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Complex geometry of generalized annuli

Chiara de Fabritiis
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Abstract. We study the complex geometry of a class of domains in Cn which generalize the
annuli in C, i.e., which are quotients of the unit ball Bn of Cn for the action of a group gen-
erated by a hyperbolic element of AutBn. In particular, we prove that the degree of holomor-
phic maps between two such domains is bounded by a constant which depends on the ‘‘radii’’
of the domains only and we give some results on the existence of complex geodesics for the
Kobayashi distance in these domains.
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1 Introduction

The aim of this paper is to study the complex geometry of a class of domains in
Cn which are quotients of the unit ball Bn HCn for the action of a group gen-
erated by a hyperbolic element of AutBn (see Section 2 for definitions). Since
the annuli in C are obtained as quotients of the unit disk D ¼ fx A C : jxj < 1g
for the action of a group generated by a hyperbolic element of AutD, the
domains we study can be seen as a generalization of annuli to several complex
variables.

In Section 2 we give some definitions we need in the sequel of the paper and we
recall some statements concerning this class of domains, which were introduced in
[3]. In Section 3 we generalize to several complex variables a result which is due to
Schi¤er in the one-dimensional case: the degree of a holomorphic map between
two annuli is bounded by a constant which depends on the moduli of the annuli
only.

In Section 4 we study the geometry of extremal mappings and complex geodesics
for the Kobayashi distance in this class of domains. In particular we prove that there
always exists an extremal mapping through two given points of a ‘‘generalized annu-
lus’’ and we give several results on existence and non-existence of complex geodesics
according to the ‘‘radius’’ of the domain and to other parameters which classify these
domains.



2 Preliminaries and statements

We denote the unit ball for the Euclidean metric in Cn by Bn; the following result is
well known.

Theorem 2.1. Any holomorphic automorphism g of Bn can be extended holomorphically

to a neighborhood of the closure of Bn; if g has no fixed points in Bn, then its extension

has either one or two fixed points in qBn.

From now on we shall denote by the same symbol a holomorphic automorphism of
Bn and its extension to the closure of Bn.

Definition 2.2. Let g A AutBn: if g has at least one fixed point in Bn, then g is said to
be elliptic; if g has no fixed points in Bn and has one fixed point in qBn, it is said to be
parabolic; if g has no fixed points in Bn and has two fixed points in qBn, it is said to
be hyperbolic.

To generalize the construction of annuli to several complex variables, we will focus
our attention to the action of hyperbolic elements on Bn. First of all, we recall a
result which is due to de Fabritiis and Gentili (see [5]).

Proposition 2.3. Let g be a hyperbolic element in AutBn; then there exist T A R� and

y2; . . . ; yn A R such that g is conjugate to

g0 : z 7!
z1 coshT þ sinhT

z1 sinhT þ coshT
;

eiy2z2

z1 sinhT þ coshT
; . . . ;

eiynzn

z1 sinhT þ coshT

� �
: ð2:1Þ

In the sequel it will be useful to consider the problem on the Siegel half-space Hn ¼
fw A Cn jIw1 > jw2j2 þ � � � þ jwnj2g which is biholomorphic to Bn via the Cayley
transform C (see e.g. Rudin [7] or Abate [1]), so we also give the form of hyperbolic
elements in AutHn.

Corollary 2.4. Let m A AutHn be hyperbolic; then there exist l A Rþnf1g and

y2; . . . ; yn A R such that m is conjugate to

C � g0 � C�1 ¼ m0 : w 7! ðl2w1; le
iy2z2; . . . ; le

iynznÞ; ð2:2Þ

where l ¼ eT .

This result enables us to consider the quotients of Bn (resp. Hn) for the action of the
group G ðMÞ generated by a hyperbolic element g A AutBn ðm A AutHnÞ. Since the
quotients Hn=M1 and Hn=M2 are biholomorphic i¤ M1 and M2 are conjugate in
AutHn, then it is enough to consider the case of a group generated by an element
of the form (2.2). As we are interested in the group M generated by m0, rather than
in the element m0 itself, we can always suppose that l > 1, that is T > 0. Let
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ln : H1 ! R� ð0; pÞ be a branch of the logarithm, set b ¼ 1=ln l ¼ 1=T and con-
sider the holomorphic map pr : Hn ! Cn given by

prðwÞ ¼ ðeibp lnw1 ; e�bðln lþiy2Þ lnw1=2w2; . . . ; e
�bðln lþiynÞ lnw1=2wnÞ: ð2:3Þ

In [3] and [4] the following result is proved:

Theorem 2.5. Let m0 be given by (2.2) and M be the group generated by m0. Then the

map pr : Hn ! Cn given by (2.3) factors on Hn=M giving a biholomorphism between

Hn=M and the bounded domain

Wðr; y2; . . . ; ynÞ ¼
�
x A Cn

���� r < jx1j < 1;
Xn
j¼2

jxjj2jx1jyj=p < sin
p lnjx1j
ln r

� ��
;

where r ¼ e�p2=ln l ¼ e�p2=T A ð0; 1Þ, y2; . . . ; yn A R. In particular Hn=M is a Stein

manifold which is biholomorphic to a bounded domain in Cn.

As a consequence of the previous theorem, the domains Wðr; y2; . . . ; ynÞ can be seen
as a generalization to several complex variables of the annuli, which are the quotients
of the unit disk D ¼ B1 for the action of the groups generated by hyperbolic auto-
morphisms of D. In fact WðrÞ ¼ fx A C j r < jxj < 1g is an annulus in C and for this
reason we shall often call these domains ‘‘generalized annuli’’.

To simplify notation, when no confusion can arise we only write W instead of
Wðr; y2; . . . ; ynÞ. Of course, via the Cayley transform we can also study the problem
on Bn: in this case the covering will be given by ðBn !w WÞ where w ¼ pr � C.

Remark 2.6. Notice that the domain Wðr; y2; . . . ; ynÞ retracts by deformation on the
annulus WðrÞ, in particular it is doubly connected.

From now on, we shall denote by W1 the domain Wðr1; y2; . . . ; yn1ÞHCn1 and by W2

the domain Wðr2; Q2; . . . ; Qn2ÞHCn2 ; in order to simplify the notation, the symbol H
will stand for HolðW1;W2Þ ¼ f f : W1 ! W2 j f holomorphicg. For all f A H, we will
denote the degree of f by dð f Þ.

Definition 2.7. Let f ; g A H. We say that f and g are homotopic if there exists a con-
tinuous map F : ½0; 1� �W1 ! W2 such that

(i) F ð0; �Þ ¼ f , Fð1; �Þ ¼ g;

(ii) F ðt; �Þ A H for all t A ½0; 1�.

Of course, the fact of being homotopic is an equivalence relation on H; we shall
denote the homotopy class of f A H by ½ f �.

At last, if D is a domain in Cn, we shall denote by kDð� ; �Þ the Kobayashi distance

on D and by kDð� ; �Þ the Kobayashi metric on D (for a comprehensive reference on
this topic see [1] or [6]).
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3 Holomorphic maps between generalized annuli

In this section we generalize the estimate of the degree of a holomorphic map between
two annuli which is due to Schi¤er (see [8]) in the one-dimensional case.

