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1 Introduction

In this article, we completely classify the even order spreads in PGð3; qÞ that admit
a linear collineation group of order qðqþ 1Þ. In what should be considered a com-
panion article to the present one, the authors have previously classified the odd order
spreads in PGð3; qÞ that admit a linear collineation group of order qðqþ 1Þ with the
added hypothesis that a subgroup of order q must fix a line and act nontrivially on
it. In the odd order case, the planes are all related to flocks of quadratic cones in
PGð3; qÞ. However, it will turn out in the even order case, there are no associated
flocks of quadratic cones apart from the linear flock (the associated plane is Desar-
guesian). So we have decided to separate the even and odd order parts, for this reason
and also due to the fact that the arguments for the even and odd order cases are
probably as dissimilar as they are similar. We do, however, use various results con-
necting the theories of flocks of quadratic cones and translation planes whose spreads
in PGð3; qÞ are unions of reguli sharing a common line.

By the work of Gevaert and Johnson [6], and Gevaert, Johnson and Thas [7], it is
also true that within the collineation group of the translation plane associated with
a so-called ‘conical flock’ (flock of a quadratic cone) is an elation group E of order q.
In general, we shall use the term ‘regulus-inducing’ to denote such an elation group.
Since each orbit of a regulus-inducing group union the axis is a regulus, we may
derive any such regulus, turning the elation group into a group which fixes a Baer
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subplane pointwise. That is, we now have an associated Baer group of order q. Con-
versely, the existence of a Baer group of order q in a translation plane of order q2 and
spread in PGð3; qÞ implies that the plane is a derived conical flock plane.

Theorem 1 (Johnson [20], Payne–Thas [26]). If p is a translation plane of order q2 with

spread in PGð3; qÞ that admits a Baer group of order q then p is a derived conical flock

plane.

Indeed, Baer groups of order q, by their very nature, are ‘regulus-inducing’ so if
there is a Baer group of order q of a translation plane with spread in PGð3; qÞ, it is
shown in Johnson [20] that there is an corresponding ‘partial flock of deficiency one’
of a quadratic cone and conversely such partial flocks produce translation planes
admitting Baer groups of order q.

It is also known that the partial flock may be extended to a flock if and only if the
net of degree qþ 1 containing the Baer subplane fixed pointwise by the Baer group is
derivable, and this implies that the net is, in fact, a regulus net. In this setting, deri-
vation then does not change the fact that both spreads remain within the same pro-
jective space isomorphic to PGð3; qÞ.

Furthermore, it is known by Payne and Thas [26] that every partial flock of defi-
ciency one may, in fact, be uniquely extended to a flock. Putting all of this together
means that Baer groups of order q in translation planes of order q2 are essentially
equivalent to flocks of quadratic cones.

Theorem 1 is crucial to our main classification theorem, which we now state.

Theorem 2. Let p be a translation plane of even order q2 with spread in PGð3;KÞ, K
isomorphic to GFðqÞ, that admits a linear collineation group G of order qðqþ 1Þ (i.e.
in GLð4; qÞ). Then p is one of the following types of planes:

(1) Desarguesian,

(2) Hall,

(3) a translation plane obtained from a Desarguesian plane by multiple derivation of a

set of q=2 mutually disjoint regulus nets that are in an orbit under an elation group

of order q=2.

2 Background

In this background section, we list most of the results that we shall be using in the
proof of our main theorems. For convenience of reading, we shall collect the results
involving similar ideas. In the statements of the results, q is a prime power pr, even
though we shall be using q ¼ 2r when we use the material in the body of the proof of
the main theorem. The material has been cross-referenced so that this section could
be skipped initially and then referred back to when a particular result is required.

2.1 General group-spread theoretic.

Theorem 3 (see Johnson [18], Theorem (2.3)). Let V be a vector space of dimension 2t
over F isomorphic to GFðprÞ, p a prime, q ¼ pr. Let T be a linear transformation of
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V over F which fixes three mutually disjoint r-dimensional subspaces. Assume that jT j
divides qt � 1 but does not divide LCMðqs � 1; s < t; s j tÞ. Then:
(1) all T-invariant t-dimensional subspaces are mutually disjoint and the set of all such

subspaces defines a Desarguesian spread;

(2) the normalizer of hTi in GLð2t; qÞ is a collineation group of the Desarguesian

plane S defined by the spread of (1);

(3) S may be thought of as a 2t-dimensional vector space over F; that is, the field

defining S is an extension of F.

Theorem 4 (see Lüneburg [23], (49.4), (49.5)). Let t be a linear mapping of order p of

a vector space V of characteristic p and dimension 4 over GFðprÞ and leaving invariant

a spread.

(1) Then the minimal polynomial of t is ðx� 1Þ2 or ðx� 1Þ4. If the minimal polyno-

mial is ðx� 1Þ4 then pd 5. In the latter case, t is said to be a ‘quartic’ element.

(2) The minimal polynomial of t is ðx� 1Þ2 if and only if t is an a‰ne elation (shear)
or a Baer p-collineation ( fixes a Baer subplane pointwise).

Theorem 5 (Zassenhaus [29]). Let G be a sharply 2-transitive permutation group of

order tðt� 1Þ. Then there is an associated nearfield plane of order t admitting G as a

collineation group.

Theorem 6 (Johnson [19]). Let p be a translation plane of order q2, q ¼ pt, p a prime,
admitting a collineation group isomorphic to SLð2; paÞ. If pa >

ffiffiffi
q

p
then SLð2; qÞ is a

collineation group of p.

Theorem 7 (Gleason [8]). Let G be a finite group operating on a set W and let p be a

prime. If C is a subset of W such that for every a A C, there is a p-subgroup Pa of G

fixing a but no other point of W then C is contained in an orbit.

Theorem 8 (see e.g. Foulser [3]). Let G be a subgroup of PGLð2; qÞ, for q ¼ pr, p a

prime, that does not admit p-elements. Then one of the following occurs:

(1) G is a subgroup of a dihedral group of order 2ðqG 1Þ,
(2) G is isomorphic to A4, S4 or A5.

Theorem 9 (see Johnson [17] or [15]). There are exactly three translation planes of

order 16 with kernel containing GFð4Þ. These are the Desarguesian plane, the Hall

plane, and a plane coordinatized by a semifield with all semi-nuclei equal. In the last

case, there is a component that is invariant under the full translation complement.

Theorem 10 (Lüneburg [23]). Let p be a Lüneburg–Tits plane of order q2. Then the

translation complement of p does not contain an element of order a 2-primitive divisor

of q2 � 1.

The classification of spreads in PGð3; qÞ S273



Theorem 11 (Foulser [2]). If p is a non-Desarguesian generalized André plane then p

does not admit a‰ne elations.

2.2 Combinatorial field theory.

Theorem 12 (Zsigmondy [30]). Let h ¼ pt, where p is a prime. Then there is a prime

divisor u of h� 1 but not of ps � 1 for s < t unless t ¼ 2 and pþ 1 ¼ 2a or pt ¼ 26.

Theorem 13 (also, see Ribenboim [27], and note the correction to Ganley, Jha, John-
son [6], (3.5)). Consider the following equation:

wn � 1

w� 1
¼ pr;

where w is a prime power and p is a prime.

(a) If n > 2 and r is even then ðw; n; p; rÞ ¼ ð3; 5; 11; 2Þ.

(b) If n ¼ 2 then either

(i) r ¼ 1,
(ii) ðw; p; rÞ ¼ ð8; 3; 2Þ or
(iii) ðw; pÞ ¼ ð2r � 1; 2Þ, where r is a prime.

Proof. If n > 2 and r is even, we may apply the results of Ribenboim [27]. Hence,
assume that n ¼ 2. First assume that r is >2 and p is odd. Then pr � 1 has an odd
prime t-primitive divisor by Theorem 12. Since pr � 1 cannot have a p-primitive divi-
sor, thus it must be that r ¼ 1 or 2. If r ¼ 2 then pþ 1 ¼ 2b, for some integer b. Since
ðp� 1; pþ 1Þ ¼ 2, it follows that p� 1 ¼ 2, so b ¼ 2. Hence, either r ¼ 1 or w ¼ 8,
p ¼ 3 and r ¼ 2.
Now assume that p ¼ 2. Then, since 26 � 1 is not a prime power, then 2 r � 1

admits a prime 2-primitive divisor u, where uc ¼ w. However, this says that r is a
prime to ensure that u is a 2-primitive divisor. r

2.3 Elation groups of translation planes.

Theorem 14 (Hering [9], Ostrom [24], [25]). Let p be a translation plane of order pr, p
a prime, and let G be a collineation group of p in the translation complement. Further,
let E denote the collineation group generated by all elations in G.

Then one of the following situations apply:

(i) E is elementary Abelian,

(ii) E has order 2k, where k is odd, and p ¼ 2,

(iii) E is isomorphic to SLð2; ptÞ,

(iv) E is isomorphic to SLð2; 5Þ and p ¼ 3,

(v) E is isomorphic to Szð22sþ1Þ and p ¼ 2.
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Theorem 15 (Johnson and Ostrom [22], (3.4)). Let p be a translation plane of even

order q2 with spread in PGð3; qÞ. Let E denote a collineation group of the linear trans-

lation complement generated by a‰ne elations. If E is solvable then E is elementary

Abelian and is a group of elations all with the same axis or E is dihedral of order 2k, k
odd and there are exactly k elation axes.

Theorem 16 (Johnson [16], (2.1)). Let p be a translation plane of even order q2 0 64
with spread in PGð3; qÞ admitting exactly qþ 1 elation axes. Then the net of elation

axes is derivable if and only if the group generated by the elations is SLð2; qÞ or is a
dihedral group of order 2ðqþ 1Þ where the cyclic stem fixes at least two components

of p.

Theorem 17 (Johnson [18], (3.4)). Let p be a translation plane of even order q2 0 64
with spread in PGð3; qÞ. Let p contain a derivable net N and for each component l of

N, assume there is an elation with axis l leaving N invariant. Then, there is a Desar-

guesian plane S such that p is obtained by multiple derivation in S; p may be con-

structed by replacing an odd number of pairwise disjoint derivable nets in S.

Theorem 18 (Johnson [18], (4.3)). Let N be a net in a finite translation plane p. Let S
be an a‰ne Desarguesian plane such that each of the components of N is a Baer sub-

plane in some derivable net of S that shares two fixed components. If N is not derivable,
N is said to be ‘twisted ’ through S.

Let p be a translation plane of even order q2 0 64 with spread in PGð3;KÞ, where K
is isomorphic to GFðqÞ. Assume that p admits qþ 1 elations with distinct axes and that

the group D generated by the elations leaves invariant the net N defined by these axes.
Then either N is a derivable net and p is multiply derived from a Desarguesian plane S
or N is twisted through a Desarguesian plane.

Note. The following is also true from the proof of the above theorem:
If the cyclic stem of the group generated by the elations does not fix at least two

components of p, it does fix two Baer subplanes each of which lies across the set of

qþ 1 elation axes and are kernel subplanes (i.e. K-subspaces).

The order q2 ¼ 64 is somewhat problematic since the case is not specifically con-
sidered in the work of Johnson [18], so is not included in Theorems 16, 17, or 18.
Hence, assume that p is a translation plane of order 64 and kernel containing GFð8Þ
that admits a group generated by elations. If the group is solvable then it is a dihedral
group of order 2k, where k is odd by Theorem 15. Assume that k ¼ 9. Let C9 denote
the cyclic stem and let N denote the net defined by the 8þ 1 elation axes. Since C9

acts on 8ð8� 1Þ components of p, it follows that C9 fixes two components, which we
choose to be represented by x ¼ 0 and y ¼ 0. Let s be an elation interchanging x ¼ 0
and y ¼ 0, where s : ðx; yÞ 7! ðy; xÞ. Note that the axis of s is y ¼ x.

Then, C9 ¼ hwi such that w : ðx; yÞ 7! ðxT ; yT�1Þ, where T is a 2� 2 matrix over
GFð8Þ of order 9. Note that the set N of images of y ¼ x under hwi is fy ¼ xT�2i;
i ¼ 0; 1; . . . ; 8g. Consider the GFð8ÞhTi-module generated over GFð8Þ by T. Since
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hTi is clearly an irreducible group acting on a 2-dimensional GFð8Þ-space, it follows
that the centralizer of T is a field F isomorphic to GFð82Þ. Hence, the set of images
N of y ¼ x union x ¼ 0 and y ¼ 0 belong to a Desarguesian a‰ne plane S1 coor-
dinatized by F, and F extends the kernel subfield K isomorphic to GFð8Þ. It fol-
lows that N is a regulus net in S1. However, this implies that each Baer subplane of
N incident with the zero vector is a K-subspace. That is, N is also a regulus net when
considered in p.

We may consider N to have components

y ¼ xm; m9 ¼ k;

where m A F and k A K . In this context, N is an André regulus net of S1 with oppo-
site regulus fy ¼ x8m;m9 ¼ kg. Let T ¼ t when considered in F. Note that

ðx; x8mÞ 7! ðxt; x8mt�1Þ

and that ðxtÞ8m ¼ x8mt�1 since t8þ1 ¼ 1. Hence, hwi fixes each Baer subplane
y ¼ x8m of N incident with the zero vector.
Now w fixes at least three K-subspaces of line size so we may apply Theorem 3

to construct a Desarguesian a‰ne plane S consisting of w-invariant 2-dimensional K-
subspaces. Now the normalizer of hwi is a collineation group of S and hwi is a kernel
homology group when acting on S. It follows exactly as in Johnson [18] Lemma (3.3),
p. 333, that the orbits under C9 are either of length 1 or 9. Since 9 is a prime power,
Theorem (4.3) of Johnson [18] may now be easily extended to show that the compo-
nent orbits of length 9 are derived regulus nets of S. All of this now proves the fol-
lowing theorem:

Theorem 19. Let p be a translation plane of order 64 and kernel containing K isomor-

phic to GFð8Þ. Assume that p admits a group generated by elation groups that is dihe-

dral of order 2ð8þ 1Þ.

