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On finite projective planes in Lenz–Barlotti class at least I.3
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Abstract. We establish the connections between finite projective planes admitting a collineation
group of Lenz–Barlotti type I.3 or I.4, partially transitive planes of type (3) in the sense of
Hughes, and planes admitting a quasiregular collineation group of type (g) in the Dembowski–
Piper classification; our main tool is an equivalent description by a certain type of di¤erence set
relative to disjoint subgroups which we will call a neo-di¤erence set. We then discuss geometric
properties and restrictions for the existence of planes of Lenz–Barlotti class I.4. As a side
result, we also obtain a new synthetic description of projective triangles in desarguesian planes.

1 Introduction

We shall assume that the reader is familiar with the basic theory of finite projective
planes, in particular with the notions of elations, homologies, ðp;LÞ-transitivity and
the idea of the Lenz–Barlotti classification. For background, we refer the reader to
Dembowski [5], Hughes and Piper [15] or Pickert [23].

We shall be concerned with a couple of closely interrelated concepts which have
appeared in various places in the literature:

. finite projective planes admitting a collineation group of Lenz–Barlotti type I.3 or
I.4;

. partially transitive planes of type (3) in the sense of Hughes [14];

. planes admitting a quasiregular collineation group of type (g) in the Dembowski–
Piper classification [6];

. a certain type of di¤erence set relative to disjoint subgroups in the sense of Hir-
amine [10] which we will call a ‘‘neo-di¤erence set’’, as the abelian case corresponds
to neofields.

If one looks at the literature, some confusion is bound to arise, as the connections
between these notions have not been made really precise. Our first aim is to clarify
these connections. In particular, we establish that groups of Lenz–Barlotti type I.4
are equivalent to (necessarily abelian) quasiregular groups of type (g); though this
equivalence has been around in a vague way, it has never been proved in the litera-



ture, and the proof is indeed not at all obvious. Such groups are also equivalent
to abelian neo-di¤erence sets; unfortunately, the only known examples occur in the
desarguesian planes. Similarly, groups of Lenz–Barlotti type I.3 are equivalent to
non-abelian neo-di¤erence sets, and the only known examples come from nearfield
planes.

Once the basic equivalences have been sorted out, we prove several known and
also a few new restrictions for planes of Lenz–Barlotti class I.4, using the setting of
abelian neo-di¤erence sets. This allows us not only to avoid neofields for the major
part of our exposition (using the standard machinery of group rings instead), but also
to give simpler and more transparent proofs in many cases, stressing the analogy to
planar and a‰ne di¤erence sets. In particular, we shall provide a short and trans-
parent proof of the multiplier theorem for neo-di¤erence sets.

We conclude this introduction with a little more background and a few more ref-
erences. Recall that a permutation group G is called quasiregular if it induces a reg-
ular action on each orbit: each group element fixes either none or all elements in the
orbit. This condition is satisfied in particular when G is abelian; more generally, it is
easily seen that G acts quasiregularly on a set if and only if every stabilizer is a nor-
mal subgroup.

The famous Lenz–Barlotti classification is due to [1], [19]; see Yaqub [28] for an
old survey which is still worth reading. An up-to-date account of the Dembowski–
Piper classification [6] is given by the present authors [7]. Background on di¤erence
sets and group rings can be found in Chapter VI of Beth, Jungnickel and Lenz [2].

2 Groups of type at least I.3

In the Lenz–Barlotti classification, collineation groups of projective planes are clas-
sified according to the configuration F formed by the point-line pairs ðp;LÞ for which
the given group G is ðp;LÞ-transitive; in the special case G ¼ AutP, one speaks of
the Lenz–Barlotti class of P. For a group of type I.4, F consists of the vertices and
the opposite sides of a triangle; for type I.3, one of these transitivities is missing.

We begin by considering groups of type at least I.3. Thus we assume that P is a
finite projective plane of order n which is both ðy; oxÞ- and ðx; oyÞ-transitive, where o,
x, and y form a triangle. We may think of Ly ¼ xy as the line at infinity, of o as the
origin, and of ox and oy as the x- and y-axis, respectively. Points which are not on a
side of the triangle oxy will be called ordinary points; ordinary lines are defined dually.
We denote the group of all ðx; oyÞ-homologies by X and the group of all ðy; oxÞ-
homologies by Y ; w.l.o.g., we may assume that the group G under consideration is
the group generated by X and Y . We also fix an arbitrary ordinary point u for the
rest of our discussion. The following basic result is easy to prove, cf. Figure 1, and
will be left to the reader.1

Lemma 2.1. With the notation above, G is the direct product of X and Y; moreover, G
acts regularly both on the set of ordinary points and on the set of ordinary lines.

1For a detailed treatment including more background and complete proofs, see [8].
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Now put z ¼ ouV xy and let Z be the stabilizer of ou. As G fixes o and is regular on
ordinary points by Lemma 2.1, Z is a further subgroup of order n� 1 of G. This
implies severe restrictions on the structure of these groups which were first established
by Hughes [14]; we state the following more general result proved by Sprague [26] in
the context of translation nets.

Lemma 2.2. Let G be a group of order s2 with three pairwise disjoint subgroups X, Y
and Z of order s, and assume that X and Y are normal. Then X, Y and Z are pairwise

isomorphic. Moreover, G is abelian if and only if Z is also a normal subgroup.

Next, we note that our collineation group G has the same orbit structure on P as a
quasiregular group of type (g) in the Dembowski–Piper classification would have: the
seven point orbits are

. the orbit of ordinary points on which G acts regularly;

. the three fixed points o, x, and y;

. the n� 1 points z 0 0 x; y on xy, and similarly for the other two sides of the triangle
oxy.

The line orbits are given dually. This poses the natural question under which con-
ditions G actually is quasiregular. We get the following result part of which is already
contained in Hughes’ work, see [14, Theorem 10], who would call G a partially tran-

Figure 1. The action of G
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sitive collineation group of type (3) for which two of the three distinguished subgroups
defined in this case are normal.

Proposition 2.3. With the preceding notation, the following conditions are all equiva-

lent:

(i) G is a collineation group of Lenz–Barlotti type I.4.

(ii) Z consists of ðo; xyÞ-homologies.

(iii) Z is a normal subgroup of G.

