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1 Introduction

Throughout this article q ¼ 2e, ed 1. The reader is assumed to have a general
familiarity with GQ (see [10] for a thorough introduction), and in particular to be
familiar with the construction of a GQ starting with a q-clan. (These GQ are often
called flock GQ because of the connection between flocks of a quadratic cone and
q-clans first pointed out in [13].) For a thorough introduction to this construction
when q ¼ 2e, see the Subiaco Notebook [7], which is available on the web page of
the second author. This unpublished ‘‘monograph’’ is based on several articles by a
variety of authors, but we refer the reader to [7] for specific references.

S. E. Payne, T. Penttila and G. F. Royle [9] used a computer to generate several
specific GQ of order ðq2; qÞ, the largest with q ¼ 216 ¼ 65 536. Some of the smaller
examples had already been discovered earlier. These GQ were called cyclic because
they admit a group of collineations acting as a single cycle on the qþ 1 lines through
the point ðyÞ. The classical GQ, the so-called FTWKB GQ, and the Subiaco GQ
were already known to be cyclic in this sense, and the new ones seemed certain to
belong to a new infinite family. W. E. Cherowitzo, C. M. O’Keefe and T. Penttila [4]
discovered a new infinite family that appeared to include the examples given in [9],
and they gave the name Adelaide to all the new associated geometries, i.e., the GQ,
the flocks of the quadratic cone, the ovals, etc. Remarkably they gave a unified con-
struction that included the three previously known infinite families as well as the new
Adelaide family. (See [12] for a rather complete survey of the known flock GQ and,
for q even, the associated herds of ovals, as well as much other material related to
ovals.)

However, [4] leaves several questions unanswered. In particular, there is no proof
that the unified construction always gives a cyclic GQ, i.e., includes the examples of
[9]. In this paper we provide the proof (this material also appears in [8]) as well as
showing that there arises just one new GQ and one new oval (up to isomorphism) for
each q. We also provide a clarification of the relationship between the group of col-
lineations of a GQ and the magic action (see [6]) used in [4] to establish the stabilizer
of the Adelaide GQ. The stabilizer of the Adelaide oval, not completely specified in



[4], is shown to be the complete stabilizer in [11]. Finally, we address, in geometric
terms, the relationship between cyclic GQ’s and the flocks of the quadratic cone that
they give rise to.

Acknowledgement. We thank Ilaria Cardinali for many helpful conversations con-
cerning the material developed in this paper.

2 Cyclic GQ

We recall the basic setup. A q-clan is a set

C ¼ At ¼
f ðtÞ t1=2

0 gðtÞ

� �
: t A GFðqÞ

� �

of q 2� 2 matrices over GFðqÞ such that the pairwise di¤erences As � At for distinct
s; t A GFðqÞ are all anisotropic. Here f and g are permutation polynomials over
GFðqÞ normalized so that f ð0Þ ¼ gð0Þ ¼ 0. And for q ¼ 2e the anisotropic condition
is exactly that for distinct s; t A GFðqÞ, if ‘‘trace’’ denotes the absolute trace function,

trace
ð f ðsÞ þ f ðtÞÞðgðsÞ þ gðtÞÞ

sþ t

� �
¼ 1:

The steps leading from a q-clan to the associated geometries have so frequently been
reviewed in the literature that we assume here that the reader is familiar with the
general process. Indeed, the review in [4] is quite suitable for our purposes. Here we
shall review only that part of the Fundamental Theorem for q-clan geometries that
deals with the representation of collineations of the associated GQ as a tensor prod-
uct of two simpler actions, one on the set of lines of the GQ through the special point
ðyÞ and the other on the set of associated ovals.

The elation group G consists of all pairs ðða; bÞ; cÞ such that a and b are each
arbitrary pairs of elements of F ¼ GFðqÞ, and c A F . The binary operation in G is:

ðða1; b1Þ; c1Þ � ðða2; b2Þ; c2Þ ¼ ðða1 þ a2; b1 þ b2Þ; c1 þ c2 þ b1 � a2Þ;

where, in general, a � b ¼ aPbT , P ¼
�
0 1
1 0

�
. Writing 0 ¼ ð0; 0Þ, the center of the

group G is

Z ¼ fð0; 0; cÞ : c A Fg:

For each t A F , there is a subgroup AðtÞ of G defined by

AðtÞ ¼ fðð1; t1=2Þn a; gða; tÞÞ : a A F 2g;

where, if a ¼ ða; bÞ, gða; tÞ :¼ aAta
T ¼ a2f ðtÞ þ abt1=2 þ b2gðtÞ. (Note that in the lit-

erature both gaðtÞ and gtðaÞ have been used to denote this function. As we will have
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occasion to consider this function at di¤erent times for fixed a and for fixed t, we
have decided not to use these specialized notations to avoid the necessity of having to
switch notation in the middle of our arguments.) We also set,

AðyÞ ¼ fðð0; bÞ; 0Þ : b A F 2g:

The family J ¼ fAðtÞ : t A ~FF ¼ F U fygg of subgroups of G is the so-called Kantor
family used to index the lines ½AðtÞ� : t A ~FF through the point ðyÞ in the generalized
quadrangle SðCÞ associated with the given q-clan C.

For 0 ¼ ð0; 0Þ0 a A F 2, let Ra ¼ fðgn a; cÞ A Gn : g A F 2; c A Fg.

Theorem 2.1 (1.4.1 in [7]). Each Ra is an elementary abelian group of order q3. For
nonzero a; g A F 2, Rg ¼ Ra i¤ fa; gg is F-linearly dependent, so we may think of the

groups Ra as indexed by the points of PGð1; qÞ which in turn can be indexed by the

elements of ~FF .

We use the elements of ~FF to index the points of PGð1; qÞ as follows: gy ¼ ð0; 1Þ
and gt ¼ ð1; tÞ for t A F . So for ð0; 0Þ0 g ¼ ða; bÞ, we have g1 gb=a.

The scalar multiplication

dðgn a; cÞ ¼ ðdgn a; d 2cÞ ¼ ðgn da; d 2cÞ ð1Þ

turns eachRa into a 3-dimensional vector space over F containing the center Z. Hence
there are associated projective planes Ra isomorphic to PGð2; qÞ. Since gðda; tÞ ¼
d 2gða; tÞ, we have

ðgt1=2 n da; gðda; tÞÞ ¼ dðgt1=2 n a; gða; tÞÞ;

and we see that

AðtÞVRa ¼ fdðgt1=2 n a; gða; tÞÞ : d A Fg ð2Þ

corresponds to a point of the plane Ra. The elements of the GQ in such an equiva-
lence class are called o-points. Moreover,

Oa ¼ fAðtÞVRa : t A ~FFg ð3Þ

is an oval in Ra. (Note: y1=2 ¼y.)
Notice that Oa and Ob, where fa; bg is F-linearly independent, have no point in

common, although they do have the same nucleus Z.
For more details see the Subiaco Notebook [7].
According to the Fundamental Theorem of q-clan geometry (developed in [7] for q

a power of 2), each collineation of SðCÞ that fixes the point ðð0; 0Þ; 0Þ (and also the
point ðyÞ) must be induced by an automorphism of the group G determined by a
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field automorphism s ¼ 2 i and a 4� 4 matrix that is the tensor product AnB of
two 2� 2 matrices

A ¼ a4 a2

a3 a1

� �
and B ¼ b4 b2

b3 b1

� �
:

Moreover, if y ¼ yðs;AnBÞ is such a collineation, then

y : ½AðtÞ� 7! ½AðtÞ�; where t A ~FF and t ¼ a21 t
s þ a22

a23 t
s þ a24

: ð4Þ

Analogously, the corresponding map on the ovals is given by

y : Os 7! Os; where s A ~FF and s ¼ b21s
s þ b22

b23s
s þ b24

: ð5Þ

Finally, we record the following useful formulas:

yðs1;A1 nB1Þ � yðs2;A2 nB2Þ ¼ yðs1 � s2;As2
1 A2 nBs2

1 B2Þ: ð6Þ

yðs;AnBÞ�1 ¼ yðs�1; ðA�1Þs
�1

n ðB�1Þs
�1

Þ: ð7Þ

2.1 Preliminary notation and computations. Recall that we are assuming q ¼ 2e. Let
F ¼ GFðqÞJGFðq2Þ ¼ E. Write x ¼ xq for x A E. Thus x ¼ x i¤ x A F . Let l be a
primitive element of E, so the multiplicative order of l is jlj ¼ q2 � 1. Put b ¼ lq�1,
so jbj ¼ qþ 1. Then b ¼ bq ¼ b�1. Define d ¼ TrE=F ðbÞ ¼ b þ b. More generally, for
each rational number a with denominator relatively prime to qþ 1 we use the fol-
lowing convenient notation for the relative trace function:

½a� :¼ ba þ b a ¼ TrE=F ðb aÞ: ð8Þ

Lemma 2.2. The following have easy proofs:

(1) d ¼ ½1�; 0 ¼ ½0�.

