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Dual partial quadrangles embedded in PG(3,q)
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Abstract. The projective full embeddings of partial geometries are known. So are the projec-
tive full embeddings of semipartial and dual semipartial geometries in case of a > 1. If a ¼ 1,
a semipartial geometry is known as a partial quadrangle. No projective full embedding of a
proper partial quadrangle is known. However besides a unique example for q ¼ 2, there is one
example known of a dual partial quadrangle fully embedded in a PGð3; qÞ, any q. In this paper
we will prove that if the dual of a proper partial quadrangle S is fully embedded in PGð3; qÞ,
then mc q� q

tþ1 . If equality holds, then S is uniquely defined.

1 Introduction

1.1 Definitions. An embedding of a point-line geometry in PGðn; qÞ is a representa-
tion of the geometry where the point set is a subset of the point set of PGðn; qÞ, the
line set is a subset of the line set of PGðn; qÞ, and incidence is inherited from PGðn; qÞ.
We will always assume that n is the smallest dimension for which such an embedding
in PGðn; qÞ exists. The geometry is fully embedded if the embedding has the addi-
tional property that for every line L of PGðn; qÞ which is also a line of the geometry,
each point of PGðn; qÞ which is incident with L is also a point of the geometry.

A semipartial geometry [5] with parameters s; t; a; m, also denoted by spgðs; t; a; mÞ,
is a partial linear space S ¼ ðP;B; IÞ of order ðs; tÞ, such that for each anti-flag
ðx;LÞ, the incidence number aðx;LÞ, being the number of points on L collinear with
x, equals 0 or a constant a ða > 0Þ and such that for any two points which are not
collinear, there are m ðm > 0Þ points collinear with both (m-condition).

Remarks. 1) The point graph of a semipartial geometry is strongly regular. Besides
the parameter m, the other parameters of the graph are

v ¼ 1þ ðtþ 1Þsðmþ tðs� aþ 1ÞÞ
m

;

k ¼ ðtþ 1Þs:

l ¼ s� 1þ tða� 1Þ:



2) A semipartial geometry with a ¼ 1 is called a partial quadrangle and is denoted
by PQðs; t; mÞ. It was introduced by Cameron [2] as a generalization of a generalized
quadrangle. Semipartial geometries generalize at the same time the partial quadrangles
and the partial geometries. See for instance [6] for more information on generalized
quadrangles and [3, 4] for more information on partial and semipartial geometries.

For the rest of the paper we will be interested in the full embeddings in PGð3; qÞ
of the duals of partial quadrangles. The reason for this is, that for any q there is one
proper partial quadrangle known (i.e. not being a generalized quadrangle) whose dual
is fully embedded in PGð3; qÞ. We will construct this example in the next subsection.

There are quite some conditions known on the parameters of a partial quadrangle
and hence of the dual partial quadrangles. We restrict ourselves to these conditions
that will be used later in this paper; see [4] for more information. We will use again
the standard notations, i.e., a dual partial quadrangle with parameters s; t; m or of
order ðs; tÞ has sþ 1 points on a line, while a point is incident with tþ 1 lines; the
parameter m is the number of lines intersecting any two skew lines.

Theorem 1. Let S ¼ ðP;B; IÞ be a proper dual partial quadrangle with parameters

s; t; m, then

1. jBj ¼ b ¼ 1þ ðsþ 1Þt 1þ st
m

� �
;

2. sd t, hence jPj ¼ v ¼ bðsþ1Þ
tþ1 d b;

3. either D ¼ ðt� 1� mÞ2 þ 4ððsþ 1Þt� mÞ is a square, or s ¼ t ¼ m ¼ 1 and D ¼ 5
in which case S is isomorphic to the pentagon;

4.
2ðsþ1Þtþðb�1Þðt�1�mþ

ffiffiffi
D

p
Þ

2
ffiffiffi
D

p is an integer,

5. the Krein conditions on strongly regular graphs yield the following conditions, with
k ¼ ðsþ 1Þt, r and l the eigenvalues of the graph:

ðrþ 1Þðk þ rþ 2rlÞc ðk þ rÞðl þ 1Þ2;

ðl þ 1Þðk þ l þ 2rlÞc ðk þ lÞðrþ 1Þ2:

1.2 A model of a dual partial quadrangle embedded in a projective space. Let H be a
non-singular Hermitian variety in PGð3; qÞ, q a square, and let L be any line on H.
The incidence structure S ¼ ðP;B; IÞ, defined by taking as point set P the point set
of HnL and as line set B the set of lines of H minus all the lines concurrent with
L, is the dual of a partial quadrangle PQð ffiffiffi

q
p � 1; q; q� ffiffiffi

q
p Þ which is embedded in

PGð3; qÞ. We will denote it by Hð3; qÞ�. Actually, it is commonly known that this
geometry is isomorphic to the dual of the partial quadrangle obtained from the gen-
eralized quadrangle Q�ð5; ffiffiffi

q
p Þ by deleting all lines incident with a given point and all

points on these lines.
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2 Some generalities on full embeddings of dual partial quadrangles in PG(3,q)

Lemma 1. If S is a dual partial quadrangle of order ðq; tÞ fully embedded in PGð3; qÞ,
then the tþ 1 lines of S through any point are coplanar.

Proof. Let L be a line of S. Assume that the plane pi, i ¼ 0; . . . ; q, through L con-
tains yi þ 1 lines of S. Then

Pq
i¼0 yi ¼ ðqþ 1Þt. However, for all i, yi þ 1c tþ 1.

Hence, for all i, yi ¼ t and all yi þ 1 ¼ tþ 1 lines are concurrent in pi. r

Definitions. There are two types of planes.
Planes of type (a) contain tþ 1 lines of S through one point, called the center,

together with some isolated points, that is, points of S in the plane but on no line of
S in the plane. If p is the center, we denote the plane by p?.

Planes of type (b) contain no line of S and some isolated points.

Lemma 2. The number of isolated points in a plane of type (a) is a constant, say n.
The number of isolated points in a plane of type (b) is a constant, say m. Moreover

m ¼ qtþ 1þ n.

Proof. Let p be a plane of type (a) containing n isolated points. Then, counting
the number b of lines of S as lines intersecting p, it follows that b ¼ nðtþ 1Þþ
ðqtþ 1Þðtþ 1Þ. Hence all planes of type (a) contain n isolated points. On the other
hand, assume p 0 is a plane of type (b). Then counting the number of lines of S as
lines intersecting p 0 yields b ¼ mðtþ 1Þ. Hence all planes of type (b) contain m iso-
lated points. Moreover from both values of b it follows that m ¼ qtþ 1þ n. r

Lemma 3. Assume L is a line of PGð3; qÞ which is not a line of S. If jLVPj ¼ k,
then there are k planes of type (a) through L.

Proof. Assume there are l planes of type (a) through L. Then

lðqtþ qþ 1þ n� kÞ þ ðqþ 1� lÞðm� kÞ þ k ¼ v ¼ bðqþ 1Þ
tþ 1

¼ mðqþ 1Þ:

From this it follows that k ¼ l. r

Corollary. Each tangent to S is on exactly one plane of type (a).

Lemma 4. AssumeS is a dual partial quadrangle with parameters q; t; m, fully embedded

in PGð3; qÞ, then nd tðqþ 1� mÞ.

Proof. Let p be a point of S and let L 0 be a line of S meeting p? in just one point
collinear (in S) with p. There are ðm� 1Þt lines of S meeting L 0 and meeting p? in
just one point collinear with p but distinct from L 0 V p?. Hence there are qt� ðm� 1Þt
lines of S meeting L 0 and meeting p? in an isolated point. Two such lines meet p? in
di¤erent isolated points. Hence nd qt� ðm� 1Þt. r
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Lemma 5. If S is a proper dual partial quadrangle, fully embedded in PGð3; qÞ, then
mc q� q

tþ1 .

Proof. From b ¼ ðnþ qtþ 1Þðtþ 1Þ it follows that n ¼ b
tþ1 � qt� 1. Hence from

the previous lemma we get n ¼ b
tþ1 � qt� 1d tðqþ 1� mÞ. Using b ¼ 1þ

ðqþ 1Þt 1þ qt

m

� �
we get

mþ ðqþ 1Þtðmþ qtÞ � ðmqtþ mÞðtþ 1Þd tðqþ 1� mÞðtþ 1Þm;

that is,

ðtþ 1Þm2 � ðð2qþ 1Þtþ ðqþ 1ÞÞmþ qtðqþ 1Þd 0:

Hence mc
qt

tþ1 or m ¼ qþ 1. We shall prove that this last case cannot occur. Let
ðp;LÞ be an antiflag of S and let L 0 be a line of S through p not meeting L. Since
m ¼ qþ 1, there is a unique line of S through p meeting L. It follows that S is a
generalized quadrangle, a contradiction. Hence mc qt

tþ1 . r

3 A characterization of H (3, q)*

In this section we assume that S is a proper dual partial quadrangle of order ðq; tÞ,
fully embedded in PGð3; qÞ and such that m is maximal, i.e., m ¼ q� q

tþ1 ¼
qt

tþ1 ; hence
tþ 1 divides q.

Note by the way that indeed D is a square, as
ffiffiffiffi
D

p
¼ tþ 1þ qt

tþ1 ¼ tþ 1þ m.
In this case, m ¼ ðqþ 1Þtþ 1þ m, n ¼ m� ðqtþ 1Þ ¼ mþ t, b ¼ ðqþ 1Þtðtþ 2Þþ

1 and v ¼ bðqþ1Þ
tþ1 .

Lemma 6. If S is a proper dual partial quadrangle of order ðq; tÞ and m ¼ qt

tþ1 which

is fully embedded in PGð3; qÞ, then for any two non-collinear points p and p 0 of S the

number mðp; p 0Þ of points of S collinear with both p and p 0, is either 0, t, or tþ 1.
Moreover mðp; p 0Þ ¼ 0 if and only if p 0 is an isolated point contained in the plane p? of

type (a) with center p, or equivalently, p is an isolated point contained in the plane p 0?.

Proof. Assume p 0 is an isolated point in p?. Then clearly mðp; p 0Þ ¼ 0. Assume that
p 0 is a point of S not collinear in S with the point p of S and not contained in p?.
There can be at most tþ 1 points of S collinear in S with both p and p 0, and they
will all be contained in the projective line p? V p 0?. Assume mðp; p 0Þ0 tþ 1. Then
there is at least one point p 00 of S collinear in S with p 0 but isolated in p?. We
denote the line h p 0; p 00i by N. We count the lines of S intersecting N and any of the
tþ 1 lines of S through p in two ways. As S is a dual partial quadrangle, there are
ðtþ 1Þm ¼ qt such lines. On the other hand, there are at most ðjNj � 1Þt ¼ qt such
lines, hence there are exactly qt lines of S intersecting N and a line of S through
p, hence mðp; p 0Þ ¼ t. Note that this implies that there is exactly one line M of S
through p, which has no point that is collinear with p 0, i.e., M intersects p 0? in an
isolated point of p 0?. r
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Lemma 7. Assume that p; p 0 and p 00 are three mutually non-collinear points of S such

that mðp; p 0Þ ¼ mðp; p 00Þ ¼ 0, then mðp 0; p 00Þ ¼ 0 and p; p 0 and p 00 are on one line of

PGð3; qÞ, namely the line p? V p 0? ¼ p? V p 00?.

Proof. From the assumptions and from Lemma 6 follows that p 0 and p 00 are isolated
points in p?, and that p is isolated in p 0? as well as in p 00?. Assume mðp 0; p 00Þ0 0,
hence there exists a point r of S not contained in p? and collinear in S with p 0

and p 00. However, this implies that mðp; rÞc t� 1, and so from Lemma 6 follows
that mðp; rÞ ¼ 0, which contradicts the fact that r is not contained in p?. Hence
mðp 0; p 00Þ ¼ 0 which implies that p 0 is contained in p 00? and p 00 is contained in

p 0?. So the three points p; p 0 and p 00 are on one line of PGð3; qÞ, namely the line
p? V p 0? ¼ p? V p 00?. r

Remark. From Lemma 7 follows that for p and p 0 points of S the relation p1 p 0

if and only if either p ¼ p 0 or p not collinear (in S) with p 0 but mðp; p 0Þ ¼ 0, is an
equivalence relation on the points of S. Moreover, as the isolated points in a plane
p? are n points on a projective line of p? containing p, it follows that nc q. From
the proof of Lemma 7 also follows that any point r of S which is not a point of p?, is
collinear in S with at most one isolated point of S in p?.

