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Abstract. We find all minimal blocking sets of size %( p+ 1) in PG(2, p) for p < 41. There is
one new sporadic example, for p = 13. We find all maximal partial spreads of size 45 in
PG(3,7).

1 Minimal nontrivial blocking sets in PG(2, p)

A blocking set in a projective plane is a set of points meeting all lines. It is called
nontrivial when it does not contain a line. An m-secant of a set is a line meeting the
set in precisely m points.

Blokhuis [2] shows that in a Desarguesian projective plane PG(2, p) of prime
order p, a nontrivial blocking set has size at least %( p+ 1), and, moreover, that
in case of equality each point of the blocking set lies on precisely %( p — 1) tangents
(1-secants).

Nontrivial blocking sets of size % (p+ 1) exist for all p. Indeed, an example is given
by the projective triangle: the set consisting of the points (0,1, —s?), (1,—s2,0),
(—s2,0,1) with s € IF,,.

No nontrivial blocking set of size ¢ + m in PG(2, ¢) can have a k-secant for k > m,
and in particular such a set of size %( p+1)in PG(2, p) cannot have a k-secant with
k>1(p+3). The triangle has three %( p + 3)-secants. Conversely, Lovasz and
Schrijver [10] show that any nontrivial blocking set of size 3 (p + 1) with a 1(p + 3)-
secant must be projectively equivalent to the triangle. (They put the given secant at
infinity and show that the remaining p affine points can be taken to be the points
(a,a'?*V/2) for a € FF,.)

A blocking set S in PG(2, q) is called of Rédei type when there is a line L such that
|S\L| = ¢. Thus, we know the blocking sets of Rédei type meeting the Blokhuis bound
in PG(2, p), p prime. Let us call a nontrivial blocking set in PG(2, p) that meets the
Blokhuis bound sporadic if it is not of Rédei type. A single sporadic blocking set
(in PG(2,7)) was known. Here we find a second sporadic blocking set (in PG(2, 13))
and show that no other sporadic blocking sets exist in PG(2, p), p < 41.
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2 The Blokhuis bound

Theorem 2.1 ([2]). Let S be a nontrivial blocking set in PG(2, p), p prime. Then
|S| = %(p+ 1). If equality holds, then each point of S lies on precisely %(p— 1)
tangents.

Proof. Let S={(a;,b;,c;)|i=1,...,9q+m} be a minimal blocking set in
PG(2,q), where g is a power of the prime p. The polynomial F(X,Y,Z) =
[1;(aiX 4+ b;Y + ¢;Z) vanishes in all points (x, y, z), hence can be written as

F(X,Y,Z)=AX,Y,Z) (X" = X)+B(X,Y,Z)(Y! - Y)+ C(X,Y,Z)(Z9 - Z).

Since F(X,Y,Z) is homogeneous, all low degree terms cancel, and we have
F(X,Y,Z)=Ao(X,Y,Z)X "+ By(X,Y,Z) Y9+ Co(X,Y,Z)Z9, where F has de-
gree ¢ +m and Ay, By, Cp have degree m. Assume that |S| < 2¢, so that no cancella-
tion takes place between the terms on the right hand side.

Let the line Z = 0 contain / points of S, and assume that (1,0,0) € S. Now divide
by X and substitute X =0, ¥ =1 to get f(Z) = b(Z) + ¢(Z)Z4 where f has degree
q +m — [ and factors completely, and ¢ has degree m — [/ and b has degree at most
m— 1. Write f(Z) =s(Z) - r(Z) where s contains every irreducible factor of f just
once, and r contains the repeated factors. Then s|(b+ ¢Z?) and s|(Z9—Z) so
s|(b+cZ). And r|f' =b"+ 'Z4, so that [ =rs|(b+ cZ)(b' + ¢'Z9), and hence
f1(b+cZ)(b'c—bc).

If the factors on the right are nonzero, it follows that ¢ +m —/<2(m—1)+
m—1—1 that is, m > (¢ + 3)/2. And in case of equality the degree of s equals the
degree of b + ¢Z so that (1,0, 0) lies on precisely (¢ — 1)/2 tangents.

