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On Lorentz—Minkowski geometry in real inner
product spaces

Walter Benz

Dedicated to Adriano Barlotti on the occasion of his 80th birthday, in friendship

Let X be a real inner product space of finite or infinite dimension =2, and let o # 0
be a fixed real number. The following results will be presented in this note.

A. A surjective mapping ¢ : X — X preserving Lorentz—Minkowski distances 0 and
o in one direction must be a Lorentz transformation.

B. The causal automorphisms of X, dim X > 3, are exactly the products d4, where
A is an orthochronous Lorentz transformation and 6 a dilatation x — ox,
R>a>0.

C. If ¢ > 0, there exist X and an injective 6 : X — X preserving Lorentz—Minkowski
distance p, such that ¢ is not a Lorentz transformation. This result can be
extended, mutatis mutandis, to Euclidean and Hyperbolic Geometry.

If X is finite-dimensional, result A is an immediate consequence of the following
theorem of Benz—Lester ([4], [12], [13], [5]).

Theorem 1. Suppose that X is a real inner product space of finite dimension =2 and
that ¢ # 0 is a fixed real number. If ¢ : X — X satisfies

I(x,y) = e = 1(o(x),0(y)) = ¢

Jor all x, y € X, where l(x, y) designates the Lorentz—Minkowski distance of x, y, then
o must be a Lorentz transformation.

Moreover, if X is finite-dimensional, statement B is a well-known theorem of
Alexandrov—Ovchinnikova—Zeeman ([1], [2], [17], [5]).

It could be possible that Theorem 1 also holds true in the infinite-dimensional case
provided that ¢ < 0. However, a proof, if it exists, is not yet known. Result C shows
that Theorem 1 cannot be extended to the infinite-dimensional case if ¢ > 0, not even
in the injective case.
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1 Notation

Let X be a real inner product space of arbitrary finite or infinite dimension >2, i.e. a
real vector space equipped with a fixed inner product

T: X x X —R, z(x,p)=:xp,

satisfying x? := xx > 0 for all x # 0 of X. Notice that X need not be complete,
i.e. that X need not be a real Hilbert space. Take a fixed ¢ € X with > = 1 and define
t+:={xe X|xt=0}. Observe X = 1~ @ Rz. We hence get the uniquely determined
decomposition

X =: X+ Xxot
with X € t+ and xj € R for every x € X. Define
_ N2 2
I(x,y) == (X =) — (x0 — »0)

to be the Lorentz—Minkowski distance of x, y € X. The mapping A : X — X is called
a Lorentz transformation if, and only if,

I(x,y) = 1(4(x), A(y))
holds true for all x, y € X.

Remark. It might be noticed that the theory does not seriously depend on the chosen ¢
(6], p. 229).

The Lorentz transformations as defined before can explicitly be written by means
of (proper or improper) Lorentz boosts and orthogonal transformations ([6], p. 221):
For p e t* with p?> < 1 and —1 # k € R with k? - (1 — p?) = 1 define for all x € X,

k2
Ap(x) :=xop + (Xp)t, By i(x) :=x+kAy(x) +k—+1Ap2(x).

Obviously, k? > 1. The mappings 4,, B, x are linear and B, s : X — X is even bijec-
tive. Define also

B()7,1(X) = X — Xot.

B, i is called a Lorentz boost, a proper one for k > 1, an improper one for k < —1.
All Lorentz transformations 4 of X are exactly given by

Ax) = (By ko) (x) +d

with a boost B, i, an orthogonal and linear mapping « from X into X satisfying
o(t) = t, and with an element d of X.
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The following theorem was proved by Cacciafesta [9] in the case dim X < oo, and
by Benz [7] in the general case.

Theorem 2. If dim X > 3 and if 6 : X — X is bijective and satisfies
l(x,y) =0=I(o(x),a(y)) =0

for all x,y € X, then o must be the product of a Lorentz transformation and a dilata-
tion.

Important partial results of Theorem 2 were proved by Alexandrov [1] and by
Schroder [15], [16]. Schréder even studied the case of an arbitrary field instead of IR.

2 Proof of result A

Lemma 1. Let y be a real number and x # 0 be an element of X. Then there exist v # 0
in X and o in R with t> = v} and

(X + ab)® — (x0 4 awg)* = 7. (1)
Proof. Case 1: xog #0. Take an element e in t- with ¢?> =1. Then Xe # xy or
Xe # —xo. Assume Xe # exo with e € IR and &> = 1. Now put v:= e+ &f and, by
observing X # Xy,

20(X0 — Xovp) := y + x5 — X2 (2)
Hence (1) holds true.