(1) Then the net defined by the elation axes is a regulus net.

(2) There is an associated Desarguesian a‰ne plane S consisting of the 2-dimensional

K-spaces fixed by the cyclic stem and p may be obtained from S by a multiple

derivation of mutually disjoint regulus nets of S.

Theorem 20 (Walker [28]). Consider a finite translation plane p of even order q2 that

is multiply derived from a Desarguesian plane S by the replacement of a non-empty set

ofcq=2 mutually disjoint reguli. Then the full collineation group of the plane p is the

group inherited from the associated Desarguesian plane S; the collineation group of p

permutes the reguli that are replaced.

Theorem 21 (Foulser, Johnson, Ostrom [4]). Let p be a translation plane of order q2

that admits a collineation group isomorphic to SLð2; qÞ, where q ¼ pr, p a prime, and
the p-elements are elations. Then p is Desarguesian.
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Theorem 22 (André [1]). If P is a finite projective plane that has two homologies with

the same axis l and di¤erent centers then the group generated by the homologies con-

tains an elation with axis l.

Theorem 23 (Hering [10]). Let p be a translation plane of even order 2 t that admits a

collineation group isomorphic to a Suzuki group Szð22sþ1Þ that is generated by elations.
Then there exists a Lüneburg–Tits subplane of order 22s invariant under Szð22sþ1Þ.

2.4 Baer groups in translation planes.

Theorem 24 (Jha and Johnson [12]). Let p be a translation plane of even order q2

admitting at least two Baer groups of order 2
ffiffiffi
q

p
in the translation complement. Then

either p is Lorimer–Rahilly or Johnson–Walker of order 16 or p is Hall.

Theorem 25 (Jha and Johnson [13]). Let a translation net of degree qþ 1 and order

q2 contain at least three distinct Baer subplanes incident with the zero vector and

coordinatized by the same field K isomorphic to GFðqÞ. Then the net is a regulus

net that corresponds to a regulus in PGð3;KÞ. Such a regulus net is often called a

‘K-regulus net.’

Theorem 26 (Johnson and Ostrom [22], (3.1)). Let p be a translation plane of order 22r

and of dimension 2 over its kernel. Let G be a collineation group in the linear transla-

tion complement and assume that the involutions in G are Baer. Then the Sylow 2-
subgroups of G are elementary Abelian.

Theorem 27 (Johnson and Ostrom [22], part of (3.27)). Let p be a translation plane of

dimension 2 over GFðqÞ, where q ¼ 2r. Let G be any subgroup of the translation com-

plement. If the involutions of G are all Baer, let G1 denote the subgroup of G generated

by the Baer involutions in the linear translation complement. If G is nonsolvable then

G1 is isomorphic to SLð2; 2 sÞ, for some s, and is normal in G.
If G1 is irreducible, p has an Ott–Schae¤er subplane of order 22s and s divides r.
If G1 is reducible then p is derived from a plane p� also admitting SLð2; 2sÞ and the

involutions in p� are elations.

2.5 Flocks of quadratic cones.

Theorem 28 (Gevaert and Johnson [6]). Let p be a translation plane of order q2 with

spread in PGð3; qÞ that admits an a‰ne elation group E of order q such that there is at

least one orbit of components union the axis of E that is a regulus in PGð3; qÞ. Then p

corresponds to a flock of a quadratic cone in PGð3; qÞ.
In the case above, the elation group E is said to be ‘regulus-inducing’ as each orbit of

a 2-dimensional GFðqÞ-vector space disjoint from the axis of E will produce a regulus.

Theorem 29 (Johnson [20]). Let p be a translation plane of order q2 with spread in

PGð3; qÞ admitting a Baer group B of order q. Then the q� 1 component orbits union
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FixB are reguli in PGð3; qÞ. Furthermore, there is a corresponding partial flock of a

quadratic cone with q� 1 conics. The partial flock may be uniquely extended to a flock

if and only if the net defined by FixB is derivable.

Theorem 30 (Payne and Thas [26]). Every partial flock of a quadratic cone of q� 1
conics in PGð3; qÞ may be uniquely extended to a flock.

Theorem 31 (Gevaert, Johnson, Thas [7]). Let p be a translation plane corresponding

to a flock of a quadratic cone and let B denote the set of reguli of p that share a com-

mon line and define the associated spread. Then any two reguli of B may be embedded

into a unique Desarguesian spread.

Theorem 32 (Jha and Johnson [11]). The full group of a derived conical flock plane of

finite order by one of the base reguli is the group inherited from the conical flock plane

or the conical plane is Desarguesian of order 4 or 9.

3 Sketch of the proof

Notation 1. In all of the sections, G is a collineation group of order qðqþ 1Þ in the

linear translation complement of a translation plane p of even order q2, q ¼ 2 r, with
spread in PGð3;KÞ, where K is isomorphic to GFðqÞ.

In this section, we indicate the general nature of the proof that the linear group G

of order qðqþ 1Þ, for q ¼ 2 r, must leave invariant some 2-dimensional K-subspace.
Furthermore, we show that the invariant subspace is either a component or a Baer
subplane. We recall that a prime 2-primitive divisor u of q2 � 1, is a divisor of q2 � 1
that does not divide 2 t � 1 for t < 2r. Let S2 be a Sylow 2-subgroup of order q.
A major step towards our goal is to show there is a unique Sylow 2-subgroup that
is either a regulus-inducing elation group, a Baer group or the maximal elation or
Baer group has order q=2. In either of the first two situations, we may use established
results to show that our translation plane is either a conical flock plane or a derived
conical flock plane.

By Theorem 12, if q2 0 64, there is always such a divisor u. In this case, let gu be
an element of G of prime order u. We first show that if gu normalizes an elation sub-
group E 0 then gu centralizes E

0. This will, in turn, imply the existence of an associated
Desarguesian a‰ne plane S, whose spread consists of the gu-invariant linesize K-
subspaces. In this setting, the normalizer of hgui in G becomes a subgroup in the
translation complement GLð2; q2Þ of S.

If there exist a non-trivial elation subgroup E 0 and gu normalizes E 0 and we obtain
an associated Desarguesian spread as a tool to use in the proof. Thus, when we estab-
lish that there is an invariant component, we ultimately will complete the proof of the
main result by the consideration of an associated Desarguesian a‰ne plane.

If gu does not normalize E 0 then we show that there are at least two non-trivial
elation subgroups and we may use Theorem 14 to determine the group generated by

Vikram Jha and Norman L. JohnsonS278



the elations within G. Since G has order qðqþ 1Þ, this will normally imply a contra-
diction when the group generated by the elations is non-solvable and of the form
SLð2; 2sÞ or Szð2eÞ.

If a Sylow 2-subgroup S2 is not an elation group then S2 will fix a component l and
fix a unique 1-dimensional subspace pointwise on this component. Since we basically
are trying to move the component l, we assume that gu leaves l invariant and argue
that gu becomes an a‰ne homology with axis l. If S2 contains a non-trivial elation
subgroup E 0 then gu must centralize E 0, implying that E 0 leaves invariant the coaxis
(the ‘coaxis’ is the component whose projective extension contains the center of gu),
which, of course, cannot occur.

Hence, the use of 2-primitive collineations gu and the existence of non-trivial ela-
tions will show that there is an associated Desarguesian a‰ne plane whose spread
consists of gu-invariant linesize K-subspaces or the group generated by the elations is
dihedral of order 2k, where k is odd and equal to the number of elation axes.

If there are no a‰ne elations then all involutions are Baer and we are able to show
that the group generated by the Baer involutions is solvable. What this will mean is
that there is an invariant Baer subplane, an invariant 2-dimensional K-subspace that
is not a component. Again, we will later use the model of an associated Desarguesian
a‰ne plane S to complete our main result.

Of course, when q2 ¼ 64, we have noted in the background section that, even in
this case, similar results apply that do not rely directly on 2-primitive collineations.

The pieces of the proof are as follows:

I. Establish that there is a G-invariant 2-dimensional K-subspace W that is either a
component of p or a Baer subplane of p.

II. If gu is a collineation whose order is a prime 2-primitive divisor u of q2 � 1,
use the invariance of W to show that there exists an associated Desarguesian
a‰ne plane S whose spread is the set of gu-invariant 2-dimensional K-subspaces.
The normalizer of hgui in G is a subgroup of the full translation complement
GLð2; q2Þ of S.

III. When W is a component, show that there is an elation subgroup E of order q

or q=2.
(1) When the order of E is q, with the additional hypothesis that E leaves invari-

ant some 2-dimensional K-subspace over which it induces a non-trivial group,
(a) show the plane p is a conical flock plane,
(b) then show that, in this case, p is Desarguesian. Finally,
(c) Remove the hypothesis that E leaves invariant some 2-dimensional K-

subspace.
(2) When the order of E is q=2, show the plane p may be multiply derived from

S by the replacement of a set of q=2 mutually disjoint regulus nets in S.

IV. When W is a Baer subplane, show that there is a Baer group B of order q or q=2.
(1) When the order of B is q,

(a) show that the plane p is a derived conical flock plane and
(b) then show that, in this case, p is Hall.

The classification of spreads in PGð3; qÞ S279



(2) When B has order q=2, argue that there can be no such plane; this case does
not occur.

V. General comments on the interaction of elations, Baer involutions and 2-
primitive collineations:
(1) Analyze, in general, 2-primitive collineations, where connections to the asso-

ciated Desarguesian a‰ne plane are obtained.
(2) If non-trivial elations exist, this implies that either we have an invariant

component and an associated Desarguesian a‰ne plane or the group gen-
erated by elations is either SLð2; 2 sÞ, Szð2eÞ or dihedral Dk, where k is odd.
Furthermore, a general analysis of SLð2; 2 sÞ can also be used when there

are Baer involutions:
(a) study the situation when there is a subgroup isomorphic to SLð2; 2 sÞ

generated by elations or Baer involutions.
We then consider the remaining two groups by
(b) analysis of Szð2eÞ and
(c) consideration of Dk.

(3) If the involutions are Baer, this ultimately implies that there is an invariant
Baer subplane as a 2-dimensional K-subspace.

The analysis of the possible situations when there is not a 2-primitive divisor, when
q2 ¼ 64, is interwoven in the general arguments.

Lemma 1. In a translation plane p with spread in PGð3; qÞ, q even, any linear involution

is either an elation or a Baer 2-element ( fixes an a‰ne Baer subplane pointwise).

Proof. This is almost obvious by results of Baer but we include a simple proof in
the translation plane case. Since a linear 2-element must fix at least a 1-dimensional
GFðqÞ-subspace pointwise, either the element is quartic or fixes a 2-dimensional
GFðqÞ-subspace pointwise. If the fixed-point space is a line, the element is an elation.
If the fixed-point-space is not a line, it is decomposed by the spread of p into a spread
itself. Hence, there is an induced translation plane of order q on the fixed-point-space
producing the Baer subplane.

The minimal polynomial of a linear involution is x2 � 1 so it clearly follows that
every involution cannot fix exactly a 1-dimensional GFðqÞ-subspace pointwise. r

4 2-primitive collineations

Our first lemma is also given in [11], Lemma 2, as the proof is independent of order.

Lemma 2. Let u be a 2-primitive divisor of q2 � 1, for q0 8, and let gu be a collinea-

tion of order u in G. If G admits a 2-collineation group E 0 such that gu normalizes E 0

then gu centralizes E
0.

Furthermore, the gu-invariant subspaces of line size are K-subspaces and define the

spread for a Desarguesian a‰ne plane S (with spread in PGð3;KÞ). The normalizer of

hgui in G is a collineation group of S.
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More generally, if gu fixes at least three components of p, the same conclusion on the

existence of a gu-invariant Desarguesian plane still applies.

Lemma 3. Assume that u is a prime 2-primitive divisor of q2 � 1 and gu is a collineation

in G of order u.

(1) If gu fixes a component l and fixes a 1-dimensional K-space on l then gu is an a‰ne

homology.

(2) Let Gl denote the subgroup of G fixing l and let S2;l denote a Sylow 2-subgroup of

Gl. Assume that S2;l is not an elation group with axis l. Let S2; ½l� denote the sub-

group of S2;l fixing l pointwise. If gu also fixes l then either

(a) gu is an a‰ne homology,
(b) q ¼ 2, or
(c) S2;l=S2; ½l� has order 2 and there is a dihedral group of order 2z induced on l by

Gl, for z odd > 1.

Proof. Assume the conditions of (1). Since the number of points in a 1-dimensional
K-subspace X is q� 1, it follows that gu must fix X pointwise. However, there is a
gu-invariant complement of X by Maschke’s theorem, which implies that gu fixes l
pointwise. This proves (1).

Now assume that S2;l fixes l and hence fixes a 1-dimensional K-subspace X point-
wise. Since S2;l is not an elation group, the group induced on l has order > 1.

If gu also fixes l and is not an a‰ne homology then by (1), gu must move X. Since
l may be considered an a‰ne Desarguesian plane pl of order q, it follows that the
involutions in Gl acting on l generate a normal subgroupW of Gl that is in GLð2; qÞ.
Since gu moves X, there are at least two involutions in Gl that act as elations with
di¤erent axes of pl.

Hence, W j l is either isomorphic to SLð2; 2 tÞ, or is dihedral of order 2z where z is
odd. Note in any case, gu j l does not centralize W j l since then gu would fix X.