(2) ½a� ¼ ½b� i¤ a1Gb ðmod qþ 1Þ.

(3) ½a� � ½b� ¼ ½aþ b� þ ½a� b�; ½a� þ ½b� ¼ aþb
2

� �
� a�b

2

� �
.

(4) ½a�s ¼ ½sa� for s ¼ 2 i A AutðFÞ.

(5) aþc
2

� �
a
2

� �
c
2

� �
¼ ½aþ c� þ ½a� þ ½c�.

(6) The map
½ jþk�
½ j � 7! ½ jþ1þk�

½ jþ1� , for all j A Zqþ1, permutes the elements of ~FF in a cycle of

length qþ 1. If k ¼ 1, the map
½ jþ1�
½ j � 7! ½ jþ2�

½ jþ1� , for all j A Zqþ1, is the same as the

map t 7! t�1 þ d. More generally,
½ jþk�
½ j � 7! ½ jþ1þk�

½ jþ1� is the map t 7! t½kþ1�þ½1�
t½1�þ½k�1� .
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It will also be useful to have a generalization of the above notation. For each k,
1c kc q, put bk ¼ lkðq�1Þ, so jbkj ¼

qþ1

gcdðk;qþ1Þ . Then bk ¼ b
q
k ¼ b�1

k . Let dk ¼ bk þ bk

and in general define ½a�k ¼ ba
k þ b a

k . When k ¼ 1 we suppress the subscript. Proper-
ties of this generalized notation follow easily from Lemma 2.2 and the observation
that ½a�k ¼ ½ka�.

Another notational device which we will find useful when discussing herds in terms
of the q-clan functions is:

f �
s ðtÞ :¼ gðð1; s1=2Þ; tÞ ¼ f ðtÞ þ s1=2t1=2 þ sgðtÞ; for s A F ; ð9Þ

and

f �
yðtÞ :¼ gðtÞ ¼ gðð0; 1Þ; tÞ: ð10Þ

The matrix M of the following lemma will play a fundamental role in the sequel.

Lemma 2.3. Let M ¼
�
0 1
1 d1=2

�
with eigenvalues bGð1=2Þ. Clearly M ¼ MT and

detðMÞ ¼ 1. The matrix M has multiplicative order qþ 1, since

M j ¼ 1

d1=2

0
B@

j�1

2

h i
j

2

h i
j

2

h i
jþ1

2

h i
1
CA for all j modulo qþ 1: ð11Þ

Furthermore, with P ¼
�
0 1
1 0

�
,

M jPM�j ¼ 1

d1=2
½ j � j � 1

2

� �
j þ 1

2

� �
½ j �

 !
; ð12Þ

and it has unique eigenvector
2jþ1

4

h i
;

2j�1

4

h i	 

.

2.2 Some special linear collineations.

Lemma 2.4 ([9]). The automorphism yðid;PnPÞ of G induces a collineation of SðCÞ
i¤

tf
1

t

� �
¼ gðtÞ and tg

1

t

� �
¼ f ðtÞ: ð13Þ

When this condition holds, yðid;PnPÞ is an involution fixing the line ½Að1Þ� and also

fixing the oval O1. More generally, y : ½AðtÞ� 7! ½Aðt�1Þ� and y : Ot 7! Ot�1 , for t A ~FF .

Let m be a positive integer (modulo qþ 1). We are interested in determining just
when there is a collineation of SðCÞ of the form y ¼ yðid;MnM�mÞ.
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Lemma 2.5. The automorphism yðid;MnM�mÞ of G induces a collineation of SðCÞ
if and only if:

tð f ðt�1 þ dÞ þ f ðdÞÞ ¼ ½m� 1�
d

f ðtÞ þ ½m�
½m� 1�

� �1=2
t1=2 þ ½m�

½m� 1� gðtÞ
( )

and

tðgðt�1 þ dÞ þ gðdÞÞ ¼ ½m�
d

f ðtÞ þ ½mþ 1�
½m�

� �1=2
t1=2 þ ½mþ 1�

½m� gðtÞ
( )

:

Proof. Recall from the Subiaco Notebook [7] that as an automorphism of G, y has
the following e¤ect:

y ¼ yðid;MnM�mÞ :

ðða; bÞ; cÞ 7! ðða; bÞðMnM�mÞ; cþ a � b þ bM�mAdM
�mbTÞ: ð14Þ

A little work shows that if t ¼ ½kþ1�
½k� , then the typical element of AðtÞ can be repre-

sented in the form:

k

2

� �
;
k þ 1

2

� �� �
n a; ½k�gða; tÞ

� �
; a A F 2:

It follows that

y ¼ yðid;MnM�mÞ : k

2

� �
;
k þ 1

2

� �� �
n a; ½k�gða; tÞ

� �

7! k

2

� �
;
k þ 1

2

� �� �
Mn aM�m; ½k�gða; tÞ þ ½k þ 1�aM�mAdM

�maT

� �

¼ k þ 1

2

� �
;
k þ 2

2

� �� �
n aM�m; ½k�gða; tÞ þ ½k þ 1�aM�mAdM

�maT

� �
:

What does it mean for this to be in AðtÞ where t ¼ t�1 þ d? Since t ¼ ½kþ1�
½k� , t ¼ ½kþ2�

½kþ1� .
So containment holds i¤

k þ 1

2

� �
;
k þ 2

2

� �� �
n aM�m; ½k�gða; tÞ þ ½k þ 1�aM�mAdM

�maT

� �

¼ k þ 1

2

� �
;
k þ 2

2

� �� �
n aM�m; ½k þ 1�gðaM�m; t�1 þ dÞ

� �

i¤
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af½k þ 1�M�mAt�1þdM
�mgaT ¼ af½k�At þ ½k þ 1�M�mAdM

�mgaT

i¤

½k þ 1�
½k� At�1þd 1MmAtM

m þ ½k þ 1�
½k� Ad for all t A F

i¤

MmAtM
m 1 tðAt�1þd þ AdÞ:

A routine computation shows that

MmAtM
m 1

1

d

½m� 1� f �
½m�=½m�1�ðtÞ dt1=2

0 ½m� f �
½mþ1�=½m�ðtÞ

 !
: ð15Þ

From this the statement follows. r

Theorem 2.6. If y ¼ yðid;MnM�mÞ is a collineation of SðCÞ then y has order qþ 1
on the lines of SðCÞ through the point ðyÞ. For each integer j modulo qþ 1 we have

the following:

(1) y j ¼ yðid;M j nM�mjÞ : ½AðtÞ� 7! ½AðtÞ�, where t ¼ ½ jþ1�tþ½ j �
½ j �tþ½ j�1� . If t ¼

½kþ1�
½k� , then t ¼

½ jþkþ1�
½ jþk� ¼ ð1þdsÞtþs

stþ1
, where s ¼ ½ j �

½ j�1� .

(2) y : Ot 7! Ot where t ¼ ½mj�1�tþ½mj �
½mj �tþ½mjþ1� . If t ¼

½kþ1�
½k� , then t ¼ ½k�mjþ1�

½k�mj � ¼ ð1þdrÞtþr

rtþ1
, where

r ¼ ½mj �
½mjþ1� .

From now on we assume that the automorphisms of Gn given by y ¼
yðid;MnM�mÞ and j ¼ yðid;PnPÞ really do induce collineations of SðCÞ. Recall
that j is an involution interchanging ½AðtÞ� and ½Aðt�1Þ� and interchanging Os and
Os�1 , for t; s A ~FF .

Theorem 2.7. Let yj ¼ y j � j � y�j ¼ yðid;M jPM�j nM�mjPMmjÞ. Then yj is an

involution fixing

½AðsÞ� with s ¼
j � 1

2

� �
j þ 1

2

� � ;
and fixing

Or with r ¼
mj þ 1

2

� �
mj � 1

2

� � :
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In general yj : ½AðtÞ� 7! ½AðtÞ� with

t ¼ ½2j �tþ ½2j � 1�
½2j þ 1�tþ ½2j � ¼

tðs2 þ 1Þ þ ds2

tdþ s2 þ 1
:

Similarly, yj : Ot 7! Ot with

t ¼ ½2mj �tþ ½2mj þ 1�
½2mj � 1�tþ ½2mj � ¼

tðr2 þ 1Þ þ dr2

tdþ r2 þ 1
:

2.3 Some semi-linear collineations. Assume that C is a given q-clan for which the
conditions in Lemmas 2.4 and 2.5 both hold. In the nonclassical case, each line
through ðyÞ (resp., each oval Ot) is fixed by a unique involution. In the classical case
this is not true. However, in the computations below we assume that an involution
that turns up which fixes ½AðyÞ� is the one we know about. Then we ask for necessary
and su‰cient conditions on the functions f and g that give C so that there be a col-
lineation of SðCÞ that fixes the line ½AðyÞ� and the points ðyÞ and ðð0; 0Þ; 0Þ and
belongs to the field automorphism s ¼ 2. We state the result here and the interested
reader can find the details of the proof in [1] or [8].

