On Lorentz–Minkowski geometry in real inner product spaces

Walter Benz

Dedicated to Adriano Barlotti on the occasion of his 80th birthday, in friendship

Let X be a real inner product space of finite or infinite dimension ≥ 2 , and let $\varrho \ne 0$ be a fixed real number. The following results will be presented in this note.

- A. A surjective mapping $\sigma: X \to X$ preserving Lorentz–Minkowski distances 0 and ρ in one direction must be a Lorentz transformation.
- B. The causal automorphisms of X, dim $X \ge 3$, are exactly the products $\delta \lambda$, where λ is an orthochronous Lorentz transformation and δ a dilatation $x \to \alpha x$, $\mathbb{R} \ni \alpha > 0$.
- C. If $\varrho > 0$, there exist X and an *injective* $\sigma : X \to X$ preserving Lorentz–Minkowski distance ϱ , such that σ is not a Lorentz transformation. This result can be extended, mutatis mutandis, to Euclidean and Hyperbolic Geometry.

If X is finite-dimensional, result A is an immediate consequence of the following theorem of Benz–Lester ([4], [12], [13], [5]).

Theorem 1. Suppose that X is a real inner product space of finite dimension $\geqslant 2$ and that $\rho \neq 0$ is a fixed real number. If $\sigma: X \to X$ satisfies

$$l(x,y) = \varrho \Rightarrow l(\sigma(x),\sigma(y)) = \varrho$$

for all $x, y \in X$, where l(x, y) designates the Lorentz–Minkowski distance of x, y, then σ must be a Lorentz transformation.

Moreover, if X is finite-dimensional, statement B is a well-known theorem of Alexandrov–Ovchinnikova–Zeeman ([1], [2], [17], [5]).

It could be possible that Theorem 1 also holds true in the infinite-dimensional case provided that $\varrho < 0$. However, a proof, if it exists, is not yet known. Result C shows that Theorem 1 cannot be extended to the infinite-dimensional case if $\varrho > 0$, not even in the injective case.

S2 Walter Benz

1 Notation

Let X be a real inner product space of arbitrary finite or infinite dimension ≥ 2 , i.e. a real vector space equipped with a fixed inner product

$$\tau: X \times X \to \mathbb{R}, \quad \tau(x, y) =: xy,$$

satisfying $x^2 := xx > 0$ for all $x \neq 0$ of X. Notice that X need not be complete, i.e. that X need not be a real Hilbert space. Take a fixed $t \in X$ with $t^2 = 1$ and define $t^{\perp} := \{x \in X \mid xt = 0\}$. Observe $X = t^{\perp} \oplus \mathbb{R}t$. We hence get the uniquely determined decomposition

$$x =: \bar{x} + x_0 t$$

with $\bar{x} \in t^{\perp}$ and $x_0 \in \mathbb{R}$ for every $x \in X$. Define

$$l(x, y) := (\bar{x} - \bar{y})^2 - (x_0 - y_0)^2$$

to be the *Lorentz–Minkowski distance* of $x, y \in X$. The mapping $\lambda : X \to X$ is called a *Lorentz transformation* if, and only if,

$$l(x, y) = l(\lambda(x), \lambda(y))$$

holds true for all $x, y \in X$.

Remark. It might be noticed that the theory does not seriously depend on the chosen t ([6], p. 229).

The Lorentz transformations as defined before can explicitly be written by means of (proper or improper) Lorentz boosts and orthogonal transformations ([6], p. 221): For $p \in t^{\perp}$ with $p^2 < 1$ and $-1 \neq k \in \mathbb{R}$ with $k^2 \cdot (1 - p^2) = 1$ define for all $x \in X$,

$$A_p(x) := x_0 p + (\bar{x}p)t, \quad B_{p,k}(x) := x + kA_p(x) + \frac{k^2}{k+1}A_p^2(x).$$

Obviously, $k^2 \ge 1$. The mappings $A_p, B_{p,k}$ are linear and $B_{p,k}: X \to X$ is even bijective. Define also

$$B_{0,-1}(x) := \bar{x} - x_0 t.$$

 $B_{p,k}$ is called a *Lorentz boost*, a *proper* one for $k \ge 1$, an *improper* one for $k \le -1$. All Lorentz transformations λ of X are exactly given by

$$\lambda(x) = (B_{p,k}\omega)(x) + d$$

with a boost $B_{p,k}$, an orthogonal and linear mapping ω from X into X satisfying $\omega(t) = t$, and with an element d of X.