(iv) G is quasiregular.

(v) X is abelian.

(vi) G is abelian.

Proof. As Z is the stabilizer of z in G and acts regularly on the ordinary points on the
line oz, it is clear that G is of type I.4 if and only if all collineations in Z are ðo; xyÞ-
homologies. This means that each element fixing z has to fix every point on the line
xy; as G is transitive on the points z 0 0 x; y on xy and as the stabilizer of zg is g�1Zg,
this happens if and only if Z is a normal subgroup of G. This in turn is equivalent to
saying that G is quasiregular; for it is clear that G induces a regular action on all
other orbits, as X and Y consist of homologies. Finally, X is abelian if and only if G
is; by Lemma 2.2, this holds if and only if Z is normal. r

Thus a quasiregular group of type at least I.3 actually has type I.4, and so P is of
Lenz–Barlotti class at least I.4 in this case. Note, however, that it is not clear at this
point if the converse holds, i.e., if every group of type I.4 is quasiregular. It would a
priori be conceivable that a third (then necessarily non-abelian) transitive group U of
ðo; xyÞ-homologies exists, but that U is not contained in the group G ¼ X � Y gen-
erated by the other two homology groups we started with. This is actually not possi-
ble, as we will see soon.

Let us first discuss the known examples of planes admitting a group of type at least
I.3. No examples of finite projective planes in Lenz–Barlotti class I.3 or I.4 are
known, and it is widely conjectured that such planes do not exist; we shall discuss this
problem later. In fact, all known finite planes with a group of type at least I.3 are
defined over a nearfield K . Losely speaking, a proper nearfield may be thought of as
a non-commutative field with only one distributive law; see [5] for the precise defini-
tion. We remark that the finite nearfields were completely classified by Zassenhaus
[30], see also Dembowski [5, §5.2]. The given homology groups X and Y are isomor-
phic to the multiplicative group K �. There arise two possibilities:

. If K is proper, that is, not a field, K � is non-commutative. Then P has Lenz–
Barlotti class IVa.2, unless K is the exceptional nearfield of order 9 (in which case
P has class IVa.3). Here the group G ¼ X � Y is of type I.3 and is therefore not
quasiregular.
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. If K is a field, so that K � is commutative, then P is desarguesian and thus in Lenz–
Barlotti class VII.2. Here the group G ¼ X � Y is of type I.4 and quasiregular.

The preceding examples are already given in Hughes’ paper [14], in terms of his par-
tially transitive planes, though he could of course not yet discuss the connection to
the Lenz–Barlotti classification, as Barlotti’s paper only appeared a year later. These
examples reappear in various later papers, usually without any specific reference to
Hughes. It seems that his paper has been largely ignored, even though it is quite often
cited in a rather vague general way. We want to advertise his work here, as it antici-
pates many of the ideas in the later Dembowski–Piper classification. Let us note that
Hughes [14] also considered planes with a partially transitive group of type (3)—that
is, with the same orbit structure as a quasiregular group of type (g)—without the
assumption that at least two of the distinguished subgroups involved are normal. We
decided not to deal with this case, as no examples of such groups seem to be known
and as this would make our discussion more technical.

We now need to appeal to a standard approach for the study of projective planes,
namely the introduction of coordinates. For this, we refer the reader to the exposition
given by Dembowski [5] which essentially follows Hall [9]; this method of coordina-
tizing is not the only one in common use, cf. Hughes and Piper [15] and Pickert [23].
The resulting algebraic structure is called a Hall planar ternary ring. Assuming that
P is ðy; oxÞ-, ðx; oyÞ- and ðo; xyÞ-transitive, i.e., at least in Lenz–Barlotti class I.4,
coordinatizing yields a linear planar ternary ring ðR;TÞ such that

. ðR�; �Þ is a group, where R� ¼ Rnf0g;

. both distributive laws hold in ðR;þ; �Þ:
ðaþ bÞc ¼ acþ bc, cðaþ bÞ ¼ caþ cb for all a; b; c A R.

Following Kantor [17], such a planar ternary ring is called a neofield; earlier, the term
planar division neo-ring (PDNR) was used by Hughes [12], [13].2 The motivation for
changing Hughes’ terminology is given by the fact that finite neofields have the fol-
lowing additional properties:

. ðR;þÞ is commutative;

. ðaþ bÞ þ ð�bÞ ¼ a for all a; b A R;

. ðR�; �Þ is commutative.

The first two of these properties are due to Hughes extending earlier work of Paige
[20], while the third one is due to Kantor and Pankin [18]; it is a generalization of
Wedderburn’s theorem. Thus we see that a finite neofield satisfies all of the field axi-
oms except for the associativity of addition, which has been replaced by the so-called
inverse property ðaþ bÞ þ ð�bÞ ¼ a.

Conversely, every finite neofield coordinatizes a projective plane which is either of
type I.4 (when the neofield is proper, i.e., not a field) or desarguesian. Given a neo-

2The term neofield was already used by Paige [20], but in a more general sense. His neofields
are, in general, not associated with projective planes.

Dina Ghinelli and Dieter JungnickelS32



field R, it is convenient to introduce an a‰ne plane S ¼ SðRÞ in the usual way. Thus
the points of S are the ordered pairs ða; bÞ with a; b A R, and the lines are the point
sets

½m; k� ¼ fðr; rmþ kÞ : r A Rg and ½a� ¼ fða; bÞ : b A Rg:

Coordinatizing the projective plane P corresponding to S appropriately, we essen-
tially recover the neofield R we started with.

We can now demonstrate the result already announced in the discussion after
Proposition 2.3:

Theorem 2.4. Let P be a finite projective plane. Then the following assertions are

equivalent:

(a) P is in Lenz–Barlotti class at least I.4.

(b) P admits an abelian collineation group of Lenz–Barlotti type I.4.

(c) P admits a quasiregular collineation group of type (g).

