof of Theorem 1.2. 1. Let k ¼ 3. In this case take S to be the complete intersection
of a smooth rational normal 3-fold X HP5 and a general hypersurface G of degree
wþ 1 in P5. The complete intersection of S with a general hypersurface F of degree
mþ 1 gives the required curve C.

2. Let k ¼ 2 and v ¼ 2. In this case we have eþ 1 ¼ 2ðwþ 1Þ þ d with 0c dcw.
Let p be a plane contained in a smooth rational normal 3-fold X in P5 and let
DH p be a smooth plane curve of degree wþ 1 > degD ¼ e� 2w� 1d 0 (possibly
D ¼ q). Let us consider the linear system jID jX ðwþ 1Þj, which is not empty since
it contains the linear subsystem Lþ jOX ðwÞj, where L is a hyperplane section of X
containing the plane p. This shows also that jID jX ðwþ 1Þj is not composed with a
pencil because in this case every element in the system would be a sum of algebrai-
cally equivalent divisors, but, for example, the elements in Lþ jOX ðwÞj are obviously
not of this type. Since degD < wþ 1 the linear system jID jpðwþ 1Þj is not empty
and its base locus is the curve D; this shows that the base locus of jID jX ðwþ 1Þj is
exactly the curve D, because jOX ðwÞj is base points free. Therefore by Bertini’s theo-
rem the general divisor in jID jX ðwþ 1Þj is an irreducible surface S of degree s, which
is smooth outside D. We claim that S is in fact smooth at every point p of D. To see
this, by Lemma 5.1, it is enough to prove that for every point p A D, there exists a
surface in jID jX ðwþ 1Þj which is smooth at p, and that for a generic point q A D,
there exist two surfaces in jID jX ðwþ 1Þj with distinct tangent planes at q. Indeed, for
every p A D we can always find a surface T in the linear system jOX ðwÞj which does
not pass through p, therefore the surface Lþ T is smooth at p with tangent plane p.
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Moreover a generic surface in the linear system jID jX ðwþ 1Þj which cuts D on p has
at p tangent plane Tp 0 p.

Let C 0 H p be the linked curve to D by the intersection of S and p. Let us consider
the linear system jIC 0 jSðmþ 1Þj. Since degC 0 ¼ s� e� 1 < mþ 1, with the same
arguments used above it is easy to see that jIC 0 jSðmþ 1Þj is not empty, is not com-
posed with a pencil and has base locus equal to the curve C 0. Therefore by Bertini’s
theorem the generic curve C in the movable part of this linear system is irreducible
and smooth. Moreover C lies on a smooth surface S of degree s ¼ 3wþ 3 and it has
the required numerical characters, as one may easily verify using the genus Formula
(3.9), paðC 0Þ ¼ 1

2 ð3wþ 2� e� 1Þð3wþ 2� e� 2Þ (computed by Clebsch’s formula)
and degðRVC 0Þ ¼ 0.

3. Let k ¼ 2 and v ¼ 1. In this case we have e ¼ 2wþ d with 0c dcw. Let X and
pHX be as in the previous case and let p1 0 p be an other plane contained in X . Let
DH p be a smooth plane curve of degree 0c degD ¼ e� 2w < wþ 1 on p. In this
case by Bertini’s theorem we can find an irreducible surface S@ ðwþ 1ÞH � R of
degree s ¼ 3wþ 2 in the movable part of the linear system jIDUp1 jX ðwþ 1Þj, smooth
outside D. With the same argument used in the previous case we prove that S U p1
is smooth at every point of D. Namely, for every p A D, a generic surface in the lin-
ear system Lþ L1 þ jOX ðw� 1Þj, where L ¼ pþQ and L1 ¼ p1 þQ1 are reducible
hyperplane sections containing respectively p and p1 and such that p B QUQ1, is
smooth at p with tangent plane p, while a surface in the linear system L1 þ jID jX ðwÞj
which cuts D on p has tangent plane Tp 0 p. Since DV p1 ¼ q this implies that S is
smooth.

Let C 0 be the linked curve to D by the intersection pVS. By Bertini’s theorem the
linked curve C to C 0 by the intersection of S with a general element Fmþ1 in the linear
system jIC 0 jSðmþ 1Þj is smooth of degree d. Moreover it lies on a smooth surface
S of degree s ¼ 3wþ 2 and it has the required genus, as one can compute by using
Formula (3.9), where the curve C 00 is the union of C 0 and of the curve C1 H p1 cut on
p1 by Fmþ1, and degðRVC 00Þ ¼ 0.
4. Let k ¼ 2 and v ¼ 0. In this case we have e ¼ 2wþ d with 0c d < w. Let X and

pHX as before and let q be a smooth quadric surface contained in X , intersecting p

along a line r. Let DH p be a smooth plane curve of degree 0c degD ¼ e� 2w < w

on p (when degD ¼ 1 we suppose that D does not coincide with the line r). In this
case by Bertini’s theorem we can find an irreducible surface S@wH þ R of degree
s ¼ 3wþ 1 in the movable part of the linear system jIDUq jX ðwþ 1Þj, smooth outside
D. As in the previous cases we claim that S is smooth. Namely, for every p A D, we
can find in the movable part of our linear system jIDUqðwþ 1Þj a surface which is
smooth at p with tangent plane equal to p (take a surface of the form Lþ p 0 þ T ,
with L as usual, p 0 @R a plane of X disjoint from p and T a surface in jOX ðw� 1ÞHj
that does not pass through p), and a surface with tangent plane Tp 0 p (take a sur-
face of the form p 0 þ V , where V is a divisor in ID jX ðwÞ which cut D on p).