Theorem 2.8. There is a collineation of SðCÞ that fixes the line ½AðyÞ� and the two

points ðyÞ and ðð0Þ; ð0Þ; 0Þ and which is semilinear with associated field automorphism

s ¼ 2 if and only if the following two equations hold:

f ðd�1t2 þ d�1Þ þ f ðd�1Þ

¼ 1

d2
mþ 3

2

� �
f ðtÞ2 þ mþ 3

4

� �
m� 1

4

� �
tþ m� 1

2

� �
gðtÞ2

� �
; ð16Þ

gðd�1t2 þ d�1Þ þ gðd�1Þ

¼ 1

d2
mþ 1

2

� �
f ðtÞ2 þ mþ 1

4

� �
m� 3

4

� �
tþ m� 3

2

� �
gðtÞ2

� �
: ð17Þ

This result is based on the following lemma.

Lemma 2.9. If there is a collineation of SðCÞ that fixes the line ½AðyÞ� and the

two points ðyÞ and ðð0Þ; ð0Þ; 0Þ and which is semilinear with associated field auto-

morphism s ¼ 2, there are two possibilities: ½Að0Þ� is mapped to ½AðtÞ� with t ¼ d�1 or

t ¼ d�1 þ d. If the first case holds, then the collineation must be the following:

y 2;
1

d1=2
d1=2 1

0 1

 !
n

1

d1=2

0
BBB@

m�3
4½ �
1
4½ �

m�1
4½ �
1
4½ �

mþ1
4½ �
1
4½ �

mþ3
4½ �
1
4½ �

1
CCCA

0
BBB@

1
CCCA:
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The two equations of Theorem 2.8 hold if and only if the collineation of Lemma 2.9
actually is a collineation moving ½Að0Þ� to ½Aðd�1Þ�. By composing with the involution
Iy ¼ y�1=2 which maps ½AðtÞ� to ½Aðtþ dÞ�, we see that both possible collineations of
Lemma 2.9 exist or both fail to exist.

The order of the collineation given in Lemma 2.9 can be determined, and the group
it generates is ~GGGCqþ1zC2e. Moreover, by L. E. Dickson we know that Cqþ1zC2e

is a maximal subgroup of PGLð2; qÞ.

3 Some cyclic q-clans

3.1 The unified construction of [4]. As before, l is a primitive element of E ¼ GFðq2Þ,
q ¼ 2e, and let bk ¼ lkðq�1Þ, where 1c kc q. Recall our ½. . .�k notation and espe-

cially, dk ¼ bk þ bk. Write TðxÞ ¼ xþ x for x A E, aðtÞ ¼ b
1=2
k tþ b

1=2
k , nðtÞ ¼ tþ

ðdktÞ1=2 þ 1, and let tr : F ! GFð2Þ be the absolute trace function.

Theorem 3.1 (W. E. Cherowitzo, C. M. O’Keefe and T. Penttila [4]). Let m and k be

nonzero residues modulo qþ 1, where qþ 1 does not divide km, such that

tr
½m�k
½1�k

� �
1 1 ðmod 2Þ: ð18Þ

Let

F ðtÞ ¼
m
2

� �
k

1
2

� �
k

ðtþ 1Þ þ TðaðtÞmÞ
1
2

� �
k
ðnðtÞÞm�1

þ t1=2: ð19Þ

GðtÞ ¼
m
2

� �
k

1
2

� �
k

tþ Tððb1=2
k aðtÞÞmÞ

1
2

� �
k

m
2

� �
k
ðnðtÞÞm�1

þ t1=2

m
2

� �
k

: ð20Þ

Then CðkÞ ¼ At ¼
�
FðtÞ t1=2

0 GðtÞ
�
: t A F

n o
is a (normalized ) q-clan.

To see the connection with reference [4], replace their f with F, their ag with G,
and their b with b1=2. Notice that if either k or m is relatively prime to qþ 1, the
condition that qþ 1 does not divide km is satisfied. In particular, we see that k ¼ 1
will always satisfy the condition. Then we have the following remarkable theorem.

Theorem 3.2 ([4]). Four infinite families of q-clans arise:

(1) If m1G1 ðmod qþ 1Þ, then CðkÞ is the classical q-clan for all q ¼ 2e and all k.
ðSðCðkÞÞGHð3; q2ÞÞ

(2) If m1G
q

2
ðmod qþ 1Þ and e is odd, then CðkÞ is the FTWKB q-clan for all k, i.e.,

equivalent to having At ¼
�
t1=4 t 2=4

0 t 3=4

�
.

William E. Cherowitzo and Stanley E. PayneS166



(3) If m1G5 ðmod qþ 1Þ, then CðkÞ is the Subiaco q-clan for all q ¼ 2e. (Note

that when e1 2 ðmod4Þ, m divides qþ 1 and not all values of k will satisfy the

condition.)

(4) If m1G q�1

3

	 

ðmod qþ 1Þ with e even, then for all k CðkÞ is a new q-clan called an

Adelaide q-clan.

For small q there is some overlap in these four families, but for q > 16 these fam-
ilies are almost certainly disjoint.

Of course we would like to know that the Adelaide q-clans really do contain the
cyclic q-clans obtained by S. E. Payne, T. Penttila and G. Royle [9] (with the help of
a computer), for q ¼ 4e, ec 8. We will first show that the new q-clans are cyclic.

For this purpose it will be convenient to modify the description of the q-clans

in the unified construction. Put D ¼
�
a b
c d

�
with a ¼ ½mþ1�

½m�½1�

	 
1=4
, b ¼ d ¼ 1, and

c ¼ ½m�1�
½m�½1�

	 
1=4
. Let

D̂D ¼

a2 ab b2 0

0 1 0 0

c2 cd d 2 0

0 0 0 1

0
BBB@

1
CCCA:

Define fk and gk by

fkðtÞ
t1=2

gkðtÞ
1

0
BBB@

1
CCCA¼ D̂D �

F ðtÞ
t1=2

GðtÞ
1

0
BBB@

1
CCCA:

After routine computation we find that (suppressing all k’s in the notation for
legibility)

f ðtÞ ¼
mþ1
2

� �
½1� þ

m�1
2

� �
½1� tþ

mþ1
2

� �
TðaðtÞmÞ þ 1

2

� �
Tððb1=2aðtÞÞmÞ

½1� m
2

� �
nðtÞm�1

þ t

d

� �1=2

and

gðtÞ ¼
m�1
2

� �
½1� þ

mþ1
2

� �
½1� tþ

m�1
2

� �
TðaðtÞmÞ þ 1

2

� �
Tððb1=2aðtÞÞmÞ

½1� m
2

� �
nðtÞm�1

þ t

d

� �1=2
:

With a little more routine computation we can show that
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f ðtÞ ¼ fkðtÞ ¼
mþ1
2

� �
k

½1�k
þ

m�1
2

� �
k

½1�k
tþ TðaðtÞmb1=2

k Þ
½1�knðtÞ

m�1
þ t

dk

� �1=2
; ð21Þ

and

gðtÞ ¼ gkðtÞ ¼
m�1
2

� �
k

½1�k
þ

mþ1
2

� �
k

½1�k
tþ TðaðtÞmb1=2

k Þ
½1�knðtÞ

m�1
þ t

dk

� �1=2
: ð22Þ

At this point we would like to express fkðtÞ and gkðtÞ in terms of the square bracket

function. This involves representing t A ~FF with square brackets. The choice of t ¼ ½ jþ1�k
½ j �k

for some j modulo qþ 1, while tempting, only works when gcdðk; qþ 1Þ ¼ 1. To

obtain formulas that are valid for all k we use t ¼ ½ jþk�
½ j � for all j A Zqþ1 (see Lemma

2.2(6).) Our results will be written in terms of ½. . .�1.