First assume that the generated group is SLð2; 2 tÞ, then t divides r and since gu
cannot fix a 1-dimensional K-subspace, it follows that u must divide the number
of elation axes of pl. Hence, u divides 2 t þ 1 so that u divides ð22t � 1; 22r � 1Þ ¼
22ðt; rÞ � 1. Since u is a 2-primitive divisor of 22r � 1, it follows that ðt; rÞ ¼ r so that
SLð2; qÞ is generated on l. But, the order of G is qðqþ 1Þ, a contradiction unless
q� 1 ¼ 1 so that q ¼ 2, possibility (b).

Now assume that W j l is Dz, a dihedral group of order 2z, where z is odd, possi-
bility (c). Clearly, this proves all parts of the lemma. r

5 g cannot normalize any special linear group

In this section, we show that if SLð2; 2 tÞxG then q ¼ 2 or t ¼ 1. This is established
by first showing that in the non-degenerate case SLð2; 2 tÞ must be centralized by an
element gu of order u, a 2-primitive divisor of q2 � 1. Thus, gu centralizes the elations
or Baer involutions in SLð2; 2 tÞ. These cases are ruled out separately.

Lemma 4. Assume that G contains a normal subgroup isomorphic to SLð2; 2 tÞ, where
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q ¼ 2r, and a 2-primitive element gu for a prime 2-primitive divisor u of q2 � 1. Then
one of the two following situations occur:

(a) q ¼ 2,

(b) gu centralizes SLð2; 2 tÞ.

Proof. There are 2 t þ 1 Sylow 2-subgroups permuted by gu. If u divides 2 t þ 1, then
the argument of the previous lemma that u divides ð22t � 1; 22r � 1Þ ¼ 22ðt; rÞ � 1
shows that G must contain SLð2; qÞ, which by order implies that q ¼ 2. If gu nor-
malizes a Sylow 2-subgroup of SLð2; 2 tÞ but does not normalize all Sylow 2-
subgroups then gu fixes exactly two of them and hence divides 2 t � 1, implying that
t ¼ 2r. However, this cannot occur by order.

Hence, it follows that gu normalizes all Sylow 2-subgroups. There are 2 t � 1 non-
identity elements in each Sylow 2-subgroup and since each such group is elementary
Abelian, it follows that either gu centralizes the Sylow 2-groups and hence centralizes
SLð2; 2 tÞ or again SLð2; qÞ is generated implying q ¼ 2. r

Lemma 5. Assume under the conditions of the previous lemma that gu centralizes

SLð2; 2 tÞ. If SLð2; 2 tÞ is generated by elations then t ¼ 1.

Proof. Since gu centralizes SLð2; 2 tÞ, it must fix each of the 2 t þ 1d 3 elation axes
associated with the S2-subgroups of SLð2; 2 tÞ. So, by Lemma 2, gu fixes a unique
Desarguesian spread S, consisting of the rank two spaces invariant under gu. Hence,
by the centrality hypothesis, SLð2; 2 tÞ � hguicGLð2; q2Þ. So, in particular, GFð2 tÞ
is a subfield of GFð22rÞ, recall that q2 ¼ 22r, so t j 2r. But, since jSLð2; 2 tÞj divides
jGj ¼ qðqþ 1Þ, we further have that 22t � 1 j 2r þ 1. If t j r, we have a contradic-
tion, unless t ¼ 1, since this now implies 2 t � 1 simultaneously divides 2r � 1 and
2r þ 1 ð¼qþ 1Þ. Thus, t j 2r and yet tF r, forcing t ¼ 2z, where z divides r.

But, 22t � 1 ¼ ð2 t � 1Þð2 t þ 1Þ. Furthermore, ð2 t � 1Þ ¼ ð2z � 1Þð2z þ 1Þ.
Since 2z � 1 divides 2r � 1, ð2r � 1; 2r þ 1Þ ¼ 1 and 22t � 1 must divide jGj ¼

qðqþ 1Þ, then ðð2z � 1Þ; ðqþ 1ÞÞ ¼ 1 ¼ ð2z � 1Þ, implying that z ¼ 1. Hence, t ¼ 2.
But, if t ¼ 2 and t does not divide r then r is odd so that

22�2 � 1 divides 2r þ 1; which divides 22r � 1:

However, this implies that 4 divides 2r, a contradiction. Hence, the only possibilitity
is that t ¼ 1.

This proves the lemma. r

We have seen that the group SLð2; 2 tÞxG, for t > 1, is not possible if its involu-
tions are elations. It remains to rule out the case when its involutions are all Baer.
Part of the argument involves reducing to the elation case by derivation.

Lemma 6. Assume the conditions of the previous lemma and assume that gu centralizes

SLð2; 2 tÞ. If SLð2; 2 tÞ is generated by Baer 2-elements then t ¼ 1.

Proof. Assume that t > 1. We now apply Theorem 27, using the notation introduced
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there. Thus, either G1 is irreducible and p has an Ott–Schae¤er subplane of order
22s or G1 is reducible and p is derived from a plane also admitting SLð2; 2sÞ and the
involutions in the derived plane are elations. In the latter case, the Sylow 2-subgroups
fix Baer subplanes pointwise and since the Baer groups are linear, it follows that there
are 2s þ 1 > 3 Desarguesian Baer subplanes in the same derivable net. It follows
from Theorem 25 that the net is a GFðqÞ-regulus net. Since G1 is normal and fixes
pointwise the set of qþ 1 infinite points of this net and fixes no other points, it fol-
lows that G leaves invariant this regulus net. Then we may derive and apply the pre-
vious lemma to complete the proof when G1 is reducible.

Hence, assume that G1 is irreducible and we have an Ott–Schae¤er subplane po of
order 22s. We know that s must divide r when q ¼ 2r by Theorem 27. The kernel of
po is isomorphic to GFð2sÞ and may be considered a subfield of GFðqÞ. Thus, there
are ð2r � 1Þ=ð2s � 1Þ Ott–Schae¤er subplanes on the same set of 22s þ 1 components
and these subplanes are in an orbit under the kernel homology group of order q� 1.
Each Sylow 2-subgroup fixes exactly one component of a set of 2s þ 1 components
of po and, since the group is GFðqÞ-linear, fixes a 1-dimensional GFðqÞ-subspace
pointwise on the unique fixed component. Since G1 is normal, it follows that this set
S of 2s þ 1 1-dimensional GFðqÞ-subspaces must be permuted by the full group G.
Thus, there are exactly ð2 r � 1Þ=ð2s � 1Þ Ott–Schae¤er subplanes left invariant by
G1. Since we have a 2-primitive collineation gu in G, gu must fix each 1-dimensional
subspace of S, implying a contradiction.

Hence, t ¼ 1 as above. r

Corollary 1. SLð2; 2 tÞ cannot be normal in G unless t ¼ 1.

6 Non-solvable elation groups and 2-primitive collineations

We note from Theorem 9 that any translation plane of order 16 with kernel GFð4Þ
is either Desarguesian or Hall or there is a component that is invariant under the
full translation complement of the plane. Since our goal is to establish that there is
an invariant component when the plane is not Desarguesian or Hall, we may assume
that q > 4.

Theorem 33. If 26 0 q2 and there are elation groups of order at least 4 then we obtain

a G-invariant component.

Proof. If there is not a G-invariant component then the group generated by elations is
isomorphic to SLð2; 2sÞ or Szð22tþ1Þ. By Section 5, if we have SLð2; 2 sÞ then s ¼ 1,
contrary to our assumptions. Hence, we may assume that we have the latter case.

Thus, by Theorem 23 there is a Lüneburg–Tits subplane of order 22ð2rþ1Þ left
invariant by Szð22tþ1Þ. We have an element gu of order a prime 2-primitive divisor
of q2 � 1 permuting the elation axes.

If gu acts semi-regularly on the elation axes then u divides

ð22r � 1; 24ð2tþ1Þ � 1Þ;

this implies that r divides ð4ð2tþ 1Þ; 2rÞ ¼ 2r. Hence, 2tþ 1 ¼ r or r=2. So, either the
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plane is a Lüneburg–Tits plane or the group is Szð ffiffiffi
q

p Þ. In the first case, the plane
does not admit a 2-primitive collineation by Theorem 10.

Hence, the group is Szð ffiffiffi
q

p Þ.
So, there are exactly qþ 1 elation axes. Therefore, there is an Szð ffiffiffi

q
p Þ-invariant

Lüneburg–Tits plane of order q. However, we are in a translation plane of order q2

and kernel containing K isomorphic to GFðqÞ, so this subplane cannot be left invari-
ant under the kernel homology group. Since the kernel of the subplane is exactly
GFð ffiffiffi

q
p Þ, this implies that we have at least

ffiffiffi
q

p þ 1 Lüneburg–Tits subplanes of order
q on the same set of qþ 1 components.

But, also by order, qðqþ 1Þð ffiffiffi
q

p � 1Þ must divide qðqþ 1Þ, a contradiction.
So, gu does not act semi-regularly on the set of elation axes and hence must fix an

elation axis, implying that it fixes at least two. If u divides 22ð2tþ1Þ � 1, it can only be
that r ¼ ð2tþ 1Þ, which has been considered previously above.

Hence, gu fixes at least three elation axes. But this means that gu normalizes at least
three Sylow 2-subgroups of Szð22tþ1Þ. Since q > 2, it follows from Lemma 2 that
gu commutes with at least three Sylow 2-subgroups. A given Sylow 2-subgroup of
Szð22tþ1Þ acts transitively on the remaining Sylow 2-subgroups so that the Suzuki
group is generated by two of its Sylow 2-subgroups. This implies that gu centralizes
Szð22tþ1Þ. But, then by Lemma 2, Szð22tþ1Þ is a collineation group of a Desarguesian
a‰ne plane, a contradiction. This completes the proof of the theorem. r

7 The elations generate a solvable group, q2 0 64

Theorem 34. Assume that q2 0 16 or 64. If the elations generate a solvable group then

there is a G-invariant component or q ¼ 2.

We shall give the proof as a series of lemmas. We assume throughout this section
that the elations generate a solvable group. Note that some arguments used in prov-
ing the theorem will used in the next section for the case q2 ¼ 64.

Assume that there is not an invariant component.

Lemma 7. The subgroup generated by the elations is dihedral of order 2ðqþ 1Þ.

Proof. Since the elations generate a solvable group by hypothesis and there is not an
invariant component then, by Theorem 15, the elations generate Dk, a dihedral group
of order 2k, where k is odd and >1. Then this group contains a characteristic cyclic
group Ck of order k, which is then normalized by G. Furthermore, any Sylow 2-
subgroup of order 2r must permute the k elation axes and fix at least one such axis.
Since q2 0 64, there is a 2-primitive divisor u and a corresponding group element gu.

Let l be an elation axis of an elation s. Then the Sylow 2-subgroup S2 of G con-
taining s must leave l invariant. Hence, the group induced on l is elementary Abe-
lian of order q=2.

Assume that gu fixes an elation axis. We now apply Lemma 3, and the reader is
directed back to this lemma for the notation.
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Either gu is an a‰ne homology, q ¼ 2, or the group induced on l by S2;l has
order 2.

In the latter case, q=2 ¼ 2 so q ¼ 4, which has been excluded from consideration.
Thus, either g ¼ 2 or gu is an a‰ne homology. But, then the a‰ne homologies

must centralize the unique non-identity elation s with axis l, implying that s must
leave invariant the co-axis of gu, a contradiction.

Since u cannot fix an elation axis without gu centralizing the elation, we may
assume that gu does not centralize Dk. But, we have otherwise that u divides k and
is semi-regular on the elation axes.

We claim that the stabilizer of a component must fix the 1-dimensional K-subspace
fixed pointwise by a Sylow 2-subgroup S2, since if not then, as we have a group of
order q=2 induced on an elation axis, it would follow that SLð2; 2r�1Þ is generated on
any axis. But, then

ð22ðr�1Þ � 1Þ divides ðqþ 1Þ:

Also,

ð22ðr�1Þ � 1Þ ¼ ð22ðr�1Þ � 1; 22r � 1Þ ¼ ð22ðr�1;2rÞ � 1Þ ¼ ð22 � 1Þ:

Therefore, r ¼ 2 so that q ¼ 2r ¼ 4, contrary to assumption.
Hence, the stabilizer of a component must fix a 1-dimensional K-subspace X.
The full group in GLð2; qÞ acting on a component and fixing X has order dividing

qðq� 1Þ2. Thus, the stabilizer of a elation axis in G can have order exactly q since
qþ 1 is odd. So, we have at least qþ 1 elation axes and, furthermore, qþ 1 must
divide the number k of elation axes. Let k ¼ k 0ðqþ 1Þ. Since G has order qðqþ 1Þ,
the normalizer of a Sylow 2-subgroup leaves invariant an elation axis. Hence, there
are then exactly qþ 1 Sylow 2-subgroups and there is an unique non-identity ela-
tion in each such group, implying that the number k of elation axes is qþ 1. Hence,
k 0 ¼ 1. This completes the proof of the lemma. r

Lemma 8. If a Sylow 2-subgroup S2 acts transitively on the remaining q elations axes

not fixed by S2 then q ¼ 2 or 4.