3.1 The case nF q. As m ¼ qt

tþ1 , and as n ¼ mþ t ¼ q, it follows that q ¼ tðtþ 1Þ.
Hence q ¼ 2 and t ¼ 1. So v ¼ 15, k ¼ 10, m ¼ 1.

Note that Wð2Þ minus a spread is an example of an embedded dual partial quad-
rangle with q ¼ 2, t ¼ 1 satisfying m ¼ qt

tþ1 and n ¼ q. It is quite easy to see that this is
the only embedded dual partial quadrangle with these parameters.

3.2 The case nH qC 1. The condition nc q� 1 is equivalent to tþ 1c
ffiffiffi
q

p
.

Assume n < q� 1, and so tþ 1 <
ffiffiffi
q

p
. Since q ¼ ph and tþ 1 j q we can write

tþ 1 ¼ pl . Moreover l < h=2.
We now check the divisibility conditions. Note that

ffiffiffiffi
D

p
¼ tþ 1þ m ¼ tþ 1þ q� q

tþ 1
¼ pl þ ph � ph�l :

Hence
ffiffiffiffi
D

p
¼ pl þ ph � ph�l divides ðqþ 1Þtþ ðb�1Þðt�1�mþ

ffiffiffi
D

p
Þ

2 . Now one easily checks
the following equalities.

b� 1 ¼ ðqþ 1Þt 1þ qt

m

� �
¼ ðph þ 1Þðpl � 1Þð1þ plÞ;

and

t� 1� mþ
ffiffiffiffi
D

p

2
¼ pl � 1:
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As ðqþ 1Þt ¼ ðph þ 1Þðpl � 1Þ one gets the following divisibility condition:

pl þ ph � ph�l j ðph þ 1Þðpl � 1Þ þ ðph þ 1Þðp2l � 1Þðpl � 1Þ;

that is

pl þ ph � ph�l j ðph þ 1Þðpl � 1Þp2l ;

hence

pl þ ph � ph�l j p3lðpl þ ph � ph�lÞ � plðp3l � p2l þ plÞ;

so

pl þ ph � ph�l j plðp3l � p2l þ plÞ:

Put h ¼ 2l þ k with k > 0, then

plðplþk � pk þ 1Þ j p2lðp2l � pl þ 1Þ:

As k > 0, gcdðplþk � pk þ 1; plÞ ¼ 1 and so

plþk � pk þ 1 j p2l � pl þ 1:

Consequently 0 < kc l. Suppose k0 l. As

p2l � pl þ 1 ¼ ðplþk � pk þ 1Þpl�k � pl�k þ 1;

this implies that

plþk � pk þ 1 j pl�k � 1;

so

plþk � pk þ 1c pl�k � 1;

which is a contradiction. It follows that k ¼ l, hence h ¼ 3l so ðtþ 1Þ3 ¼ q.
Assume that q ¼ ðtþ 1Þ3; then n ¼ mþ t ¼ q� q

tþ1 þ t ¼ tðt2 þ 2tþ 2Þ, m ¼
ðtþ 1Þ2t. The line graph of S is a strongly regular graph with b ¼ ðtþ 1Þ �
ðnþ qtþ 1Þ ¼ ðtþ 1Þðt4 þ 4t3 þ 5t2 þ 3tþ 1Þ vertices, and parameters k ¼
ðqþ 1Þt ¼ ðt3 þ 3t2 þ 3tþ 2Þt, l ¼ t� 1 and m ¼ ðtþ 1Þ2t.

One easily checks that by the Krein conditions (in this case r ¼ t and l ¼
�tðtþ 1Þ2 � 1) such a graph cannot exist.

3.3 The proof of the main result. From now on we may assume that n ¼ q� 1, and
that S is a dual partial quadrangle fully embedded in PGð3; qÞ with tþ 1 ¼ ffiffiffi

q
p

lines
through a point and moreover m ¼ ffiffiffi

q
p ð ffiffiffi

q
p � 1Þ. It has q2 lines, q

ffiffiffi
q

p ðqþ 1Þ points
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and as many planes of type (a). The
ffiffiffi
q

p
lines of S through a point p are the lines

in the unique plane p? of type (a), which contains q� 1 isolated points on a line
of PGð3; qÞ not in S. We will call the set consisting of a point p of S and the q� 1
isolated points in the plane p? of type (a), a set of type 1 and will denote it by Lp. By
Lemma 3 there are