Lemma 3.3. For any positive k A Zqþ1

fkðtÞ ¼ fk
½ j þ k�
½ j �

� �
¼

ðk þ jÞ m�1
2

� �� �
j mþ1

2

� �� �
½ j � þ ½ j þ k�

½ j �½k�

� �1=2
ð23Þ

and

gkðtÞ ¼ gk
½ j þ k�
½ j �

� �
¼

ð j þ kÞ mþ1
2

� �� �
j m�1

2

� �� �
½ j � þ ½ j þ k�

½ j �½k�

� �1=2
: ð24Þ

Proof. The details, although somewhat routine, are rather lengthy. Since they are
similar for fk and gk we just barely sketch them and only for fk.

Observe that nðtÞ ¼ tþ ðdktÞ1=2 þ 1 ¼ ðtþ bkÞ
1=2ðtþ bkÞ

1=2. Then, considering
Equation 21, first rewrite the expression

TðaðtÞmb1=2
k Þ

½k�nðtÞm�1
¼ ðb1=2

k tþ b
1=2
k Þmb1=2

k þ ðb1=2
k tþ b

1=2
k Þmb1=2

k

½k�ðtþ bkÞ
ðm�1Þ=2ðtþ bkÞ

ðm�1Þ=2

¼
b
ðm�1Þ=2
k tþ bk

� �ðmþ1Þ=2

½k�ðtþ bkÞ
ðm�1Þ=2 þ b

ðm�1Þ=2
k ðtþ bkÞ

ðmþ1Þ=2

½k�ðtþ bkÞ
ðm�1Þ=2

¼ b
ðm�1Þ=2
k ðtþ bkÞ

½k�
tþ bk
tþ bk

� �ðm�1Þ=2

þ b
ðm�1Þ=2
k ðtþ bkÞ

½k�
tþ bk

tþ bk

 !ðm�1Þ=2

:

It is routine to show that for t ¼ ½ jþk�
½ j � ,

tþbk
tþbk

¼ b2j and
tþbk

tþbk
¼ b

2j
1 . Then after a few

steps
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TðaðtÞmb1=2

k Þ
½k�nðtÞm�1

¼
jmþ k m�1

2

� �� �
½ j � :

Now return to Equation 21 and put the pieces together over a common denominator
(except for the piece involving t1=2), using the fact that a product of brackets is easily
written as a sum, and vice versa, to obtain the desired result. r

3.2 Collineations for the unified construction. The following theorem shows that
every GQ arising from the unified construction is cyclic in the sense of [9] i.e., it
admits a collineation yðid;MnM�mÞ which permutes the lines through ðyÞ in a
cycle of length qþ 1.

Theorem 3.4. The q-clan functions given by Equations 21 and 22 satisfy all six con-

ditions of Lemmas 2.4 and 2.5 and Theorem 2.8.

Proof. The conditions in Lemma 2.4 are easy to check. Those of Lemma 2.5 are
routine but more tedious and similar to each other. Here we give the details for the
first one. Verifying the two conditions of Theorem 2.8 is also routine, but very
lengthy. The interested reader can again find the details of these computations in [7]
or [8].

For the first condition of Lemma 2.5 we need to show that

½1�ktf fkðt�1 þ dkÞ þ fkðdkÞg

¼ ½m� 1�k fkðtÞ þ
m� 1

2

� �
k

m

2

� �
k

t1=2 þ ½m�kgkðtÞ: ð25Þ

Throughout this computation we shall suppress the k’s of the notation for clarity.
Start with the left hand side and do some special pieces of the computation
first: aðdÞmb1=2 ¼ bð3m�1Þ=2; nðdÞ ¼ 1; TrðaðdÞmb1=2Þ ¼ 3m�1

2

� �
. So ½1� f ðdÞ ¼ mþ1

2

� �
þ

m�1
2

� �
½1� þ 3m�1

2

� �
þ 1.

Next, compute nðt�1 þ dÞ ¼ nðtÞt�1; aðt�1 þ dÞ ¼ baðtÞt�1, so

Tðaðt�1 þ dÞmb1=2Þ
nðt�1 þ dÞm�1

¼ TðaðtÞmbm�1=2Þ
tnðtÞm�1

:

Then with several terms cancelling we find:

½1�tf f ðt�1 þ dÞ þ f ðdÞg

¼ m� 1

2

� �
þ 3m� 1

2

� �
tþ TðaðtÞmbm�1=2Þ

nðtÞm�1
þ ðtdÞ1=2: ð26Þ

Now we begin with the right hand side of Equation 25 which is
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½m� 1�
½1�

mþ 1

2

� �
þ m� 1

2

� �
tþ TðaðtÞmb1=2Þ

nðtÞm�1
þ ðtdÞ1=2

( )
þ m� 1

2

� �
m

2

� �
t1=2

þ ½m�
½1�

m� 1

2

� �
þ mþ 1

2

� �
tþ TðaðtÞmb1=2Þ

nðtÞm�1
þ ðtdÞ1=2

( )
:

Consider the summands one at a time. First, the constant term equals

2m�2
2

� �
mþ1
2

� �
þ 2m

2

� �
m�1
2

� �
½1� ¼ m� 1

2

� �
:

The coe‰cient of t equals

2m�2
2

� �
m�1
2

� �
þ 2m

2

� �
mþ1
2

� �
½1� ¼ 3m� 1

2

� �
:

The coe‰cient of t1=2 is

½m� 1� þ m�1
2

� �
m
2

� �
1
2

� �
þ ½m�

1
2

� � ¼ 1

2

� �
¼ d1=2:

Finally, we consider the term

½m� 1�TðaðtÞmb1=2Þ þ ½m�TðaðtÞmb1=2Þ
½1�nðtÞm�1

¼ TfaðtÞmðbm�1 þ bm�1Þb1=2 þ aðtÞmðbmðbm þ bmÞÞb1=2g
½1�nðtÞm�1

¼ TðaðtÞmbm�1=2Þ
nðtÞm�1

:

When we compare this with Equation 26, we see that we have equality. r

4 The isomorphism theorem

The following theorem shows that the GQ’s obtained from the unified construction
for di¤erent values of k are isomorphic.

Theorem 4.1. Let m ¼ ½k�
½1�

	 
1=2
¼ detðAÞ where we put

A ¼
1

½k�1�
½1�

	 
1=2
0

½k�
½1�

	 
1=2
0
B@

1
CA and B ¼ 1

1
4

� �
k
4

� �
0
B@

ðk�1Þðm�1Þþ2k

4

h i
ðk�1Þðm�1Þ

4

h i
ðk�1Þðmþ1Þ

4

h i
ðk�1Þðm�1Þ�2

4

h i
1
CA:
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Then yðid;AnBÞ is an isomorphism from GQðCð1ÞÞ to GQðCðkÞÞ mapping ½AðyÞ� to
½AðyÞ�k and in general mapping ½AðtÞ� to ½AðtÞ�k where t ¼

½k�
½1� tþ

½k�1�
½1� . In particular, if

t ¼ ½ jþ1�
½ j � , then t ¼ ½ jþk�

½ j � .

Proof. By the Fundamental Theorem of [7] we must show that if

A 0
t ¼

fkðtÞ t1=2

0 gkðtÞ

� �
;

and At is the corresponding q-clan matrix when k ¼ 1, then

A 0
t
þ A 0

0
1 mB�1AtB

�T : ð27Þ

First check that detðBÞ ¼ 1, so that

B�1 ¼ 1
1
4

� �
k
4

� �
0
B@

ðk�1Þðm�1Þ�2

4

h i
ðk�1Þðm�1Þ

4

h i
ðk�1Þðmþ1Þ

4

h i
ðk�1Þðm�1Þþ2k

4

h i
1
CA:

Using Equation 1.1 of [7] we easily compute that mB�1AtB
�T 1 1

½1�
�
x y
z w

�
, where

x ¼ ðk � 1Þðm� 1Þ � 2

2

� �
f ðtÞ þ ðk � 1Þðm� 1Þ � 2

4

� �
ðk � 1Þðm� 1Þ

4

� �
t1=2

þ ðk � 1Þðm� 1Þ
2

� �
gðtÞ;

y ¼ k

2

� �
1

2

� �
t1=2;

z ¼ 0;

w ¼ ðk � 1Þðmþ 1Þ
2

� �
f ðtÞ þ ðk � 1Þðmþ 1Þ

4

� �
ðk � 1Þðm� 1Þ þ 2k

4

� �
t1=2

þ ðk � 1Þðm� 1Þ þ 2k

2

� �
gðtÞ:

It is quite easy to check that the entry in the ð1; 2Þ position on left hand side of
Equation 27 equals the entry in the ð1; 2Þ position on the right hand side. It is not so
easy to check the entries in the ð1; 1Þ positions and the ð2; 2Þ positions, but the details
are quite similar for the two positions. We give fairly complete details for the ð1; 1Þ
positions and leave the details for the other case as an exercise for the reader.