Theorem 3.1. If f A HolðWðr1Þ;Wðr2ÞÞ, then jdð f Þjc ½ln r2=ln r1�. Moreover, if equal-
ity holds there exists y A R such that for all x A Wðr1Þ

f ðxÞ ¼ eiyxdð f Þ if dð f Þ > 0;

r2e
iyxdð f Þ if dð f Þ < 0:

(

Let W1 ¼ Wðr1; y2; . . . ; yn1ÞHCn1 and W2 ¼ Wðr1; Q2; . . . ; Qn2ÞHCn2 be two general-
ized annuli; since the fundamental group of both W1 and W2 is isomorphic to Z, we
can define the degree dð f Þ A Z of a holomorphic map f A H by choosing genera-
tors ~aaj of p1ðWjÞ represented by ajðtÞ ¼ ð ffiffiffiffi

rj
p

e2pit; 0; . . . ; 0Þ for j ¼ 1; 2 and setting
f�ð~aa1Þ ¼ dð f Þ~aa2.

Theorem 3.2. If f A H, then jdð f Þjc ½ln r2=ln r1�.

Proof. Let Sn ¼ fw A Cn jIw1 A ð0; pÞ;Iew1 > jw2j2 þ � � � þ jwnj2g; it is easily verified
that the map E : Sn C w ! ðew1 ;w2; . . . ;wnÞ A Hn is a biholomorphism.

Then we can consider the coverings ðSnj !
qj

WjÞ for j ¼ 1; 2, where the maps q1 and
q2 are given by

q1ðwÞ ¼ ðeib1pw1 ; e�b1ðln l1þiy2Þw1=2w2; . . . ; e
�b1ðln l1þiyn1 Þw1=2wn1Þ;

q2ðwÞ ¼ ðeib2pw1 ; e�b2ðln l2þiQ2Þw1=2w2; . . . ; e
�b2ðln l2þiQn2

Þw1=2wn2Þ;

with bj ¼ �ln rj=p
2 and ln lj ¼ 1=bj . The group of deck-transformations of the cov-

erings ðSnj !
q j

WjÞ is generated by nj ¼ E�1 � mj � E : Snj ! Snj given by

n1ðwÞ ¼ ðw1 þ 2 ln l1; l1e
iy2w2; . . . ; l1e

iyn1wn1Þ;

n2ðwÞ ¼ ðw1 þ 2 ln l2; l2e
iQ2w2; . . . ; l2e

iQn2wn2Þ;

respectively. Since the domain Sn1 is simply connected, there exists a continuous map
~ff : Sn1 ! Sn2 such that q2 � ~ff ¼ f � q1; the maps q1 and q2 being local biholomor-
phisms, we immediately obtain that ~ff is holomorphic. Interpreting the degree of f

via the isomorphism between the fundamental groups of Wj and the groups of deck-
transformations of the coverings, we obtain the following equality

~ff � n1 ¼ n
dð f Þ
2 � ~ff ; ð3:1Þ

the comparison between (3.1) and the contracting property of the Kobayashi dis-
tance will yield the conclusion. Let us consider the points w0 ¼ ðip=2; 0; . . . ; 0Þ and
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w1 ¼ n1ðw0Þ ¼ ð2 ln l1 þ ip=2; 0; . . . ; 0Þ A Sn1 ; if kD denotes the Kobayashi distance
on D, we have the following chain of inequalities

kSn2
ð ~ff ðw0Þ; ~ff ðw1ÞÞc kSn1

ðw0;w1Þ ¼ kH n1 ðEðw0Þ;Eðw1ÞÞ

¼ kH1ði; l21 iÞ ¼ ln l1 ¼ �p2=ln r1;

where the second equality is due to the fact that Eðw0Þ;Eðw1Þ A H1 � f0g which is a
holomorphic retract of Hn. Since

kSn2
ð ~ff ðw0Þ; ~ff ðw1ÞÞ ¼ kSn2

ð ~ff ðw0Þ; ~ff ðn1ðw0ÞÞÞ ¼ kSn2
ð ~ff ðw0Þ; ndð f Þ2 ð ~ff ðw0ÞÞÞ;

considering the projection on the first component and denoting f1ðw0Þ by c, the
above inequality and the contracting property of the Kobayashi distance yield

kS1
ðc; cþ 2dð f Þ ln l2Þc kSn2

ð ~ff ðw0Þ; ndð f Þ2 ð ~ff ðw1ÞÞÞc�p2=ln r1:

Via the biholomorphism E : S1 ! H1, we can evaluate kS1
ðc; cþ 2dð f Þ ln l2Þ obtain-

ing

kS1
ðc; cþ 2dð f Þ ln l2Þ ¼ kH1ðec; l2dð f Þ2 ecÞd�p2jdð f Þj=ln r2;

as r2 < 1, this implies jdð f Þjc ln r2=ln r1. r

This means that the ratio of the logarithms of ‘‘inner radii’’ (that is, the generaliza-
tion of the ratio of the moduli) bounds the degree of holomorphic maps between gen-
eralized annuli. The following proposition gives an even deeper interest to the above
theorem, since it tells us that the degree is a complete homotopy invariant.

Proposition 3.3. Let f ; g A H. Then dð f Þ ¼ dðgÞ if and only if ½ f � ¼ ½g�, that is if and
only if f and g are homotopic.

Proof. The ‘‘if ’’ part is obvious. In order to prove the converse implication, we write
f ¼ ð f1; . . . ; fn2Þ and g ¼ ðg1; . . . ; gn2Þ; using the retraction by deformation of W2 onto
Wðr2Þ � f0g given by rðt; xÞ ¼ ðx1; tx2; . . . ; txnÞ, it is easily seen that we can limit our-
selves to the case n2 ¼ 1.

Setting d ¼ dð f Þ ¼ dðgÞ, we then have

1

2pi

ð
ffiffiffi
r1

p
S 1

qf

qx1
ðx1; 0; . . . ; 0Þ= f ðx1; 0; . . . ; 0Þ dx1

¼ 1

2pi

ð
ffiffiffi
r1

p
S 1

qg

qx1
ðx1; 0; . . . ; 0Þ=gðx1; 0; . . . ; 0Þ dx1 ¼ d:

Let j;c : W1 ! C� be given by jðxÞ ¼ x�d
1 f ðxÞ and cðxÞ ¼ x�d

1 gðxÞ; it is easily veri-
fied that
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1

2pi

ð
ffiffiffi
r1

p
S 1

qj

qx1
ðx1; 0; . . . ; 0Þ=jðx1; 0; . . . ; 0Þ dx1

¼ 1

2pi

ð
ffiffiffi
r1

p
S 1

qc

qx1
ðx1; 0; . . . ; 0Þ=cðx1; 0; . . . ; 0Þ dx1 ¼ 0:

Consider the maps j�;c� : p1ðW1Þ ! p1ðC�Þ; the above equality implies that both
these maps are trivial and therefore j;c can be lifted to continuous maps
~jj; ~cc : W1 ! C such that exp � ~jj ¼ j and exp � ~cc ¼ c. Since exp : C ! C� is a local
biholomorphism and both j and c are holomorphic, the two maps ~jj and ~cc are
holomorphic. Then we have found holomorphic maps ~jj; ~cc : W1 ! C such that
f ðxÞ ¼ xd

1 e
~jjðxÞ and gðxÞ ¼ xd

1 e
~ccðxÞ for all x A W1. Now set

Hðt; xÞ ¼ xd
1 e

~jjðxÞþtð ~ccðxÞ�~jjðxÞÞ;

obviously H is continuous, and the map Hðt; �Þ is holomorphic for all t A ½0; 1�; more-
over Hð0; �Þ ¼ f and Hð1; �Þ ¼ g, so we are left to verify that Hð½0; 1� �W1ÞHWðr2Þ.
Fix x A W1 and consider the map

b : ½0; 1� C t 7! jHðt; xÞj ¼ jxd
1 je<~jjðxÞþt<ð ~ccðxÞ�~jjðxÞÞ A R;

the map b is monotonic and we have r2 < j f ðxÞj ¼ bð0Þ < 1, r2 < jgðxÞj ¼ bð1Þ < 1.
Thus r2 < jHðt; xÞj ¼ bðtÞ < 1 for all t A ½0; 1�; so Hð½0; 1� �W1ÞHWðr2Þ and this
concludes the proof of the assertion, since H is the required homotopy between the
maps f and g. r

As a consequence of the proof of Proposition 3.3 we obtain the following

Corollary 3.4. Let f A H, then there exists a holomorphic map u : W1 ! C such that

f1ðxÞ ¼ x
dð f Þ
1 euðxÞ for all x A W1.

Moreover, gathering Theorem 3.2 and Proposition 3.3, we obtain that, if the ‘‘hole’’
in W1 is smaller than the ‘‘hole’’ in W2, any holomorphic map from W1 to W2 is homo-
topic to a constant map.

Corollary 3.5. Let f A H; if r1 < r2 then f is homotopic to a constant.

Now we turn to the study of the homotopy classes Hd ¼ f f A H j dð f Þ ¼ dg. If
jdj < ln r2=ln r1 the following remark and proposition ensure that the family Hd is
very ‘‘ample’’.

Remark 3.6. For all f A H0, there exists a holomorphic map ~ff : W1 ! Hn2 such that
pr2 � ~ff ¼ f . Vice versa, for all holomorphic map ~ff : W1 ! Hn2 , the map pr2 � ~ff
belongs to H0.

Proof. Since Hn1 is simply connected, the existence of a continuous ~ff : W1 ! Hn2
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such that pr2 � ~ff ¼ f is equivalent to the triviality of the map f� (that is to dð f Þ ¼ 0).
As pr2 is a local biholomorphism, the assertion follows. r

This simple remark classifies all elements of H0; moreover the boundedness of W1

ensures that there exists a huge family of holomorphic maps from W1 to Hn2 ; in this
sense we can say that H0 is ‘‘big’’.

Now let us consider the case when 0 < jdj < ln r2=ln r1. First of all, if n2 d 2 we set
L ¼ maxfjQjj=p j j ¼ 2; . . . ; n2g. If 0 < d < ln r2=ln r1, choose C A R such that r2 <
Crd1 < rd1 < C; if 0 < �d < ln r2=ln r1, choose C A R such that r2 < Cr2 < r2r

d
1 <

Cr2r
d
1 < 1 and set

d ¼ minfð1� CÞ=2; ðCrd1 � r2Þ=2g if d > 0;

minfðCr2 � r2Þ=2; ð1� Crd1 r2Þ=2g if d < 0;

�

K ¼
min sin

p lnðð1þCÞ=2Þ
ln r2

� �
; sin

p lnððCrd
1
þr2Þ=2Þ

ln r2

� �n o
if d > 0;

min sin
p lnððCr2þr2Þ=2Þ

ln r2

� �
; sin

p lnðð1þCrd
1
r2Þ=2Þ

ln r2

� �n o
if d < 0:

8><
>:

Then we can describe an ample set of the elements belonging to Hd :

Proposition 3.7. Let d A Z be such that 0 < jdj < ln r2=ln r1 and C; d;L;K be as above.
For any y A R, any holomorphic function s : W1 ! C such that kskyc d and any holo-

morphic map h : W1 ! Cn2�1 such that
Pn2�1

j¼1 jhjðxÞj2 < rL2 K for all x A W1, the map

f : W1 C x 7! ðCeiyxd
1 þ sðxÞ; hðxÞÞ A W2; if d > 0;

ðCr2eiyxd
1 þ sðxÞ; hðxÞÞ A W2; if d < 0;

(

belongs to Hd .

Proof. We shall perform the proof in the case d > 0, the case d < 0 can be obtained
from this by minor changes. First of all, let us prove that the map f belongs to H.
Since it is obvious that f is a holomorphic map, we are left to prove that it maps W1

into W2. Let x A W1; the choice of C and d implies that the first component of f sat-
isfies the following inequality

r2 <
Crd1 þ r2

2
< j f1ðxÞj <

C þ 1

2
< 1; ð3:2Þ

which yields

0 <
p lnððC þ 1Þ=2Þ

ln r2
<

p lnj f1ðxÞj
ln r2

<
p lnððCrd1 þ r2Þ=2Þ

ln r2
< p:

The map sin : ½0; p� ! R is concave and therefore the choice of K entails
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K c sin
p lnj f1ðxÞj

ln r2

� �
ð3:3Þ

for all x A W1. By (3.2) and (3.3) we then have

Xn2
j¼2

j fjðxÞj2j f1ðxÞjQj=p c r�L
2

Xn2�1

j¼1

jhjðxÞj2 cK < sin
p lnj f1ðxÞj

ln r2

� �

and therefore f maps W1 to W2. At last, we prove that dð f Þ ¼ d, that is f A Hd . Let
H : ½0; 1� �W1 ! Cn2 be given by Hðt; xÞ ¼ ðCeiyxd

1 þ tsðxÞ; thðxÞÞ. The map H is of
course continuous and by the above reasoning we have Hð½0; 1� �W1ÞHW2; more-
over Hð1; �Þ ¼ f and Hð0; xÞ ¼ ðCeiyxd

1 ; 0; . . . ; 0Þ. Since the degree of Hð0; �Þ is equal
to d, we are done. r

Now we consider the case when jdð f Þj ¼ ln r2=ln r1 which of course can occur i¤
ln r2=ln r1 A N. The following results describe the maps f A Hd when jdj ¼ ln r2=ln r1:
the restriction of f to Wðr1Þ � f0g has to follow a prescribed pattern, while outside
this annulus the behaviour of f can be quite ‘‘free’’.