If b+cZ=0then f=c-(Z9—Z) and it follows that (1,0,0) does not lie on a
tangent, i.e., S is not minimal, contradiction.

If b'c — be’ = 0 then b and c differ by a p-th power. In the particular case ¢ = p
(and m < g) it follows that they differ by a constant factor, say h(Z) = a - ¢(Z), and
f(Z)=1¢(Z) - (a+ Z)? so that S contains (and hence is) a line.

3 Lacunary polynomials

We see that the blocking set problem leads one to search for polynomials f(x), g(x),
h(x), where f factors completely into linear factors and g and 4 have degree at most
1(g+1) such that /"= x7g + h.

(Indeed, in the proof above we found such an f given a small blocking set S, a
point P inside, and a line L passing through that point. An e-fold linear factor of f
corresponds to a line on P distinct from L meeting S in e + 1 points. The line L meets
Sin | S| — degree(f) points. Below we take |S| = %(q +1))

This equation has solutions that need not correspond to blocking sets. We give a
few examples.

a) (For odd ¢, say ¢ = 2r + 1.) Take f(x) = x[J(x — @) where the product is over
the nonzero squares a. Then [ satisfies f(x) = x(x" — 1)° = x9g + h with g(x) =
x" — 3, h(x) = 3x"*! — x. This would correspond to line intersections (with frequen-
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cies written as exponents) 1"224". For ¢ = 7 this is the function for the blocking set
(1,0,0), (0,1,0), (0,0,1), (a,b,1) with a,b € {1,2,4}.

b) (For g = 41 + 1.) Take f(x) = x[](x — a) [I(x — b)* where the product is over
the nonzero squares ¢ and fourth powers b. Here f(x)=x(x¥ —1)(x'—1)*=
x9g + h with g(x) = x> — 4x" + 5 and h(x) = —5x>*! 4 4x"*! — x. This would cor-
respond to line intersections 12226/,

¢) (For ¢ = 41+ 1.) Take f(x) = x"*' [[(x — a) [J(x — b)* where the product is over
the nonzero squares a and fourth powers b. Here f(x) = x!'(x% — 1)(x' — 1)* =
x4g + h with g(x) = x' — 2 and h(x) = 2x**! — x*1. This would correspond to line
intersections 122/4/(¢ +2)*. For ¢ = 13 this is a function for the blocking set (1,0, 0),
(0,1,0), (0,0,1), (1,a,0), (0,1,a), (a,0,1), (b,c,1) with a®> = —1, b3 = ¢* = 1.

d) (For ¢ = 13.) Take f(x) = x[[(x —a)*[](x — 1a) where the product is over
all a with @® = 1. Here f(x) =x(x* - )*(x* 1) = x99+ h with g(x) =x>+4
and h(x) = 5x7 — 5x* — 5x. This would correspond to line intersections 162454 and
indeed this occurs.

These lacunary polynomials are just weighted subsets of the projective line, and
in particular PGL(2,¢) acts. For example, x — % sends x%g + h to x%h + g where
k(x) = x\D2k(x71).

For completeness we describe the lacunary polynomials that correspond to the
Rédei type blocking set:

e) Take f(x) = x9— x@+D/2 = x(¢+D/2T](x — a) where the product is over the
nonzero squares d.

f) Take f(x)=x%—2x@/2 4 x = x]](x —a)® where the product is over the
nonzero squares da.

4 Search setup

We search for lacunary polynomials as described above over the prime field IF, by
exploiting the equation

f=x"g+h=a(xg+h)(gh' —g'h)

for some constant a, where f factors into linear factors, and xg + & factors into dis-
tinct linear factors, and g and / have degree at most % (p+1).