First consider the left hand side. So
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fkðtÞ þ fkð0Þ ¼ fk
½ j þ k�
½ j �

� �
þ fk

½�1þ k�
½�1�

� �

¼
ðk þ jÞ m�1

2

� �� �
j mþ1

2

� �� �
½ j � þ ½ j þ k�

½ j �½k�

� �1=2

þ
ðk � 1Þ m�1

2

� �� �
mþ1
2

� �
½1� þ ½k � 1�

½1�½k�

� �1=2

¼
ðk þ jÞ m�1

2

� �� �
j mþ1

2

� �� �
½1� þ ðk � 1Þ m�1

2

� �� �
mþ1
2

� �
½ j �

½ j �½1�

þ 1

½k�
½ j þ k�½1� þ ½k � 1�½ j �

½ j �½1�

� �� �1=2

¼
k m�1

2

� �
þ jmþ 1

� �
þ k m�1

2

� �
þ jm� 1

� �
½ j �½1�

þ
k m�1

2

� �� �
½ j þ 1� þ k m�1

2

� �
�mþ j

� �
þ k m�1

2

� �
�m� j

� �
½ j �½1�

þ ½ j þ 1�
½ j �½1�

� �1=2
:

Now for the entry x in the ð1; 1Þ position of the right hand side we obtain

1

½1�
ðk � 1Þðm� 1Þ � 2

2

� � ð j þ 1Þ m�1
2

� �� �
j mþ1

2

� �� �
½ j � þ ½ j þ 1�

½ j �½1�

� �1=2( )

þ
ðk�1Þðm�1Þ�2

4

h i
ðk�1Þðm�1Þ

4

h i
½1�

½ j þ 1�
½ j �

� �1=2

þ
ðk�1Þðm�1Þ

2

h i
½1�

ð j þ 1Þ mþ1
2

� �� �
j m�1

2

� �� �
½ j � þ ½ j þ 1�

½ j �½1�

� �1=2( )

¼
ðk�1Þðm�1Þ�2

2

h i
ð j þ 1Þ m�1

2

� �� �
j mþ1

2

� �� �
½1�½ j �

þ
ðk�1Þðm�1Þ

2

h i
ð j þ 1Þ mþ1

2

� �� �
j m�1

2

� �� �
½1�½ j �

þW

8><
>:

ðk�1Þðm�1Þ�2

2

h i
þ ðk�1Þðm�1Þ�2

4

h i
ðk�1Þðm�1Þ

4

h i
1
2

� �
þ ðk�1Þðm�1Þ

2

h i
½1�

9>=
>;;
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where W ¼ ½ jþ1�
½ j �½1�

	 
1=2
. Consider the coe‰cient of W. If we write a ¼ ðk�1Þðm�1Þ

2
,

then this coe‰cient has the form
½a�1�þ a�1

2½ � a
2½ � �1

2½ �þ½a�
½1� ¼ 1, which equals the correspond-

ing coe‰cient on the left hand side. For the remaining terms, continue to use

a ¼ ðk�1Þðm�1Þ
2

, so
kðm�1Þ

2
¼ aþ m

2
� 1

2
. Expand out the products on the right hand side

and multiply through by the denominator ½1�½ j �. Two terms cancel, leaving the fol-
lowing six terms:

aþm

2
þ jmþ 1

2

� �
þ aþm

2
þ jm� 3

2

� �
þ aþm

2
� j � 3

2

� �

þ aþm

2
þ j þ 1

2

� �
þ a�m

2
� j � 1

2

� �
þ a�m

2
þ j � 1

2

� �
:

When the terms on the left hand side above are expanded in the same fashion,
exactly the same terms appear, completing this part of the proof. r

5 The herd cover and the magic action of [6]

5.1 Definition of the herd cover. Recall the planes Ra and their ovals

Oa ¼ fhðgt1=2 n a; gða; tÞÞi1 : t A ~FFg;

where h. . .i1 denotes an equivalence class with respect to the scalar multiplication in
the GQ.

For each l A F � and a fixed a0 ð0; 0Þ the mapping pla : Ra ! PGð2; qÞ :
hðgn la; l2cÞi1 7! hðgð2Þ; l2cÞi2 is an isomorphism of planes, where h. . .i2 denotes
an equivalence class of the scalar multiplication in the vector space underlying
PGð2; qÞ. pla maps Oa to the oval

Ola ¼ fðgt; gðla; tÞÞ : t A ~FFg

¼ fð1; t; l2½a2f ðtÞ þ abt1=2 þ b2gðtÞ�Þ : t A FgU fð0; 1; 0Þg ð28Þ

provided that a ¼ ða; bÞ0 ð0; 0Þ. Unfortunately, pla 0 pna if l0 n. This leads to the
situation where, corresponding to the oval Oa ¼ Ola in Ra there are q� 1 projectively
equivalent ovals in PGð2; qÞ, namely, fOla : l A F �g. There are two approaches that
we may take in working with this correspondence. We could associate the oval Oa

with the set fOla : l A F �g, which we refer to as an oval cover, or we can select a
representative from the set to associate with Oa (this is referred to as normalizing).
The first approach more accurately reflects the relations in the GQ, but the second
approach is easier to deal with computationally.

For the remainder of this paper we shall adopt the following convention. a will
always indicate an element of PGð1; qÞ of the form ð1; s1=2Þ, s A F or ð0; 1Þ. In par-
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ticular, we will always have a0 ð0; 0Þ. An arbitrary element of F 2 will be denoted by
la with l A F .

Normalization is equivalent to choosing, for each a A PGð1; qÞ, one specific value
la A F � and using only the isomorphisms plaa. The set of qþ 1 ovals of PGð2; qÞ
obtained in this way is called a herd of ovals corresponding to the q-clan C. A priori
there appears to be no reason to choose one normalization over another. In fact,
from the literature it can be seen that one of the authors is fond of the normalization
la ¼ 1, for all a, while the other author has often chosen la so that gðlaa; 1Þ ¼ 1, for
all a. These di¤erent normalizations produce di¤erent sets of ovals to be called herds
of ovals for the same q-clan. From this point of view, a herd of ovals, depending as
it does on the normalization, is not a fundamental object. Furthermore, as we shall
see in the following sections, normalization can have a confounding e¤ect on the
computation of automorphism groups.

For these reasons we prefer to take the first approach and define the herd cover,
HðCÞ, of the q-clan C as the set of qþ 1 oval covers in PGð2; qÞ associated to the
ovals Oa of the planes Ra. That is,

HðCÞ ¼ f½Oa� : a A PGð1; qÞg ð29Þ

where

½Oa� ¼ fOla : l A F �g: ð30Þ

This definition is consistent with the terminology introduced in [2] for a more gen-
eral setting provided the indices a are interpreted as points of a conic in PGð2; qÞ. In
the current context this distinction is not relevant.

An o-permutation for PGð2; qÞ is a permutation polynomial f over F ¼ GFðqÞ of
degree at most q� 2 with f ð0Þ ¼ 0 satisfying the condition that vðxÞ ¼ f ðxþtÞþ f ðtÞ

x
,

x0 0, vð0Þ ¼ 0 is a permutation for each t A F . The set of points

fð1; t; f ðtÞÞ : t A FgU fð0; 1; 0Þg

forms an oval in PGð2; qÞ passing through the origin and having nucleus ð0; 0; 1Þ if
and only if f is an o-permutation. If f ð1Þ ¼ 1 then an o-permutation f is called an
o-polynomial.

It was first proved in [3] that if there are o-permutations f and g with f ð0Þ ¼
gð0Þ ¼ 0 for which f �

s ðtÞ ¼ f ðtÞ þ ðstÞ1=2 þ sgðtÞ is an o-permutation for all s A F ,
then

C ¼ At ¼
f ðtÞ t1=2

0 gðtÞ

� �
: t A F

� �

is a q-clan. We point out the obvious statement that for s A F , f �
s ðtÞ is an o-

permutation if and only if l f �
s ðtÞ is an o-permutation for all l A F �.
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Since herd covers and q-clans are equivalent objects in some sense, there ought to
be a close connection between the automorphism group of the herd cover and the
automorphism group of the associated GQ. Since the members of a herd cover are
the projections of the oval sets which live in Gn, there also ought to be a direct con-
nection with AutðGnÞ.

We define the automorphism group G0 of the herd cover HðCÞ to be the subgroup
of PGLð3; qÞ that induces a permutation of the oval covers of HðCÞ. Under this
definition, the automorphism group of a herd of ovals would naturally be the group
induced on a herd of ovals by the automorphism group of the corresponding herd
cover. We note that the induced group of the herd of ovals depends on the normal-
ization used to define the herd of ovals.