Theorem 3.8. Let f A Hd where jdj ¼ ln r2=ln r1. Then there exist y A R and

p A HolðW1;CÞ such that pjWðr1Þ�f0g 1 0,
qp

qxj

��
Wðr1Þ�f0g 1 0 for all j ¼ 2; . . . ; n1 and

f1ðxÞ ¼
eiyxd

1 e
pðxÞ if d > 0;

eiyr2x
d
1 e

pðxÞ if d < 0:

(
ð3:4Þ

Proof. Since we are interested in the behaviour of f1 only and W2 retracts by deforma-
tion onto Wðr2Þ � f0g, it is enough to consider the case n2 ¼ 1. Moreover we shall
perform the proof only in the case d > 0, the case d < 0 being obtained from this by
a few minor changes.

By Corollary 3.4 we can find a holomorphic map u : W1 ! C such that

f ðxÞ ¼ xd
1 e

uðxÞ: ð3:5Þ

Let us consider the map t : Wðr1Þ C x1 7! f ðx1; 0; . . . ; 0Þ A Wðr2Þ; since Wðr1Þ is a
deformation retract of W1 the degree of t is equal to d. As S1 ¼ R� ð0; pÞ is simply
connected and q2 : S1 ! Wðr2Þ is a local biholomorphism, there exists a holomorphic
lifting ~tt of t � q1, that is a holomorphic map ~tt : S1 ! S1 such that q2 � ~tt ¼ t � q1.
Interpreting the degree of t via the action of the group of deck-transformations yields
~tt � n1 ¼ nd2 � ~tt, that is

~ttðzþ 2 ln l1Þ ¼ ~ttðzÞ þ 2d ln l2

for all z A S1. Taking z ¼ ip=2 and using the equality d ln l2 ¼ ln l1 we obtain

~tt
ip

2
þ 2 ln l1

� �
¼ ~tt

ip

2

� �
þ 2 ln l1: ð3:6Þ
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Transferring the problem on H1, we obtain as a consequence of the Schwarz lemma
that ~tt is an automorphism of S1 of the form ~tt : z 7! zþ x for a suitable x A R.

In fact, let s ¼ E � ~tt � E�1 : H1 ! H1 and set ~ttðip=2Þ ¼ xþ iy. Since sðiÞ ¼
expðxþ iyÞ and sðil21Þ ¼ l21 expðxþ iyÞ, by the contracting property of the Kobaya-
shi distance we obtain

kH1ðsðiÞ; sðil21ÞÞ ¼ tanh�1 l21 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l41 þ 1� 2l21 cos 2y

q
0
B@

1
CAc kH1ði; il21Þ ¼ ln l1:

Now the fact that tanh is increasing yield

l21 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l41 þ 1� 2l21 cos 2y

q c
l21 � 1

l21 þ 1

and hence cos 2y ¼ �1, that is y ¼ p=2. Moreover the equality at one point of the
Kobayashi distance yields, by the Schwarz lemma, that s is an automorphism of
H1; since sðiÞ ¼ iex and sðil21Þ ¼ iexl21 , we have sðwÞ ¼ exw for all w A H1, that is
~ttðzÞ ¼ zþ x for a suitable x A R. Then there exists y A R such that tðxÞ ¼ eiyxd for
all x A Wðr1Þ and we have proved that f ðx1; 0; . . . ; 0Þ ¼ eiyxd

1 for all x1 A Wðr1Þ. Com-
paring this equality with (3.5) we infer that u is a holomorphic map which takes
values in iyþ 2piZ on Wðr1Þ � f0g and hence, setting pðxÞ ¼ uðxÞ � uð ffiffiffiffi

r1
p

; 0; . . . ; 0Þ,
we obtain that pðx1; 0; . . . ; 0Þ ¼ 0 for all x1 A Wðr1Þ.

In order to prove that
qp

qxj

��
Wðr1Þ�f0g 1 0 for all j ¼ 2; . . . ; n1, it is enough to con-

sider the map Wðr1; yjÞ C ðx1; xjÞ 7! f ðx1; 0; . . . ; 0; xj ; 0; . . . ; 0Þ A Wðr2Þ and hence we
can limit ourselves to the case n1 ¼ 2.

Since for any x1 A Wðr1Þ and any R < r
jy2j=2p
1 ðsinðp lnjx1j=ln r1ÞÞ1=2 the set fx1g � DR

is contained in W1, we can find holomorphic maps a1 : Wðr1Þ ! C and a2 : W1 ! C
such that pðxÞ ¼ a1ðx1Þx2 þ a2ðxÞx22 . Our last assumption is therefore equivalent to
a1 1 0. As f maps W1 in Wðr2Þ, using the form of f we have that for all x A W1 the
following inequality holds:

ln r2 � d lnjx1j < <pðxÞ < �d lnjx1j: ð3:7Þ

Fix x01 A Wðr1Þ and for any 0 < e < sinðp lnjx01 j=ln r1Þ denote by R the number
r
jy2j=2p
1 ðsinðp lnjx01 j=ln r1Þ � eÞÞ1=2. Then for all x2 A DR the point x ¼ ðx01 ; x2Þ belongs
to W1. Now let us set r ¼ R=2; then we have

rja1ðx01Þjc r max
jx2jcr

ja1ðx01Þ þ a2ðxÞx2j ¼ r max
jx2j¼r

ja1ðx01Þ þ a2ðxÞx2j ¼ max
jx2j¼r

jpðxÞj:

The Borel–Carathéodory theorem and (3.7) imply that

max
jx2j¼r

jpðxÞjc R

R� r
max
jx2j¼r

<pðxÞ ¼ 2 max
jx2j¼r

<pðxÞc�2d lnjx01 j;
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and therefore ja1ðx01Þjc�4r
�jy2j=2p
1 d lnjx01 jðsinðp lnjx

0
1 j=ln r1Þ � eÞ�1=2; the arbitrari-

ness of e yields that for all x01 A Wðr1Þ the following inequality holds

ja1ðx01Þjc
�4r

�jy2j=2p
1 d lnjx01 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinðp lnjx01 j=ln r1Þ
q : ð3:8Þ

It is easily seen that the right hand term of (3.8) goes to 0 when jx01 j ! 1�, yielding

limjx01 j!1� ja1ðx
0
1Þj ¼ 0. The same reasoning can be performed for jx01 j ! rþ1 ; also in

this case we obtain that limjx01 j!rþ
1
ja1ðx01Þj ¼ 0. Then we can invoke the maximum

modulus principle and we are done. r

Now we consider the behaviour of the last n2 � 1 components of f on the annulus
Wðr1Þ � f0g.

Proposition 3.9. Let f A Hd where jdj ¼ ln r2=ln r1; then fjðx1; 0; . . . ; 0Þ ¼ 0 for all

x1 A Wðr1Þ and all j ¼ 2; . . . ; n2.

Proof. First of all note that it is enough to prove the assertion for n1 ¼ 1 and n2 ¼ 2;
in fact for any j A f2; . . . ; n2g consider the map

g : Wðr1Þ C x1 7! ð f1ðx1; 0; . . . ; 0Þ; fjðx1; 0; . . . ; 0ÞÞ A Wðr2; QjÞ;

it is obvious that f and g have the same degree, thus we can limit ourselves to study
the case n1 ¼ 1, n2 ¼ 2. Moreover, as in the previous theorem, we perform the proof
for d > 0 only, leaving the proof of the case d < 0 to the reader.