The following theorem was proved by Cacciafesta [9] in the case dim $X < \infty$, and by Benz [7] in the general case.

Theorem 2. If dim $X \ge 3$ and if $\sigma: X \to X$ is bijective and satisfies

$$l(x, y) = 0 \Rightarrow l(\sigma(x), \sigma(y)) = 0$$

for all $x, y \in X$, then σ must be the product of a Lorentz transformation and a dilatation.

Important partial results of Theorem 2 were proved by Alexandrov [1] and by Schröder [15], [16]. Schröder even studied the case of an arbitrary field instead of \mathbb{R} .

2 Proof of result A

Lemma 1. Let γ be a real number and $x \neq 0$ be an element of X. Then there exist $v \neq 0$ in X and α in \mathbb{R} with $\overline{v}^2 = v_0^2$ and

$$\left(\overline{x} + \alpha \overline{v}\right)^2 - \left(x_0 + \alpha v_0\right)^2 = \gamma. \tag{1}$$

Proof. Case 1: $x_0 \neq 0$. Take an element e in t^{\perp} with $e^2 = 1$. Then $\bar{x}e \neq x_0$ or $\bar{x}e \neq -x_0$. Assume $\bar{x}e \neq \varepsilon x_0$ with $\varepsilon \in \mathbb{R}$ and $\varepsilon^2 = 1$. Now put $v := e + \varepsilon t$ and, by observing $\bar{x}\bar{v} \neq x_0 v_0$,

$$2\alpha(\bar{x}\bar{v} - x_0v_0) := \gamma + x_0^2 - \bar{x}^2. \tag{2}$$

Hence (1) holds true.

Case 2: $x_0 = 0$. Hence $x \neq 0$ implies $\bar{x} \neq 0$. Now put $v := \bar{x} + ||\bar{x}|| \cdot t$ with $||z|| := \sqrt{z^2}$ for $z \in X$, and define α by (2). Then also here (1) holds true.

Lemma 2. If $p \neq q$ are elements of X and if $\gamma \in \mathbb{R}$, there exists $r \in X$ satisfying

$$l(r, p) = \gamma$$
 and $l(r, q) = 0$. (3)

Proof. Put x := q - p and take elements v and α according to Lemma 1. Hence $r := q + \alpha v$ satisfies (3).

Lemma 3. Suppose that $\rho \neq 0$ is a fixed real number and that $\sigma: X \to X$ satisfies

$$l(x, y) = 0 \Rightarrow l(\sigma(x), \sigma(y)) = 0 \tag{4}$$

and

$$l(x, y) = \varrho \Rightarrow l(\sigma(x), \sigma(y)) = \varrho$$
 (5)

for all $x, y \in X$. Then σ must be injective.

S4 Walter Benz

Proof. If $p \neq q$ are elements of X, take, in view of Lemma 2, $r \in X$ with $l(r, p) = \varrho$ and l(r, q) = 0. Hence, by (4), (5),

$$l(r', p') = \varrho$$
 and $l(r', q') = 0$ (6)

where we put $z' = \sigma(z)$ for $z \in X$. Now (6) implies $p' \neq q'$.

If dim $X < \infty$, result A follows from Theorem 1. Suppose now that X is infinite-dimensional and that $\sigma: X \to X$ is surjective, satisfying (4) and (5) for all $x, y \in X$, where $\varrho \neq 0$ is a fixed real number. Hence, by Lemma 3, σ is injective, and thus bijective. Hence, by Theorem 2, there exists a Lorentz transformation $\lambda: X \to X$ and a real number $k \neq 0$ such that

$$\sigma(x) = k \cdot \lambda(x)$$

for all $x \in X$. Now (5) implies

$$l(x, y) = \varrho \Rightarrow \varrho = l(k\lambda(x), k\lambda(y))$$

for all $x, y \in X$, i.e. $l(x, y) = \varrho$ implies

$$\varrho = k^2 \cdot l(\lambda(x), \lambda(y)) = k^2 \cdot l(x, y) = k^2 \cdot \varrho.$$

Hence $k^2 = 1$, in view of $\varrho \neq 0$. If k = 1, we get $\sigma = \lambda$, and if k = -1, we obtain

$$\sigma(x) = -\lambda(x)$$

for all $x \in X$. But this is also a Lorentz transformation.