Proof. If we assume that each Sylow 2-subgroup acts transitively on the remaining
q elation axes other than the axis fixed by the contained elation, we have sharp 2-
transitivity, which implies by Theorem 5 that qþ 1 is an odd prime power tb. When
qþ 1 ¼ tb, by Theorem 13, it follows that b ¼ 1, since q0 8. Now, we have a sharply
2-transitive group of degree qþ 1, implying there is an associated nearfield plane of
order qþ 1 ¼ t. But, nearfield planes of odd prime order are Desarguesian. The
group may be then be identified with the group

x 7! xaþ b for a0 0; b A GFðtÞ:

This means that the group of order t� 1 ¼ q is cyclic. However, this group fixes a 1-
dimensional K-space pointwise and induces a faithful group of order q=2 on a com-
ponent l. The group induced is an elation group on the associated Desarguesian
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a‰ne plane of order q defined on the component. Hence, the group of order q=2 must
be elementary Abelian. But, since it is also cyclic, it follows that q=2 ¼ 1 or 2, so that
q ¼ 2 or 4. r

Assume the background hypothesis for this section: there is not a G-invariant
component. So, Lemmas 7 and 8 hold.

Lemma 9. G leaves invariant a component, unless q ¼ 2 or 4.

Proof. Suppose q > 4. Then Lemma 8 implies that some Sylow 2-subgroup S fixes
two distinct elation axes, associated with, say elations a1 and a2. Let a be the unique
elation in S. Then a clearly normalizes a1 and a2, hence centralizes them. Thus, each
ai, i ¼ 1; 2, must leave invariant the components FixðaiÞ, so a1 and a2 have the same
axis, viz. a, contrary to hypothesis. r

8 q2 F 64

We extend Theorem 34 when q2 ¼ 64.

Theorem 35. If q ¼ 8 and there is an elation in G then there is an invariant component.

Proof. If there are elation groups of order 4, the previous arguments apply to show
there is an invariant component. Now assume that there is a elation but no invari-
ant component. Then we have a dihedral group Dk generated by the elations of order
2k, k is odd. The group G has order 8 � 9, so k ¼ 3 or 9. We claim that k ¼ 9. So,
assume that k ¼ 3 and let g3 be an element of D3 of the cyclic stem C3 of order 3.
Note that a Sylow 2-group of order 8 must fix an elation axis L. Hence, g3 cannot fix
an elation axis. Let S3 be a Sylow 3-subgroup. Then S3 also acts on the 3 elation
axes, implying that there is an element of order 3 that fixes an elation axis. Since there
is a unique elation per elation axis, it follows that there is an element h3 of order 3
that commutes with D3. But, the group of order 8 acting on a component L fixes a 1-
dimensional K-subspace X pointwise, and induces a faithful group on L of order 4.
Hence, h3 must leave invariant X and permutes 7 non-zero points. This implies that
h3 fixes X pointwise and is therefore a planar group. But, it can only be that h3 is Baer
but then a Baer group has order dividing 7, a contradiction.

Hence, we have a dihedral group of order 2ð8þ 1Þ.
If we now apply Theorem 19, we see that the proofs of Lemmas 7, 8 and 9 apply

when q ¼ 8 to obtain a contradiction. r

9 Baer 2-groups

Theorem 36. If a translation plane of even order q2 admits a linear collineation group of

order qðqþ 1Þ such that all involutions are Baer then there is an invariant Baer sub-

plane or q ¼ 2, 4 or 8.

We give the proof as a series of lemmas.
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Lemma 10. G is solvable.

Proof. If the involutions of G are all Baer, let G1 denote the subgroup of G generated
by the Baer involutions in the linear translation complement. If G is nonsolvable then
G1 is isomorphic to SLð2; 2sÞ for some s and is normal in G by Theorem 27. How-
ever, Corollary 1 implies that s ¼ 1, a contradiction. Hence, G1 is solvable, implying
that G is solvable. r

Lemma 11. Assume that q > 4. If there is not a G-invariant Baer subplane then there

are exactly qþ 1 Sylow 2-subgroups, each Sylow 2-subgroup fixes exactly one com-

ponent and these components are in an orbit OðlÞ under G.

Proof. A Sylow 2-group S2 is elementary Abelian by Theorem 26. Hence each ele-
ment s of S2 fixes a Baer subplane ps pointwise that is also left invariant by S2. Thus,
S2 j ps is an elation group acting on ps, a Desarguesian subplane of order q. If S2 is a
Baer group and ps is not G-invariant then the plane is Hall or order 16 by Theorem
24. Similarly, we may assume that if ps is not G-invariant then S2 cannot contain a
Baer group of orderd2

ffiffiffi
q

p
. Hence, S2 induces a faithful group on ps of order at least

q=
ffiffiffi
q

p ¼ ffiffiffi
q

p
. Moreover, S2 fixes a unique component, since otherwise S2 would be, in

fact, a Baer 2-group.
We have

ffiffiffi
q

p
> 2, by assumption.

Note that every element of order dividing qþ 1 is q-primitive. If any such element
g of prime power order leaves invariant the component l containing X ¼ FixS2, then
either a non-solvable group is generated on l, as this group is generated by elation
groups on l of order >2, or X is invariant and g is an a‰ne homology with axis
l. Then S2 must fix the coaxis or there is a generated elation. Hence, S2 fixes two
components implying that S2 is Baer.

Therefore, the orbit OðlÞ containing l has length qþ 1. Let S2 and S 0
2 be dis-

tinct Sylow 2-subgroups. Assume that they both fix a common component in OðlÞ.
Since the order of the group is qðqþ 1Þ, this is a contradiction. Now each Sylow 2-
subgroup fixes at least one of the qþ 1 components in OðlÞ, implying that there are
exactly qþ 1 Sylow 2-subgroups and each such group fixes a unique component in
OðlÞ. r

Lemma 12. Let q > 4 and assume the hypothesis of the previous lemma. Let

s A S2 � f1g and let ps denote the Baer subplane fixed pointwise by s. Then the sta-

bilizer of ps in G is S2.

Proof. We know that the elation group S2 induces on a fixed-point subplane ps, for
s A S2, a group of order at least

ffiffiffi
q

p
; an elation group acting on ps. If some element

h not in S2 fixes ps then the elation axis cannot be left invariant and hence there are
two elation axes in ps. Since S2 and Sh

2 0S2 now fix ps, the group generated by S2

and Sh
2 induced on ps contains the group generated by elations. If

ffiffiffi
q

p
> 2, we have

a non-solvable group. Hence,
ffiffiffi
q

p ¼ 2, so that q ¼ 4. Thus, the stabilizer of a Baer
subplane ps is S2 for s A S2. r
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Lemma 13. Assume the conditions of the previous lemma. The subplane ps of the

previous lemma shares exactly one component with OðlÞ. Hence, S2 is transitive on

OðlÞ � flg, assuming that S2 fixes l.

Proof. Assume that ps shares two of its components with OðlÞ, say l and m. Assume
that S2 fixes l. There exists an element h that maps l into m so that ps and psh share
m so that s and sh fix m. Since ps 0 psh then s0 sh. Hence, the group hs; shi
properly contains S2, implying that the stabilizer of m has order strictly larger than q.
Thus, any Baer subplane has exactly one component in OðlÞ. This means that S2 is
transitive on OðlÞ � flg. r

Lemma 14. qþ 1 is a prime number u or q ¼ 8.

Proof. Our group is of order qðqþ 1Þ and acts transitively on the orbit OðlÞ. Since
S2 acts transitively on OðlÞ � flg, the group is sharply doubly transitive on OðlÞ.
Therefore, qþ 1 is a prime power and since q is even, qþ 1 must be a prime u by an
application of Theorem 13, or q ¼ 8. r

Lemma 15. If there is not an invariant Baer subplane then q ¼ 2; 4.

Proof. Assume that q > 8. Then we may apply the previous lemmas. By Theorem 5,
we now have that the group corresponds to a nearfield plane of order u. Since q

is even, the nearfield group must arise from a Desarguesian subgroup of AGLð1; uÞ.
Since u is prime, it follows that the group corresponds to the group generated by the
following elements:

x 7! xaþ b for all a; b A GFðuÞ; for a0 0:

Hence, a Sylow 2-subgroup is cyclic. Since we know the group is elementary Abelian,
it follows that q ¼ 2.

If q ¼ 8 and we do not obtain a cyclic Sylow 2-subgroup, as above, then we have a
proper nearfield group in AGLð1; 9Þ. However, here the Sylow 2-subgroups are qua-
ternion. Since we have elementary 2-subgroups, we have a contradiction. r

10 There is an invariant 2-space

Theorem 37. Let p be a translation plane of even order q2 with spread in PGð3; qÞ that
admits a linear collineation group G of order qðqþ 1Þ. Then either

(1) G leaves invariant a 2-dimensional GFðqÞ-subspace, or

(2) p is Desarguesian of order 4 or 16.

Proof. Apply Theorems 33, 34, 35 and 36. r
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11 There is an invariant line and there exists an elation group of order q acting
non-trivially on a Baer subplane

Theorem 38. If there is an elation group E of order q fixing a 2-dimensional K-subspace

and inducing a non-trivial group on this subspace then the plane is a conical flock plane.

Proof. If there is an invariant line, assume that there is an elation. If the Sylow 2-
subgroup is an elation group E then this group must fix a K-invariant Baer subplane
po. Also assume that q2 0 64 so there is a 2-primitive divisor u and corresponding
element gu of order u. Since the order of E is q, it follows that gu must centralize E.
Since gu fixes at least two components, it is forced to fix at least three since the ele-
ment gu commutes with E. Hence, there is a Desarguesian plane S whose spread is
the set of gu-invariant 2-dimensional K-subspaces including the axis of E. If gu leaves
po invariant then it fixes po pointwise, which cannot be the case since any Baer group
has order dividing qðq� 1Þ.

We have the following conditions: (1) gu cannot leave po invariant, (2) po is a Baer
subplane of S and (3) E and gu act as collineations of S, (4) gu is a kernel homology
of S.

Furthermore, E acts transitively on the nonaxis components of a Desarguesian
subplane of order q and leaves invariant a Baer subplane po of S.

This Baer subplane defines a regulus N of S containing the axis of an elation in E.
Since E leaves invariant N and is transitive on the non-axis components, it follows
that E is ‘regulus inducing.’ So, we must have a conical flock plane by Theorem 28.

Now assume that the order is 64. We are assuming the situation when there is an E

elation group of order q. Moreover, our hypothesis requires that E also fixes a Baer
subplane po. We have a group of order 9 that acts on the G-invariant component l.
Note that our group is linear and 3 is a q-primitive divisor. Hence, elements of order
3 centralize E. An element s of order 3 fixes another component that cannot be fixed
by E so it fixes at least three components. By Theorem 19, there is a Desarguesian
spread admitting G since s is normal in the full collineation group. But E fixing po
implies that E is regulus-inducing and hence, the plane is a conical flock plane. So, in
all cases, if there is a normal elation group, we have a conical flock plane. r

12 There is an invariant line and the elation group is non-trivial of order Hq

Hence, assume that we do not have an elation group of order q. However, assume
that there are elations.

Theorem 39. If there are elations in G but the Sylow 2-group is not an elation group

then the elation group with fixed axis has order q=2.

Proof. In this case, q ¼ 8 or there is a 2-primitive divisor. Even when q ¼ 8, there is
a q-primitive divisor 3. Let l denote an elation axis and Gl the subgroup of G that
leaves l invariant. Note that Gl contains a Sylow 2-subgroup S2 of G. Hence, there
must exist elements of Gl that fix exactly a 1-dimensional K-subspace X of l point-
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wise. Assume that the group S2 induces a group of order 2s on the component l,
where q ¼ 2r. Assume that X is not left invariant by gu, where gu is a element of order
u, a p-primitive divisor of q2 � 1 or u ¼ 3. Then either SLð2; 2 sÞ must be generated
on l or s ¼ 1 and a dihedral group Dk is generated on l. In this first case, we still see
that gu must normalize SLð2; 2sÞ. If gu normalizes SLð2; 2sÞ suppose that u divides the
number of Sylow 2-subgroups 2 s þ 1. Then u divides 22s � 1, implying that 2s is
divisible by 2r so that q ¼ 2s. This implies that q ¼ 2. Thus, we must have the second
alternative so that Dk is generated on l.

Hence, either X is invariant or there is an elation group of order q=2 (since we have
assumed that the full Sylow 2-subgroup is not an elation group in this setting).

Assume that X is G-invariant. In this setting, since there are elations, it follows that
the gu-element (or the 3-element if q ¼ 8) centralizes the elation group or the elation
group has order q2, and the latter is contrary to order. On the other hand, the gu-
element must fix X and, by Maschke’s theorem, is forced to be an a‰ne homology,
which is a contradiction since an elation is then forced to fix the coaxis, which cannot
occur. r

Theorem 40. If the elation group has order q=2 then either p is Desarguesian or p is a

translation plane obtained from a Desarguesian plane by multiple derivation of a set of

q=2 mutually disjoint regulus nets that are in an orbit under an elation group of order

q=2.