If we guess xg + /1 and the constant of proportionality a and the constant term of ¢
then this relation gives a recurrence that allows us to compute all other coefficients of
g, and thus to find f. If we take / = 1, then xg + / is a product of m = (p + 3)/2
distinct linear factors, and there are (51 ) possible choices for the set of roots of
xg +h. We tried all possibilities for p < 41, where PGL(2, p) was used to divide
the computation time by roughly p3. This yields all possibilities for f, and in partic-
ular the multiplicities of the roots of f, so that we know the sizes of the intersection
of lines on some arbitrary point (1,0,0) with S. This suffices to classify the pos-
sible solutions. In fact, except for example d) in the previous section we only find
solutions if xg 4+ & = x\¢*1)/2 — x_In a seperate section we will completely classify this
special case.
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Looking at p = 31 took 80 minutes CPU time on an old Pentium running Linux,
and p = 37 took four days.

5 Results

The results are as follows. First of all there are possibilities with a factor of multi-
plicity %(p +1), ie, a %(p + 3)-secant, and we have a Rédei example, unique by
Lovasz and Schrijver.

For the primes p = 7,11, 19,23, 31 there is a unique non-Rédei intersection pattern,
namely 1(7~1/2224(r=1)/2 (corresponding to the lacunary polynomial found under a)
above). Counting the total number of lines on these points we see that this can be a
blocking set only for p = 7. It remains to investigate the cases p = 7,13,17,29, 37.

5.1 p=".For p =7 there is a unique intersection pattern 132243 (and no computer
search is required to see that). It gives rise to a unique sporadic blocking set (of size
12) (see also [4]).

It arises as follows. The affine plane AG(2,3) can be embedded into PG(2, g) if
and only if ¢ = 0,1 (mod 3), as one easily checks by assigning coordinates to the 9
points of AG(2,3) (for more details see [9] and [1]). This embedding is unique up to
isomorphism. The three lines in a parallel class of AG(2, 3) are concurrent in PG(2, ¢)
if and only if ¢ = 0 (mod 3). For ¢ = 1 (mod 3) this 9-set can be found as the set of
inflections of a nondegenerate cubic. Dualizing we find a dual affine plane DAG(2, 3)
with 12 points, 9 4-lines (3 on each point) and 12 2-lines (2 on each point) embedded
in PG(2,q) for g=1(mod3). It has (¢>+¢q+1)—12(q+1-5)-9—-12=
(¢ —4)(¢ — 7) 0O-secants, and hence is a blocking set for ¢ = 4,7 and for ¢ = 4 even a
2-fold blocking set.

The projective triangle in PG(2, 7) can also be viewed as a modification of AG(2, 3):
it arises by taking the 9 points of AG(2,3) and adding the 3 points of intersection of
the lines of one parallel class.

There are no other possibilities: Suppose the blocking set S has n; i-secants,
1 <i<4. Then Y m; =57, Y in; =96, > (})n; = 66 by standard counting. And
ny = 36 since we have equality in the Blokhuis bound. Hence n, = 12, n3 = 0, ng = 9.
If there are m; i-secants on a fixed point s€ S, then > m; =8, > (i — )m; = 11,
my = 3 so that my = 2, my = 3. This yields the DAG(2, 3) structure.

More generally, Gacs et al. showed in [6] that if a nontrivial blocking set S of size
3(p+1) in PG(2, p) has a k-secant for k > 1 (p + 1) then it is of Rédei type, unless
p =7 and we have this dual affine plane.

5.2 p = 11. We already saw that for p = 11 nothing of interest happens. More gen-
erally, Gacs [5] showed that a k-secant with k = % (p — 1) only occurs for sets of Rédei
type, and simple counting then shows that for p = 11 the set S must be of Rédei type.

5.3 p=13. For p = 13 there is a nice example again that is not of Rédei type. Let
¢ =1 (mod 3) and take in PG(2,¢) the 9 points of an embedded AG(2,3) together
with the 12 points of intersection of lines that are parallel in AG(2, 3). This yields a
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self-dual configuration. Indeed, these 21 points together with the 21 lines that contain
more than two of the points have a structure that is that of PG(2,4) in which the
incidences between the 9 points of a unital (AG(2, 3)) and the tangent at these points
has been removed. There are 12 5-secants, 9 4-secants, 36 2-secants, 21(¢ + 1 —8) 1-
secants and (¢ +q+1)—21(q+1—-8)—36—-9—12= (¢ —7)(q — 13) O-secants,
so that this is a blocking set for ¢ = 7,13, and for ¢ = 7 even a 2-fold blocking set.