So we have proved

Theorem A. Let $\varrho \neq 0$ be a fixed real number and let $\sigma: X \to X$ be a surjective mapping satisfying (4) and (5) for all $x, y \in X$. Then there exist a Lorentz boost $B_{p,k}$, a linear, bijective and orthogonal mapping $\omega: X \to X$ with $\omega(t) = t$, and an element d of X such that

$$\sigma(x) = (B_{p,k}\omega)(x) + d$$

for all $x \in X$.

Remark. Theorem A holds true, as was shown, for all real inner product spaces X with dim $X \ge 2$. If $X = \mathbb{R}^2$, if we put

$$xy := x_1y_1 + x_2y_2$$

for $x = (x_1, x_2)$, $y = (y_1, y_2)$ of X, and $t := (1/\sqrt{2}, 1/\sqrt{2})$, then

$$l(x, y) = -2(x_1 - y_1)(x_2 - y_2)$$

for all $x, y \in X$. Let f be a non-continuous bijection of \mathbb{R} , for instance f(0) = 1, f(1) = 0 and f(x) = x otherwise, then

$$\sigma(x_1, x_2) := (f(x_1), x_2)$$

is a non-continuous bijection of X satisfying

$$l(x, y) = 0 \Leftrightarrow l(\sigma(x), \sigma(y)) = 0$$

for all $x, y \in X$ (Rätz [14]). Hence σ cannot be a Lorentz transformation, and it even cannot be a product of a Lorentz transformation and a dilatation. In the case $\dim X \ge 2$, the mapping $\sigma(x) = 2x$ is bijective, it satisfies (4), but not (5) for any given $\varrho \ne 0$. So it cannot be a Lorentz transformation.

3 Causal automorphisms

Let x, y be elements of X. Also in the infinite-dimensional case we put

$$x \le y$$

if, and only if, $l(x, y) \le 0$ and $x_0 \le y_0$ hold true. A bijection $\sigma : X \to X$ is called a *causal automorphism* if, and only if,

$$x \le y \Leftrightarrow \sigma(x) \le \sigma(y)$$

for all $x, y \in X$.

The proof of Proposition 1 is not difficult.

Proposition 1. Let x, y, z be elements of X and let k be a real number. Then the following statements hold true.

- (i) $x \leq x$,
- (ii) $x \le y$ and $y \le x$ imply x = y,
- (iii) $x \le y$ and $y \le z$ imply $x \le z$,
- (iv) $x \le y$ implies $x + z \le y + z$,
- (v) $x \le v$ implies $kx \le kv$ for $k \ge 0$,
- (vi) $x \le y$ implies $kx \ge ky$ for k < 0.

Of course, x < y stands for $x \le y$ and $x \ne y$, $x \ge y$ for $y \le x$, and x > y for y < x. Suppose that x, y are elements of X satisfying x < y. Then

$$[x, y] := \{ z \in X \mid x \leqslant z \leqslant y \}$$

is called *ordered* if, and only if,

S6 Walter Benz

$$u \le v$$
 or $v \le u$

holds true for all $u, v \in [x, y]$.

Proposition 2. Let x, y be elements of X with x < y. Then l(x, y) = 0 if, and only if, [x, y] is ordered.

Proof. a) Assume l(x, y) = 0 and $u \in [x, y]$, i.e.

$$x_0 \le u_0 \le y_0$$
, $\|\bar{u} - \bar{x}\| \le u_0 - x_0$, $\|\bar{y} - \bar{u}\| \le y_0 - u_0$.