Case 2: xp=0. Hence x #0 implies X #0. Now put v:=Xx+|X| -+ with
|lz|| := V/z2 for z € X, and define « by (2). Then also here (1) holds true. O

Lemma 2. If p # q are elements of X and if y € R, there exists r € X satisfying
I(r,p) =7 and I(r,q) =0. (3)

Proof. Put x:= ¢ — p and take elements v and « according to Lemma 1. Hence
r:= q + av satisfies (3). O

Lemma 3. Suppose that o # 0 is a fixed real number and that o : X — X satisfies

I(x,y) = 0= 1(a(x),0(y)) =0 (4)

and
I(x,y) = 0= Il(o(x),0(y)) =0 (5)

for all x, y € X. Then o must be injective.
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Proof. If p # ¢ are elements of X, take, in view of Lemma 2, r € X with /(r, p) = o
and /(r,q) = 0. Hence, by (4), (5),

I(r',p") =¢ and I(+',q")=0 (6)
where we put z’ = o(z) for z € X. Now (6) implies p’ # ¢'. O

If dim X < oo, result A follows from Theorem 1. Suppose now that X is infinite-
dimensional and that o : X — X is surjective, satisfying (4) and (5) for all x, y € X,
where ¢ # 0 is a fixed real number. Hence, by Lemma 3, ¢ is injective, and thus bijec-
tive. Hence, by Theorem 2, there exists a Lorentz transformation 4: X — X and a
real number k # 0 such that

o(x) =k - Ax)
for all x € X. Now (5) implies
I(x,y) = 0= 0= I(ki(x),kA(y))
forall x, y € X, i.e. [(x, y) = o implies
0= K2 1((x), (1) = K2 - I(x,) =k - 0.

Hence k> = 1, in view of p # 0. If k = 1, we get o = 4, and if k = —1, we obtain

for all x € X. But this is also a Lorentz transformation.
So we have proved

Theorem A. Let ¢ # 0 be a fixed real number and let 6 : X — X be a surjective map-
ping satisfying (4) and (5) for all x, y € X. Then there exist a Lorentz boost B, i, a
linear, bijective and orthogonal mapping w : X — X with w(t) = t, and an element d of
X such that

a(x) = (Byx)(x) +d
forall xe X.

Remark. Theorem A holds true, as was shown, for all real inner product spaces X
with dim X > 2. If X = R?, if we put

Xy 1= X1)1 + X2)2
for x = (x1,x2), y = (y1, y2) of X, and ¢ := (1/+/2,1/+/2), then

I(x,y) = =2(x1 = y1)(x2 — »2)
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for all x, ye X. Let f be a non-continuous bijection of R, for instance f(0) =1,
f(1) =0and f(x) = x otherwise, then

0(X1,x2) = (f(x1)7x2)
is a non-continuous bijection of X satisfying
I(x,y) =0« (o(x),a(y)) =0

for all x, ye X (Rétz [14]). Hence ¢ cannot be a Lorentz transformation, and it
even cannot be a product of a Lorentz transformation and a dilatation. In the case
dim X > 2, the mapping o(x) = 2x is bijective, it satisfies (4), but not (5) for any
given o # 0. So it cannot be a Lorentz transformation.

3 Causal automorphisms

Let x, y be elements of X. Also in the infinite-dimensional case we put
X<y

if, and only if, /(x, y) < 0 and x¢ < y hold true. A bijection ¢ : X — X is called a
causal automorphism if, and only if,

x<yeoalx)<a(y)

forall x,y e X.

The proof of Proposition 1 is not difficult.
Proposition 1. Let x, y,z be elements of X and let k be a real number. Then the fol-
lowing statements hold true.

(i) x<x,
(i) x<yand y < ximply x =y,
(ili) x <yand y < zimply x < z,

(v

)
)
(iv) x <yimpliesx +z <y+z,
) x <y implies kx < ky for k =0
)

(vi) x <y implies kx = ky for k < 0.

Of course, x < y stands for x < yand x #y, x > y for y < x, and x > y for y < x.
Suppose that x, y are elements of X satisfying x < y. Then

o yl={zeX|x<z<y}

is called ordered if, and only if]
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usv or v<su
holds true for all u,v € [x, y].

Proposition 2. Let x, y be elements of X with x < y. Then [(x, y) = 0 if, and only if,
[x, y] is ordered.