Proof. We use the notation developed in the previous arguments.
We then consider the situation when there is an elation group E of order q=2 so

that gu does not fix X (S2 now induces a group of order 2 on l). We see that gu cen-
tralizes E, fixes the axis of E and fixes at least one additional component which can-
not be fixed by E so that gu fixes at least three components for q=2 > 1. Hence, there
is a corresponding Desarguesian a‰ne plane S of gu-invariant components. We claim
that hgui is normal in G. We note that the group acting on the invariant component
l is a dihedral group of order 2k that acts as a transitive group on k 1-dimensional K-
subspaces. Let h be any element of G of order dividing qþ 1. Suppose that h j has
prime power order. Since h normalizes E, it follows that, since jh jj cannot divide
jE � f1gj, there are fixed points under h j. Since E is elementary Abelian, it also fol-
lows that acting on the elements (‘points’) of E by conjugation, h j fixes all points of
E; h j centralizes E. It then follows that any element of order dividing qþ 1 central-
izes E. Therefore, we have that there can be no a‰ne homologies in G with axis l.
So G must act transitively on the 1-dimensional K-subspaces of l. The kernel homol-
ogy group of order q� 1 and the group of order 2ðqþ 1Þ normalize hgui in the quo-
tient group G=G½l� (G½l� is the group fixing l pointwise), is E, as noted above. Hence,
hguh

�1 A hguiE, say equal to g j
ub, where b A E. Then, this implies that 1 ¼ ðg j

ubÞ
u ¼

bu, since gu commutes with E, implying b ¼ 1, so that hgui is normal in G. We have
that the group induced on l is dihedral of order 2ðqþ 1Þ. Since E and G=E are solv-
able, then G is solvable, and ðq; qþ 1Þ ¼ 1. So, G contains a subgroup H of order
qþ 1. Now H acting on S is a subgroup of GLð2; q2Þ and H is naturally in GLð4; qÞ.
Let h A H, such that h is semi-linear with automorphism t so that hðaxÞ, a A GFðq2Þ,
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is athðxÞ. Then hðathðxÞÞ ¼ a2th2ðxÞ, so that ajhjt ¼ 1. Since H is K-linear, it follows
that if a A GFðqÞ, at ¼ 1. Hence, t is given by either z 7! zq or z 7! zq

2 ¼ z. In the
former case, as ajhjq ¼ 1 for all a A GFðq2Þ, it must be that jhj is even. Therefore, it
follows that H is in GLð2; q2Þ acting on S and commutes with E of order q=2. Thus,
it follows that H fixes at least two components on S, since it fixes one, implying that
H fixes at least three components. We note that G is a subgroup of GLð2; q2Þ acting
on S and H commutes with an elation group E of order q=2. Thus, H fixes at least
1þ q=2 components of S. Therefore, H is, in fact, the kernel group of S of order
qþ 1. Now let p and S share the set of lines S each of which is invariant under H.
Since q is even, it follows that the lines of p� S are Baer subplanes of S that are in
orbits of length qþ 1 under H. That is, these orbits constitute sets of opposite lines
to reguli in the associated spread for S. Hence, the components of p� S consist of
opposite reguli to reguli in S. Furthermore, these reguli are permuted semi-regularly
by the elation group of order q=2, for if an elation fixes a regulus of qþ 1 compo-
nents distinct from the axis of l, it must fix a component, which cannot be the case.
We have then that either p ¼ S or there are at least q=2 reguli that are disjoint from
l in an orbit under E. r

Remark 1. In the above situation, define

A ¼ fa; ðx; yÞ 7! ðx; xaþ yÞ is in Eg:

Then Aq ¼ faq; a A Ag ¼ A.

Proof. Now we have q=2 reguli in an orbit under E and there is a group of order
q acting on this set which is in GLð2; q2Þ acting on S. The stabilizer of one of these
reguli has order 2 and hence there is a group of order 2 in the Sylow 2-subgroup
that fixes at least two reguli in the E-orbit of reguli. This implies that there is a Baer
involution t that fixes at least two of these reguli. Choose y ¼ 0 to belong to one of
the fixed reguli. Since x ¼ 0; y ¼ 0; y ¼ x define a unique regulus, it follows that we
may choose y ¼ x to be in a second disjoint regulus and x ¼ 0; y ¼ 0; y ¼ x fixed by
t, implying that t : ðx; yÞ 7! ðxqc; yqcÞ. Now with an appropriate choice of basis on
x ¼ 0, we may assume that the fixed point space of t on x ¼ 0 is such that c is forced
to be 1. This implies that if A ¼ fa; ðx; yÞ 7! ðx; xaþ yÞ is in Eg then Aq ¼ A ¼
faq; a A Ag. Note also that there is not an invariant Baer subplane in this case. r

Remark 2. To summarize the situation, when there is an invariant line, either there are
no elations, the Sylow 2-group is an elation group or the elation subgroup has order

q=2.

13 There is an invariant line but no elations

Theorem 41. If there are no elations but there is an invariant line, the plane is a derived

conical flock plane.
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Proof. The same argument as above shows that there exists an a‰ne homology group
of order u (or 3 when q ¼ 8), which is either moved by the 2-group, thus implying an
elation by Theorem 22, or the axis and coaxis are fixed by the 2-group, forcing the
Sylow 2-group to be a Baer group of order q, centralized by gu. However, again by
Theorems 29 and 30, we have a derived flock of a quadratic cone. r

14 There is an invariant component; summary

Theorem 42. Let p be a translation plane of even order q2 with spread in PGð3; qÞ such
that p admits a linear collineation group G of order qðqþ 1Þ. Assume that a Sylow 2-
subgroup fixes a 2-dimensional K-subspace and acts non-trivially on it. If G leaves

invariant a line of the spread then one of the following three situations occur:

(1) p is a conical flock plane,

(2) p is a derived conical flock plane, or

(3) p is a translation plane obtained from a Desarguesian plane by multiple derivation

of a set of q=2 mutually disjoint regulus nets that are in an orbit under an elation

group of order q=2.

Proof. Apply the previous sections when there is an invariant line of the spread. r

15 There is a G-invariant Baer subplane but no G-invariant component and
the Sylow 2-subgroups are not Baer

Theorem 43. If q > 2 and if there is neither an invariant line nor a Baer group of order

q then there is a Baer group of order q=2 and the group induced on the Baer subplane is

dihedral of order 2ðqþ 1Þ.

Proof. Assume that po is a G-invariant 2-dimensional K-subspace. The component
intersections with po form a spread for po so that po is a G-invariant Desarguesian
Baer subplane. We may assume by the previous sections that there is no elation in
G. Let S2 be a Sylow 2-subgroup of G and note that all involutions are Baer. Hence,
S2 is elementary Abelian by Theorem 26. Then S2 fixes a component l on which S2

fixes a unique 1-dimensional subspace Xl pointwise. Since S2 has order q, it cannot
act fixed point free on po. Moreover, S2 is in GLð2; qÞ acting on po. Hence, S2 j po
is an elation group with axis lV po, since we have assumed that S2 is not a Baer
group of order q. Assume that S2 j po has order > 2. Assume that q0 8. Then, for a
prime 2-primitive divisor u, we have an element gu which cannot leave invariant any
component of po, since otherwise gu would fix a component pointwise and umust then
divide q or q� 1 components of po, a contradiction. Similarly, if u ¼ 3, then gu acting
on po is in GLð2; 8Þ. However, G is in GLð4; qÞ and if G fixes a 2-dimensional K-
subspace then G restricted, Gpo to that subspace is naturally in GLð2; qÞ. Hence, this
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GLð2; qÞ permutes the 1-dimensional K-subspaces of po, implying that, as a Desar-
guesian a‰ne plane, po admits a collineation group isomorphic to GLð2; qÞ. It fol-
lows that Gpo is a subgroup of GLð2; qÞ acting on po. Thus, g3 cannot fix a compo-
nent of po.

Therefore, the elations generate SLð2; 2sÞ on po and this group is normalized by gu
acting on po (as it acts faithfully on po). Note that the action of gu on po cannot cen-
tralize SLð2; 2 sÞ as then it would fix each of the elation axes on po, which it cannot
do. This means that SLð2; qÞ is induced on po implying that qðq2 � 1Þ divides the
order of G, so that q� 1 ¼ 1, or q ¼ 2, contrary to our assumptions. Hence, S2 j po
has order 2.

In PGð2; qÞ the corresponding group is a subgroup of a dihedral group of order
dividing 2ðqþ 1Þ or is A4, S4 or A5. Since no element of order dividing qþ 1 can fix
a Baer subplane pointwise, if the group induced on po contains a factor A4, S4 or A5

then qþ 1 is 3 or 5, so that qþ 1 ¼ 3 and the plane is of order 16, previously con-
sidered. There is no group of order 4ð5Þ in such a setting.

It now follows that the group induced is isomorphic to a dihedral group of order
2ðqþ 1Þ, implying that there is a Baer group of order q=2. r

Theorem 44. Assume that q > 2. If there is a Baer group of order q=2, which is G-

invariant, there is an associated Desarguesian spread S admitting G as a collineation

group in GLð2; q2Þ. The Baer subplane fixed pointwise by the Baer group is a compo-

nent in S.

Proof. Assume there is a Baer group B of order q=2 fixing a Baer subplane po point-
wise. Furthermore, there is a Baer element s in a Sylow 2-subgroup S2 such that Fix s
and po share exactly one component, since S2 induces a non-trivial elation on po. We
have seen in the previous theorem that the group induced on po is transitive on the
components of po. Furthermore, we know that the group induced on po is dihedral of
order 2ðqþ 1Þ. If q is not 8 then there is a prime 2-primitive divisor u of q2 � 1 and
an element gu of order u in G. If q ¼ 8, we take u ¼ 3 and g3 a q-primitive element.
Since gu acts on the remaining q2 � q components not in the net containing po, it fol-
lows that gu must fix at least two of these components. Together with po, gu fixes at
least three 2-dimensional K-subspaces that are mutually disjoint, implying that there is
an associated Desarguesian spread S by Lemma 2.

We claim that hgui is normal in G. To see this, note that we may assume that K �,
the kernel group of order q� 1, acts on po also as a kernel group and GK � has order
2ðq2 � 1Þ, acting on po. We note that the Baer group B of order q=2 is normal in G

and gu acts on this group. Since the Baer group is elementary Abelian and u is a 2-
primitive divisor (or q-primitive divisor, of q ¼ 8 and u ¼ 3), it must be that gu cen-
tralizes B. The kernel group and the group of order 2ðqþ 1Þ must normalize hgui in
the quotient group G=G½po� and G½po� (the group fixing po pointwise), can only be B.
Hence, hguh

�1 A hguiB, say equal to g j
ub; where b A B. This implies that 1 ¼ ðg j

ubÞ
u ¼

bu, since gu commutes with B, implying b ¼ 1, so that hgui is normal in G.
This means that G acts on the Desarguesian spread S as a collineation group and

it follows that B is an elation group of S (as po is a component of S). Therefore, we
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have a group of order qðqþ 1Þ acting on S, with an invariant component po, con-
taining an elation group of order q=2 and a kernel homology gu. Hence, G is a sub-
group of GLð2; q2Þ acting on S. However, G leaves invariant a component po of S
and is in GLð4; qÞ and acting in S is a subgroup of GLð2; q2Þ. r

Theorem 45. Under the assumptions of the previous theorem, there is a subgroup H of

order qþ 1 acting on S as a subgroup of GLð2; q2Þ that acts as a kernel homology

group of S.

Proof. By order and our previous analysis, we see that there is a subgroup H of order
qþ 1. Furthermore, H must normalize B and induces on po a subgroup of GLð2; qÞ.
Also, H acting on S is a subgroup of GLð2; q2Þ. Since every element of H has order
dividing qþ 1 and not q� 1, then certainly every element of prime power order
must commute with B as B is elementary Abelian of order q=2. But this implies that
every element of H, and hence H, must commute with B. Furthermore, either H

fixes exactly two components or H is a kernel homology group. Assume the former;
then B would be forced to fix a second component as B and H commute. Hence, H
is a kernel homology group of order qþ 1 acting on S. r

Theorem 46. Assume the hypothesis of the previous theorem. Then there is a Baer group

B of order exactly q=2 and the plane p is obtained from a Desarguesian plane by mul-

tiple derivation of a set of q=2 mutually disjoint reguli in an orbit under B together with

the derivation of a regulus containing po ¼ FixB as an elation axis of B and two orbits

of B of both length q=2 forming a regulus containing po.

Proof. Now p and S share exactly those components that are fixed by H, and, since
q is even, the other H-orbits of Baer subplanes within S, as lines of p, are subplanes of
a regulus in the spread of S. That is, the net of degree qþ 1 defined by po is a regulus
net. Moreover, the Baer group of order q=2 acts as an elation group of S and the
components of p� S lie in opposite reguli to reguli in S defined by a given Baer
subplane and its images under H. Furthermore, no element of B can fix any regulus
net in S defined by a component of p� S (note that po is a component of S). This
means that the plane is obtained from a Desarguesian plane by multiple derivation of
a set of q=2 mutually disjoint reguli in an orbit under B together with the derivation
of a regulus containing po as an elation axis of B and two orbits of B of length q=2
forming a regulus containing po. r

16 The Sylow 2-subgroups are Baer

Theorem 47. If there is a Baer group of order q, the plane is a derived conical flock

plane.

Proof. Assume that there is a Baer group of order q. By Theorems 29 and 30, the
plane is a derived conical flock plane. r
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17 When there is an invariant Baer subplane; summary

We note that, in all cases, we obtain from our original hypothesis either a conical
flock plane or a derived conical flock plane with a group G of order qðqþ 1Þ acting
on it or there is an elation group or a Baer group of order q=2 and where the plane is
constructed from a Desarguesian plane by multiple derivation.

Theorem 48. Let p be a translation plane of even order q2 with spread in PGð3; qÞ
that admits a linear collineation group G of order qðqþ 1Þ. If G leaves invariant a 2-
dimensional K-space that is not a line of the spread of p then one of the following

occur:

(1) p is a derived conical flock plane,

(2) p is a conical flock plane, or

(3) there is a Baer group of order exactly q=2 and the plane is obtained from a Desar-

guesian plane by multiple derivation of a set of q=2 mutually disjoint reguli in an

orbit under B together with the derivation of a regulus containing po as an elation

axis of B and two orbits of B both of length q=2 forming a regulus containing po.

18 Multiply-derived planes; q/2-case

In this section, we consider the multiply derived situation mentioned previously in
Theorems 42 and 46. In one case, there is always an elation group E of order q=2
and the regulus nets to be multiply derived are in an E-orbit. The Baer q=2-case, as in
Theorem 46, arises in this situation when there is a regulus net R containing the axis
of E and disjoint from the q=2 regulus nets used in the multiple derivation. When R is
also derived, E becomes a Baer group of order q=2.