l(x, y) = 0 implies $\|\overline{y} - \overline{x}\| = y_0 - x_0$. Hence

$$y_0 - x_0 = \|\bar{y} - \bar{x}\| \leqslant \|\bar{y} - \bar{u}\| + \|\bar{u} - \bar{x}\| \leqslant y_0 - x_0, \tag{7}$$

and thus $\|\bar{y} - \bar{x}\| = \|\bar{y} - \bar{u}\| + \|\bar{u} - \bar{x}\|$. Since X is strictly convex, $\bar{y} - \bar{u}$, $\bar{u} - \bar{x}$ must be linearly dependent. Hence there exists $\alpha \in \mathbb{R}$ with

$$\bar{u} = \bar{x} + \alpha(\bar{y} - \bar{x}),\tag{8}$$

in view of $\bar{x} \neq \bar{y}$; observe that $\bar{x} = \bar{y}$ and $||\bar{y} - \bar{x}|| = y_0 - x_0$ would imply x = y. Now (7), (8) yield

$$\|\bar{y} - \bar{x}\| = \|\bar{y} - \bar{u}\| + \|\bar{u} - \bar{x}\| = |1 - \alpha| \|\bar{y} - \bar{x}\| + |\alpha| \|\bar{y} - \bar{x}\|,$$

i.e. $1 = |1 - \alpha| + |\alpha|$, i.e. $0 \le \alpha \le 1$. Hence, with $\xi := y_0 - x_0$,

$$\xi = (1 - \alpha)\xi + \alpha\xi = \|\bar{y} - \bar{u}\| + \|\bar{u} - \bar{x}\| \le (y_0 - u_0) + (u_0 - x_0) = \xi,$$

i.e. $\|\bar{y} - \bar{u}\| = y_0 - u_0$, $\|\bar{u} - \bar{x}\| = u_0 - x_0$, i.e. by (8),

$$u = x + \alpha(v - x)$$
.

Similarly, $v \in [x, y]$ implies

$$v = x + \beta(y - x), \quad 0 \le \beta \le 1.$$

Hence $u \le v$ for $\alpha \le \beta$, and $v \le u$ for $\beta \le \alpha$.

b) Assume that [x, y] is ordered and that $l(x, y) \neq 0$. Hence, by x < y, we obtain l(x, y) < 0 and $x_0 \leq y_0$, i.e.

$$(\bar{y} - \bar{x})^2 < (y_0 - x_0)^2$$
 and $x_0 < y_0$.

Choose $e \in t^{\perp}$ with $e^2 = 1$ and $\varepsilon \in \mathbb{R}$ with

$$0 < 2\varepsilon < (y_0 - x_0) - \|\overline{y} - \overline{x}\|, \tag{9}$$

and put

$$u := \frac{x+y}{2}, \quad v := \frac{x+y}{2} + \varepsilon e.$$

Observe $u_0 = v_0$ and $\bar{v} - \bar{u} = \varepsilon e$, i.e. $l(u, v) = \varepsilon^2 > 0$, i.e.

$$u \not\leq v \quad \text{and} \quad v \not\leq u.$$
 (10)

Moreover,

$$u, v \in [x, y]. \tag{11}$$

In order to prove (11), we observe, first of all,

$$x_0 \leqslant u_0 \leqslant y_0$$
 and $x_0 \leqslant v_0 \leqslant y_0$,

by $u_0 = v_0 = \frac{1}{2}(x_0 + y_0)$. Secondly,

$$l(x, u) = \frac{1}{4}l(x, y) = l(u, y),$$

i.e. l(x, u) = l(u, y) < 0. The triangle inequality yields

$$\left\| \frac{\overline{y} - \overline{x}}{2} \pm \varepsilon e \right\| \leqslant \left\| \frac{\overline{y} - \overline{x}}{2} \right\| + \varepsilon,$$

i.e. by (9),

$$\left\|\frac{\overline{y}-\overline{x}}{2}\pm\varepsilon e\right\|<\frac{y_0-x_0}{2}.$$

Hence

$$\left(\frac{\overline{y}-\overline{x}}{2}\pm\varepsilon e\right)^2<\left(\frac{y_0-x_0}{2}\right)^2,$$

i.e. l(x, v) and l(v, y) are negative. Because of (10), (11), [x, y] is not ordered, a contradiction. Hence l(x, y) = 0.

A Lorentz transformation λ of X is called *orthochronous* if, and only if, it is also a causal automorphism.

Proposition 3. The orthochronous Lorentz transformations λ are exactly given by all mappings

S8 Walter Benz

$$\lambda(x) = (B_{p,k}\omega)(x) + d \tag{12}$$

with $\omega: X \to X$ linear, orthogonal, bijective, $\omega(t) = t$, $d \in X$, and $k \ge 1$.