Proof. Assume first that P is in Lenz–Barlotti class at least I.4, say P is ðy; oxÞ-,
ðx; oyÞ- and ðo; xyÞ-transitive for the triangle oxy. Then G ¼ X � Y is a collineation
group of Lenz–Barlotti type at least I.3, where X is the group of all ðx; oyÞ-
homologies and Y the group of all ðy; oxÞ-homologies, by Lemma 2.1. Now coor-
dinatize P using a neofield R, as above. From the description of the a‰ne part S, it is
easily seen that the mapping ða; bÞ 7! ðac; bÞ is an ðx; oyÞ-homology for each c A R.
Hence the group X of all these homologies is isomorphic to R� and therefore abelian,
by the theorem of Kantor and Pankin [18]. Hence G is abelian, and Proposition 2.3
shows that G has Lenz–Barlotti type I.4. Again by Proposition 2.3, this implies that
P admits a quasiregular collineation group G of type (g). Finally, assume that G is
such a group. Then the regularity of the actions induced on the three point orbits
corresponding to the sides of the special triangle oxy implies that the stabilizer of any
point in one of these orbits consists of homologies, and thus P is obviously in Lenz–
Barlotti class at least I.4. r

3 Neo-di¤erence sets

In this section, we discuss the representation of a finite projective plane in Lenz–
Barlotti class at least I.3 by a certain type of di¤erence set relative to disjoint sub-
groups in the sense of Hiramine [10] which we will call a ‘‘neo-di¤erence set’’, as the
abelian case turns out to correspond to planes in Lenz–Barlotti class at least I.4 and
thus to neofields. We note that this type of di¤erence set was first considered by
Hughes [12], [13], [14]; in his terminology, it is a ‘‘partial di¤erence set’’ for a partially
transitive plane of type (3).

As usual in the study of any type of di¤erence set, it is convenient to use the
integral group ring ZG. Let us recall the necessary notation. For A ¼

P
agg A ZG
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and t A Z we write AðtÞ ¼
P

agg
t and ½A�g ¼ ag (the coe‰cient of g in A). For r A Z

we write r for the group ring element r � 1, and for SJG we write S instead ofP
g AS g, by a convenient abuse of notation. Also, the following simple observation

showing how to compute intersection sizes using ZG will be useful.

Lemma 3.1. Let G be a finite abelian group and consider two subsets A and B of G.
Then jAVBgj ¼ ½ABð�1Þ�g.

Using group ring notation, a neo-di¤erence set of order n may be defined to be a

subset D of a group G of order ðn� 1Þ2 with three pairwise disjoint subgroups X , Y ,
and Z of order n� 1 which satisfies the equation

DDð�1Þ ¼ nþ G � X � Y � Z ð3:1Þ

in ZG; thus every element g not in the union N of the three forbidden subgroups X, Y ,
and Z has a unique ‘‘di¤erence representation’’ g ¼ de�1 with d; e A D. In what fol-
lows, we shall only consider normal neo-di¤erence sets; that is, we assume that at
least two of the given subgroups, say X and Y , are normal, so that Lemma 2.2
applies. We begin by constructing a normal neo-di¤erence set from any finite pro-
jective plane in Lenz–Barlotti class at least I.3; for the convenience of the reader, we
shall sketch the standard argument needed.

Proposition 3.2. Let P be a finite projective plane of order n which is both ðy; oxÞ- and
ðx; oyÞ-transitive, where o, x, and y form a triangle, and define G, X , Y , and Z as in

Section 2. Then there exists a normal neo-di¤erence set of order n in G with respect to

the forbidden subgroups X, Y , and Z.

Proof. By Lemma 2.1, we may identify the image of the base point u under the col-
lineation ðx;cÞ A G ¼ X � Y with the group element ðx;cÞ. Now choose an ordinary
line D as base line. By the previous identification, we may consider D as an ðn� 2Þ-
subset of G; then the ordinary lines take the form Dg with g A G. Now one easily
checks that the number of lines of this form which join two given ordinary points
ðx1;c1Þ and ðx2;c2Þ is the number of di¤erence representations

ðx1;c1Þðx2;c2Þ
�1 ¼ ðd1; d2Þðe1; e2Þ�1

with ðd1; d2Þ; ðe1; e2Þ A D. As P is a projective plane, this number is always 1, unless
ðx1;c1Þ and ðx2;c2Þ are on a line passing through one of the points o, x, and y, in
which case it is 0. These lines are precisely the right cosets of the three forbidden
subgroups. Hence two points joined by a line passing through one of the points o, x,
and y have a di¤erence in one the three subgroups X , Y , and Z, and D is indeed a
normal neo-di¤erence set. r

Our next aim is to establish the converse of Proposition 3.2. Thus let D be a nor-
mal neo-di¤erence set of order n, as defined above. We now make some simplifying
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assumptions. First of all, as Y GX , it may be replaced by X . Then G ¼ X � X , the
three forbidden subgroups take the form

U1 ¼ X � f1g; U2 ¼ f1g � X ; U3 ¼ fðx; xÞ : x A Xg;

and equation (3.1) becomes

DDð�1Þ ¼ nþ G �U1 �U2 �U3: ð3:2Þ

At this point, we note a simple restriction basically due to Paige [20].

Lemma 3.3. The group X contains at most one involution.

Proof. Let g be an involution of G, and assume g B N ¼ U1 UU2 UU3. Then there is
a representation g ¼ de�1 with d; e A D. But this implies the second representation
g ¼ g�1 ¼ ed�1, a contradiction. Hence all involutions of G are contained in N. Now
let k and l be involutions of X . Then ðk; lÞ is an involution of G and thus lies in N,
forcing k ¼ l. r

We continue with our simplifying assumptions. Note that, for i ¼ 1; 2; 3, there is
exactly one coset of Ui which misses D, whereas every other coset intersects D

uniquely, as no element in N has a di¤erence representation from D. By replacing D

with a suitable translate, we may assume that both U1 and U2 miss D. Let us write
the unique coset of U3 missing D in the form U3ð1; yÞ with y A X ; we will later
determine the value of y if G is abelian. With these assumptions, we may write

D ¼
X

x AX nf1g
ðx; gðxÞÞ; ð3:3Þ

where g : X nf1g ! X nf1g is a bijection. Note that the element ðx; gðxÞÞ is in the

coset U3ð1; x�1gðxÞÞ, and therefore

D :¼ fx�1gðxÞ : x A Xg ¼ X nfyg: ð3:4Þ

We can now give an explicit description of the desired projective plane P ¼ PðDÞ in
terms of D, see Figure 2. For this, we choose an element 0 B X and embed X into the
semigroup X ¼ X U f0g, where 0x ¼ x0 ¼ 0 for all x A X , as well as a further symbol
y B X . The points of P are

. the n2 elements ðx;cÞ A G ¼ X � X ;

. n points ðxÞ, where x A X , and a point ðyÞ;

and the lines of P are

. ðn� 1Þ2 lines ½x;c� ¼ Dðx;cÞU fðx; 0Þ; ð0;cÞ; ðycx�1Þg with x;c A X ;
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. n lines ½U1c� ¼ fðx;cÞ : x A XgU fð0Þg, where c A X ;

. n lines ½U2x� ¼ fðx;cÞ : c A XgU fðyÞg, where x A X ;

. n� 1 lines ½U3c� ¼ fðx; xcÞ : x A XgU fðcÞg, where c A X ;

. a line ½y� ¼ fðxÞ : x A XgU ðyÞ.