Let C 0 be the linked curve to D by the intersection pVS; we have degC 0 ¼ 3w� e.
The linked curve C to C 0 by the intersection of S with a general element Fmþ1 in the
linear system jIC 0 jSðmþ 1Þj is smooth of degree d and lies on the smooth surface
S of degree s ¼ 3wþ 1. Its genus is maximal as one can compute by using For-
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mula (3.9), where the curve C 00 is the union of C 0 and of the curve Cq H q of type
ðmþ 1;mþ 1Þ on q, intersecting each other in 3w� e points along r. In this case
degðRVC 00Þ ¼ mþ 1.

5. Let k ¼ 1 and v ¼ 2. In this case we have e ¼ wþ d with 0c dcw. Let p1 be
a plane contained in a smooth rational normal 3-fold X in P5 and let DH p1 be a
smooth plane curve of degree 0c degD ¼ e� w < wþ 1 (possibly D ¼ q). In this
case by Bertini’s theorem we can find an irreducible surface S of degree s ¼ 3wþ 3
in the linear system jID jX ðwþ 1Þj, which is also smooth (by using exactly the same
argument used in case k ¼ v ¼ 2). Let p2 be an other plane contained in X but not
contained in S and let C 0 be the linked curve to D by the intersection S V ðp1 U p2Þ.
Therefore C 0 is the disjoint union of a plane curve of degree 2wþ 1� e on p1 and of
a plane curve of degree wþ 1 on p2. Let us consider the linear system jIC 0 jSðmþ 1Þj,
whose base locus is the curve C 0. Therefore by Bertini’s theorem the generic curve
C in the movable part of this linear system is smooth, of degree d, lies on a smooth
surface S of degree s ¼ 3wþ 3 and it has the required genus as one may easily verify
using the genus Formula (3.9).

6. Let k ¼ 1 and v ¼ 1. In this case e ¼ wþ d with 0c d < w. Let X be a rational
normal 3-fold singular at a point V , i.e., X ¼ Sð0; 1; 2Þ. Let p1 @R be a plane in
the ruling of X intersecting the plane p@H � 2R along a line r1. Let DH p be a
smooth plane curve of degree 0c degD ¼ e� w < w contained in the plane p and
not passing through the vertex V of X (in particular when degD ¼ 1, the curve
D cannot be the line r1). By Bertini’s theorem we can find an irreducible surface
S@ ðwþ 1ÞH � R of degree s ¼ 3wþ 2 in the movable part of the linear system
jIDUp1 jX ðwþ 1Þj smooth outside D and V . With the same argument used in case
k ¼ 2 and v ¼ 1 one can say that S is smooth outside the vertex V of X . Let p@R

be an other plane in the ruling of X and not contained in S; let C 0 be the linked curve
to D by the intersection S V ðpU pÞ. Therefore C 0 is the union of a plane curve C 0

p of
degree 2w� e on p which does not pass through V , and of a plane curve C 0

p of degree
wþ 1 on p passing once through V , that meet each other in 2w� e points on the line
r of intersection between p and p. Let us consider the linear system jIC 0 jSðmþ 1Þj,
whose base locus is the curve C 0. Therefore by Bertini’s theorem the generic curve
C in the movable part of this linear system is irreducible, of degree d, lies on an
irreducible surface S of degree s ¼ 3wþ 2 and it is smooth outside V . But since V

does impose just one condition on the linear system jIC 0 jSðmþ 1Þj, namely the one
imposed by C 0

p, it follows that C does not pass through V , hence C is smooth. The
genus of C is maximal and can be computed by using Formula (3.9), where the curve
C 00 is the union of C 0 and of a plane curve C1 H p1 of degree mþ 1 intersecting along
2w� e points on the line r1 ¼ pV p1, and degðRVC 00Þ ¼ 2w� eþ 1.

7. Let k ¼ 1 and v ¼ 0. In this case e ¼ wþ d with 0c d < w. Let X be again
a smooth rational normal 3-fold in P5. Let q@H � R be a smooth quadric sur-
face contained in X and let p1 @R be a plane of X intersecting q along a line r1.
Let DH p1 be a smooth plane curve of degree 0c degD ¼ e� w < w contained
in p1 (when degD ¼ 1 we suppose that D does not coincide with the line r1). With
the same argument used in case k ¼ 2 and v ¼ 0 we find an irreducible smooth sur-
face S@wH þ R of degree s ¼ 3wþ 2 in the movable part of the linear system
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jIDUq jX ðwþ 1Þj. Let p2 @R be an other plane of X not contained in S; let C 0 be the
linked curve to D by the intersection S V ðp1 U p2Þ. Therefore C 0 is the disjoint union
of a plane curve of degree 2w� e on p1 and of a plane curve of degree w on p2. Let us
consider the linear system jIC 0 jSðmþ 1Þj, whose base locus is the curve C 0. Therefore
by Bertini’s theorem the generic curve C in the movable part of this linear system is
smooth, of degree d and lies on a smooth surface S of degree s ¼ 3wþ 1. The genus
of C is maximal and can be computed using Formula (3.9), where the curve C 00 is the
union of C 0 and of a curve Cq H q of type ðmþ 1;mþ 1Þ on q, intersecting at 2w� e

points on the line r1 ¼ p1 V q and at w points on the line r2 ¼ p2 V q. Moreover
degðRVC 00Þ ¼ mþ 1.