Proof. a) Let λ be an arbitrary orthochronous Lorentz transformation, say

$$\lambda(x) = (B_{p,k}\omega)(x) + d.$$

Since λ is bijective, also $\omega: X \to X$ must be bijective. Moreover, $0 \le t$ implies $\lambda(0) \le \lambda(t)$, i.e.

$$d \leq kt + kp + d$$
,

i.e. $0 \le kp + kt$, i.e. $0 \le k$, i.e. $1 \le k$, in view of $k^2 \ge 1$.

b) Let λ be a mapping (12) with proper $B_{p,k}$ and bijective ω satisfying $\omega(t) = t$. We then have to prove

$$a \le b \Leftrightarrow \lambda(a) \le \lambda(b)$$

for all $a, b \in X$. This is clear for $\lambda(x) = x + d$, in view of Proposition 1 (iv). It is also clear for $\lambda(x) = \omega(x)$ because of

$$0 \geqslant l(a,b) = l(\lambda(a),\lambda(b)),$$

$$\omega(\bar{x} + x_0 t) = \omega(\bar{x}) + x_0 t,$$

$$\omega(\bar{x})t = \omega(\bar{x})\omega(t) = \bar{x}t = 0,$$

i.e. $\overline{\omega(x)} = \omega(\overline{x})$, and on account of the fact that ω^{-1} is linear and orthogonal as well, satisfying $\omega^{-1}(t) = t$.

Finally, we consider the case $\lambda(x) = B_{p,k}(x)$ with $k \ge 1$. Since $B_{p,k}^{-1} = B_{-p,k}$ we only have to prove

$$a \le b \Rightarrow \lambda(a) \le \lambda(b)$$
,

i.e. $0 \le b - a \Rightarrow 0 \le \lambda(b) - \lambda(a) = \lambda(b - a)$, i.e.

$$0 \leqslant x \Rightarrow 0 \leqslant \lambda(x)$$
.

Again, $0 \ge l(0, x) = l(\lambda(0), \lambda(x)) = l(0, \lambda(x))$. Since $z_0 = zt$ for all $z \in X$, we get

$$[B_{p,k}(x)]_0 = x_0(1 + k(k-1)) + k\bar{x}p =: R.$$

It remains to prove $R \ge 0$ in the case $0 \le x_0$ and $\bar{x}^2 - x_0^2 = l(0, x) \le 0$. If $\bar{x}p \ge 0$, we get $R \ge 0$ since $k \ge 1$. If $\bar{x}p < 0$, we observe

$$(\bar{x}p)^2 \leqslant \bar{x}^2p^2 \leqslant x_0^2 \cdot 1 = x_0^2$$

i.e. $-\bar{x}p = |\bar{x}p| \le x_0$, i.e. $-x_0 \le \bar{x}p$, i.e.

$$R \ge x_0(1 + k(k-1)) - kx_0 = x_0(k-1)^2 \ge 0.$$

Theorem B. The causal automorphisms of X, dim $X \ge 3$, are exactly given by all mappings

$$\lambda(x) = \gamma \cdot (B_{p,k}\omega)(x) + d, \tag{13}$$

where $\gamma > 0$ is a real number, $B_{p,k}$ a proper Lorentz boost, ω a linear, orthogonal, bijective mapping of X with $\omega(t) = t$, d an element of X.

Proof. Observe that $\mu(x) := \gamma x$ defines a causal automorphism for a real constant $\gamma > 0$. Hence, by Proposition 3, (13) must be a causal automorphism as well.

Suppose now that $\lambda: X \to X$ is an arbitrary causal automorphism. If $x \neq y$ are elements of X with l(x, y) = 0, we may assume $x_0 \leq y_0$ without loss of generality, and hence x < y. Thus, by Proposition 2, [x, y] is ordered. Since λ is a causal automorphism, also $[\lambda(x), \lambda(y)]$ must be ordered and $\lambda(x) < \lambda(y)$ holds true. Hence, by Proposition 2, $l(\lambda(x), \lambda(y)) = 0$. Now Theorem 2 implies that

$$\lambda(x) = m \cdot \lambda_1(x) \tag{14}$$

for all $x \in X$, where λ_1 is a Lorentz transformation and $m \neq 0$ a real constant. We may assume m > 0 without loss of generality, since otherwise we would consider

$$\lambda(x) = (-m) \cdot (-\lambda_1(x)),$$

by observing that also $x \to -\lambda_1(x)$ is a Lorentz transformation. Hence

$$x \to \frac{1}{m}\lambda(x)$$

is a causal automorphism, and thus, by (14), λ_1 is an orthochronous Lorentz transformation. In view of Proposition 3, we hence get (13) with the properties described in Theorem B.