The set

HðCÞ ¼ fOa : a A PGð1; qÞg ð31Þ

of qþ 1 ovals of the planes Ra is called the profile of the herd cover HðCÞ. Clearly,
the automorphism group of a herd cover is isomorphic to the automorphism group
of the profile of that herd cover which in turn is induced by a subgroup of AutðGnÞ.
We frequently use this correspondence in the computations which follow. We have
chosen to define the automorphism group in terms of the herd cover rather than the
profile of the herd cover for a reason that is not central to this work. Namely, herd
covers exist in a more general context but the profiles do not and we prefer to keep
our definitions generalizable.

Put

T ¼ fðgn a; cÞ A Gn; g; a A F 2; c A Fg:

Clearly

T ¼ 6fLg : g A PGð1; qÞg ¼ 6fRa : a A PGð1; qÞg:

It is easy to show that any subgroup of Gn spanned by any two distinct ‘‘points’’ of T
and lying entirely in T must either lie in some Lg or in some Ra. Recall that the ele-
ments of the GQ which form the equivalence classes that are the points of an oval in
Ra are called o-points. Specifically, the set fgyt n da; gðda; tÞÞ : d A F �g of non-zero
vectors in AaðtÞ ¼ AðtÞVRa which correspond to a point of the oval Oa are o-points.
Let p1 and p2 be any two distinct o-points lying in some Lg. Then p1 � p2 ¼ p3 also
lies in Lg. Hence any y A AutðGnÞ that induces a permutation of the o-points maps
all three points p1; p2; p3 to o-points for which the third is the ‘‘sum’’ of the first two.
Hence the three images also lie in the same Lg 0 . This implies that y must also permute
the Lg among themselves. Also, the points of T that are o-points and lie in some Lg

lie on the line that is the member of the 4-gonal family in Lg. Hence y must permute
the members of the 4-gonal family, i.e., y induces a collineation of the GQ SðCÞ. As
y clearly fixes ð0; 0; 0Þ, the Fundamental Theorem tells us what form y must have. We
have shown that
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Theorem 5.1. The automorphism group G0 of the herd cover HðCÞ is isomorphic to the

group of automorphisms of SðCÞ that fix the points ðyÞ and ð0; 0; 0Þ.

Note: In the above argument we did not use the assumption that y A AutðGnÞ per-
mutes the ovals, but we only used the fact that it permutes the o-points among them-
selves. But of course since such a y induces an automorphism of the GQ, it will have
to permute the ovals among themselves.

Let y ¼ yðs;AnBÞ A G0. Suppose A ¼
�
a4 a2
a3 a1

�
¼
�
a1=2 c1=2

b1=2 d 1=2

�
, u ¼ detðAÞ, 1 ¼

detðBÞ. By specializing the general form of a collineation of SðCÞ (see [7], Theorem
1.9.1), and writing our vectors as column vectors, we see, after a little routine com-
putation, that the action of y on the points of T is given by:

y ¼ yðs;AnBÞ :

ðgn a; rÞ 7! ðATgs nBTas; urs þ g2sððasÞTBCBTas; ðasÞTBEBTasÞTÞ; ð32Þ

where C ¼ a24Aða2=a4Þ2 ¼ aAc=a and E ¼ a23Aða1=a3Þ2 ¼ bAd=b.

In general, y : Ra ! RBTas , so the oval Oa in Ra is mapped to the oval OBTas in
RBTas . (The herd cover, however, is contained in one plane PGð2; qÞ.)

Now y induces a map ŷy ¼ ŷyðs;AnBÞ on the herd cover. After a little computa-

tion we can write the e¤ect of ŷy on the points of an oval Ola as a matrix equation.
This equation will turn out to be quite useful a little later.

ŷy :

0
B@ 1

t

gðla; tÞ

1
CA 7!

0
B@ 1

w

l2sgðBTas;wÞ

1
CA

¼
a b 0

c d 0

al2sg BTas; c
a

� �
bl2sg BTas; d

b

� �
u

0
B@

1
CA
0
B@ 1

t

gðla; tÞ

1
CA
s

; ð33Þ

where w ¼ cþdts

aþbts
.

5.2 The magic action of O’Keefe & Penttila. Let F ¼ f f : F ! F j f ð0Þ ¼ 0g. Each
element of F can be expressed as a polynomial in one variable of degree at
most q� 1, and F is naturally a vector space over F. For f ðtÞ ¼

P
ait

i A F and
s A AutðFÞ, put f sðtÞ ¼

P
as
i t

i ¼ ð f ðt1=sÞÞs. Start with the group PGLð2; qÞ acting
on the projective line PGð1; qÞ,

PGLð2; qÞ ¼ fx 7! Axs : A A GLð2; qÞ; s A AutðF Þg:

We are going to construct an action M : PGLð2; qÞ ! SymF of PGLð2; qÞ on the
set F.
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For each f A F and each c A PGLð2; qÞ, where c : x 7! Axs for A ¼
�
a b
c d

�
A

GLð2; qÞ and s A AutðFÞ, let the image of f under MðcÞ be the function cf : F ! F

such that

cf ðtÞ ¼ jAj�1=2 ðbtþ dÞ f s atþ c

btþ d

� �
þ btf s a

b

� �
þ df s c

d

� �� �
: ð34Þ

Lemma 5.2. M is an action (called the magic action) of PGLð2; qÞ on the set F whose

kernel contains (so equals) the set of scalar matrices aI : 00 a A F that form the center

of PGLð2; qÞ.

Lemma 5.3. The function f A F defined by f ðtÞ ¼ t1=2 is fixed by every c A PGLð2; qÞ
under the magic action.

Lemma 5.4. The magic action of PGLð2; qÞ on F is ( projective) semi-linear and the

magic action of the subgroup PGLð2; qÞ is ( projective) linear.

O’Keefe and Penttila [6] proceed to use the magic action in the study of ovals
and herds of ovals. However, if we shift to the examination of oval covers and
herd covers, the F setting for the magic action is not optimal. Since F is a vector
space over F, we can pass to the projective space F̂F whose points h f i are the 1-
dimensional subspaces of F spanned by a nonzero f A F. It is easy to see that for all
l A F �, cðl f Þ ¼ lscf , and so, the magic action can be lifted to F̂F. By a fairly com-
mon abuse of notation we will continue to use c to denote the result of the magic
action on the points of F̂F, i.e., ch f i :¼ hcf i. We will now state further results of [6]
in the F̂F setting. This has the additional advantage of permitting a more natural
phrasing of these results.

We will use the following notation. Let Dð f Þ ¼ fð1; t; f ðtÞÞ : t A FgU fð0; 1; 0Þg for
any o-permutation f . That is, Dð f Þ is an oval in PGð2; qÞ. For any primitive element
x of F define

Dxð f Þ ¼ fð1; t; f ðtÞ; x f ðtÞ; x2f ðtÞ; . . . ; xq�2f ðtÞÞ : t A FgU fð0; 1; 0; . . . ; 0Þg ð35Þ

a set of points in PGðq; qÞ for any o-permutation f . Then Dxð f Þ is a coordinate
representation of an oval cover. The oval cover can be recovered by projecting the
coordinates x0; x1; xi of Dxð f Þ into the same PGð2; qÞ for each i, 2c ic q. Notice
that if we rearrange, in any way, the last q� 1 coordinates of Dxð f Þ, these projec-
tions will give the same oval cover. We should therefore consider two of these sets to
be equivalent if one can be obtained from the other by such a rearrangement. The
equivalence classes may be described by

Dðh f iÞ ¼ fð1; t; f ðtÞBÞ: B is a permutation matrix; t A Fg;

where f ðtÞ ¼ ð f ðtÞ; x f ðtÞ; x2f ðtÞ; . . . ; xq�2f ðtÞÞ for any fixed primitive element x A F .
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Note that, as a special case, Dxð f Þ and Dmð f Þ will be equivalent for di¤erent primi-
tive elements x and m.

The next theorem is what makes the magic action useful to us.