For p = 13 we have |S| = 21. The search shows that there are four possible inter-
section patterns: a) 102246, b) 162563, c) 19234352 d) 192454, Let there be N, points
of type a, etc., and n; i-secants.

If Np > 0, then there is a 6-secant, and it meets another 12 6-secants, so 13 < ng =
3N;/6 and Nj, > |S|, contradiction.

So Ny =0.Ifalso N, = 0then N, + Ny =21, n; = 126, n; = %NC + 2Ny, ng = %Nc,
ns = %NC +%Nd, S m; = 132 4+ 13 + 1 = 183, with unique solution N, = 12, N; =9,
ny =36, ng =9, ns = 12. Each 4-secant meets the remaining eight, that is, the 4-
secants meet pairwise (in points of type c)), and the points of type c) form a
DAG(2,3). A 5-secant meets the DAG(2,3) in at most two points, so has at least
three points of type d), and the points of type d) together with the 5-secants form an
AG(2,3). Now everything is determined, and this indeed yields a solution.

If N, > 0 then at most two points do not lie on a 4-secant, so Ny <2. If N, =
N; =0, then N, =21 and ny = 6N,/4 is not integral. Contradiction. So, ns =
%NC +%Nd > 0. We have ng4 = %Nu +%NC, so N, is even, and 4 |ns. Each 5-secant
meets at least five more, so ns > 8, i.e., N.+2N; =20, N.+Ny; > 18, N, <3. If
ns = 12 then N.+ 2N, > 30, N.+ N, > 28, contradiction. So ns = 8. Now nyg =
SNi+32N.=3(Ny+ N+ Ng) —2(Ne +2N;) =321 —2-20 is not integral. Con-
tradiction.

So, up to isomorphism there is a unique minimal blocking set in PG(2, 13) of size
21 that is not of Rédei type.

54 p=17. For p =17 we have |S| = 27. There are three possible intersection pat-
terns: a) 132248, b) 182064, ¢) 18244462,

We have N, + Ny + N.=27 and ny =8-27 =216, and n, = N, + 3N, + 2N,,
ng=2N,+ N, s0 ny+ns=3-27=81 and ng=17>+17+1—216 — 81 = 10.
2Ny + N, = 3ng = 30, s0 N = 3. Now three points of type b) see twelve 6-secants, but
there are only ten, so there is a 6-secant with at least two points of type b). But such a
6-secant meets at least 3+3+ 1+ 1+ 1+ 1 = 10 other 6-secants, contradiction.

So, no non-Rédei sets occur for p = 17.

5.5 p=29.For p =29 we have |S| = 45. There are three possible intersection pat-
terns: a) 1422414 b) 114267, ¢) 114274792,

If type c) occurs then there are 9-secants, and each 9-secant meets another nine, so
10 < ng = 2N./9 and N, = 45 so that all points are of type c). But then ny = 7N./4
is not integral. Contradiction.

So N, = 0. There are 14N, /4 4-secants, so N, is even. There are 7N,/6 6-secants,
so N is even. But N, + N, = 45. Contradiction.

So, no non-Rédei sets occur for p = 29.
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5.6 p =37 and larger p. For p = 37 we have |S| = 57. There are three possible
intersection patterns: a) 1'822413 b) 1182116° ¢) 1!82°4°112, and as before no non-
Rédei set can exist.

Let us prove more generally that no sporadic blocking set exists in PG(2, p),
p=4t+1>37 when only the three patterns a) 1%224% b) 1%2/*26' and c)
121274"(t 4+ 2)* do occur. We have |S| = 67 + 3.

