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Caps on Hermitian varieties and maximal curves
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Abstract. A lower bound for the size of a complete cap of the polar space Hðn; q2Þ associated
to the non-degenerate Hermitian variety Un is given; this turns out to be sharp for even q when
n ¼ 3. Also, a family of caps of Hðn; q2Þ is constructed from Fq2 -maximal curves. Such caps
are complete for n ¼ 3 and q even, but not necessarily for q odd.

1 Introduction

Let Un be the non-degenerate Hermitian variety of the n-dimensional projective
space PGðn; q2Þ coordinatised by the finite field Fq2 of square order q2. An ovoid

of the polar space Hðn; q2Þ arising from the non-degenerate Hermitian variety Un

with nd 3 is defined to be a point set in Un having exactly one common point with
every generator of Un. For n even, Un has no ovoid; see [23]. For n odd, the exis-
tence problem for ovoids of Un has been solved so far only in the smallest case n ¼ 3;
see [25].

A natural generalization of an ovoid is a cap (also called a partial ovoid ). A cap
of Un is a point set in Un which has at most one common point with every generator
of Un. Equivalently, a cap is a point set consisting of pairwise non-conjugate points
of Un. A cap is called complete if it is not contained in a larger cap of Un.

The size of a cap is at most qn þ 1 for odd n and qn for even n; equality holds if and
only if the cap is an ovoid. The following upper bound for the size k of a cap di¤erent
from an ovoid is due to Moorhouse [19]:

kc
pþ n� 1

n

� �2
� pþ n� 2

n

� �2" #h
þ 1; q ¼ ph: ð1:1Þ

A lower bound for k is given in Section 2 by proving that kd q2 þ 1.
In this paper a family of caps of Un that are not ovoids is constructed, and it is

shown that they are complete provided that n ¼ 3 and q is even. The construction
relies on an interesting property of Fq2 -maximal curves of PGðn; q2Þ that is stated in
§3: the Fq2 -rational points of an Fq2 -maximal curve naturally embedded in a Hermi-
tian variety Un are pairwise non-conjugate under the associated unitary polarity.



Hence the set XðFq2Þ of all Fq2 -rational points of an Fq2 -maximal curve X is a cap
of Un. The main result is that XðFq2Þ is a complete cap for n ¼ 3 and q even.

For n ¼ 3 and q odd, there exist Fq2 -maximal curves such that XðFq2Þ is a cap of
size 1

2 ðq3 � qÞ contained in an ovoid of U3; see Example 4.8.

2 A lower bound for the size of a complete cap of Un

A (non-degenerate) Hermitian variety Un is defined as the set of all self-conjugate
points of a non-degenerate unitary polarity of a projective space PGðn; q2Þ. Hermi-
tian varieties of PGðn; q2Þ are projectively equivalent, as they can be reduced to the
canonical form

X
qþ1
0 þ � � � þ X qþ1

n ¼ 0

by a non-singular linear transformation of PGðn; q2Þ. A generator of Un is defined to
be a projective subspace of maximum dimension lying on Un, namely of dimension
1
2 ðn� 1Þ

� �
. General results on Hermitian varieties are due to Segre [21]; see also [15],

[14], [16]. Here, some basic facts from [16, Section 23.2] are recalled. Let mn denote
the number of points on Un.

Result 2.1. (1) mn ¼ ðqnþ1 þ ð�1ÞnÞðqn � ð�1ÞnÞ=ðq2 � 1Þ.
(2) For any point P A Un, the number of lines through P and contained in Un is equal

to mn�2.
(3) The tangent hyperplane at P A Un meets Un in q2mn�2 þ 1 points.

Now we give a lower bound for the size of complete caps which does not depend
on n.

Theorem 2.2. The size k of a complete cap of Un satisfies kd q2 þ 1.