4 Proof of result C

Let B be a set with $card(B) \ge \aleph := card(\mathbb{R})$ and define X to be the set of all functions

$$x: B \to \mathbb{R}$$

such that $\{b \in B \mid x(b) \neq 0\}$ is finite. We shall write x also in the form

$$x = \sum_{b \in B} x(b) \cdot b.$$

S10 Walter Benz

According to this notation, the element $b \in B$ is equal to the element x of X with x(b) = 1 and x(b') = 0 for all $b' \neq b$ in B.

Define x + y, λx , xy for $x, y \in X$, $\lambda \in \mathbb{R}$, by means of

$$x + y := \sum_{b \in B} [x(b) + y(b)]b, \quad \lambda x := \sum_{b \in B} [\lambda \cdot x(b)]b$$

and $xy = \sum_{b \in B} x(b) y(b)$. Then X is a real inner product space of dimension card(B) with basis B. If $\{b_1, \ldots, b_n\}$ is a finite subset of B, then there exist exactly

$$\aleph \cdot \operatorname{card}(B) = \operatorname{card}(B)$$

elements of the form $r_1b_1 + \cdots + r_nb_n$ with real r_i , $i = 1, \dots, n$. Since the set of all finite subsets of B has also cardinality $\operatorname{card}(B)$, we get

$$card(X) = card(B)$$
.

Take a fixed $t \in B$. Hence $t^2 = 1$ and

$$card(X) = card(B \setminus \{t\}).$$

Therefore there exists a bijection $\mu: X \to B \setminus \{t\}$. Suppose that $\varrho > 0$ is a fixed real number and define

$$\sigma(x) := \sqrt{\frac{\varrho}{2}}\mu(x).$$

Hence $\sigma: X \to X$ must be injective. Writing again

$$x =: \overline{x} + x_0 t, \quad \overline{x} \in t^{\perp}, \ x_0 \in \mathbb{R},$$

for $x \in X$, let x, y be elements of X with

$$\varrho = l(x, y) = (\bar{x} - \bar{y})^2 - (x_0 - y_0)^2.$$

In view of $x \neq y$, the elements $b_1 := \mu(x)$, $b_2 := \mu(y)$ are distinct. Observe $b_1, b_2 \in B \setminus \{t\}$, i.e. $b_1, b_2 \in t^{\perp}$. Thus

$$l(\sigma(x), \sigma(y)) = \left(\sqrt{\frac{\varrho}{2}}b_1 - \sqrt{\frac{\varrho}{2}}b_2\right)^2 = \varrho.$$

Of course, σ cannot be a Lorentz transformation, since $l(\sigma(x), \sigma(y)) = \varrho$ holds true for all distinct elements x, y of X.

Remark. The method followed in this section can be applied to Euclidean and Hyper-

bolic Geometry in order to find *injective* mappings $\sigma: X \to X$ which are not distance preserving, but which preserve a fixed distance $\varrho > 0$. Non-injective mappings leaving invariant a fixed distance ϱ , but not all other distances, were given by Beckman and Quarles [3] in the euclidean case, and by Benz [8] in the hyperbolic case. In this connection observe theorems of Beckman, Quarles [3], Farrahi [10], Kuz'minyh [11], in which, in the finite-dimensional case, distance preserving mappings are characterized by the invariance of one single distance $\varrho > 0$.

Let B be a set with a cardinality $\geqslant \aleph$, and consider the real inner product space X as defined at the beginning of this section. In view of $\operatorname{card}(B) = \operatorname{card}(X)$, there exists a bijection

$$\mu: X \to B$$
.

In the euclidean case with the distance notion

$$d(x, y) := ||x - y||$$

for all $x, y \in X$, we define for a fixed $\varrho > 0$,

$$\sigma(x) := \frac{\varrho}{\sqrt{2}}\mu(x).$$

Hence $d(\sigma(x), \sigma(y)) = \sqrt{(\sigma(x) - \sigma(y))^2} = \varrho$ for $x \neq y$ with $x, y \in X$. So every distance $\neq 0$ goes over in distance ϱ .