If type c¢) occurs then there are (¢4 2)-secants, and each meets ¢+ 2 more,
sO t+3<nmyy=2N./(t+2) <2|S|/(t+2) < 12, contradiction. So N, =0. Now
N, + Ny =|S| and ny +ny +ny +ng = p* + p+ 1 determines all values: N, = 12,
Np=60—9, nj = 120> +6t, 1y =32 +31+3, ny =61, ng = 1> —31. Now a 4-line
meets 4(2¢ — 1) other 4-lines, contradicting ng = 6.

So, for a new sporadic blocking set we need a new factorizing lacunary polynomial.

6 The special case xg + h = x(?+DI2 — x

In this section we consider the modular differential equation

x'g+h=a(xg+h)(g'h—1Ng),
where xg + & factors into distinct linear factors, and g, & € IF,[x] are both of degree at
most (p + 1)/2, not both zero, and «a is a nonzero constant. Write s := xg + / and
t:= (x? —x)/s. Then h = s — xg and s't 4+ st' = —1. Rewrite the original equation as

(x! — x)g = s(ag's — ags' + ag* — 1).
Division by s gives
tg=ag's —ags' +ag* — 1 = ag's — ags' + ag* + st' + s't.

This may be rewritten as

s(ag' +1') = —(ag — 1)(g — 5').

We now consider the special case s = x"*' —x, where n:= (p—1)/2. Then
t = x" + 1, and our equation simplifies to

1 1
(x" — 1)<xag' —Ex"> =(x"+1-ag) <g+ 1 —Ex").

If u is a square in IF; (so that u” — 1 = 0) then g(u) € {—3,2}. Comparing degrees

we see that g has degree at most n. Modulo x” this equation reduces further to

1
xg' = (g—5> (g+1) modx".
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Note that (g(0) —1)(g(0) + 1) = 0.

Consider more generally the equation xg' = (¢ — b)(g — ¢) mod x", say with
g(0) = b. Then we get g = ¢ + (b — ¢)/(1 — Cx*~¢) mod x" for some constant C.

(Indeed, the equation xg’ = (g — b)(g — ¢) suffices to determine all coefficients of
g in terms of earlier coefficients, except the coefficient of x’ where i = b — c.)

In the above, 1/(1 — Cx“) was to be interpreted in IF[[x]]. We get a solution in
polynomial form by replacing it by (1 — C"x%")/(1 — Cx?), for some m such that
dm = n.

Thus, in our case,

1=—¢Cm dm
9= cd g e

for certain constants ¢, d, e, where either d = 0 and the middle term is absent, or
C#0,0<d<p,m=2dm—-1)<n<dn.
Since g takes at most two values on nonzero squares, the same holds for

Lcn “" (when d # 0). Thus, there are constants A, B such that x" — 1 divides

(1 —Cmx — A(1 — Cx?))(1 — C"x — B(1 — Cx?)). This remains true if we re-
place x%" by x"~"_so either n < 2d, m = 2, d = n/2, or the right hand side vanishes
and A =0,dn=n, C" =

In the former case we have (with new constants) g = ¢+ dx"/? 4+ ex" with

= —1 or ¢ = 1/a. Substitution and comparison of coefficients gives (a,c,d,e) =
( —1,0, 1/2) or (a,c,d,e) = (-2,-1,0,0) or (a,c,d,e) = (—4/3,—1,+1/2,0) or
(a,c, d e) (-2,-1/2,0,0) or (a,c,d,e)=(—4/3,-3/4,0,1/4) or (a,c,d,e) =
(=
r

4/5,-5/4, +1 ,—1/4), and these correspond to the examples f), ¢), c), f), a), b),

espectively.

In the latter case we have g = ¢ +d - ’Cx:d + ex", where n = dm, C"™ =1 and with-
out loss of generality m > 3. The two values taken by ¢ on the set of nonzero squares
differ by %+ % =+4n= 1%, so that a = —2 and ¢+ e = —1/2. Comparing leading
coefficients we find e € {0, —1/4}. Comparing constants we find ¢ +d € {—1,—1/2}.
The four possible values of d turn out to be 0,n/2,n,3n/2, and we already handled
those.

Altogether the conclusion is that if x’g +h = a(xg+ h)(g'h —h'g) and xg+ h =
x"*1 — x, with g, both of degree at most n + 1, then we have one of the examples
from Section 3.