Proof. The assertion is true for ovoids. Let K be a complete cap of Un that is not an
ovoid. Take a generator H of Un disjoint from K. For any point P A K, the tangent
hyperplane PP to Un at P does not contain H. In fact, some point of H is not con-
jugate to P, as H is a projective subspace of maximum dimension contained in Un.
This implies that PP VH is a hyperplane HðPÞ of H. As K is a complete cap of Un,
the projective subspaces HðPÞ cover H as P ranges over K. Since H is a projective
space of dimension r ¼ 1

2 ðn� 1Þ
� �

, this yields

1þ q2 þ � � � þ q2r c kð1þ q2 þ � � � þ q2ðr�1ÞÞ:

Hence

kd q2 þ 1=ð1þ q2 þ � � � þ q2ðr�1ÞÞ:

Since k is an integer, this is only possible for kd q2 þ 1. r
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The above lower bound is sharp for n ¼ 3 and even q; see Example 3.6 and Theo-
rem 4.1 with g ¼ 0. For the classification of transitive ovoids when n ¼ 3 and q is
even, see [5]. It is not known whether the lower bound is sharp for n > 3 or for n ¼ 3
and arbitrary odd q. To the best of our knowledge, the smallest complete cap of Un

for any q is that described in the following theorem.

Theorem 2.3. Let a be a plane of PGðn; q2Þ which meets Un in a non-degenerate Her-

mitian curve U2. Then U2 is a complete cap of Un of size q
3 þ 1.

Proof. First, U2 is a cap of Un. Let A A Un be any point. The tangent hyperplane
PA to U at A either contains a or meets it in a line l. It turns out in both cases that
PA has a common point with U2, whence the assertion follows. r

3 Hermitian varieties and maximal curves

In algebraic geometry in positive characteristic the Hermitian variety is defined to be
the hypersurface Un of homogeneous equation

X
qþ1
0 þ � � � þ X qþ1

n ¼ 0;

viewed as an algebraic variety in PGðn;FÞ where F is the algebraic closure of Fq2 .
Points of Un are the points of Un with coordinates in Fq2 , usually called Fq2 -rational
points of Un. For a point A ¼ ða0; a1; . . . ; anÞ of Un, the tangent hyperplane to Un at
A has equation

a
q
0X0 þ a

q
1X1 þ � � � þ aq

nXn ¼ 0:

In this paper, the term algebraic curve defined over Fq2 stands for a projective,
geometrically irreducible, non-singular algebraic curve X of PGðn; q2Þ viewed as
a curve of PGðn;FÞ. Further, XðFq2iÞ denotes the set of points of X with all coor-
dinates in Fq2i , called Fq2i -rational points of X. For a point P ¼ ðx0; . . . ; xnÞ of X,

the Frobenius image of P is defined to be the point FðPÞ ¼ ðxq2

0 ; . . . ; xq2

n Þ. Then
P ¼ FðPÞ if and only if P A XðFq2Þ.

An algebraic curve X defined over Fq2 is called Fq2 -maximal if the number Nq2

of its Fq2 -rational points attains the Hasse–Weil upper bound, namely Nq2 ¼ q2 þ
1þ 2gq, where g denotes the genus of X. In recent years, Fq2 -maximal curves have
been the subject of numerous papers; a motivation for their study comes from coding
theory based on algebraic curves having many points over a finite field. Here, only
results on maximal curves which play a role in the present investigation are gathered.

Result 3.1 (Natural embedding theorem [17]). Up to Fq2 -isomorphism, the Fq2 -
maximal curves of PGðn; q2Þ are the algebraic curves defined over Fq2 of degree qþ 1
and contained in the non-degenerate Hermitian variety Un.

Remark 3.2. The Fq2 -maximality of X implies that ðqþ 1ÞP1 qQþFðQÞ for every
Q A X, and the natural embedding arises from the smallest linear series S contain-
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ing all such divisors. Apart from some exceptions, S is complete and hence S ¼
jðqþ 1ÞP0j for any P0 A Fq2 . By the Riemann–Roch theorem, dimS ¼ qþ 1� gþ i

where i is the index of speciality. In many situations, for instance when qþ 1 >
2g� 2, we have i ¼ 0, and hence dimS ¼ qþ 1� g. With our notation, n ¼ dimS.