The preceding construction is inspired on one hand by the work of Hughes, cf. [14,
pp. 660–662], with some simplifications made possible by the more special situation
we consider here, and on the other hand, by the neofield representation of planes of
type I.4 discussed in the previous section; it is also similar (but more involved) to the
presentation of planes with a quasiregular group of type (f ) as given by de Resmini
and the present authors [4].

Proposition 3.4. The incidence structure P ¼ PðDÞ defined above is a projective plane

of order n, and G acts on P as a collineation group of Lenz–Barlotti type at least I.3.

Proof. Clearly G acts on P by right translation. Let us put o ¼ ð0; 0Þ, x ¼ ð0Þ and
y ¼ ðyÞ and call points ðx;cÞ A X � X ordinary. Then the orbit structure of G on
points is as described in Section 2. As P has n2 þ nþ 1 points and n2 þ nþ 1 lines

Figure 2. The plane PðDÞ
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and as each line has nþ 1 points, it su‰ces to check that any two points p; q of P are
joined by at least one line. In several cases, this is trivial to see, namely if one of the
points is o ¼ ð0; 0Þ, x ¼ ð0Þ or y ¼ ðyÞ or if both points are of one of the forms
ðx; 0Þ, ð0;cÞ and ðxÞ. Thus we may assume that p is an ordinary point. Because of the
transitivity of G on such points, we may also assume p ¼ ð1; 1Þ. Then p is joined to
every point of the form ðx; 1Þ by the line ½U11�, to every point of the form ð1;cÞ by
the line ½U21�, and to every point of the form ðx; xÞ by the line ½U31�. If q is an ordi-
nary point which is not on one of these three lines, say q ¼ ðx;cÞ, then the ‘‘di¤er-
ence’’ ðx;cÞð1; 1Þ�1 determined by q and p is in GnN, and the argument given in the
proof of Proposition 3.2 shows that p and q are joined by a unique ordinary line, i.e.,
a line of the type ½a; b�, as D is a neo-di¤erence set. This leaves us with the case where
q is on a side of the triangle oxy. We now make use of the form of D given in equa-
tion (3.3) and note that the line ½x�1; gðxÞ�1� contains both p ¼ ð1; 1Þ and the points
ðx�1; 0Þ, ð0; gðxÞ�1Þ and ðygðxÞ�1xÞ. As g : X nf1g ! X nf1g is a bijection, we see that
p is joined to every point on ox except for ð1; 0Þ and to every point on oy except for
ð0; 1Þ by one of these lines. Moreover, p is also joined to every point on xy except
for ð1Þ, as the set of elements x�1gðxÞy�1 is X nf1g, by equation (3.4). But the three
exceptional points are taken care of by the lines ½Ui1� through p. Finally, it is trivial
to check that the elements in U1 and U2 act as homologies on P so that P is indeed
ðy; oxÞ- and ðx; oyÞ-transitive. r

The incidence structure D formed by the ordinary points and lines is what we
might call a triangular semiplane admitting G ¼ X � X as a Singer group. As we
have seen, P can be reconstructed uniquely from D. More generally, it is known that
a geometry which looks like a projective plane with a triangle removed actually is
such a structure provided that the order is at least 25, see Ralston [24].

Example 3.5. Let K be a finite nearfield of order n. Then the set

D ¼ fðx;cÞ A K � � K � : xþ c ¼ 1g

is a normal neo-di¤erence set of order n in G ¼ K � � K �, as it is easily checked
directly, using the axioms of a nearfield. This example is due to Hughes [14, pp.
656–657] and was re-discovered by Hiramine [10, Example 4.2.(iv)]. Note that D is
abelian if and only if K is actually a finite field. Accordingly, the projective plane
associated with D as in Proposition 3.4 is either a nearfield plane or desarguesian.
In this way, we obtain the known examples of planes admitting a group of Lenz–
Barlotti type at least I.3 discussed at the end of Section 2.

Propositions 3.2 and 3.4 together establish the first main result of this section:

Theorem 3.6. A finite projective planeP admits a collineation group G of Lenz–Barlotti

type at least I.3 if and only if it can be represented by a normal neo-di¤erence set.

Combining this with Theorem 2.4, we also have the following second main result:
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Theorem 3.7. Let P be a finite projective plane. Then the following assertions are

equivalent:

(a) P is in Lenz–Barlotti class at least I.4.

(b) P admits an abelian collineation group of Lenz–Barlotti type I.4.

(c) P admits a quasiregular collineation group of type (g).

(d) P can be represented by an abelian neo-di¤erence set.

We next note two interesting restrictions on the structure of abelian neo-di¤erence
sets for which a more direct proof (avoiding the use of the associated neofield) would
be desirable; unfortunately, this has eluded us.

Proposition 3.8. Let D be an abelian neo-di¤erence set of order n, as in equation (3.2).
Then D may be assumed to be symmetric with the inverse property, in the sense that

ðx;cÞ A D implies both ðc; xÞ A D and ðx�1; ex�1cÞ A D, where e is the unique involu-

tion in X if n is odd and e ¼ 1 otherwise, cf. Lemma 3.3.