Theorem 5.5. Let f A F be an o-permutation for PGð2; qÞ and let c A PGLð2; qÞ be

c : x 7! Axs for A ¼
�
a b
c d

�
A GLð2; qÞ and s A AutðF Þ. Then f 0 A ch f i is also an o-

permutation. In fact, for any o-permutation f , Dðcf Þ ¼ cfDð f Þ where cf : x 7! Af x
s

ðx A F 3Þ for

Af ¼
a b 0

c d 0

acf c
a

� �
bcf d

b

� �
jAj1=2

0
B@

1
CA: ð36Þ

In terms of oval covers, we have Dxsðcf Þ ¼ ch f iDxð f Þ where ch f i A PGLðqþ 1; qÞ is
such that ch f i : x 7! Ah f ix

s ðx A F qþ1Þ for

Ah f i ¼
A 02�q�1

D jAj1=2Iq�1�q�1

 !
ð37Þ

where

D ¼

acf c
a

� �
bcf d

b

� �
acx f c

a

� �
bcx f d

b

� �
acx2f c

a

� �
bcx2f d

b

� �
..
. ..

.

acxq�2f c
a

� �
bcxq�2f d

b

� �

0
BBBBBBB@

1
CCCCCCCA
:

Proof. We only consider the oval cover extension of this result. By the first part of the
theorem, for x a primitive element of F and 0c i < q� 1, Dðcx if Þ ¼ cx i fDðx if Þ.
Since Dðcx if Þ ¼ Dðxsicf Þ the result follows. r

Corollary 5.6. Let f A F be an o-permutation, and let c A PGLð2; qÞ. If ch f i ¼ h f i,
then cl f is in the stabilizer of Dðl f Þ in PGLð3; qÞ for each l A F �. Thus, ch f i is in the

stabilizer of Dðh f iÞ.

The next theorem is crucial to the further development of the theory. Unfortunately,
the proof given in [6] is flawed, so we will provide a corrected proof of this result.

Theorem 5.7. Let f and g be o-permutations for which Dð f Þ and DðgÞ are equivalent

under PGLð3; qÞ. Then there exists c A PGLð2; qÞ such that ch f i ¼ hgi.

Proof. For 00 k A F , Dðkf Þ and DðgÞ are also equivalent. Suppose h : x 7! Bxs
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ðA PGLð3; qÞÞ satisfies hDðgÞ ¼ Dðkf Þ. Since h fixes ð0; 0; 1Þ, hð1; 0; 0Þ A Dðkf Þ,
hð0; 1; 0Þ A Dðkf Þ, it follows easily that B has the form

a b 0

c d 0

akf c
a

� �
bkf d

b

� �
z

0
B@

1
CA

for some a; b; c; d; z A GFðqÞ with ad þ bc0 0 and z0 0. From

h

0
B@ 1

t

gðtÞ

1
CA¼

aþ bts

cþ dts

akf c
a

� �
þ bktsf d

b

� �
þ zgðtÞs

0
B@

1
CA

we can compute that

gðtÞs ¼ k

z

� �
ðaþ btsÞ f cþ dts

aþ bts

� �
þ btsf

d

b

� �
þ af

c

a

� �� �
:

Thus, gðtÞs ¼ k
z

� �
jA 0j1=2c0 f ðtsÞ where c0 : x 7!A 0x with A 0 ¼

�
d b
c a

�
AGLð2; qÞ. We

then have gðtÞ ¼ k
z

� �1=sjA 0j1=ð2sÞcf ðtÞ where c : x 7! ðA 0Þ1=sx1=s. Hence, z1=s

jA 0 j1=ð2sÞ

	 

g ¼

ckf , and so ch f i ¼ hgi. r

Comment. It should be noted that the above proof shows that the result is more
general than stated. No properties of o-permutations were used. Besides the inclusion
of the points ð1; 0; 0Þ and ð0; 1; 0Þ in Dð f Þ and DðgÞ, the only requirement is that the
projectivity between them fixes the point ð0; 0; 1Þ (whether or not this point is con-
sidered to be in the sets or even related to them). This comment also applies to the
following corollary.

Corollary 5.8. Let f be an o-permutation in F. Then each element of the stabilizer of

Dðh f iÞ is of the form ch f i for some c A PGLð2; qÞ such that ch f i ¼ h f i.

Lemma 5.9. Let c : x 7! Axs for A A GLð2; qÞ and s A AutðF Þ. If

C ¼ f ðtÞ t1=2

0 gðtÞ

� �
: t A F

� �
is a q-clan;

then so is

C ¼ cf ðtÞ t1=2

0 cgðtÞ

� �
: t A F

� �
:
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Remark 5.10. This can also be stated in terms of herd covers or herds of ovals.
O’Keefe and Penttila normalize the herd cover by insisting that the ovals of the herd
always contain the point ð1; 1; 1Þ. So they write their q-clans in the form

C ¼ f0ðtÞ t1=2

0 kfyðtÞ

� �
: t A F

� �
;

where f0ð1Þ ¼ fyð1Þ ¼ 1 and k is some fixed element with trðkÞ ¼ 1. In their for-
mulas for f 0

0 ðtÞ, f 0
yðtÞ and f 0

s ðtÞ, they should have written (in their notation and cor-
recting the last two so that f 0

yð1Þ ¼ 1).

f 0
0 ðtÞ ¼ cf0ðtÞ=cf0ð1Þ

f 0
yðtÞ ¼ cfyðtÞ=cfyð1Þ ð38Þ

f 0
s ðtÞ ¼

f 0
0 ðtÞ þ s1=2t1=2 þ k 0sf 0

yðtÞ
1þ s1=2 þ k 0s

; where k 0 ¼ cf0ð1Þcfyð1Þkg: ð39Þ

Their lemma then states that if fDð fsÞ : s A ~FFg is a herd of ovals, so is
fDð f 0

s Þ : s A ~FFg. It then follows that if fDðh fsiÞ : s A ~FFg represents a herd cover, so
does fDðh f 0

s iÞ : s A ~FFg.

5.3 The automorphism group of ĤH(C). Let ĤHðCÞ ¼ fDð fsÞ : s A ~FFg and ĤHðC 0Þ ¼
fDð f 0

t Þ : t A ~FFg be herds of two herd covers HðCÞ and HðC 0Þ. O’Keefe and Pent-
tila [6] define an isomorphism y : ĤHðCÞ ! ĤHðC 0Þ to be a pair y ¼ ðc; pÞ where
c A PGLð2; qÞ and p is a permutation of the elements of ~FF such that cfs A h f 0

pðsÞi for
all s A ~FF .

Put ĜG0 ¼ AutðĤHðCÞÞ ¼ fy : ĤHðCÞ ! ĤHðCÞ j y is an isomorphismg.

Remark 5.11. O’Keefe and Penttila observe that ĜG0 is the stabilizer of the herd
cover fh fsi : s A ~FFg in PGLð2; qÞ under the magic action. We are not happy with this
approach to defining the automorphism group since it presupposes that all ‘‘iso-
morphisms’’ are magic actions without providing any justification for that assump-
tion. We believe that they were led to this because of the di‰culty of working with
herds of ovals. By passing to herd covers, these di‰culties evaporate and it is possible
to provide the more natural definition that we have given.

Remark 5.12. They go on to calculate the group ĜG0 for the known herds of ovals. For
both the classical and the FTWKB herds of ovals they get the same answer, the
group PGLð2; qÞ. We find this unsatisfactory. In the classical case the group G0 of the
profile of the herd cover (which is also the group of the GQ fixing the points ð0; 0; 0Þ
and ðyÞ) is larger than the group ĜG0 of the herd of ovals. And the induced stabilizer
of an oval (i.e., a conic) in the classical case is smaller than the full stabilizer of that
conic. This would be impossible to detect under the ‘‘magic action’’ definition since
ĜG0 ¼ PGLð2; qÞ in the classical case is the largest possible group permitted by that
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definition. The classical situation also provides an example of the di¤erence between
working with herd covers and working with herds of ovals. In the classical case,
the automorphism y ¼ yðid; I nPÞ of Gn is a collineation of the GQ SðCÞ that
permutes the ovals Os according to the rule s 7! s�1, and so, may be considered as
an element of G0, the automorphism group of the herd cover. The herd cover
f½Os� : s A ~FFg of the classical herd has ½Os� ¼ fDðlt1=2Þ : l A F �g for each s A ~FF . Now,
if we normalize so that ½Os� is represented by Dðst1=2Þ for s A F � and Dðt1=2Þ for
s ¼ 0;y, then y will be expressed faithfully in the automorphism group of this herd
of ovals. On the other hand, if we normalize so that ½Os� is represented by Dðt1=2Þ for
all s A ~FF (which is the normalization used by O’Keefe and Penttila) then y induces the
identity on this herd of ovals. This cannot happen in a nonclassical situation, since
then the automorphisms of the herd cover faithfully induce automorphisms of any
herd of ovals and ĜG0 and G0 are the same (see below). Thus, although the two defi-
nitions generally lead to the same groups, we believe that our definition properly
handles the classical case. This is also consistent with the belief that the classical case
should be distinguishable from the FTWKB case, where the ovals are nonconical
translation ovals.