Proof. a) Assume [(x, y) =0 and u € [x, ], i.e.
xo <ug <yo, |la— X[ <uo—xo, [y —all <yo—uo.
[(x, y) = 0 implies ||y — X|| = yo — xo. Hence
yo—xo = [ly = x|l < Iy —all + [z — %[ <yo—xo, (7)

and thus ||y — x|| = ||7 — @ + ||z — X||. Since X is strictly convex, y — i, # — X must
be linearly dependent. Hence there exists a € IR with

u=x+a(y —X), (8)

in view of X # ; observe that X = y and ||y — X|| = yo — xo would imply x = y. Now
(7), (8) yield

1y = Xl = 1y —all + lla — x[| = [T — o [|y = XI| + [ol Iy = XI],
ie. 1 =11 —a|+ ||, i.e. 0 < o < 1. Hence, with & := yy — Xxo,
C=(-u)l+al=|y—all+a— x| < (yo—u)+ (uo—x0) = ¢,
ie. ||y — il = yo — uo, ||t — X|| = uo — xo, i.e. by (8),
u=x+a(y—x).
Similarly, v € [x, y] implies
v=x+p(y—x), 0<p<L
Hence u < vfora < f, and v < ufor f < o.

b) Assume that [x, y] is ordered and that /(x, y) # 0. Hence, by x < y, we obtain
I(x,y) < 0and xy < yo, i.e.

(7-3%)° < (yo—x0)° and xp < yo.
Choose ¢ € t+ with ¢ = 1 and ¢ € R with

0 <2< (yo—xo) — Iy — %[, ©)
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and put

u::x—&—y’ v::x;y—i—se.

Observe uy = v and 0 — it = e, i.e. [(u,v) = &> > 0, i.e.
utv and v<£u
Moreover,
u,v e [x, yl.
In order to prove (11), we observe, first of all,
Xo<ug<yo and Xxo < vy < yo,

by uy = vy = 5 (x0 + o). Secondly,

1
Z(X, M) = Zl(xv y) = Z(ua y)7
ie. I(x,u) = I(u, y) < 0. The triangle inequality yields

y—x
+
[

y—%
N )

i.e. by (9),

Hence

(E + 8€>2 < (L — XO)Z
2 - 2 ’

S7

i.e. /(x,v) and /(v, y) are negative. Because of (10), (11), [x, y] is not ordered, a con-

tradiction. Hence /(x, y) = 0.

O

A Lorentz transformation A of X is called orthochronous if, and only if, it is also a

causal automorphism.

Proposition 3. The orthochronous Lorentz transformations A are exactly given by all

mappings
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A(x) = (Bpkw)(x) +d (12)
with o : X — X linear, orthogonal, bijective, w(t) =t,d € X, and k > 1.
Proof. a) Let A be an arbitrary orthochronous Lorentz transformation, say

M) = (Bpio) (x) +d.

Since A is bijective, also w: X — X must be bijective. Moreover, 0 < ¢ implies
A0) < A(2), i.e.

d<kt+kp+d,
ie. 0 <kp+kt ie 0<k ie 1<k, inview of k> > 1.
b) Let 4 be a mapping (12) with proper B, ; and bijective w satisfying w(t) = t.
We then have to prove

a<b e Aa) < Ab)

for all a,b € X. This is clear for A(x) = x + d, in view of Proposition 1 (iv). It is also
clear for A(x) = w(x) because of

0 > I(a,b) = I(A(a), A(b)),
(X + xo1) = o
o(X)t = o(X)o(t) = 5t =0,

i.e. w(x) = w(x), and on account of the fact that w~! is linear and orthogonal as well,
satisfying w=! (1) = 1.

Finally, we consider the case A(x) = B, (x) with k > 1. Since B[j}c =B_, we
only have to prove

a<b= AMa) < Ab),
e.0<b—a=0<A(b)— Aa) =Ab—a),ie.
0<x=0<A(x).
Again, 0 > [(0,x) = /(A(0), A(x)) = /(0, A(x)). Since zy = zt for all z € X, we get
[Byk(x)]g = xo(1 + k(k — 1)) + kxXp = R.

It remains to prove R > 0 in the case 0 < xg and ¥* — x3 = /(0,x) < 0. If xp > 0, we
get R > 0since k > 1. If Xp < 0, we observe

(Xp)” < xp
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Le. —Xp = |Xp| < xp, 1.e. —xp < Xp, 1.e.
R = xo(1 4 k(k —1)) — kxo = xo(k — 1)* > 0. O

Theorem B. The causal automorphisms of X, dim X = 3, are exactly given by all
mappings
Ax) = v (Bpso)(x) +d, (13)

where y > 0 is a real number, B, ;. a proper Lorentz boost, w a linear, orthogonal,
bijective mapping of X with w(t) = t, d an element of X.