ffiffiffi
q

p ðqþ 1Þ sets of type 1, and each such set Lp is in one plane
of type (b) which contains m ¼ q

ffiffiffi
q

p
isolated points. Every plane of type (b) that

contains at least one set of type 1 will be called a plane of type (b1). Note that in the
model there are indeed two types of planes of type (b). On the one hand there are
the qþ 1 planes through L (see Subsection 1.2 for the notations), and these are the
planes of type (b1); the

ffiffiffi
q

p
lines of H di¤erent from L that were omitted in such

a plane, yield the sets of type 1 in that plane. The other planes of type (b) are the
qðq� ffiffiffi

q
p Þðqþ 1Þ planes intersecting the Hermitian variety H in a Hermitian curve,

and hence do not contain a set of type 1.
Let p be a plane of type (b1). We will prove that the q

ffiffiffi
q

p
points of S in p can be

partitioned in
ffiffiffi
q

p
sets of type 1. Let Lp be a set of type 1 in p and let r be a point of S

in p not contained in Lp. We show that the line hp; ri of PGð3; qÞ intersects the set of
points of S in p in

ffiffiffi
q

p
points. Indeed, if M is any line of S through p, then the plane

hM; ri is a plane of type (a) with center say p 0. If p 0 ¼ p, then hM; ri would contain
Lp, clearly a contradiction. So p 0 0 p. The

ffiffiffi
q

p
lines of S through p 0 in p 0? define

ffiffiffi
q

p

points of S on the line h p; ri. Consider the plane p 00? with p 00 A Lpnfpg. The
ffiffiffi
q

p

lines of S through p 00 intersect p 0? in
ffiffiffi
q

p
points, one of which is necessarily on Lp 0 . It

follows that any point of Lp 0 (resp. Lp) is collinear (in S) with exactly one point of Lp

(resp. Lp 0 ). It follows that Lp 0 V p ¼ q. Hence h p; ri contains exactly
ffiffiffi
q

p
points of

S. From this follows that the q lines of PGð3; qÞ in p and through r intersecting Lp,
all intersect the set of points of S in

ffiffiffi
q

p
points, and hence the line R of PGð3; qÞ in p

and not intersecting Lp defines a set Lr of type 1 (as jr? V pj0 ffiffiffi
q

p
we have that

r? V p ¼ R). Hence the q
ffiffiffi
q

p
points of a plane of type (b1) can be partitioned in

ffiffiffi
q

p

mutually disjoint sets of type 1; moreover these
ffiffiffi
q

p
sets define

ffiffiffi
q

p
lines of PGð3; qÞ

in p through a point of PGð3; qÞ not in S, which we will call a point of type I. From
the above arguments follows that there are qþ 1 planes of type (b1). Two distinct
planes of type (b1) do not have a point of S in common. Hence if p1 and p2 are
distinct planes of type (b1) and xi is the point of type I in pi, i ¼ 1; 2, then xi A pj with
i; j A f1; 2g. Remark also that x1 0 x2 as otherwise there would arise sets of type 1
which are contained in more than one plane of type (b1). Now there easily follows
that the qþ 1 points of type I are on a common line ½y� of PGð3; qÞ (not in S).

We define now the following incidence structure S� ¼ ðP�;B�; I�Þ.
The set P� is the set P union the set of qþ 1 points of type I. The set B� is the set

BU fLp j p A PgU f½y�g with Lp ¼ Lp U fxpg, and xp the point of type I defined by
Lp. The incidence I* is the incidence of PGð3; qÞ. One easily checks that S� is a
generalized quadrangle of order ðq; ffiffiffi

q
p Þ and as it is fully embedded in PGð3; qÞ, it is

the generalized quadrangle Hð3; qÞ [1]. Hence we have proved the following theorem.

Theorem 2. IfS is a dual partial quadrangle of order ðq; tÞ, fully embedded in PGð3; qÞ,
then mc

qt

tþ1 . If equality holds, then either q ¼ 2 and S is Wð2Þ minus a spread, or q is

a square and S ¼ Hð3; qÞ�.
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Remark. The proofs heavily rely on the fact that the dimension of the projective
space is three. Although there is no model of dual partial quadrangle known which is
fully embedded in PGðn; qÞ, nd 4, one should use other techniques if one wants to
prove that no such examples exist.
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