This, together with some more results from [17], gives the following.

Result 3.3. Let X be an Fq2 -maximal curve naturally embedded in Un. For a point

P A X, let PP be the tangent hyperplane to Un at P. Then PP coincides with the hyper-

osculating hyperplane to X at P, and

PP VX ¼
fPg for P A XðFq2Þ;
fP;FðPÞg for P A XnXðFq2Þ:

�
ð3:1Þ

More precisely, for the intersection divisor D cut out on X by PP,

D ¼
ðqþ 1ÞP for P A XðFq2Þ;
qPþFðPÞ for P A XnXðFq2Þ:

�
ð3:2Þ

Theorem 3.4. Let X be an Fq2 -maximal curve naturally embedded in Un. For a point

A A UnnX, let PA be the tangent hyperplane to Un at A. If n ¼ 3 and q is even, then PA

has a common point with XðFq2Þ.

Proof. Let l be a line of Un. Then l, viewed as a line of PGðn;FÞ, is contained in Un.
Let Q A lVX; then it must be shown that Q A XðFq4Þ.

Assume, on the contrary, that Q A XðFq2iÞ with id 3. Then the three points
Q;FðQÞ;FðFðQÞÞ are distinct points of X. Since l is defined over Fq2 , so l contains
not only Q but also FðQÞ and FðFðQÞÞ. By (3.1), the hyper-osculating hyperplane
PQ to X at Q contains FðQÞ, and hence PQ contains the line l. But then PQ must
contain FðFðQÞÞ, contradicting (3.1).

Assume now that Q A XðFq4Þ. The previous argument also shows that l contains
both Q and FðQÞ but no more points from X. Also, l cannot contain more than one
point from XðFq2Þ, again by (3.1). Hence, if lVX is non-trivial, then either lVX is
a single Fq2 -rational point or lVX consists of two distinct points, Frobenius images
of each other, both in XðFq4ÞnXðFq2Þ.

Let Q A Un be any point in PA VX. Then the line l through A and Q is contained
in Un. Now, assume that n ¼ 3; then such a line is contained in Un. By the above
assertions, the points in PA VX are Fq4 -rational points of X. For a point Q A X, let
IðX;PA;QÞ denote the intersection multiplicity of X and PA at Q. By Bézout’s the-
orem,

P
Q IðX;PA;QÞ ¼ qþ 1 where Q ranges over all points of X. Write

X
Q

IðX;PA;QÞ ¼
X
Q

0
IðX;PA;QÞ þ

X
Q

00
IðX;PA;QÞ;
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where the summation
P 0 is over XðFq2Þ while

P 00 is over XðFq4ÞnXðFq2Þ. Since
both PA and X are defined over Fq2 ,

IðX;PA;QÞ ¼ IðX;PA;FðQÞÞ:

Hence
P 00

Q IðX;PA;QÞ1 qþ 1 ðmod 2Þ. For q even, this implies that IðX;PA;QÞ >
0 for at least one point Q A XðFq2Þ, whence the assertion follows. r

Remark 3.5. Theorem 3.4 might not extend to n > 3. For a point A A Un, let
Q A Un be a point other than A in the tangent hyperplane PA of Un at A. If n ¼ 3,
then the line l through A and Q is Fq2 -rational. But this assertion does not hold true
for n > 3.

In fact, let Un be given in its canonical form

X
q
0 Xn þ X0X

q
n þ X

qþ1
1 þ � � � þ X

qþ1
n�1 ¼ 0:

It may be assumed that A ¼ ð0; . . . ; 0; 1Þ. Then PA has equation X0 ¼ 0 and Q ¼
ð0; a1; . . . ; an�1; 1Þ with a

qþ1
1 þ � � � þ a

qþ1
n�1 ¼ 0. The line l is Fq2 -rational if and only

if FðQÞ also lies on l. This happens when a
q2

i ¼ lai, i ¼ 1; . . . ; n� 1, for a suitable

element l A F, or, equivalently, when a
q2�1
i ¼ a

q2�1
j for all i; j with 1c i; jc n� 1

and ai; aj 0 0. Now, aqþ1
1 ¼ �a

qþ1
2 implies ðaqþ1

1 Þq�1 ¼ ðaqþ1
2 Þq�1

, whence the asser-

tion follows for n ¼ 3. Unfortunately, as soon as n > 3, aqþ1
1 þ � � � þ a

qþ1
n�1 ¼ 0 does

not imply a
q2�1
i ¼ a

q2�1
j for any i; j with 1c i; jc n� 1 and ai; aj 0 0. Thus the

assertion is not valid for n > 3.