Proof. Observe that u(x) := px defines a causal automorphism for a real constant
y > 0. Hence, by Proposition 3, (13) must be a causal automorphism as well.

Suppose now that A: X — X is an arbitrary causal automorphism. If x # y are
elements of X with /(x, y) =0, we may assume xy < yp without loss of generality,
and hence x < y. Thus, by Proposition 2, [x, y] is ordered. Since 4 is a causal auto-
morphism, also [A(x), A(y)] must be ordered and A(x) < A(y) holds true. Hence, by
Proposition 2, /(A(x), A(y)) = 0. Now Theorem 2 implies that

Mx) =m- A (x) (14)

for all x € X, where J; is a Lorentz transformation and m # 0 a real constant. We
may assume m > 0 without loss of generality, since otherwise we would consider

Ax) = (=m) - (= (x)),

by observing that also x — —A1;(x) is a Lorentz transformation. Hence

is a causal automorphism, and thus, by (14), 4; is an orthochronous Lorentz trans-
formation. In view of Proposition 3, we hence get (13) with the properties described
in Theorem B. ]

4 Proof of result C
Let B be a set with card(B) > N := card(IR) and define X to be the set of all functions

x:B— 1R

such that {b € B| x(b) # 0} is finite. We shall write x also in the form

X = Zx(b) -b.

beB
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According to this notation, the element b € B is equal to the element x of X with
x(b) =1 and x(b") =0 for all b’ # b in B.
Define x + y, Ax, xy for x, y € X, 1 € R, by means of

x+yi=Y_[x(b) +y(b)lb, Ax:=Y [A-x(b)]b

beB beB

and xy = 3, _px(b)y(b). Then X is a real inner product space of dimension card(B)
with basis B. If {by,...,b,} is a finite subset of B, then there exist exactly

N - card(B) = card(B)

elements of the form riby + - -- + r,b, with real r;, i =1,... n. Since the set of all
finite subsets of B has also cardinality card(B), we get

card(X) = card(B).
Take a fixed ¢ € B. Hence > = 1 and
card(X) = card(B\{¢}).

Therefore there exists a bijection u : X — B\{r}. Suppose that ¢ > 0 is a fixed real
number and define

Hence ¢ : X — X must be injective. Writing again
X=:1X+x0, Xet', xpelR,
for x € X, let x, y be elements of X with
-2 2
0=1(x,y)=(¥x=p)" = (X0 = »o)".

In view of x # y, the elements b; := u(x), by := u(y) are distinct. Observe by, b, €
B\{t}, i.e. by, by € t*+. Thus

Hot)o() = /201 - \/§b> 0

Of course, g cannot be a Lorentz transformation, since /(a(x), a(y)) = o holds true
for all distinct elements x, y of X. O

Remark. The method followed in this section can be applied to Euclidean and Hyper-
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bolic Geometry in order to find injective mappings o : X — X which are not distance
preserving, but which preserve a fixed distance ¢ > 0. Non-injective mappings leaving
invariant a fixed distance p, but not all other distances, were given by Beckman and
Quarles [3] in the euclidean case, and by Benz [8] in the hyperbolic case. In this con-
nection observe theorems of Beckman, Quarles [3], Farrahi [10], Kuz’'minyh [11], in
which, in the finite-dimensional case, distance preserving mappings are characterized
by the invariance of one single distance ¢ > 0.

Let B be a set with a cardinality > R, and consider the real inner product space X
as defined at the beginning of this section. In view of card(B) = card(X), there exists
a bijection

u:X — B.
In the euclidean case with the distance notion
d(x,y) := [lx =y

for all x, y € X, we define for a fixed ¢ > 0,

Hence d(o(x),0(y)) =1/(o(x) —a(y))? =0 for x#y with x,yeX. So every
distance # 0 goes over in distance o.
In the hyperbolic case with the distance notion

h(x,y) =0 and coshh(x, y):= 1+ x2y/1+y2 — xp,

we define for a fixed ¢ > 0,
a(x) == \/Esinhg - u(x).

Hence cosh i(o(x),a(y)) =1+2 sinhzg = cosh g, i.e.

h(a(x),a(y)) = o

for every x # y with x, y € X. So also here every distance # 0 goes over in distance p.
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