Thus, we further investigate the possibility that we could have an elation group
of order q=2 within a Sylow 2-subgroup of order q and a translation plane admitting
a collineation group of order qðqþ 1Þ, where there is a group of order qþ 1 acting as
a kernel homology group H of an associated Desarguesian plane S of order q2. Fur-
thermore, there is a Baer involution s which generates with H a dihedral group of
order 2ðqþ 1Þ.

Lemma 16. The orbit of Fix s under H defines a regulus net in S that shares the axis

x ¼ 0 of the elation group E of order q=2.

Proof. The fixed point space of s is a Baer subplane of order q. No non-identity
element of H can fix s, as otherwise the element would induce a kernel homology
on Fix s, forcing the element to have order dividing q� 1. Hence, the orbit of Fix s
under H defines a set of qþ 1 Baer subplanes that form the opposite regulus of a
regulus of S. r

Lemma 17. (1) The group G permutes the set of q=2 reguli.
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(2) The Baer involution s fixes at least two of the reguli and fixes exactly one com-

ponent in each fixed regulus.

Proof. Suppose that there are two sets of mutually disjoint reguli of cardinality q=2,
this implies that we have at least qðqþ 1Þ þ 1 components, a contradiction. Hence,
the full group G permutes this set of q=2 reguli. Since E is transitive on the set of q=2
reguli, there is a Baer involution, which we may take as s, that fixes at least two of
these reguli. These reguli are disjoint from x ¼ 0, so s fixes at least one component
of each fixed regulus. Moreover, since the orbit of Fix s under H is also a regulus, s
can fix exactly one component of each fixed regulus. r

We now may fix our representation. Choose two fixed components to be y ¼ 0 and
y ¼ x in distinct reguli. Hence, representing s as ðx; yÞ 7! ðxq; yqÞ, any such fixed
Baer subplane has the form y ¼ xqmþ xn such that mq ¼ m and nq ¼ n. Moreover,
the action of the kernel homology groupH has elements of the form ðx; yÞ 7! ðax; ayÞ,
where a has order dividing qþ 1 in the associated field isomorphic to GFðq2Þ coor-
dinatizing the Desarguesian plane. The elation group E of order q=2 has the form
ðx; yÞ 7! ðx; xbþ yÞ where b A A, where A is an additive subgroup of GFðq2Þ of order
q=2 and b A A implies that bq A A.

Note that we have also considered the Baer group q=2-situation and in this case,
the Sylow 2-subgroups are elementary Abelian. If this would be the case here, this
says that A would be an additive subgroup of GFðqÞ, since we must have that bq ¼ b

for all b in A in this case.
Note that if s fixes a regulus of S then s fixes both a unique line and a unique Baer

subplane of that regulus.
If y ¼ xqmþ xn intersects y ¼ 0 nontrivially, and is fixed by s then m; n A GFðqÞ.

Furthermore, xq�1 ¼ ðnm�1Þ for some non-zero x, implying that

ðnm�1Þqþ1 ¼ 1 ¼ ðnm�1Þ2;

but this implies that n ¼ m. Note that y ¼ xqmþ xn maps to y ¼ xqma1�q þ xn

under kernel homologies. If the order of a is 1þ q, then the order of a1�q is also
1þ q.

Hence, we may assume that

fy ¼ xqmaþ xm; a of order dividing qþ 1g;

is a regulus of p� S, for some m A GFðqÞ � f0g.
Similarly, if a component y ¼ xqm� þ xn� intersects y ¼ x nontrivially and is fixed

by s then m� þ 1 ¼ n�.
Since E is transitive on the q=2 reguli, there is an elation that maps

fy ¼ xqmaþ xm; a of order dividing qþ 1g;

onto
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fy ¼ xqm�aþ xðm� þ 1Þ; a of order dividing qþ 1g;

Now map y ¼ xqmþ xm onto y ¼ xqm�aþ xðm� þ 1Þ by an elation

ðx; yÞ 7! ðx; xbþ yÞ:

Since y ¼ xqmþ xm maps onto y ¼ xqmþ xðmþ bÞ, it follows that

m�a ¼ m and mþ b ¼ m� þ 1:

Since m and m� are in GFðqÞ, it then follows that a ¼ 1 so that m� ¼ m, implying
that b ¼ 1.

In general, the image Baer subplanes under EH have the form y ¼ xqmaþ
xðmþ bÞ for all b A A and all elements a of order dividing qþ 1. Hence, s fixes all
such image reguli such that bq ¼ b, because it fixes the Baer subplane when a ¼ 1.
We have noted that whenever b corresponds to an element of E then so does bq.
Thus, bþ bq also corresponds to an element of E and this element defines an regulus
net which is invariant under s.

Thus, we have shown:

Theorem 49. Assume that there is a spread of even order in PGð3; qÞ that is constructed
by multiple derivation in a Desarguesian a‰ne plane S by replacement of q=2 mutually

disjoint reguli in an orbit under an elation group of S.
Furthermore, assume that this set of reguli is left invariant by a group of order

qðqþ 1Þ consisting of a kernel homology group H of order qþ 1, an elation group E of

order q=2 and a Baer involution s.
Then the spread Sm;E has the following form:

x ¼ 0; EHðy ¼ xqmþ xmÞU ðy ¼ xnÞ;

for all components y ¼ xn of S that are disjoint from the q=2 reguli defined by the

images of y ¼ xqmþ xm, for some m A GFðqÞ.
In this case, the Baer involution s : ðx; yÞ 7! ðxq; yqÞ acts as a collineation of the

plane.

Theorem 50. Referring to the above theorem, let A denote the set of elements b such

that ðx; yÞ 7! ðx; xbþ yÞ is an elation. Hence, the set A is an additive group of order

q=2. The above construction provides a spread if and only if the set of q=2 elements

a A GFðqÞ, including 0 such that

a2 0 am�2aþ 1

for all non-identity elements a of order dividing qþ 1 contains fbqþ1; b A Ag.

Proof. Consider the image set fy ¼ xqmaþ xðmþ bÞ j a of order dividing qþ 1;
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b A Ag. If y ¼ xqmaþ xðmþ bÞ nontrivially intersects y ¼ xqmþ xm, then this
implies that

ðmð1þ aÞÞqþ1 ¼ bqþ1:

Since m is in GFðqÞ, then we have

m2ð1þ aqþ1 þ aq þ aÞ ¼ bqþ1:

Since aqþ1 ¼ 1, this previous equation is equivalent to

aq þ a ¼ m�2bqþ1;

which is, in turn, equivalent to

a2q þm�2bqþ1aq þ 1 ¼ 0:

Consider the analogous equation:

a2 þm�2aaþ 1 ¼ 0:

Since there are exactly q elements not equal to 1 of order dividing qþ 1 and none
of these are in GFðqÞ then there are exactly q=2 distinct elements a that provide solu-
tions. So, if the set of non-solutions to the above equation including 0 contains
fbqþ1; b A Ag, a spread is obtained. r

Corollary 2. (1) If q ¼ 4, there is an associated spread of order 16 of the q=2-elation
type. This plane is either Hall or Desarguesian.

(2) If q ¼ 8, there are q=2� 1 associated spreads of order 64 of the q=2-elation type.

Proof. (1) If q ¼ 4 then q=2 ¼ 2 and, as any non-solution generates an additive group
of order 2, we obtain a spread. To complete the proof of Part (1), we note that the
only other translation plane with kernel containing GFð4Þ is a semifield plane and
this plane is not obtained in the manner indicated.

(2) Let t in GFð82Þ be such that t2 ¼ tþ 1. This produces a subfield GFð4Þ of
GFð82Þ. Note that GFð4Þ must be fixed by the Frobenius automorphism. So, we let
A ¼ GFð4Þ, which has cardinality q=2. Note that for b A A, we must have bqþ1 ¼
b9 ¼ 1 or 0. Hence, to avoid a solution to a2q þm�2bqþ1aq þ 1 ¼ 0, we may choose
m in any of q=2� 1 ways. r

19 The collineation group of the multiply derived planes

Let p be a translation plane of even order q2 that may be constructed from a Desar-
guesian a‰ne plane S by the multiple derivation of a set of q=2 regulus nets that are
in an orbit under an elation group E of S of order q=2. Using Theorem 20, the full
collineation group of p is the inherited group.
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Then E acts as an elation group or Baer group of p and p also admits the kernel
homology group F � of order q2 � 1 as a collineation group. In this setting, there is
an orbit of components of length qðqþ 1Þ=2 in p under EF �. If E is a Baer group,
there is an associated regulus net that may be derived to produce an associated plane
admitting an elation group. Hence, assume without loss of generality that E is an ela-
tion group of p.

Assume that there is a collineation t of p that moves the axis x ¼ 0 of E. Also,
assume that q=2 > 2. Then the group E generated by elations in p is SLð2; 2aÞ or
Szð2bÞ where b is odd. Since q > 4, it follows that q=2 >

ffiffiffi
q

p
.

If the group E is isomorphic to SLð2; 2aÞ, it follows from Theorem 6 that SLð2; qÞ
is generated by elations, implying by Theorem 21 that p is Desarguesian. This is cer-
tainly a contradiction since the full group is inherited.

We also o¤er a slightly di¤erent proof to see that this situation cannot occur. If
the set of q=2 regulus nets in S used in the construction process is denoted by N then
p and S share S�N, a net of degree q2 þ 1� qðqþ 1Þ=2 > qþ 1. However, two
Desarguesian a‰ne planes of order q2 that share a net of degree strictly larger than
qþ 1 are necessarily equal, implying that the multiply derived net N� of Baer sub-
planes of S is actually a net of components of S, a contradiction.

If the group E is isomorphic to Szð2bÞ, there is a Lüneburg–Tits subplane of order
22b by Theorem 23. However, 2b d q=2, implying that 22b d q2=4. Since the maxi-
mal order of a proper subplane is q and q2=4 > q as q > 4, it follows that p is a
Lüneburg–Tits plane of order q2. However, then p cannot admit a collineation group
of order q2 � 1 by Theorem 10.

Hence, the axis x ¼ 0 of E is invariant under the full collineation group G of p.
We now claim that E is normal in G. If not then there is an elation group Eþ of

order divisible by q acting on p. Since there is an orbit L of length q=2 of regulus nets
in p under E and Eþ permutes the orbits of E but cannot leave L invariant, it follows
that there is another set of q=2 mutually disjoint regulus. However, this implies that
there are qðqþ 1Þ > q2 þ 1 components, a contradiction. Thus, E is normal in G.
Furthermore, we see that G must leave invariant the orbit L and is thus a collineation
group of S. We state all of this formally within a theorem.

Theorem 51. Let p be a translation plane of even order q2 > 16 and kernel containing

GFðqÞ that is constructed from a Desarguesian a‰ne plane S by the multiple derivation

of a set of q=2 mutually disjoint regulus nets that are in an orbit under an elation group

E of order q=2.

(1) Then the full translation complement of p leaves invariant the fixed point space of

E, normalizes E and is a subgroup of the translation complement of the Desar-

guesian plane S. In particular, E is an elation group or a Baer group of p.

In particular,

(2) (a) If E is an elation group of p then p is not Desarguesian, Hall, André or gener-
alized André, and

(b) if E is a Baer group of p then p is not Hall, Desarguesian, derived André or

derived generalized André.
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Proof. The proof that p is not Desarguesian is contained within the previous remarks.
Also, if E is an elation group of p then p admits an elation group of order >2, so p

cannot be a Hall plane. Since none of the proper André or generalized André planes
admits non-trivial elations by Theorem 11, we have the proof of the theorem for the
case when E is an elation group. If E is a Baer group then the derived plane p� is not
Desarguesian, Hall, André or generalized André so p is not a derived Desarguesian
(which is Hall) derived Hall (which is Desarguesian), derived André or a derived gen-
eralized André plane. r

Definition 1. A translation plane p constructed as in the previous theorem is called an

‘elation q=2-type plane’ or a ‘Baer q=2-type plane’ if and only if E is an elation group or

Baer group of p, respectively.

We now determine exactly when two elation q=2-type planes are isomorphic pro-
vided they exist.

Theorem 52. Using the notation established in Theorem 49, assume the elation q=2-type
planes Sm;E and Sn;T exist and are isomorphic. Define AðZÞ ¼ fd A GFðq2Þ; ðx; yÞ 7!
ðx; xd þ yÞ A Zg, for Z an elation group of order q=2 in fE;Tg. Then there exists an

element a of order dividing qþ 1 and an element c such that ca�1 A GFðqÞ and the fol-

lowing conditions hold:

n ¼ msca�1 and AðEÞsc ¼ AðTÞ; s A GalGFðq2Þ:

Proof. We may assume as previously that an isomorphism has the following form:

g : ðx; yÞ 7! ðxs; ysÞ 1 d

0 c

� �
:

Then it follows that

g : y ¼ xqmþ xm 7! xqmscþ xðmscþ dÞ:

This image component must have the form y ¼ xqnaþ xðnþ bÞ, where b A AðTÞ
and a has order dividing qþ 1. The first condition is clear and the second condition
follows from noting that g�1Eg ¼ T . r

The converse of the previous theorem is similar and is given as follows:

Theorem 53. (1) If Sm;E is an elation q=2-type plane and if c A GFðqÞ then Sm sc;E s
c
,

where tb A E if and only if bc A Ec, c A GFðqÞ � f0g, is also an elation q=2-type plane.
The two planes are isomorphic by the mapping ðx; yÞ 7! ðxs; ysÞ

�
1 0
0 c

�
that takes Sm;E

onto Smsc;E s
c
.