Theorem 3.8 tells us that j f1ðxÞj ¼ jxjd ; since f maps Wðr1Þ into Wðr2; QjÞ we have
that for all x A Wðr1Þ the following inequality holds

j f2ðxÞj2jxjdQj=p ¼ j f2ðxÞj2j f1ðxÞjQj=p < sinðp lnj f1ðxÞj=ln r2Þ ¼ sinðp lnjxj=ln r1Þ;

that is

j f2ðxÞj2 < jxj�dQj=p sinðp lnjxj=ln r1Þ ð3:9Þ

for all x A Wðr1Þ. Taking the limit of the right hand side both for jxj ! 1� and
jxj ! rþ1 we obtain that

lim
jxj!rþ

1

j f2ðxÞj2 ¼ lim
jxj!1�

j f2ðxÞj2 ¼ 0;

the maximum modulus principle yields the conclusion. r

The big di¤erence in Hd between the one-dimensional and the multi-dimensional case
arises just when jdj ¼ ln r2=ln r1. In the one-dimensional case Hd is a one-dimensional
topological space which is isomorphic to S1, while in the multidimensional case it
contains an open set in an infinite-dimensional Fréchet space. In fact, provided
n1 þ n2 d 3, the following proposition gives a ‘‘large’’ family of maps belonging to
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Hd where d ¼ ln r2=ln r1 (and of course the same can be done, mutatis mutandis, for
d ¼ �ln r2=ln r1).

Since the domain Wðr; y2; . . . ; yn1Þ is biholomorphic to Wðr; y2 þ 2pl; . . . ; yn1 þ 2plÞ
for all l A Z (see [4] for a proof ), in order to simplify computations we can suppose
that yj c 0 for all j ¼ 2; . . . ; n1 and Qj d 0 for all j ¼ 2; . . . ; n2. Now set

K ¼ �r2 ln r2
p

and K1 ¼
lnð1þ K=ðn1 � 1ÞÞ

d
if n1 d 2:

For any y A R, sjk A HolðW1;CÞ for j; k ¼ 2; . . . ; n1 and hjk A HolðW1;CÞ for j ¼
2; . . . ; n1, k ¼ 2; . . . ; n2, set tðxÞ ¼

Pn1
j;k¼2 xjxksjkðxÞ.

Theorem 3.10. If

Xn1
j;k¼2

jsjkðxÞjcK1 and
Xn1;n2
j;k¼2

jhjkðxÞj2 c 1þ pðn1 � 1ÞK1

ln r1
� p2K 2

1

2 ln2 r1
; ð3:10Þ

then the map

f : W1 C x 7!
�
eiyxd

1 e
dtðxÞ;

Xn1
j¼2

xjhj2ðxÞ; . . . ;
Xn1
j¼2

xjhjn2ðxÞ
�
A W2

belongs to Hd where d ¼ ln r2=ln r1.

Proof. By definition the map f is obviously holomorphic. Now we prove that f maps
W1 into W2; after that a simple remark will show that the degree of f is equal to d and
therefore f belongs to Hd . First of all, we give two estimates of t which will be useful
in the sequel. By the definition of t we have jtðxÞjc

Pn1
j;k¼2 jxjxksjkðxÞj; since yk c 0

for k ¼ 2; . . . ; n1, then we obtain jxkj < 1 for all x A W1 and for k ¼ 2; . . . ; n1, and
therefore

jtðxÞjc
Xn1
j;k¼2

jsjkðxÞjcK1 ð3:11Þ

for all x A W1. Moreover for all x A W1 the following bound on t also holds

jtðxÞjc
�Xn1

j;k¼2

jxjj jxkj
��Xn1

j;k¼2

jsjkðxÞj
�
cK1

�Xn1
j¼2

jxjj
�2

c ðn1 � 1ÞK1

Xn1
j¼2

jxj j2 c ðn1 � 1ÞK1

Xn1
j¼2

jxjj2jx1jyj=p

c ðn1 � 1ÞK1 sin
p lnjx1j
ln r1

� �
: ð3:12Þ

Let us notice that f1ðxÞ can be written as eiyxd
1 þ eiyxd

1 qðxÞ, where
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qðxÞ ¼ edtðxÞ � 1 ¼
X
l>0

ðdtðxÞÞ l

l!
:

Now we estimate qðxÞ: by (3.11) and (3.12) we obtain

jqðxÞjc
X
l>0

jdtðxÞj l

l!
c djtðxÞj

X
l>0

ðdK1Þ l�1

l!

 !

c dðn1 � 1ÞK1

X
l>0

ðdK1Þ l�1

l!

 !
sin

p lnjx1j
ln r1

� �

c ðn1 � 1ÞðedK1 � 1Þ sin p lnjx1j
ln r1

� �
¼ K sin

p lnjx1j
ln r1

� �
:

As for any x A W1 we have jx1jc 1, the following inequalities yield

jx1jd � K sin
p lnjx1j
ln r1

� �
c j f1ðxÞjc jx1jd þ K sin

p lnjx1j
ln r1

� �
: ð3:13Þ

Now consider the functions F;C : ½r1; 1� ! R given by

FðtÞ ¼ td � K sin
p ln t

ln r1

� �
; CðtÞ ¼ td þ K sin

p ln t

ln r1

� �
;

it is easily seen that Fðr1Þ ¼ Cðr1Þ ¼ r2, that Fð1Þ ¼ Cð1Þ ¼ 1 and that both of them
are increasing (in fact their derivatives on ½r1; 1� are always positive due to the choice
of K). Then (3.13) implies that r2 < j f1ðxÞj < 1 for all x A W1.

In order to prove that f maps W1 to W2, we have to check the second condition,

namely that
Pn2

j¼2 j fjðxÞj
2j f1ðxÞjQj=p < sin

p lnj f1ðxÞj
ln r2

� �
for all x A W1. The definition of f1

and the relation d ln r1 ¼ ln r2 entail

sin
p lnj f1ðxÞj

ln r2

� �
¼ sin

p lnjxd
1 e

dtðxÞj
ln r2

 !