8. Let k ¼ 0 and v ¼ 2. In this case we have that 0c e < w. Let X be a smooth
rational normal 3-fold in P5 and let p be a plane of X . Let DH p be a plane curve
of degree 0c degD ¼ eþ 1 < wþ 1 in p. With the same argument used in case k ¼
v ¼ 2 one can prove that the general divisor in the linear system jID jX ðwþ 1Þj is
a smooth surface S of degree s ¼ 3wþ 3. Let L be a general hyperplane section of
X containing p, i.e., the union of a smooth quadric surface Q and p meeting along
a line r. Let C 0 be the linked curve to D by the intersection S VL, i.e., C 0 is the union
of a curve C 0

Q HQ of type ðwþ 1;wþ 1Þ and of a plane curve C 0
p H p of degree

w� e, meeting at w� e points. Let us consider the linear system jIC 0 jSðmþ 1Þj. By
Bertini’s theorem the generic curve C in the movable part of this linear system is
smooth of degree d. Moreover C lies on a smooth surface S of degree s ¼ 3wþ 3
and it has the required numerical characters, as one may easily verify using paðC 0Þ ¼
w2 þ 1

2 ðw� e� 1Þðw� e� 2Þ þ w� e� 1 (computed by Noether’s formula) and
degðRVC 0Þ ¼ wþ 1 in the genus Formula (3.9).

9. Let k ¼ 0 and v ¼ 1. Again we have 0c e < w. Let X , pHX and p1 be as in the
case k ¼ 2 and v ¼ 1. Let DH p be a smooth plane curve of degree eþ 1. With the
same argument used in the case k ¼ 2 and v ¼ 1 we find an irreducible smooth sur-
face S in the movable part of a general divisor in the linear system jIDUp1 jX ðwþ 1Þj.
Let L ¼ pUQ be a general hyperplane section of X containing the plane p, which
intersects the plane p1 in a line r1 of type ð1; 0Þ. C 0 is the linked curve to D by the
intersection S VL; therefore C 0 is the union of a curve C 0

Q HQ of type ðw;wþ 1Þ and
of a plane curve C 0

p H p of degree w� e, meeting at w� e points. The generic curve
C in the movable part of the linear system jIC 0 jSðmþ 1Þj is smooth of degree d.
Moreover C lies on a smooth surface S of degree s ¼ 3wþ 2 and it has the required
numerical characters as one may easily verify using Formula (3.9). In this case C 00 is
the union of C 0 with a plane curve of degree mþ 1 on p1 meeting at wþ 1 points,
and degðRVC 00Þ ¼ wþ 1.

10. Let k ¼ 0 and v ¼ 0. We have 0c e < w. Let X , pHX and L ¼ pUQ as in
the previous case. Let q@H � R be an other smooth quadric surface contained in X

which intersects Q along a line r of type ð0; 1Þ and p along a line s of type ð1; 0Þ. Let
DH p be a smooth plane curve of degree e (when degD ¼ 1 we suppose that D does
not coincide with the line s). With the same argument used in case k ¼ 2 and v ¼ 0
we find an irreducible smooth surface S is the movable part of a general divisor in the
linear system jIDUq jX ðwþ 1Þj. C 0 is the linked curve to D by the intersection S VL;
therefore C 0 is the union of a curve C 0

Q HQ of type ðwþ 1;wÞ and of a plane curve
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C 0
p H p of degree w� e� 1, meeting at w� e� 1 points. The generic curve C in the

movable part of the linear system jIC 0 jSðmþ 1Þj is smooth of degree d. Moreover
C lies on a smooth surface S of degree s ¼ 3wþ 1 and it has the required numerical
characters as one may easily verify by using Formula (3.9). In this case C 00 is the
union of C 0 with a curve of type ðmþ 1;mþ 1Þ on q meeting at wþ 1 points along
the line r and at w� e� 1 points along the line s, and degðRVC 00Þ ¼ wþmþ 1.

r
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[9] R. Hartshorne, Algebraic geometry. Springer 1977. MR 57 #3116 Zbl 0367.14001
[10] R. Hartshorne, Generalized divisors on Gorenstein schemes. In: Proceedings of Confer-

ence on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp,
1992), K-Theory 8 (1994), 287–339. MR 95k:14008 Zbl 0826.14005

[11] E. Rogora, Metodi proiettivi e di¤erenziali per lo studio di alcune questioni relative alle
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