(2) If there is an elation type q=2-type plane of order q2 then it is isomorphic to S1;E

for some elation group E.
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Proof. Sm;E is a plane if and only if

traceGFðqÞðm�2bqþ1Þ�1 ¼ 0;

for all b A A, where A ¼ fb; ðx; yÞ 7! ðx; xbþ yÞ A Eg. It then follows that Smc;Ec
is

also a plane since cqþ1 ¼ c2, and

traceGFðqÞððmcÞ�2ðbcÞqþ1Þ�1 ¼ traceGFðqÞðm�2bqþ1Þ�1:

It then follows easily that the two planes are isomorphic by the indicated mapping.
This proves (1). Given a plane Sm;E , let c ¼ m�1, so that Sm;E is isomorphic to
S1;E

m�1
. This proves (2). r

Corollary 3. Any elation q=2-type plane may be taken as a S1;E , for some group of ela-

tions E of order q=2. Let A ¼ fb A GFðq2Þ; ðx; yÞ 7! ðx; xbþ yÞ A Eg.
Thus, an elation q=2-type plane exists if and only if

traceGFðqÞðbqþ1Þ�1 ¼ 0;

for all b A A, where b A A implies bq A A.

Proof. See Theorem 55. r

20 Analysis of Baer q/2-type planes

We may use the study of elation q=2-type planes in the Baer q=2-type planes situation
with the additional hypothesis that there is a regulus net R containing the axis of the
elation group E of order q=2 that is disjoint from the reguli used in the multiple der-
ivation construction procedure.

Theorem 54. Assume that q > 2.

(1) There is a Baer q=2-type plane if and only if there is an additive subgroup A of

GFðqÞ of order q=2 such that a2 þ ab þ 10 0 for all b A A and for all a of order

dividing qþ 1 and a0 1.

(2) If a has order qþ 1 and traceGFðqÞðaþ aqÞ ¼ 1 then the additive subgroup of trace

0 elements in GFðqÞ satisfies Part (1) and produces a Baer q=2-type plane.

Proof. A Baer q=2-type plane is equivalent to an elation type q=2 plane that fixes a
regulus containing the axis x ¼ 0 of E and disjoint from an orbit of q=2 mutually
disjoint reguli. Moreover, there is a Baer involution that fixes exactly one component
of the regulus net R containing x ¼ 0.

We claim that any regulus net containing x ¼ 0 has a partial spread of the form:

x ¼ 0; y ¼ xðtaþ sÞ; a A GFðqÞ;
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where t0 0 and s are fixed elements in GFðq2Þ. To see this, simply map y ¼ 0 onto
y ¼ xz by ðx; yÞ 7! ðx; xzþ yÞ. Hence, we have a regulus of the form

x ¼ 0; y ¼ xðaþ zÞ; a A GFðqÞ:

For w0 0, map by ðx; yÞ 7! ðx; ywÞ so that

y ¼ xðaþ zÞ 7! y ¼ xðaþ zÞw ¼ xðawþ zwÞ:

Then let w ¼ t and zw ¼ s. Note that the group

hðx; yÞ 7! ðx; xzþ yÞ; ðx; yÞ 7! ðx; ywÞ; z; t0 0 A GFðq2Þi;

is sharply doubly transitive on the components of S not equal to x ¼ 0.
We still have that there is an orbit of q=2 mutually disjoint reguli and there is an

elementary Abelian 2-group of order q that acts and hence there is an involution s

which fixes at least two of these mutually disjoint reguli.
Consider the type of plane (Baer q=2-type) that is obtained from the derivation of

R and the set of q=2 regulus nets in an orbit under the elation group E. Since s is a
Baer involution of S that fixes at least two of the regulus nets disjoint from x ¼ 0, it
follows that s remains a Baer involution in the new plane p1. Hence, we have that all
involutions in G, acting on p1, are Baer and the group G is in GLð4; qÞ. By Theorem
26, the Sylow 2-subgroups of G are elementary Abelian, implying that s commutes
with E.

Another way to see that s commutes with E is to note that hs;Ei fixes a 1-
dimensional GFðqÞ-space of x ¼ 0 pointwise. If there is an invariant regulus net
R then s must fix at least one of the qþ 1 Baer subplanes of R. But, E would then
fix all of the Baer subplanes of R incident with the zero vector, implying that hs;Ei
induces an elation group on a Desarguesian subplane po and acts faithfully on po.
Hence, hs;Ei is elementary Abelian.

Since the group is elementary Abelian in this case, it follows that s fixes every one
of the q=2 disjoint reguli.

Choose components so that y ¼ 0 and y ¼ x are in distinct reguli and fixed by s.
It follows that s has the form: ðx; yÞ 7! ðxqc; yqcÞ where cqþ1 ¼ 1. If bq�1 ¼ c, con-
jugate by ðx; yÞ 7! ðxb; ybÞ to transform s into the form ðx; yÞ 7! ðxq; yqÞ.

So, if y ¼ xqmþ xm non-trivially intersects y ¼ 0, we have mq ¼ m, as previously.
The images under EH are of the form

y ¼ xqmaþ xðmþ bÞ

for all a of order dividing qþ 1 and for all b A A. Since there must be a fixed com-
ponent in each regulus (for each fixed b), this can only imply that b A GFðqÞ (also,
this follows since s commutes with E ).

Now we have a regulus R with the following components:

x ¼ 0; y ¼ xðtaþ sÞ; a A GFðqÞ;
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which is fixed by E and by s. Since AJGFðqÞ, it follows that

taþ sþ b ¼ tf ða; bÞ þ s

for all a in GFðqÞ and for all b A A, where f is a function from GFðqÞ �GFðqÞ into
GFðqÞ; f ða; bÞ A GFðqÞ. Hence, taþ b ¼ tf ða; bÞ. If t B GFðqÞ, we have a contradic-
tion, since then tðaþ f ða; bÞÞ ¼ b A GFðqÞ, implying that a ¼ f ða; bÞ and b ¼ 0.
Thus, t is in GFðqÞ and we may incorporate t in the representation and take t ¼ 1
without loss of generality. Hence,

x ¼ 0; y ¼ xðaþ sÞ; a A GFðqÞ;

are the components of the fixed regulus. However, then the fact that s fixes this
regulus implies

aþ sq ¼ gðaÞ þ s; for all a A GFðqÞ;

where g is a function from GFðqÞ to GFðqÞ. Note that s fixes only the component
x ¼ 0.

Hence, sq ¼ gð0Þ þ s, so

aþ sq ¼ aþ gð0Þ þ s ¼ aþ s , gð0Þ ¼ 0:

Thus, gð0Þ ¼ ao 0 0.
We require that the images

y ¼ xqmaþ xðmþ bÞ

are all disjoint from

x ¼ 0; y ¼ xðaþ sÞ; a A GFðqÞ:

Note that y ¼ xðaþ sÞ is fixed by the kernel homology group so is disjoint from
component y ¼ xqmþ xðmþ bÞ if and only if it is also disjoint from y ¼ xqma þ
xðmþ bÞ.

There is an intersection between y ¼ xðaþ sÞ and y ¼ xqmþ xðmþ bÞ if and only
if for a ¼ b þ b, b A GFðqÞ,

mqþ1 ¼ m2 ¼ ðmþ b þ sÞqþ1 ¼ ðmþ bÞqþ1 þ sqþ1 þ ðmþ bÞðsþ sqÞ

¼ m2 þ b2 þm2b þ b2mþ sqþ1 þ ðmþ bÞðsþ sqÞ:

Using the fact that sþ sq ¼ ao, we have the equivalent following equation:

b2ð1þmÞ þ ðm2 þ aoÞb þ ðsqþ1 þmaoÞ ¼ 0:
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Now choose m ¼ 1 ¼ ao, s
q þ s ¼ 1, sqþ1 ¼ c0 1. Let s2 ¼ saþ b for a0 0. Then,

ðs=aÞ2 ¼ ðs=aÞ þ b=a2:

So, if there exist non-zero elements where b0 a2, the above is possible. If t2 ¼ tþ 1
then there is a subfield of GFðq2Þ isomorphic to GFð4Þ. Hence, if q2 > 4, there exist
s such that s2 ¼ sþ c for c0 1. The set

fy ¼ xqmaþ xðmþ bÞ; jaj divides qþ 1; b A Ag

forms a partial spread if and only if

a2 þ am�2b2 þ 10 0

for all b A A. If A is an additive subgroup of order q=2 provided A is an additive sub-
group of order q=2, define A ¼ f

ffiffiffi
a

p
m; a A Ag. Then, we obtain a partial spread and

by above a spread of the appropriate type. This proves (1).
Now assume that qþ 1 is prime and a has order qþ 1. If the traceGFðqÞðaþ aqÞ ¼

1 then we may choose m ¼ 1 and, since traceGFðqÞ b ¼ traceGFðqÞ b
2, the additive sub-

group of order q=2 of trace 0 elements shows that

a2 þ ab2 þ 10 0 , aþ b2 þ 1=a ¼ aþ aq þ b2 0 0:

That is,

aþ aq þ b2 ¼ 0 ) traceGFðqÞðaþ aq þ b2Þ ¼ 0

and if traceGFðqÞðaþ aqÞ ¼ 1 and traceGFðqÞ b
2 ¼ 0, we have a contradiction. r

Example 1. In situation (2) above, assume that q ¼ 4, qþ 1 ¼ 5. If the order of a
is 5, traceGFð4Þðaþ a4Þ ¼ aþ a4 þ a2 þ a3. Since 1þ aþ a2 þ a3 þ a4 ¼ 0, we have
traceGFð4Þðaþ a4Þ ¼ 1.

Theorem 55. Let f1; tg be a GFðqÞ-basis for GFðq2Þ where t2 ¼ tþ y. Note that then

tqþ1 ¼ y and tq þ t ¼ 1.

(1) traceGFðqÞ y ¼ 1.

(2) ðtaþ bÞqþ1 ¼ 1 if and only if ya2 þ b2 þ ab ¼ 1.

(3) ðtaþ bÞq þ ðtaþ bÞ ¼ a.

(4) yþ a�2 has trace 0 if and only if a ¼ aþ aq for some element a not 1 of order

dividing qþ 1. Hence, the set of non-solutions to aþ aq for a not 1 is

fðrþ r2Þ�1; 0; r A GFðqÞ � f0; 1gg:

(5) A spread of the Baer q=2-type exists if and only if
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fðrþ r2Þ�1; 0; r A GFðqÞ � f0; 1gg

is an additive group of order q=2.

Proof. (1) Assume that trace y ¼ 0. By Hilbert’s theorem 90, y ¼ rþ r2, for
r A GFðqÞ. Then, tþ t2 ¼ rþ r2, implies that ðtþ rÞ þ ðtþ rÞ2 ¼ 0, and this implies
that ðtþ rÞ ¼ 1 so that t A GFðqÞ. Hence, trace y ¼ 1. Clearly, tþ tq ¼ 1 so that (2)
and (3) are immediate.

To prove (4), assume that

yþ a�2 ¼ f þ f 2 0 0:

Let fa ¼ b. Then,

yþ a�2 ¼ ðb=aÞ þ ðb=aÞ2

if and only if

ya2 þ b2 þ ab ¼ 1:

This holds if and only if there is an element a ¼ taþ b for a0 0 of order dividing
qþ 1 such that aþ aq ¼ a.

Hence, a�2 has trace 1, for all solutions to aþ aq ¼ a. Since the trace of d and the
trace of d2 are equal, it must be that a�1 has trace 1 for all solutions.

Assume that a and a� have order dividing qþ 1 and neither a nor a� is 1. Then,

aþ aq ¼ a ¼ a� þ a�q

if and only if

ðaþ a�Þ ¼ ðaþ a�Þq:

That latter equality holds if and only if

a2 þ aaþ 1 ¼ a�2 þ a�aþ 1;

which is equivalent to

aðaþ a�Þ ¼ ðaþ a�Þ2:

We then obtain the equivalent equality

aþ a� ¼ a:

Now, if aqþ1 ¼ 1, we claim that ðaþ aÞqþ1 ¼ 1. Note that

ðaþ aÞqþ1 ¼ aqþ1 þ a2 þ aðaþ aqÞ ¼ 1þ a2 þ a2 ¼ 1:

Thus, there are exactly q=2 non-zero elements a in GFðqÞ that are solutions for
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aþ aq ¼ a, where a is not 1. Since the trace of a�1 is 1 for all solutions, the set of
non-solutions is

fðrþ r2Þ�1; 0; r A GFðqÞ � f0; 1gg:

Now, in order that we have a Baer q=2 type spread, this fact implies that the set of
non-solutions is an additive group. Our previous result implies that this condition is
necessary and su‰cient. r

21 Baer q/2-type planes do not exist when qI 4

Theorem 56. If q ¼ 2r and r is odd and larger than 1 then there does not exist a Baer

q=2-type plane.

Proof. If such a plane exists, then A ¼ fðrþ r2Þ�1; 0; r A GFðqÞ � f0; 1gg is additive.
Since this means that ðr2 þ r4Þ�1 ¼ ðrþ r2Þ�2 is an element of A, then, for any r,

Xr�1

i¼0

ðrþ r2Þ�2 i

is an element of the set in question and thus has the form ðgþ g2Þ�1 or 0. But, this
implies that

traceðrþ r2Þ�1 ¼ ðgþ g2Þ�1; or 0

for some g. Assume that ðgþ g2Þ�1 ¼ 1, then we have ðgþ g2Þ ¼ 1, a contradiction,
since the left hand side has trace 0 and the right hand side, that is ‘1’, has trace 1.