7 Partial spreads in PG(3,7)

A spread in a point-line geometry is a partition of the point set into lines. A partial
spread is a collection of pairwise disjoint lines. Given a partial spread in a point-line
geometry, we shall call a point not covered by one of its lines a hole.

Hirschfeld [8] (Section 17.6) shows that PG(3, ¢) has a maximal partial spread of
size ¢> — g + 2 for ¢ > 3 (and a maximal partial spread of size 7 for ¢ = 3). No larger
maximal partial spreads (that are not spreads) are known, except for ¢ = 7, where
Heden [7] constructed a maximal partial spread of size 45.



S252 Aart Blokhuis, Andries E. Brouwer and Henny A. Wilbrink

The relation with blocking sets in PG(2, ¢) is as follows: Given a maximal partial
spread of size ¢* + 1 — & in PG(3, q), where 6 > 0, we find a nontrivial blocking set of
size ¢+ 0 in PG(2,q).

(Indeed, we find such a blocking set by taking the set of holes in a plane that does
not contain a line of the partial spread.)

Since nontrivial blocking sets in PG(2,7) have size at least 12, it follows that a
partial spread in PG(3,7) that is not a full spread has at most 45 lines, that is, has at
least 40 holes.

We did a complete search for partial spreads with 40 holes and find that there are
precisely 879 nonisomorphic such partial spreads. The table below gives group order,
number of isomorphism classes and total number of partial spreads.

order # total
1 174 4510080
2 383 4963680
3 7 60480
4 175 1134000
6 35 151200

8 39 126 360
10 9 23328

12 40 86400
20 1 1296
24 11 11880
60 1 432
120 4 864

total 879 11070000

Soicher [11] had already determined the partial spreads with 40 holes and an auto-
morphism group of order 5.

The geometry of the set H of 40 holes (complement of the union of a maximal partial
spread ¥ of size 45) is uniquely determined, as was already remarked by Heden.
Indeed, each plane must meet H in either 5 or 12 points (depending on whether it
contains a line of & or not), and the holes form a blocking set in each plane = with
12 holes. (Otherwise there would be a line L in z disjoint from H, and looking at the
8 planes on L they must all have precisely 5 points of H, contradiction.) Thus, the
planes with 12 holes are either of the triangle or of the DAG(2, 3) type.

Now all planes with 12 holes must be of the same type. Indeed, let an m-/ine be a
line with m holes. A plane of triangle type does not have 4-lines, while a plane of
DAG(2,3) type does not have 5-lines. In particular, a 4-line cannot meet a 5-line.
Each hole in a plane of DAG(2, 3) type is on some 4-line, so no such hole can be on
a S-line. On a 4-line there are 8 planes, four of DAG(2, 3) type, and we find at least
36 holes on a 4-line, no room for a 5-line.

Not all planes can be of triangle type. Indeed, suppose this is the case. Each 3-line
is on three planes with 12 holes and in each of these planes each of the three holes of
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the 3-line lies on a unique 5-line. It follows that each hole is on precisely three 5-lines
(so that there are 24 5-lines in all). On the other hand, the projective transformations
that fix the set of non-holes on a 5-line have two orbits on the 5 holes, so that the two
‘corners’ on that line in a triangle do not depend on the choice of triangle, so that
these corners would be on six 5-lines, contradiction.

Thus, all planes are dual affine planes. We have a geometry with points and 4-lines,
where two intersecting 4-lines determine a plane, and each plane is dual affine of order
3. By Cuypers [3] this is the geometry of points and hyperbolic lines and dual affine
planes of the Sp(4,3) geometry. This is again a self-dual configuration that lives in
PG(3, ¢) for all prime powers ¢ = 1 (mod 3). (For example, in PG(3,4) it lives as the
nonisotropic points of a U(4,2) geometry.) Explicit coordinates: take the 4 points
(1,0,0,0) and the 36 points (0, 1,a, —b) where a* = b*> = 1 and the coordinates may
be permuted cyclically.
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