5.4 Aut(S(C)), G0 and ĜG0. The fact that M is an action implies that ðMðcÞÞ�1 ¼
Mðc�1Þ. Hence for each nonzero g A F there is a nonzero f A F for which hgi ¼
ch f i.

Recall the notation of Equation 33. Then put f ðtÞ ¼ c�1gðBTas; tÞ, i.e.,
gðBTas; tÞ ¼ cf for c : x 7!

�
a b
c d

�
xs. Also, let m ¼ l2.

We can then use ŷy to define

ŷyh f i :

1

t

gða; tÞ
mgða; tÞ

..

.

mq�2gða; tÞ

0
BBBBBBBB@

1
CCCCCCCCA

7!

a b 0 0 � � � 0

c d 0 0 � � � 0

acf c
a

� �
bcf d

b

� �
u 0 � � � 0

acmf c
a

� �
bcmf d

b

� �
0 u � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

acmq�2f c
a

� �
bcmq�2f d

b

� �
0 0 � � � u

0
BBBBBBBBB@

1
CCCCCCCCCA

0
BBBBBBBBB@

1

t

gða; tÞ
mgða; tÞ

..

.

mq�2gða; tÞ

1
CCCCCCCCCA

s

:

ð40Þ

Comparing this with Equation 37 we see that

ŷyh f i ¼ ch f i: ð41Þ

By Theorem 5.5 f is an o-permutation and

ch f i : Dmð f Þ 7! Dmsðcf Þ ¼ DmsðgðBTas; tÞÞ:

Since
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ch f i ¼ ŷyh f i : Dmðgða; tÞÞ 7! DmsðgðBTas; tÞÞ; ð42Þ

it must be that Dmð f Þ ¼ Dmðgða; tÞÞ. It follows that h f ðtÞi ¼ hgða; tÞi.
This proves the following important theorem.

Theorem 5.13. If C is a q-clan, then

yðs; ðAT Þð1=2Þ n ðBTÞð1=2ÞÞ A AutðSðCÞÞ i¤ chgða; tÞi ¼ hgðBas; tÞi

for all a A PGð1; qÞ, where c : x 7!Axs.

In [6] pðCÞ is defined to be the subspace of F spanned by f ðtÞ, t1=2 and gðtÞ, the q-
clan functions. In the classical case pðCÞ is 1-dimensional and for any A A GLð2; qÞ,
s A AutðFÞ and any B A SLð2; qÞ, if c : x 7! ðAð2ÞÞTxs, automatically chgða; tÞi ¼
hgððBð2ÞÞTas; tÞi. However, following Lemma 13 of [6] it is shown (see also [2]) that
if C is nonclassical, then pðCÞ is 3-dimensional and no two herd functions are even in
the same 1-dimensional space. Hence if c is given, and s is given, clearly only one B
can exist. (This also follows from Theorem 1.10.3 of [7].) This then implies

Corollary 5.14. If C is a non-classical q-clan, then G0 ¼ ĜG0.

6 The flock model

The material in this section is not new, it is implicit in [7] and has been cited as such
in [6] (see Theorem 12). We take this opportunity to make explicit the connections
between some automorphisms of the GQ, magic actions and derivation, especially in
the context of cyclic GQ.

In odd characteristic there is a geometric construction of a flock GQ due to Knarr.
In this construction a set of qþ 1 points called a BLT-set is used. To each of these
points there is associated a cone having the point as vertex. These qþ 1 cones have
the property that, fixing any one of them, the intersections of the other cones with the
fixed cone form a flock of the fixed cone. These flocks are called derived flocks. The
derived flocks need not be projectively equivalent, but they do not give rise to di¤er-
ent flock GQ’s ( just reparameterizations of the same flock GQ.)

Knarr’s construction does not work in even characteristic, and BLT sets don’t exist.
However, if one describes the derived flocks algebraically, the description carries over
to the even characteristic case, giving new flocks (but again, no new GQ’s.) Given a
flock, a derived flock (with respect to an element s A GFðqÞ) is obtained by applying
the following operator to each function that defines the flock:

Ds f ðtÞ ¼ t f
1

t
þ s

� �
� f ðsÞ

� �
:

We first observe that derivation is a magic action.
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Lemma 6.1. If A ¼
�
s 1
1 0

�
and s ¼ id then the image of f A F under MðcsÞ, where

ca : x 7! Ax, is the function cs f ðtÞ ¼ tð f ðt�1 þ sÞ þ f ðsÞÞ.

For each s A F , there is an automorphism (a shift-flip) of Gn defined by

is ¼ y id;
s1=2 1

1 0

� �
n I

� �
: ðða; bÞ; cÞ 7! ððs1=2aþ b; aÞ; cþ gða; sÞ þ a � bÞ: ð43Þ

Also put iy ¼ id : Gn ! Gn.
As an automorphism of Gn, certainly is maps the 4-gonal family JðCÞ to another

4-gonal family. Fortunately, we can recognize the new 4-gonal family as arising from
a q-clan which we denote by C is ¼ fAis

t : t A Fg. For u A F , consider the image under
is, s A F , of the typical element of AðuÞ.

is : ðgu1=2 n a; gða; uÞÞ ¼ ða; u1=2a; gða; uÞÞ 7! ððs1=2 þ u1=2Þa; a; gða; uÞ þ gða; sÞÞ

¼ ðð1; ðsþ uÞ�1=2Þn ðs1=2 þ u1=2Þa; gða; uÞ þ gða; sÞÞ ðif u0 sÞ:

¼ ðgðsþuÞ�1=2 n b; ðsþ uÞ�1ðgðb; uÞ þ gðb; sÞÞÞ; b ¼ ðsþ uÞ1=2a:
ð44Þ

This element of Gnmust be in Aisððsþ uÞ�1Þ. Hence the matrix Ais

ðsþuÞ�1 must equal

ðsþ uÞ�1ðAu þ AsÞ. Put t ¼ ðsþ uÞ�1, so u ¼ sþ t�1. Then

Ais
t ¼ tðAsþt�1 þ AsÞ; for all t; s A F : ð45Þ

Note: If u ¼ s in Equation 44 above, it is clear that

is : AðsÞ ! AisðyÞ:

Thus, if

C ¼ At ¼
f ðtÞ t1=2

0 gðtÞ

� �
: t A GFðqÞ

� �

Equation 45 can be stated as

C is ¼ Ais
t ¼ cs f ðtÞ t1=2

0 csgðtÞ

� �
: t A GFðqÞ

� �
: ð46Þ

In terms of flocks, we see that FðC isÞ is a derived flock of FðCÞ.
The following result is basically a corollary of the Fundamental Theorem.

Theorem 6.2 ([7], Theorem 1.10.4). Let C be a normalized q-clan. Then there is an

automorphism y of SðCÞ mapping ½AðsÞ� to ½AðuÞ�, s; u A ~FF , i¤ the flocks FðC isÞ and
FðC iuÞ are projectively equivalent.
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We now turn specifically to the cyclic GQ case.
The conditions of Lemma 2.5 imply that FðCÞ and its derived flock FðC idÞ are

projectively equivalent. Thus, by Theorem 6.2, the collineation y ¼ yðid;MnM�mÞ
of SðCÞ maps ½AðyÞ� to ½AðdÞ� ¼ ½Að½1�Þ�. By Theorem 2.6 y has order qþ 1 on the

lines of SðCÞ through the point ðyÞ mapping A
½kþ1�
½k�

	 
h i
to A

½ jþkþ1�
½ jþk�

	 
h i
. Since by

Lemma 2.6 (6) as j runs through the values 0; 1; . . . ; q,
½ jþ1�
½ j � runs through the elements

of ~FF , we see that all the derived flocks of FðCÞ are projectively equivalent, and y

induces a cyclic action on them.
We conclude with a slightly amusing comment, considering the title of this paper.

As we have shown, the cyclic collineation of SðCÞ, which defines this class of GQ’s,
expresses itself in several ways in the corresponding flock model. Above, we have
shown how it induces a cyclic action on the derived flocks. In the previous section
we have shown that it induces a cyclic action on the herd cover. This is also reflected
in the various herds of ovals which can be obtained from this herd cover, but one
must work modulo scalar multiplication in those settings. The cyclic action in the GQ
also induces a cyclic action on the generators of the quadratic cone in PGð3; qÞ. This
follows immediately from the correspondence between the generators and the herd
cover expounded upon in [2], but can also be seen from Theorem 1.14.1 of [7]. About
the only place where you do not see this cyclic action expressed is in the q-clan asso-
ciated with SðCÞ!
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