¼ sin
p lnjx1j
ln r1

� �
cos

p<tðxÞ
ln r1

� �
þ cos

p lnjx1j
ln r1

� �
sin

p<tðxÞ
ln r1

� �

d sin
p lnjx1j
ln r1

� �
1� p2jtðxÞj2

2 ln2 r1

 !
þ pjtðxÞj

ln r1
;

by (3.11) and (3.12) we obtain that

sin
p lnj f1ðxÞj

ln r2

� �
d sin

p lnjx1j
ln r1

� �
1� p2K 2

1

2 ln2 r1
þ pðn1 � 1ÞK1

ln r1

� �
: ð3:14Þ
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Since Qk is non-negative for k ¼ 2; . . . ; n2, then for all x A W1 we have j f1ðxÞjQk=p c 1
for k ¼ 2; . . . ; n2, therefore the second inequality in (3.10) yields that for all x A W1

the following chain of inequalities holds

Xn2
k¼2

j fkðxÞj2j f1ðxÞjQk=p c
Xn2
k¼2

j fkðxÞj2 ¼
Xn2
k¼2

����Xn1
j¼2

xjhjkðxÞ
����
2

c
Xn2
k¼2

�Xn1
j¼2

jxj j2
��Xn1

j¼2

jhjkðxÞj2
�

c

�Xn1
j¼2

jxjj2jx1jyj=p
��Xn1;n2

j;k¼2

jhjkðxÞj2
�

< sin
p lnjx1j
ln r1

� �
1þ pðn1 � 1ÞK1

ln r1
� p2K 2

1

2 ln2 r1

� �
; ð3:15Þ

together with (3.14) this ensures that f ðW1Þ is contained in W2.
Now consider the map

H : ½0; 1� �W1 C x 7!
�
eiyxd

1 e
dttðxÞ; t

Xn1
j¼2

xjhj2ðxÞ; . . . ; t
Xn1
j¼2

xjhjn2ðxÞ
�
A Cn2 ;

since for any t A ½0; 1� the inequalities contained in (3.10) are both satisfied, we obtain
that H maps ½0; 1� �W1 into W2. Moreover Hðt; �Þ is holomorphic for any t A ½0; 1�,
and Hð1; �Þ ¼ f , while it is easily seen that Hð0; �Þ has degree d and therefore
degð f Þ ¼ d, which concludes the proof. r

Even if in the general case the bounds given by (3.10) can be non-optimal, there is at
least one case in which they are optimal. If W1 ¼ Wðr1; 0Þ and W2 ¼ Wðr2; 0Þ then the
following corollary holds.

Corollary 3.11. For any y A R and h A HolðW1;DÞ the map

f : W1 C x 7! ðeiyxd
1 ; x2hðxÞÞ A W2

belongs to Hd where d ¼ ln r2=ln r1. Vice versa, for any map f in Hd of the form

f ðxÞ ¼ ð f1ðx1Þ; f2ðxÞÞ there exist y A R and h A HolðW1;DÞ such that the equality

f ðxÞ ¼ ðeiyxd
1 ; x2hðxÞÞ holds for all x A W1.

Proof. Since the su‰ciency of the condition can be obtained by direct computation as
in the proof of the previous theorem, we are left to prove its necessity. By Theorem
3.8 there exists y A R such that f1ðx1; 0Þ ¼ eiyxd

1 ; as f1 does not depend on x2 we have
that f1ðxÞ ¼ eiyxd

1 for any x A W1. By Proposition 3.9 there exists a holomorphic
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function h : W1 ! C such that f2ðxÞ ¼ x2hðxÞ. Since f ðW1ÞHW2 we obtain that for
all x A W1

jx2hðxÞj2 < sin
p lnjeiyxd

1 j
ln r2

 !
¼ sin

p lnjx1j
ln r1

� �
:

If x0 ¼ ðx01 ; x
0
2Þ A W1 choose e > 0 such that jx02 j

2
c sinðp lnjx01 j=ln r1Þ � e and set R ¼

ðsinðp lnjx01 j=ln r1Þ � eÞ1=2; then the following chain of inequalities holds

jhðx0Þj2 c max
jx2jcR

jhðx01 ; x2Þj
2 ¼ max

jx2j¼R
jhðx01 ; x2Þj

2 ¼ R�2 max
jx2j¼R

j f2ðx01 ; x2Þj
2

¼
maxjx2j¼Rj f2ðx01 ; x2Þj

2

sinðp lnjx01 j=ln r1Þ � e
c

sinðp lnjx01 j=ln r1Þ
sinðp lnjx01 j=ln r1Þ � e

:

Letting e go to 0 we obtain that jhðx0Þjc 1 and then we are done. r

4 Complex geodesics for generalized annuli

In this section we prove some results on complex geodesics in generalized annuli.

Definition 4.1. Given x; z A D an extremal map j through x and z is a holomor-
phic map j : D ! D for which there exist t; s A D such that jðtÞ ¼ x, jðsÞ ¼ z and
kDðx; zÞ ¼ kDðt; sÞ. A complex geodesic for the domain D is a holomorphic isometry
j : D ! D with respect to the Kobayashi distance of D and D (that is, a holomorphic
map which is extremal through any point of its image).

Analogous definitions can be given replacing the Kobayashi distance with the
Kobayashi metric: in this case we speak of an infinitesimal extremal map and of an
infinitesimal complex geodesic. Recall that for any x; z A W and for any z0 A w�1ðxÞ,
w0 A w�1ðzÞ we have

kWðx; zÞ ¼ inffkBnðz0; ~wwÞ : ~ww A w�1ðzÞg ¼ inffkBnðz0; g j
0ðw0ÞÞ : j A Zg; ð4:1Þ

this equality yields both the existence of extremal maps through any couple of points
in generalized annuli and a characterization of complex geodesics which will be use-
ful in order to solve some problems concerning existence of complex geodesics in W.

Remark 4.2. For any x; z A W there exists an extremal map through x and z.

Proof. Consider the covering ðBn !w WÞ: since Bn is complete hyperbolic we can
choose z;w A Bn such that wðzÞ ¼ x, wðwÞ ¼ z and kWðx; zÞ ¼ kBnðz;wÞ. Let
~jj : D ! Bn be a complex geodesic through z and w (~jj does exist since Bn is a strictly
convex bounded domain in Cn) and set j ¼ w � ~jj. Setting t ¼ ~jj�1ðzÞ and s ¼ ~jj�1ðwÞ,
it is easily seen that j is an extremal map through x and z. r
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Proposition 4.3. Let ~jj : D ! Bn be a complex geodesic in Bn; then the holomorphic

map j ¼ w � ~jj : D ! W is a complex geodesic in W i¤

kBnð~jjðtÞ; ~jjðsÞÞ ¼ inffkBnð~jjðtÞ; g j
0ð~jjðsÞÞÞ : j A Zg ð4:2Þ

for any t; s A D. Vice versa, if j is a complex geodesic in W then any lifting ~jj of j to Bn

is a complex geodesic in Bn for which (4.2) holds for any t; s A D.

Proof. If ~jj : D ! Bn is a complex geodesic for which (4.2) holds for any t; s A D, then
(4.1) and (4.2) imply that kDðt; sÞ ¼ kWðw � ~jjðtÞ; w � ~jjðsÞÞ for all t; s A D and therefore
j ¼ w � ~jj is a complex geodesic in W.