The following example illustrates property (3.1).

Example 3.6. Still with q even, write the equation of U3 in the form

X
q
0 X3 þ X0X

q
3 ¼ X

qþ1
1 þ X

qþ1
2 :

The rational algebraic curve X of degree qþ 1, consisting of all points

AðtÞ ¼ fð1; t; tq; tqþ1Þ j t A Fg

together with the point AðyÞ ¼ ð0; 0; 0; 1Þ, lies on U3. The morphism

ð1; tÞ ! ð1; t; tq; tqþ1Þ

is a natural embedding. We note that the tangent hyperplane PAðtÞ to U3 at AðtÞ has
equation

tqðqþ1ÞX0 þ X3 þ tqX1 þ tq
2

X2 ¼ 0:
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To show that (3.1) holds for AðtÞ, it is necessary to check that the equation

tqðqþ1Þ þ uqþ1 þ tquþ tq
2

uq ¼ 0

has only two solutions in u, namely u ¼ t and u ¼ tq
2
. Replacing u by vþ t, the

equation becomes vqþ1 þ vqtþ tq
2
vq ¼ 0. For v0 0, that is, for u0 t, this implies

v ¼ tq
2 þ t, proving the assertion. For AðyÞ, the tangent hyperplane PAðyÞ has equa-

tion X0 ¼ 0. Hence it does not meet X outside AðyÞ, showing that (3.1) also holds
for AðyÞ.

4 Caps of the Hermitian variety arising from maximal curves

From the results stated in Section 3 we deduce the following theorem.

Theorem 4.1. Let X be an Fq2 -maximal curve naturally embedded in Un. Then

(i) XðFq2Þ is a cap of Un of size q
2 þ 1þ 2gq;

(ii) when q is even and n ¼ 3, such a cap is complete.

Proof. Let P A XðFq2Þ. By (3.1), no further point from X is in PP. Hence no point in
XðFq2Þ is conjugate to P. This shows that XðFq2Þ is a cap of Un whose size is equal to
q2 þ 1þ 2gq by the Fq2 -maximality of X. Completeness for even q and n ¼ 3 follows
from Theorem 3.4. r

In applying Theorem 4.1 it is essential to have information on the spectrum of the
genera g of Fq2 -maximal curves. However, it would be inappropriate in the present
paper to discuss the spectrum in all details; so we shall content ourselves with a
summary of the relevant results in characteristic 2. For this reason, q will denote
a power of 2 in the rest of the paper, apart from Example 4.8.

Result 4.2. (1) The lower limit of the spectrum of genera is 0, which is only attained by

rational algebraic curves.
(2) The upper limit of the spectrum is 1

2 ðq2 � qÞ, which is only attained by the Her-

mitian curve over Fq2 ; see [22, Proposition V.3.3].

Result 4.3 ([1], [10], [17]). (1) The second largest value in the spectrum of genera is
1
4 ðq2 � 2qÞ, which is only attained by Example 4.5.

(2) In the interval 1
8 ðq2 � 4qþ 3Þ; 14 ðq2 � qÞ
� �

, there are 12 known examples.

Result 4.4 ([18]). The third largest value in the spectrum is 1
6 ðq2 � qþ 4Þ

� �
. Examples

4.6 and 4.7 are the only known examples with this genus.