Proof. By Proposition 3.4, D gives rise to a projective plane P in Lenz–Barlotti class
at least I.4 on which the underlying group G acts by right translation. If we coor-
dinatize P as in the proof of Proposition 3.2 and use ½1; 1� as base line, we recover D.
On the other hand, we may also coordinatize P using a neofield R, as discussed in
Section 3. Then the homology groups X and Y can be identified with the subgroups
R� � f1g and f1g � R� of R� � R� GGGX � X . Hence the coordinates of ordi-
nary points agree in both the neofield and the neo-di¤erence set setting, if we identify
X with R�. Now let us consider the a‰ne line

L ¼ ½�1; 1� ¼ fðr;�rþ 1Þ : r A Rg ¼ fðx;cÞ A R� R : xþ c ¼ 1g:

If we choose the line L as the base line in determining D (so we replace the original D
by a suitable translate, if necessary), the commutativity of the addition in R imme-
diately implies the symmetry of D.

Regarding the inverse property, we first note that 1þ ð�1Þ ¼ 0 in R implies
aþ ð�1Þa ¼ 0 and thus �a ¼ ð�1Þa for all a A R, as expected; in particular, ð�1Þ2 ¼
1. This shows—still identifying X with R�—that �1 is just the element e defined in
the assertion. Multiplying the equation xþ c ¼ 1 by x�1, we get 1þ x�1c ¼ x�1

which is equivalent to x�1 þ ex�1c ¼ 1. r

At a later point, we shall require a characterization of the elements of order 3. For
this, it is more convenient to rephrase the inverse property in terms of the function g

introduced in (3.3) as follows:

gðx�1Þ ¼ ex�1gðxÞ for all x A X : ð3:5Þ
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Corollary 3.9. Under the assumptions of Proposition 3.8, an element a A X has order 3
if and only if the following condition holds:

gðeaÞ ¼ ea2 and gðea2Þ ¼ ea: ð3:6Þ

Proof. First note that the two equations in (3.6) are equivalent by the symmetry of D.
Assuming that these equations hold, we compute

a2gðea2Þ ¼ a2ea ¼ aea2 ¼ agðeaÞ ¼ a2gðea�1Þ;

where the last equality follows by applying equation (3.5) to the element x ¼ ea. As g
is a bijection, we immediately conclude a2 ¼ a�1 so that a indeed has order 3. Con-
versely, let a be any element of order 3. Applying equation (3.5) to the element
x ¼ ea, we get the identity gðea2Þ ¼ a2gðeaÞ which allows us to obtain a ‘‘repeated
di¤erence’’ from D:

ðea; gðeaÞÞ � ðgðea2Þ; ea2Þ�1 ¼ ðeagðea2Þ�1; gðeaÞeaÞ

¼ ðea2gðeaÞ�1; gðea2Þea2Þ

¼ ðea2; gðea2ÞÞ � ðgðeaÞ; eaÞ:

As ea0 ea2, we conclude ðeagðea2Þ�1; gðeaÞeaÞ ¼ ð1; 1Þ, as desired. r

4 Ovals associated with abelian neo-di¤erence sets

In this section, we show that any finite plane associated with an abelian neo-di¤erence
set admits a system of ovals forming an interesting configuration. This is similar to
our work on ovals in planes admitting a quasiregular group of type (f ) in [4], where
the possibility of such an approach was mentioned but—in view of the technical
e¤ort needed—not considered interesting enough to be carried through. As we shall
see, some interesting consequences do emerge after all; also, we have all the machin-
ery needed ready by now.

Proposition 4.1. Let P be a projective plane of order n represented by a neo-di¤erence

set D in an abelian group G, as in Section 3, and let D have the form (3.3). Then the

ðn� 2Þ-sets Ag ¼ Dð�1Þg with g ¼ ða; bÞ A G are arcs in P, and the line ½x�2a; gðxÞ�2b�
is the tangent to Ag with ðx; gðxÞÞ�1g as the tangency point. Moreover, the ðn� 2Þ-arc
Ag may be extended to an oval of P, namely Og ¼ Ag U fð0; 0Þ; ð0Þ; ðyÞg. Finally, if n
is even, the nucleus of Og is the ordinary point g.

Proof. The proof uses standard arguments as in [4], and hence we will just give a
sketch. Clearly, no coset of one of the three forbidden subgroups Ui intersects a
translate of D in more than one point. Also, each set Dk intersects Ag ¼ Dð�1Þg at
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most twice, and one gets a unique point of intersection if and only if k ¼ d�2g. As a
line of P through one of the points o ¼ ð0; 0Þ, x ¼ ð0Þ, and y ¼ ðyÞ intersects Ag at
most once, Og is an oval. Finally, if n is even, all the tangents of Og have to be con-
current. For g ¼ ð1; 1Þ, the lines ½U11� and ½U21� do not meet Dð�1Þ and therefore are
tangents of Oð1;1Þ. But these two lines meet in the ordinary point ð1; 1Þ which has to
be the nucleus of Oð1;1Þ. Now the transitivity of G shows that g is the nucleus of Og in
general. r

We note two interesting consequences of Proposition 4.1. The first of these has
been proved by Kantor [17] in a di¤erent way, and the second one is the determina-
tion of the exceptional group element y defined in Section 3.

Corollary 4.2. Assume that n0 2 is even. Then n is a multiple of 4.

Proof. Note that D is disjoint from any translate of the form Dg with 10 g A N. For
such a g, the hyperovals completing Oð1;1Þ and Og intersect precisely in the three
special points ð0; 0Þ, ð0Þ and ðyÞ. But in a plane of order n1 2 ðmod 4Þ any two
hyperovals have to intersect in an even number of points; see, for instance, [16,
Lemma 3.3]. r

Proposition 4.3. Let D be a neo-di¤erence set of order n in an abelian group G ¼
X � X , as in (3.3), and assume that D misses the coset U3ð1; yÞ so that y satisfies

equation (3.4). Then y ¼ 1 provided that n is even; otherwise, y is the unique involution

in X.