Vice versa, if j : D ! W is a complex geodesic, then kDðt; sÞ ¼ kWðjðtÞ; jðsÞÞ holds
for any t; s A D. Fix s0 A D, choose a0 A Bn such that wða0Þ ¼ jðs0Þ and let ~jj : D ! Bn

be the lifting of j through a0, i.e. the unique holomorphic map from D to Bn such
that j ¼ w � ~jj and ~jjðs0Þ ¼ a0. Since the Kobayashi distance is contracted by holo-
morphic maps, we then have

kDðt; sÞ ¼ kWðjðtÞ; jðsÞÞ ¼ kWðw � ~jjðtÞ; w � ~jjðsÞÞc kBnð~jjðtÞ; ~jjðsÞÞc kDðt; sÞ

and therefore equality holds at each t; s A D. Equation (4.1) implies that (4.2) holds
for any t; s A D and this concludes the proof. r

It is well known that there exist no complex geodesics in the annuli WðrÞ: this state-
ment can be generalized to any couple of points belonging to WðrÞ � f0gHW.

Proposition 4.4. For any x1; z1 A WðrÞ with x1 0 z1 there are no complex geodesics in W
through x ¼ ðx1; 0; . . . ; 0Þ and z ¼ ðz1; 0; . . . ; 0Þ. For any x1 A WðrÞ and v1 A C there are

no infinitesimal complex geodesics in W through x ¼ ðx1; 0; . . . ; 0Þ with tangent vector

v ¼ ðv1; 0; . . . ; 0Þ.

Proof. We perform the proof in the case of complex geodesics, the case of infinites-
imal complex geodesics is analogous and is left to the reader.

Suppose j is a complex geodesic through x and z and let ~jj be a lifting of j to
Bn; by Proposition 4.3 the map ~jj is a complex geodesic in Bn. The form of w implies
that w�1ðWðrÞ � f0gÞ ¼ D� f0g, and hence ~jjðDÞ intersects D� f0g in two distinct
points z ¼ ðz1; 0; . . . ; 0Þ A w�1ðxÞ and w ¼ ðw1; 0; . . . ; 0Þ A w�1ðzÞ. Since the image of a
complex geodesic in Bn is an a‰ne subset of Bn, i.e. the intersection of Bn with an
a‰ne line, we have ~jjðDÞ ¼ D� f0g, and therefore jðDÞ ¼ wð~jjðDÞÞ ¼ WðrÞ � f0g. As
WðrÞ � f0g is a holomorphic retract of W, we obtain that the map

ĵj : D C t 7! j1ðtÞ A WðrÞ

is a complex geodesic in WðrÞ and this is a contradiction. r

As we already noticed, complex geodesics in W are projections on W of complex
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geodesics in Bn for which (4.2) holds for any t; s A D. To simplify computations,
which are very long in general, we will focus our attention on complex geodesics in
W passing through the point P0 ¼ ð

ffiffi
r

p
; 0; . . . ; 0Þ, i.e. complex geodesics in Bn passing

through the origin. Up to holomorphic automorphisms of D we can therefore sup-
pose that jð0Þ ¼ 0; then, since complex geodesics in Bn passing through the origin of
Bn are given by maps of the form D C t 7! tp for any p A qBn, we are led to investi-
gate the following question, which is equivalent to the existence of a complex geode-
sic in W passing through the point P0 and with tangent vector dw0ðpÞ at P0:

Does the equality

kDðs; tÞ ¼ inffkBnðg j
0ðspÞ; tpÞ : j A Zg ð4:3Þ

hold for any t; s A D?
Denote by h� ; �i the standard Hermitian product in Cn and for any a A Bnnf0g

define Pa;Qa : Cn ! Cn and sa A R by

PaðzÞ ¼
hz; ai

ha; ai
a; QaðzÞ ¼ z� PaðzÞ; sa ¼ ð1� kak2Þ1=2

and consider ga : B
n ! Cn given by

gaðzÞ ¼
a� PaðzÞ � saQaðzÞ

1� hz; ai
:

Then ga is an involution in AutBn which maps a to the origin and

1� kgaðzÞk
2 ¼ ð1� kak2Þð1� kzk2Þj1� hz; aij�2 ð4:4Þ

holds for any z A Bn (for a proof see [1] p. 152–153).
Let gtp be the involution defined above which maps tp to the origin; since tanh is

increasing, by developing computations and by (4.4) we obtain that (4.3) is equiva-
lent to

1� jsj2

j1� tsj2
d

1� kg j
0ðspÞk

2

j1� htp; g j
0ðspÞij

2
¼ 1� kg j

0ðspÞk
2

j1� hg j
0ðspÞ; tpij

2

for any t; s A D and any j A Z.
Setting cj ¼ coshð jTÞ, sj ¼ sinhð jTÞ, p 0 ¼ ðp2; . . . ; pnÞ, W ¼ diag½eiy2 ; . . . ; eiyn �

and developing computations, we obtain the following question which is again equi-
valent to the existence of a complex geodesic in W passing through the point P0 and
with tangent vector dw0ðpÞ at P0:

Does

j1� tsj2 c jcj þ sjsp1 � hðcjsp1 þ sj;W
jðsp 0ÞÞ; tpij2 ð4:5Þ

hold for any t; s A D and any j A Z?
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A first, very simple algebraic remark again stresses the fact that p 0 cannot be equal
to zero. In fact, if p 0 ¼ 0, taking s ¼ �p1 A qD and t ¼ �s, by continuity (4.5) implies
2c 2ðcj � sjÞ for all j A Z, which is impossible since T > 0.

Remark 4.5. Inequality (4.5) holds for any t; s A D and any j A Z if and only if it holds
for any t; s A qD and any j A Z.

Proof. If j ¼ 0, it is obvious that (4.5) is an equality for any t; s A D and there is
nothing to prove. Now suppose that (4.5) holds for any t; s A qD and any j A Z. First
of all we prove that cj þ sjsp1 � hðcjsp1 þ sj;W

jðsp 0ÞÞ; tpi0 0 for all t; s A D and for
all j0 0. In fact, if cj þ sjsp1 � hðcjsp1 þ sj;W

jðsp 0ÞÞ; tpi ¼ 0 for some t; s A D and
some j A Znf0g, then we obtain that hg j

0ðspÞ; tpi ¼ 1, and therefore tp ¼ g
j
0ðspÞ and

jtj ¼ kg j
0ðspÞk ¼ 1 which implies t; s A qD. Then the fact that (4.5) holds for any

t; s A qD gives 1� ts ¼ 0, that is t ¼ s. Since j0 0, the unique fixed points of g j
0 are

Ge1, and hence sp ¼Ge1, that is p 0 ¼ 0, which is a contradiction to the previous
remark. So, for any j A Znf0g, the holomorphic maps

hj : D� D C ðt; sÞ 7! 1� ts

cj þ sjsp1 � hðcjsp1 þ sj;W jðsp 0ÞÞ; tpi A C

extend continuously to the boundary; if jhjðt; sÞjc 1 on the Shı̌lov boundary of the
bidisk, then jhjðt; sÞjc 1 for any t; s A D and any j A Znf0g; this implies (4.5) for any
t; s A D and any j A Z. The other implication is trivial by continuity. r