Example 4.5 ([9]). The absolutely irreducible plane curve C with equation

yþ y2 þ � � � þ yq=2 þ xqþ1 ¼ 0
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has genus 1
4 qðq� 2Þ. A non-singular model X of C is the Fq2 -maximal curve defined

by the morphism p : C ! PGð3; q2Þ with coordinate functions

f0 ¼ 1; f1 ¼ x; f2 ¼ y; f3 ¼ x2:

The curve X lies on the Hermitian variety U3 with equation

X
q
2 X0 þ X2X

q
0 þ X

qþ1
1 þ X

qþ1
3 ¼ 0:

Also, X lies on the quadric cone with equation X3X0 ¼ X 2
1 . The size of the corre-

sponding complete cap XðFq2Þ of U3 is
1
2 ðq3 þ 2Þ.

Example 4.6 ([7, Theorem 2.1. (IV)(2)]). Let q1 2 ðmod3Þ. The absolutely ir-

reducible plane curve C with equation xðqþ1Þ=3 þ x2ðqþ1Þ=3 þ yqþ1 ¼ 0 has genus
g ¼ 1

6 ðq2 � qþ 4Þ. A non-singular model X of C is the Fq2 -maximal curve defined
by the morphism p : C ! PGð3; q2Þ with coordinate functions

f0 ¼ x; f1 ¼ x2; f2 ¼ y3; f3 ¼ xy:

The curve X lies on the Hermitian variety U3 given by the usual canonical equation

X
qþ1
0 þ X

qþ1
1 þ X

qþ1
2 þ X

qþ1
3 ¼ 0:

Also, X lies on the cubic surface with equation

X 3
3 þ w3X0X1X2 ¼ 0

with wqþ1 ¼ �3. The size of the corresponding complete cap XðFq2Þ of U3 is
1
3 ðq3 þ 2q2 þ 4qþ 3Þ.

Example 4.7 ([6, §6]). A similar but non-isomorphic example is given in [6]. Again,
assume that q1 2 ðmod3Þ. The absolutely irreducible plane curve C with equation

yxðq�2Þ=3 þ yq þ xð2q�1Þ=3 ¼ 0

has genus 1
6 ðq2 � q� 2Þ. A non-singular model X of C is the Fq2 -maximal curve

defined by the morphism p : C ! PGð3; q2Þ with coordinate functions

f0 ¼ x; f1 ¼ x2; f2 ¼ y3; f3 ¼ �3xy:

The curve X lies on the Hermitian variety Sqþ1 with equation

X
q
0 X1 þ X

q
1 X2 þ X

q
2 X0 � 3X qþ1

3 ¼ 0:

Also, X is contained in the cubic surface with equation

X 3
3 þ 27X0X1X2 ¼ 0:
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It is worth noting that Sqþ1 is projectively equivalent to U3 in PGð3; q6Þ but not
in PGð3; q2Þ. Nevertheless, the projective transformation taking Sqþ1 to U3 maps X
to an Fq2 -maximal curve lying on U3. The size of the corresponding complete cap
XðFq2Þ of U3 is

1
3 ðq3 þ 2q2 � 2qþ 3Þ.

We end the paper with an example for q odd which shows that assertion (ii) in
Theorem 4.1 does not hold for q odd.

Example 4.8. Let q be odd and let CðFq2Þ be the absolutely irreducible plane curve
with equation

yq þ yþ xðqþ1Þ=2 ¼ 0;

it has genus 1
4 ðq� 1Þ2. A non-singular model X of C is the Fq2 -maximal curve

defined by the morphism p : C ! PGð3; q2Þ with coordinate functions

f0 ¼ 1; f1 ¼ x; f2 ¼ y; f3 ¼ y2:

The curve X lies on the Hermitian surface U3 with equation

X
q
3 X0 þ X3X

q
0 þ 2X qþ1

2 � X
qþ1
1 ¼ 0:

Also, C lies on the quadric cone Q with equation X 2
2 � X0X3 ¼ 0. The size of the

corresponding cap K of U3 is q2 þ 1þ 1
2 qðq� 1Þ2 ¼ 1

2 ðq3 þ qþ 2Þ. The cap K is
incomplete, since it is contained in an ovoid of U3; see [13].
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