Proof. We consider the oval O ¼ Oð1;1Þ. First let n be even. Then the nucleus of O is
the point ð1; 1Þ, by Proposition 4.1. Obviously, the line ½U3y� is the unique tangent of
O in the point ð0; 0Þ; therefore, the coset U3y has to contain ð1; 1Þ, and hence y ¼ 1.
From now on, let n be odd. Then y0 1, as the point ð1; 1Þ lies on the two tangents
½U11� and ½U21� and cannot be on a further tangent. Therefore D meets U3, and hence
O contains a (unique) point of the form ðx�1; x�1Þ, that is, g fixes a unique element
x0 A X . By Proposition 4.1, the line Lx ¼ ½x�2; gðxÞ�2� is the unique tangent of O in
the point ðx; gðxÞÞ, where x runs over X nf1g. By definition, Lx intersects ½y� ¼ xy in

the point ðygðxÞ�2
x2Þ. In particular, the tangent Lx0 intersects y in ðyÞ. But the tan-

gent ½U3y� also contains ðyÞ, and hence ðyÞ cannot be on any further tangent. Now
assume that y is not the unique involution t A X , so that t ¼ x�1gðxÞ for some x A X .
Then the corresponding tangent Lx intersects ½y� in ðygðxÞ�2x2Þ ¼ ðyt�2Þ ¼ ðyÞ and
we have found a third tangent through ðyÞ, a contradiction. r

Let us also mention the following constructive result which is immediate from
Proposition 4.1. In the special case P ¼ PGð2; nÞ, n odd, it reduces to a known
statement on conic sections, by the theorem of Segre [25].

Proposition 4.4. Let P be a projective plane of order n represented by a neo-di¤erence

set D in an abelian group G, as in Section 3. Then P contains a family O of ðn� 1Þ2
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ovals all of which contain the special triangle oxy and pairwise have at most one further

point of intersection.

Finally, the proof of Proposition 4.3 suggests a further interesting geometric appli-
cation. Recall that a projective triangle of side k in a plane of order n is a set B of
3ðk � 1Þ points with the following properties:

(a) B contains a distinguished triangle oxy.

(b) On each side of oxy, there are exactly k points of B.

(c) If the points q A ox and r A oy belong to B, then qrV xy also belongs to B.

We now show that planes with a group of type at least I.4 contain projective triangles
forming small blocking sets; see Hirschfeld [11, Chapter 13] for background.

Proposition 4.5. Let P be a projective plane of odd order n represented by a neo-

di¤erence set D in an abelian group G, as in Section 3. Let O denote the oval

Dð�1Þ U fo; x; yg, where o ¼ ð0; 0Þ, x ¼ ð0Þ, and y ¼ ðyÞ, and define B as the set of all

points which arise as the intersection of some side of oxy with some tangent of O. Then
B is a projective triangle of side 1

2 ðnþ 3Þ which is a minimal blocking set for P.

Proof. We use Proposition 4.3 and the facts observed in its proof. The line Lx meets
the x-axis ox in ðx�2; 0Þ, the y-axis oy in ð0; gðxÞ�2Þ, and the line at infinity xy in
ðygðxÞ�2x2Þ. Hence

B ¼ fo; x; ygU fðx; 0Þ : x A XjgU fð0;cÞ : c A XjgU fðyhÞ : h A Xjg;

where we write Xj for the set of squares in X . As X contains a unique involution by
Lemma 3.3, Xj has index 2 in X which shows that condition (b) above is satisfied.
Consider a point q ¼ ðx; 0Þ A ox and a point r ¼ ð0;cÞ A oy. Then qr is the line ½x;c�
and thus z ¼ qrV xy ¼ ðycx�1Þ. Hence q; r A B implies z A B, and B is indeed a pro-
jective triangle. On the other hand, if the line L ¼ ½x;c� intersects neither ox nor oy in
a point of B, then both x and c must be non-squares. As Xj has index 2 in X , we see
that ycx�1 is then also a non-square. Thus L intersects xy in a point of B, so that B is
indeed a blocking set which is obviously minimal. r

In the special case of desarguesian planes of odd order, the existence of projective
triangles is well-known. But the proof and the geometric description provided above
are new even in this case. More precisely, we obtain the following synthetic con-
struction for projective triangles:

Corollary 4.6. Let C be a conic in P ¼ PGð2; qÞ, where q is odd. Choose a triangle oxy

contained in C, and let B be the set of all points arising as the intersection of some side

of oxy with some tangent of C. Then B is a projective triangle of side 1
2 ðqþ 3Þ which is

a minimal blocking set for P.
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5 Nonexistence results

In this section, we establish some nonexistence results for abelian neo-di¤erence sets,
both old and new; our proofs are di¤erent from previous ones, as they do not make
use of the associated neofield. These methods do not apply to the non-abelian case;
for this reason, we refer the reader to the literature as far as nonexistence results for
planes with a group of Lenz–Barlotti type I.3 are concerned, see e.g. Kantor [17] and
Yaqub [29]. We begin with a structural restriction due to Paige [20], Hughes [13] and
Kantor [17].

Theorem 5.1. Let D be an abelian neo-di¤erence set in G ¼ X � X . Then X has cyclic

Sylow 2- and 3-subgroups.

Proof. The Sylow 2-subgroup of X is cyclic by Lemma 3.3. Now let a; b A X be ele-
ments of order 3. By Corollary 3.9, we have

gðeaÞ ¼ ea2; gðea2Þ ¼ ea; gðebÞ ¼ eb2; gðeb2Þ ¼ eb:

Using this, we obtain a ‘‘repeated di¤erence’’ from D:

ðea; ea2Þ � ðeb; eb2Þ�1 ¼ ðab2; ba2Þ ¼ ðeb2; ebÞ � ðea2; eaÞ�1;

and therefore b A fa; a2g. Thus X indeed contains at most one subgroup of order 3.
r

Next we consider multipliers. As usual in the theory of di¤erence sets, we shall
define a multiplier of an abelian neo-di¤erence set D of order n as an automorphism a

of the underlying group G inducing a collineation of the associated projective plane

P. A multiplier of the special form a : x 7! tx for some integer t with ðt; ðn� 1Þ2Þ ¼ 1
is called a numerical multiplier; by abuse of language, t itself is also said to be a
multiplier. It is clear that a A AutG is a multiplier if and only if aðDÞ ¼ Dg for some
g A G.

All of the following results parallel corresponding statements for planar and a‰ne
di¤erence sets, cf. [7], and therefore we have named some of them correspondingly.
For instance, the proof of [2, Lemma VI.2.5] carries over to establish the following
simple fact.

Lemma 5.2. Let D be an abelian neo-di¤erence set in G. Then there is an element g A G

such that Dg is fixed by every multiplier.