Then we are led to investigate on the following question: for which p A qBn does

j1� tsj2 c jcj þ sjsp1 � hðcjsp1 þ sj;W
jðsp 0ÞÞ; tpij2 ð4:6Þ

hold for any t; s A qD and any j A Z?
To simplify notation, we denote by qj the quantity hp 0;W jp 0i and obtain

j1� tsj2 c jcj � tsðcjjp1j2 þ qjÞ þ sjðsp1 � tp1Þj2;

setting z ¼ ts (which belongs to qD if both t and s do) we get

j1� zj2 c jcj þ sjsp1 � zðcjjp1j2 þ qj þ sjsp1Þj2

for all z; s A qD and j A Z. A simple computation proves that the above inequality
holds for any z; s A qD and j A Z if and only if

2þ 2jðcj jp1j2 þ qj þ sjsp1Þðcj þ sjsp1Þ � 1jc jcj þ sjsp1j2 þ jcj jp1j2 þ qj þ sjsp1j2

for all s A qD and j A Z. Setting Gj ¼ cjjp1j2 þ qj we get

2þ 2jcjGj � 1þ sjðcj þ GjÞsp1 þ s2j ðsp1Þ
2jc jcj þ sjsp1j2 þ jGj þ sjsp1j2
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for all s A qD and j A Z. Setting s ¼ e�iðxþarg p1Þ for x A R and developing computa-
tions we get

2þ 2jcjGj � 1þ sjðcj þ GjÞjp1jeix þ s2j jp1j
2
e2ixj

c c2j þ 2s2j jp1j
2 þ jGjj2 þ 2sjjp1j<ðe�ixðcj þ GjÞÞ ð4:7Þ

for all x A R and j A Z.
To simplify computations, which are very heavy in the general case, we focus our

attention on two cases: when p1 ¼ 0 and when W ¼ In�1 (in this last case qj ¼
hp 0;W jp 0i ¼ 1� jp1j2 is a real positive number which does not depend on j).

Case p1 F 0. In this Case (4.7) becomes

2þ 2jcjqj � 1jc c2j þ jqjj2 ð4:8Þ

for all j A Z (and it does not depend on x any more). The next two remarks show that
if the radius r is large enough there always exist ‘‘vertical’’ complex geodesics, while if
it is small in some cases there exist no ‘‘vertical’’ complex geodesics.

Remark 4.6. If rd expðp2=lnð3�
ffiffiffi
8

p
ÞÞ, then for any y2; . . . ; yn A R and any

p 0 A qBn�1, there exists a complex geodesic in Wðr; y2; . . . ; ynÞ passing through P0

with tangent vector dw0ðð0; p 0ÞÞ in P0.

Proof. First of all notice that the relation between r and T entails c1 d 3. The above
reasoning implies that a complex geodesic through P0 with tangent vector dw0ðð0; p 0ÞÞ
in P0 exists i¤ (4.8) is satisfied for all j A Z. This inequality is surely satisfied if

2þ 2ðcjjqjj þ 1Þc c2j þ jqjj2

for any j A Znf0g; developing computations we obtain 4c ðcj � jqj jÞ2, that is
2c cj � jqjj. Then 3c c1 c cj for any j A Znf0g and jqjjc kp 0k2 c 1 yield the
conclusion. r

Remark 4.7. If r < expðp2=lnð3�
ffiffiffi
8

p
ÞÞ, then for any p 0 A qBn�1, there exists no com-

plex geodesic in Wðr; p; . . . ; pÞ passing through P0 with tangent vector dw0ðð0; p 0ÞÞ
in P0.

Proof. As above the relation between r and T entails c1 < 3; moreover W ¼ �In�1

and hence q1 ¼ hp 0;Wp 0i ¼ �kp 0k2 ¼ �1. A complex geodesic through P0 with
tangent vector dw0ðð0; p 0ÞÞ in P0 exists i¤ (4.8) is satisfied for all j A Z; in particular
for j ¼ 1 it becomes c21 � 2c1 � 3d 0. As c1 < 3, the last inequality is not satisfied
and this yields the conclusion. r

At last we bring forward a result which concerns ‘‘vertical’’ geodesics in the case
when W ¼ In�1. In this case qj ¼ hp 0;W jp 0i ¼ 1 and hence we have the following
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Remark 4.8. For any r A ð0; 1Þ and p 0 A qBn�1, there exists a complex geodesic in
Wðr; 0; . . . ; 0Þ passing through P0 with tangent vector dw0ðð0; p 0ÞÞ in P0.

Proof. In this Case (4.8) becomes 2þ 2ðcj � 1Þc c2j þ 1, that is 2cj c c2j þ 1 which is
obviously satisfied for any j A Z. r

This remark can also be seen as a consequence of the fact that Wðr; 0; . . . ; 0Þ retracts
holomorphically (but not by deformation) on fx A Wðr; 0; . . . ; 0Þ j x1 ¼

ffiffi
r

p
g which is

biholomorphic to the unit ball in Cn�1 and this ensures the existence of ‘‘vertical’’
complex geodesics through P0.

Case W F InC1. As we already noticed, in this case qj ¼ hp 0;W jp 0i ¼ 1� jp1j2 is a
real positive number which does not depend on j and therefore Gj ¼ cjjp1j2 þ 1�
jp1j2 is also a real positive number. Using this property and setting

Aj ¼ cjGj � 1; Bj ¼ sjjp1jðcj þ GjÞ; Cj ¼ s2j jp1j
2; Dj ¼ c2j þ 2s2j jp1j

2 þ G2
j ;

(4.7) becomes

2jAje
�ix þ Bj þ Cje

ixjcDj þ 2Bj cos x� 2 ð4:9Þ

for all x A R and j A Z. Developing computations, setting Lj ¼ 4ðB2
j � 4AjCjÞ,

Mj ¼ 4BjðDj � 2� 2Aj � 2CjÞ, Nj ¼ ðDj � 2Þ2 � 4B2
j � 4ðCj � AjÞ2 and t ¼ cos x,

we obtain that the above inequality is equivalent to the system of equations

Dj � 2jBjj � 2d 0; Ljt
2 þMjtþNj d 0 ð4:10Þ

for all t A ½�1; 1� and for all j A Z. A simple though long computation gives Lj ¼
4jp1j2s2j ððcj � 1Þ2ð1� jp1j2Þ2 þ 4Þd 0 for all j A Z; then (4.10) splits into two parts
(according to whether the vertex of the parabola t 7! Ljt

2 þMjtþNj belongs to the
interval ½�1; 1� or not) and we can state the following

Theorem 4.9. Let Gj;Aj;Bj;Cj;Dj ;Lj;Mj ;Nj be as above and let p A qBn. There exists
a complex geodesic in Wðr; 0; . . . ; 0Þ passing through P0 with tangent vector dw0ðpÞ in
P0 if and only if Dj � 2jBjj � 2d 0 holds for any j A Z and for the j A Z such that

jMjjc 2Lj we have M 2
j c 4LjNj and for the j A Z such that jMjjd 2Lj we have

jMjjcLj þNj.

This characterization could seem useless since it involves very complicated inequali-
ties but it can be easily handled by a program dealing with symbolic computation like
Mathematica or Maple.
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