In the hyperbolic case with the distance notion

$$h(x, y) \ge 0$$
 and $\cosh h(x, y) := \sqrt{1 + x^2} \sqrt{1 + y^2} - xy$,

we define for a fixed $\rho > 0$,

$$\sigma(x) := \sqrt{2} \sinh \frac{\varrho}{2} \cdot \mu(x).$$

Hence $\cosh h(\sigma(x), \sigma(y)) = 1 + 2 \sinh^2 \frac{\varrho}{2} = \cosh \varrho$, i.e.

$$h(\sigma(x),\sigma(y))=\varrho$$

for every $x \neq y$ with $x, y \in X$. So also here every distance $\neq 0$ goes over in distance ϱ .

References

- [1] A. D. Alexandrov, Seminar report. Uspehi Mat. Nauk. 5 (1950), no. 3 (37), 187.
- [2] A. D. Alexandrov, V. V. Ovchinnikova, Notes on the foundations of relativity theory. Vestnik Leningrad. Univ. 11, 95 (1953).

S12 Walter Benz

- [3] F. S. Beckman, D. A. Quarles, Jr., On isometries of Euclidean spaces. *Proc. Amer. Math. Soc.* 4 (1953), 810–815. MR 15,335a Zbl 0052.18204
- [4] W. Benz, Eine Beckman-Quarles-Charakterisierung der Lorentztransformationen des Rⁿ. Arch. Math. (Basel) 34 (1980), 550-559. MR 82h:51022 Zbl 0446.51015
- [5] W. Benz, Geometrische Transformationen. Bibliographisches Institut, Mannheim 1992. MR 93i:51002 Zbl 0754.51005
- [6] W. Benz, Lorentz-Minkowski distances in Hilbert spaces. Geom. Dedicata 81 (2000), 219–230. MR 2001e:46032 Zbl 0959.51013
- [7] W. Benz, Lie sphere geometry in Hilbert spaces. Results Math. 40 (2001), 9–36.MR 2003b:51007 Zbl 0995.51003
- [8] W. Benz, Mappings preserving two hyperbolic distances. J. Geom. 70 (2001), 8–16.MR 2002g:51017 Zbl 0988.51015
- [9] F. Cacciafesta, An observation about a theorem of A. D. Alexandrov concerning Lorentz transformations. *J. Geom.* **18** (1982), 5–8. MR 83h:51026 Zbl 0485.51015
- [10] B. Farrahi, A characterization of isometries of absolute planes. *Resultate Math.* 4 (1981), 34–38. MR 82i:51022 Zbl 0472.51009
- [11] A. V. Kuz'minyh, Mappings preserving the distance 1. Sibirsk. Mat. Zh. 20 (1979), 597–602. MR 80h:51016 Zbl 0427.51008
- [12] J. A. Lester, The Beckman–Quarles theorem in Minkowski space for a spacelike squaredistance. Arch. Math. (Basel) 37 (1981), 561–568. MR 83e:51008 Zbl 0457.51027
- [13] J. A. Lester, Distance preserving transformations. In: *Handbook of incidence geometry*, 921–944, North-Holland 1995. MR 96j:51019 Zbl 0826.51010
- [14] J. Rätz, On light-cone-preserving mappings of the plane. In: General inequalities, 3 (Oberwolfach, 1981), volume 64 of Internat. Schriftenreihe Numer. Math., 349–367, Birkhäuser 1983. MR 86e:51025 Zbl 0527.51006
- [15] E. M. Schröder, Zur Kennzeichnung distanztreuer Abbildungen in nichteuklidischen Räumen. J. Geom. 15 (1980), 108–118. MR 82h:51025 Zbl 0463.51015
- [16] E. M. Schröder, Ein einfacher Beweis des Satzes von Alexandrov-Lester. J. Geom. 37 (1990), 153–158. MR 91c:51019 Zbl 0704.51010
- [17] E. C. Zeeman, Causality implies the Lorentz group. J. Mathematical Phys. 5 (1964), 490–493. MR 28 #5785 Zbl 0133.23205

Received 8 October, 2002

W. Benz, Mathematisches Seminar der Universität, Bundesstr. 55, 20146 Hamburg, Germany Email: benz@math.uni-hamburg.de