We now prove a multiplier theorem first established by Hughes [13] using neo-
fields. Hughes’s original proof needed several pages and was rather technical and not
very illuminating. In analogy to the cases of planar and a‰ne di¤erence sets dis-
cussed in [7], we provide a new proof which is much shorter and also more trans-
parent.
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Theorem 5.3 (Multiplier theorem). If D is an abelian neo-di¤erence set of order n, then
every prime divisor p of n is a multiplier of D. More precisely, we may assume

D ¼ DðpÞ in ZG for every prime p dividing n.

Proof. We use the integral group ring ZG and assume w.l.o.g. that D satisfies equa-
tion (3.2) and has the form (3.3). We first note the following auxiliary equations:

DG ¼ ðn� 2ÞG; DU1 ¼ G �U1; DU2 ¼ G �U2 and DU3 ¼ G �U3y;

where y is as in equation (3.4) and has been determined explicitly in Proposition 4.3.
We now claim

jDðpÞ VDgjd 1 for all g A GnN; ð5:1Þ

where N ¼ U1 UU2 UU3; trivially, this follows from the congruence

jDðpÞ VDgj1 1 mod p for all g A GnN ð5:2Þ

which we will prove using Lemma 3.1. Thus we evaluate the group ring element
DðpÞDð�1Þ modulo p. Using the hypothesis p j n, equation (3.2), the auxiliary equa-
tions above and the well-known fact

Dp 1DðpÞ mod p for D A ZG ð5:3Þ

which follows from the multinomial theorem, see [2, Lemma VI.3.7], we compute in
ZpG as follows:

DðpÞDð�1Þ ¼ DpDð�1Þ ¼ Dp�1ðDDð�1ÞÞ

¼ Dp�1ðG �U1 �U2 �U3Þ

¼ Dp�2ð�2G � ðU1 � GÞ � ðU2 � GÞ � ðU3y� GÞÞ

¼ Dp�2ðG �U1 �U2 �U3yÞ

¼ � � �

¼ G �U1 �U2 �U3y
p�1 ¼ G �U1 �U2 �U3:

This implies the desired congruence (5.2) and therefore (5.1). Up to now, we have
established that all lines ½x;c� with g ¼ ðx;cÞ B N meet the set DðpÞ. Now we note
that all lines ½x; 1� contain the point ð0; 1Þ, all lines ½1;c� contain the point ð1; 0Þ, and
all lines ½x; x� contain the point ðyÞ. Hence all ordinary lines meet the set L ¼
DðpÞ U fð0; 1Þ; ð1; 0Þ; ðyÞg. Moreover, each of the three lines ½U11�, ½U21� and ½U3y�
contains one of the points ð0; 1Þ, ð1; 0Þ and ðyÞ; for all other cosets of one of the three
forbidden subgroups, the corresponding line ½Uix� intersects D and hence also DðpÞ.
Thus L has nþ 1 points and meets every line of P. Therefore, L is itself a line of P,
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by a well-known result due to Lander, see [2, Lemma VI.4.2]. Obviously, this means
L ¼ ½1; 1� and hence D ¼ DðpÞ. r

As the next five results show, multipliers of even order are of particular impor-
tance. These results are essentially due to Kantor [17] who used the language of
neofields; thus our proofs will be rather di¤erent. The key result is the following
characterization of multipliers of order 2; the geometric argument we give was
inspired by the proof of the analogous statement for planar abelian di¤erence sets
due to Blokhuis, Brouwer and Wilbrink [3].

Theorem 5.4. Let D be an abelian neo-di¤erence set of order n in G. If D admits a

multiplier t of order 2, then n is a perfect square, say n ¼ m2, and necessarily t ¼ m.

Proof. Let t be any multiplier of order 2 of D, and denote the induced collineation of
the associated projective plane P described in §3 by p. Then p is an involution whose
set of fixed points contains the quadrangle oxyu, where u ¼ ð1; 1Þ. Thus p is a Baer
involution, that is, the fixed elements of p form a Baer subplane P0; see Hughes and
Piper [15]. In particular, n must be a square, say n ¼ m2. We now define subgroups A
and B of X as follows:

A ¼ fx A X : x t ¼ x�1g and B ¼ fx A X : x t ¼ xg:

Then the mappings a and b defined by xa ¼ x1�t and xb ¼ x1þt are homomorphisms
from X to A and B, respectively, and xaxb ¼ x2 for each x A X ; thus AB ¼ Xj is the
set of squares in X and therefore a subgroup of index at most 2, by Lemma 3.3. As
the ordinary points of P0 are simply the pairs ðx;cÞ with x;c A B, we see that B is the
unique subgroup of order m� 1 of X . It now follows from AB ¼ Xj that A must be
the unique subgroup of order mþ 1 of X . (If m is even, AVB ¼ q, and otherwise
AVB ¼ f1; eg, where e is the unique involution in X .) Therefore any multiplier of
order 2 leads to the same subgroups A and B and acts on them in the same way as t
does. In particular, this holds for the multiplier m of order 2 whose existence is guar-
anteed by Theorem 5.3. So the collineations induced by t and m agree on all ordinary
points ðx;cÞ with x;c A Xj, and hence tm�1 must be the identity, proving t ¼ m.

r

Corollary 5.5. Let D be an abelian neo-di¤erence set in G. Then the multiplier group of

D has a cyclic Sylow 2-subgroup.

Corollary 5.6. Let D be an abelian neo-di¤erence set of square order n in G, say
n ¼ m2. Then there also exists an abelian neo-di¤erence set of order m.

Proof. By Theorem 5.3, D is fixed by the multiplier m of order 2. Hence, using the
notation of the proof of Theorem 5.4, D belongs to the Baer subplane P0 formed
by the fixed elements of the collineation p induced by m. Thus DVB is an ðm� 1Þ-
subset of B� B which is easily seen to be a sub-neo-di¤erence set of D. r
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As a consequence of Theorem 5.4, we obtain some useful restrictions:

Theorem 5.7 (Mann test). Let D be an abelian neo-di¤erence set of order n in G ¼
X � X . Then either n is a square or every multiplier of D has odd order modulo expG.
In particular, each of the following conditions implies that n is a square:

(a) D has a multiplier which has even order modulo q, where q divides n� 1 and either

q ¼ 4 or q is an odd prime;

(b) p is a quadratic non-residue modulo q, where p and q are prime divisors of n and of

n� 1, respectively;

(c) n1 4 or 6 ðmod8Þ;

(d) tp f 1�1 ðmod qÞ for some prime p dividing n, a suitable non-negative integer f

and some multiplier t of D, where q divides n� 1 and either q ¼ 4 or q is an odd

prime;

(e) ðtþ 1; n� 1Þd 3 for some multiplier t of D.