Hence, fðrþ r2Þ�1; 0; r A GFðqÞ � f0; 1gg is the set of trace 0 elements. There are
q=2� 1 trace 0 elements that are non-zero and each of these has a non-zero inverse in
the set. Assume that for each non-zero x A A, x�1 0 x. Note that

fx; x�1gV fy; y�1g0 f , x ¼ y�1

for x0 y, x; y A A, if and only if fx; x�1g ¼ fy; y�1g. Thus, A� f0g ¼ q=2� 1 is
even, a contradiction for q > 2. Hence, there exists an element r0 0 or 1 such that

ðrþ r2Þ�1 ¼ ðrþ r2Þ

for some nonzero term rþ r2, but this implies that

ðrþ r2Þ2 ¼ ðr2 þ r4Þ ¼ 1;

a contradiction, as r2 þ r4 has trace 0 but 1 has trace 1. Hence, there are no Baer q=2
type planes when q ¼ 2r and r is odd, r > 1. r

Theorem 57. There are no Baer q=2-type planes when q ¼ 22e, for e > 1.
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Proof. If there is such a plane then

fðrþ r2Þ�1; 0; r A GFðqÞ � f0; 1gg

corresponds to the additive group A of order q=2. We note that when q ¼ 22e, then
GFð2eÞ has trace 0 over GFðqÞ and is contained in the set of non-solutions since
inverses exist within non-zero elements of GFð2eÞ. Hence, there are 2e�1 cosets of
GFð2eÞ in A, zi þGFð2eÞ for i ¼ 0; 1; . . . ; 2e�1 � 1 and zo ¼ 0. Furthermore, ele-
ments in the coset zi þGFð2eÞ have trace 1 if and only if zi has trace 1. The subset of
trace 0 elements forms an additive subgroup which has index 1 or 2 and hence has
order q=2 or q=4.

Let f1; zg be a GFð2eÞ basis of GFð22eÞ such that z2 ¼ zþ m where m is in
GFð2eÞ. If

zrþ dþGFð ffiffiffi
q

p Þ ¼ zrþGFð ffiffiffi
q

p Þ

is a coset of the non-solution set, where r0 0, then the inverse of each of these ele-
ments has trace 0.

The inverse of zrþ g for r0 0, g A GFð2zÞ is

zðr=ððrþ gÞgþ mr2ÞÞ þ ðrþ gÞ=ððrþ gÞgþ mr2Þ:

We note that

traceGFðqÞðzrþ gÞ ¼ traceGFðqÞ zr:

Hence, the cardinality of the set fr; traceGFðqÞ zr ¼ 0g is ðq=2Þ= ffiffiffi
q

p
. We claim that

fr=ððrþ gÞgþ mr2Þ; r is fixed and non-zero; g A GFð2eÞg

has cardinality
ffiffiffi
q

p
=2 ¼ 2e�1.

To see this, we note that

r=ððrþ gÞgþ mr2Þ ¼ r=ððrþ g�Þg� þ mr2Þ; g� 0 g

if and only if

gþ g� ¼ r:

So, it follows that

zðr=ððrþ gÞgþ mr2ÞÞ þ ðrþ gÞ=ððrþ gÞgþ mr2Þ

has trace 0 for r fixed and non-zero, for all elements g A GFð ffiffiffi
q

p Þ.
We claim that

traceGFðqÞ zd ¼ ðtraceGFð ffiffi
q

p Þ mÞðtraceGFð ffiffi
q

p Þ dÞ: (*)
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To prove this, we note that z2 ¼ zþ m so that ðzdÞ2 ¼ zd2 þ md2. It thus follows
that

ðzdÞ2
j

¼ zd2
j þ ðmþ m2 þ � � � þ m2 j�1Þd2 j

:

Furthermore,

ðzdÞ2
e

¼ zdþ ðmþ mþ � � � þ m2 e�1Þd ¼ zdþ ððtraceGFð ffiffi
q

p Þ mÞdÞ:

Thus, every term zd2
j

for j ¼ 0; 1; . . . ; e� 1 is doubled and since

traceGFð ffiffi
q

p ÞððtraceGFð ffiffi
q

p Þ mÞdÞ ¼ ðtraceGFð ffiffi
q

p Þ mÞðtraceGFð ffiffi
q

p Þ dÞ;

we have the proof to (*).
Since z2 ¼ zþ m then

traceGFð ffiffi
q

p Þ m ¼ z2
e þ z:

Hence, traceGFð ffiffi
q

p Þ m ¼ 1. Thus,

traceGFðqÞ zd ¼ 0 , traceGFð ffiffi
q

p Þ d ¼ 0: (*)

Therefore, we have for r fixed and non-zero,

traceGFð ffiffi
q

p Þ r=ððrþ gÞgþ mr2Þ ¼ 0; for all g A GFð ffiffiffi
q

p Þ:

Note that the set of trace 1 elements in GFð ffiffiffi
q

p Þ is

fgþ g2 þ m; g A GFð ffiffiffi
q

p Þg:

However, this means that there are
ffiffiffi
q

p
=2 non-zero elements in GFð ffiffiffi

q
p Þ whose trace

is 0 over GFð ffiffiffi
q

p Þ, a contradiction, since there are exactly
ffiffiffi
q

p
=2� 1 nonzero elements

of trace 0. Hence, r ¼ 0 and q=2 ¼ ffiffiffi
q

p
so that q ¼ 4. r

Theorem 58. A Baer q=2-type plane of order q2, for q > 2 exists if and only if q ¼ 4
and the plane is Desarguesian.

Proof. The above results show that the only possibility is when q ¼ 4. Let q ¼ 4
and consider an elation q=2-plane. There are 2 disjoint regulus nets. Since any
two disjoint regulus nets may be embedded into a linear set of q� 1 regulus nets and
since q� 1 ¼ 3, replacement of the two nets is equivalent to derivation; an elation
q=2-plane must be Hall. A Baer q=2-plane involves the replacement of q=2þ 1
mutually disjoint regulus nets. Multiple derivation then produces a Desarguesian
a‰ne plane. r
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22 The associated Desarguesian spread

In our previous sections, we have shown that translation planes with spreads in
PGð3; qÞ, for q even, with collineation groups in GLð4; qÞ of order qðqþ 1Þ corre-
spond to conical planes or derived conical planes when the Sylow 2-subgroup fixes
a 2-dimensional K-subspace and induces a non-trivial group on that subspace. Our
intent is to now prove our results without resorting to the assumption that a Sylow 2-
subgroup fixes a 2-dimensional K-subspace and acts non-trivially on it. That is, we
shall eventually prove that this property must hold. In order to obtain this result, we
establish connections with a Desarguesian spread when the Sylow 2-subgroups do
have this property.

Theorem 59. If p is a conical flock or derived conical flock plane of order q2 admitting a

linear group G of order qðqþ 1Þ then there is an associated Desarguesian a‰ne plane S
such that G acts on S as a collineation group. Furthermore, if p is not Hall or Desar-

guesian, G is solvable and contains a group H of order qþ 1 that contains a non-identity
subgroup acting as a kernel homology group of S.

Proof. First assume that p is a conical flock plane.
Initially, assume that there is a prime 2-primitive divisor u of q2 � 1 or q ¼ 8 and

we take u ¼ 3 (a q-primitive divisor) and there is an element gu of G of order u. We
may assume that p is not Desarguesian and there is a G-invariant component l. It
follows that gu centralizes the elation group E. Furthermore, the quotient on l in
PGð2; qÞ either is isomorphic to A4, S4 or A5, or the group is a subgroup of a dihedral
group of order divisible by 2ðqþ 1Þ. In this case, there is a normal subgroup hguZi,
where Z is the intersection with G and the kernel homology group of order q� 1
acting on l. Since gu commutes with E, it follows that there is a normal subgroup
hgui in G. But, gu fixes at least three components of p and hence there is an asso-
ciated Desarguesian a‰ne plane admitting G by Lemma 2.

Now assume that the group induced on l is A4, S4 or A5. The only possible a‰ne
homology groups normalize E so they have order dividing q� 1 which is impossible
since ðqþ 1; q� 1Þ ¼ 1. Then this forces qþ 1 to be even.

Now assume that the plane is a derived conical flock plane of order q2. Since we
have a Baer group of even order q by Theorem 32, this implies that the full collinea-
tion of a derived conical flock plane leaves invariant the derived net, provided the
order is not 4. Hence, we may derive back to a conical flock plane that admits such
a group, implying the existence of a Desarguesian a‰ne plane S admitting G as a
collineation group.

Thus, in all case, there is a Desarguesian a‰ne plane S admitting G, G is solvable
and has a normal subgroup H of order qþ 1 containing a non-trivial kernel homol-
ogy group acting on S. r

23 When the plane is a conical plane

Now assume the plane p is a conical flock plane. Note that the group G is a subgroup
of GLð4; qÞ and acts on the Desarguesian plane S as a subgroup of GLð2; q2Þ. Then
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G actually acts on S as a subgroup of GLð2; q2Þ, since the elation group of order q is
in GLð2; q2Þ and qþ 1 is odd. Since the order of G is qðqþ 1Þ and there is an elation
group of order q, the group is solvable and there is a subgroup H of order qþ 1 that
necessarily is in GLð2; q2Þ by order.

Now assume that there is a subgroup of order >2 of H which is not a kernel
homology group. Then, by order H must fix exactly one component or fixes all
components. Assume that H is not a kernel homology group. Then the group leaves
invariant a regulus net R of S and if g is an element of H then the order of g modulo
the kernel subgroup H� has order dividing ðq� 1; qþ 1Þ ¼ 1. Thus, H� has order
ðqþ 1Þ, but this is contrary to our assumption.

Hence, we do have that there is a kernel homology subgroup H of order ðqþ 1Þ,
which, since q is even, is transitive on the 1-dimensional K-subspaces on any com-
ponent of the Desarguesian plane S. Suppose that there is a component po of p� S.
Then po is a Baer subplane of S and poH defines the lines of the opposite regulus to
a regulus of S. Furthermore, poHE defines a set of q reguli in p since if an elation t

fixes a regulus disjoint from the axis of E then t would fix a component of the reg-
ulus, a contradiction. However, this means that poHE is a set of at least qðqþ 1Þ,
components. Thus, S ¼ p.

We have shown:

Theorem 60. If p is a conical flock plane then p is Desarguesian.

24 When the plane is a derived conical plane

Now assume that the plane p is a derived conical flock plane. Since we are replacing
a base regulus net by assumption, by Theorem 32 the full collineation group leaves
invariant the net containing the Baer 2-group of order q or the order is 4. Hence, we
may derive the plane back to a conical flock plane and retain the group. This gives
the following result.

Theorem 61. If p is a derived conical flock plane then p is Hall.

25 The main theorem

Our main theorem is as follows:

Theorem 62. Let p be a translation plane with even order q2 with spread in PGð3;KÞ,
K isomorphic to GFðqÞ. Assume that p admits a linear collineation group G of order

qðqþ 1Þ. Then p is one of the following types of planes:

(1) Desarguesian,

(2) Hall,

(3) a translation plane obtained from a Desarguesian plane by multiple derivation of a

set of q=2 mutually disjoint regulus nets that are in an orbit under an elation group

of order q=2.
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Proof. If a Sylow 2-subgroup fixes a 2-dimensional K-subspace and acts non-trivially
on it then the plane p is either a conical flock plane or a derived conical flock
plane and must be Desarguesian or Hall, respectively, or there is an elation or Baer
group of order q=2 and the previous arguments show that we only obtain a type (3)
situation.

Now assume that if a Sylow 2-subgroup S2 fixes a 2-dimensional K-subspace, then
S2 fixes it pointwise. Since S2 must fix a 1-dimensional subspace pointwise, there is
a unique component containing this subspace. Thus, this component must be fixed
pointwise. That is, the group is an elation group of order q. Since qþ 1 is odd, it
follows immediately that q ¼ 2 and p is Desarguesian of order 4 or we have an
invariant component (otherwise, the group SLð2; qÞ is contained in the group gen-
erated by elations).

We then may assume that we have an element gu or g3 that normalizes and hence
centralizes the elation group E of order q. Since gu fixes two components, it must then
fix three. Furthermore, the group of order qþ 1 acts faithfully on the axis l of E and
must act transitively on the 1-dimensional K-subspaces. Indeed, there is a group H of
order qþ 1 that acts faithfully as a subgroup of GLð2; qÞ and hence is cyclic. Thus,
there is a normal u-group or 3-element group, implying that G acts on a Desarguesian
a‰ne plane S just as before. In this setting, we cannot be certain that E is regulus
inducing. However, by order, E is normal in G. Thus, G permutes the E-orbits and
since there is a cyclic subgroup Cqþ1, this again implies that Cqþ1 fixes an E-orbit and
is in GLð2; q2Þ, so that Cqþ1 is a kernel homology group of S. Now it again follows
that if p is not S, we have at least qðqþ 1Þ components of p� S, a contradiction.
This completes the proof. r

26 Open problem

We have shown that there are elation q=2-type planes when q ¼ 4 or 8 and there
are Baer q=2 planes when q ¼ 4. However, the Baer q=2-type planes of order 42 are
Desarguesian. Furthermore, we have shown that Baer q=2 planes cannot exist for
larger orders. However, the elation case is essentially open.

Problem 1. If q > 4, show that an elation q=2 plane has order 82, or find a class of

examples.

Equivalently, we state the above problem using the trace function.

Problem 2. Let A be an additive subgroup of order q=2 of GFðq2Þ. If

traceGFðqÞðbqþ1Þ�1 ¼ 0; for all b A A� f0g; and Aq ¼ A;

show that q ¼ 4 or 8 (note that we have shown that if AJGFðqÞ then q ¼ 4).
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