Proof. If t has even order, a suitable power of t has order 2, and thus the first asser-
tion is an immediate consequence of Theorem 5.4. Any multiplier which has even
order mod q also has even order modulo the exponent v� of G; this establishes (a).
Then (b) follows from the observation that every quadratic non-residue has even
order modulo q. Now assume n1 4 or 6 ðmod 8Þ; then n is even and n� 11 3 or
5 ðmod 8Þ. Therefore 2 is a quadratic non-residue modulo n� 1, and thus there exists
a prime divisor q of n� 1 such that 2 is also a quadratic non-residue modulo q. We
may now choose p ¼ 2 to see that (c) is just a special case of (b). As for (d), tp f is a
multiplier that clearly has even order mod q; this is clear if q is an odd prime, and
follows for q ¼ 4, as the Sylow 2-subgroup of X is cyclic. Thus (d) is a special case of
(a). Finally, (e) is contained in (d), as ðtþ 1; n� 1Þ either is a multiple of 4 or has an
odd prime divisor. r

We mention two examples which show how the Mann test may be applied; further
results in the same spirit can be found in Kantor’s paper [17].

Example 5.8. Assume the existence of an abelian neo-di¤erence set of order n1 9
ðmod 12Þ. Then t ¼ 3 is a multiplier for which tþ 1 divides n� 1, and thus n is a
square, by criterion (e).

Corollary 5.9. Let D be an abelian neo-di¤erence set of even order n. Then n ¼ 2,
n ¼ 4, or n is a multiple of 8.

Proof. Assume n0 2. Then n is a multiple of 4, by Corollary 4.2. Now assume
n1 4 ðmod 8Þ. Then n is a perfect square by Theorem 5.7, say n ¼ m2. By Corollary
5.6, there also exists an abelian neo-di¤erence set of order m. As m is even and not a
multiple of 4, we conclude m ¼ 2, by another application of Corollary 4.2. Thus n is
divisible by 8 whenever n0 2 or 4. r
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We also mention a simple nonexistence result due to Pankin [21] which should be
compared to criterion (d) of Theorem 5.7.

Proposition 5.10. No abelian neo-di¤erence set of order n > 4 has �1 as a multiplier.
In particular, there is no abelian neo-di¤erence set of order n > 4 if n has a divisor p

such that pa 1�1 ðmod n� 1Þ for some a.

Proof. Clearly �1 would be a multiplier of order 2, and thus �11
ffiffiffi
n

p
ðmod n� 1Þ

by Theorem 5.4, which is impossible for n > 4. Then the second assertion follows
using Theorem 5.3. r

The following simple but important observation was already used by Hughes [12],
[13], though the first explicit statement seems to occur in Kantor’s paper [17].

Lemma 5.11. If t1; t2; t3; t4 are multipliers of an abelian neo-di¤erence set of order n

with t1 � t2 1 t3 � t4 ðmod expGÞ, then expG divides the least common multiple of

t1 � t2 and t1 � t3.

Proof. By Lemma 5.2, we may assume that D is fixed by all numerical multipliers.
Therefore d A D implies tid A D for i ¼ 1; . . . ; 4. By hypothesis, t1d� t2d ¼ t3d� t4d

which can only hold if t1d ¼ t2d or t1d ¼ t3d. Thus the order of every element of D
divides the least common multiple of t1 � t2 and t1 � t3; as D generates G, we obtain
the assertion. r

Together with Theorem 5.3, this leads to the following result which strengthens the
work of Hughes [13, Theorem III.3] and gives strong restrictions on the possible
orders of abelian neo-di¤erence sets.

Theorem 5.12. There is no abelian neo-di¤erence set whose order is divisible by any of

the following pairs of primes: ð2; 3Þ, ð2; 5Þ, ð2; 7Þ, ð2; 11Þ, ð2; 13Þ, ð2; 17Þ, ð2; 19Þ,
ð2; 31Þ, ð3; 5Þ, ð3; 7Þ, ð3; 11Þ, ð3; 13Þ, ð3; 17Þ, ð3; 19Þ, ð5; 7Þ, ð5; 11Þ, ð5; 13Þ, ð7; 13Þ.

Proof. The proof always rests on finding a ‘‘repeated di¤erence’’ and applying
Lemma 5.11. We shall illustrate this by considering those cases which are not con-
tained in Hughes’ paper. First, let us assume that n is a multiple of 65 ¼ 5 � 13; then 5
and 13 and therefore also 25 are multipliers. Now 25� 13 ¼ 13� 1 ¼ 12, and thus
the exponent of G divides 12, by Lemma 5.11. Now Theorem 5.1 implies that G is
cyclic, and hence n� 1 divides 12, which is absurd. The case where n is a multiple of
91 is handled analogously. Next, assume that n is a multiple of 34; then 2 and 17 are
multipliers. Now 17� 16 ¼ 2� 1 ¼ 1, and thus the exponent of G divides 15, by
Lemma 5.11. Note that at least one of the primes 3 and 5 divides n� 1. As p ¼ 2 has
even order modulo q for both q ¼ 3 and q ¼ 5, Theorem 5.7 shows that n has to be a
square. By Corollary 5.6, we get the existence of an abelian neo-di¤erence set of
order m ¼

ffiffiffi
n

p
. Clearly, m is again a multiple of 34, and so this argument may be
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continued ad infinitum, which gives the desired contradiction. The cases where n is a
multiple of 38 or 62 are excluded similarly. r

The above results have been used together with the aid of a computer to show
that every abelian neo-di¤erence set of order c1,000 has prime power order, see
[22]; it should be easy enough to extend this range considerably. Of course, it is
conjectured that n is necessarily a prime power. Some further restrictions are due to
Tanenbaum [27], Hughes [12] and Pankin [21]. As we do not have new proofs for
the results in question, we will not state them here and refer to the original papers
instead.
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