A four-class association scheme derived from a hyperbolic quadric in $\operatorname{PG}(3, q)$

Tatsuya Fujisaki
(Communicated by E. Bannai)

Abstract

We prove the existence of a four-class association scheme on the set of external lines with respect to a hyperbolic quadric of $\operatorname{PG}(3, q)$ where $q \geqslant 4$ is a power of 2 . This result is an analogue of the one by Ebert, Egner, Hollmann and Xiang. Taking a quotient of this association scheme yields a strongly regular graph of Latin square type. We show that this strongly regular graph can also be obtained by a generalization of the construction given by Mathon.

1 Introduction

In the paper [5], Ebert, Egner, Hollmann and Xiang constructed a four-class symmetric association scheme by using the set of secant lines with respect to an ovoid \mathcal{O} of $\operatorname{PG}(3, q)$ for $q \geqslant 4$ a power of 2 . We can regard this association scheme as defined on the set of external lines by taking the null polarity with respect to \mathcal{O}. In this paper, we consider an analogous construction by a hyperbolic quadric. We construct a fourclass symmetric association scheme by using the set of external lines with respect to a hyperbolic quadric of $\operatorname{PG}(3, q)$. Each relation is invariant under the action of the orthogonal group $O^{+}(4, q)$ but the set of relations is not the set of orbitals on the set of external lines. Indeed, there are more orbitals than relations. Moreover, a quotient of this association scheme forms a strongly regular graph of Latin square type. We also prove that this strongly regular graph is isomorphic to the one constructed from a direct product of a pseudo-cyclic symmetric association scheme defined by the action of $\mathrm{SL}(2, q)$ on the right cosets $\mathrm{SL}(2, q) / O^{-}(2, q)$, which is a generalization of the construction given by Mathon [10]. This isomorphism is obtained by an isomorphism between $\operatorname{SL}(2, q)^{2}$ and $\Omega^{+}(4, q)$.

2 Association schemes, strongly regular graphs and projective spaces

Let X be a finite set and let $\left\{R_{i}\right\}_{0 \leqslant i \leqslant d}$ be relations on X, that is, subsets of $X \times X$. Then $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leqslant i \leqslant d}\right)$ is called a d-class symmetric association scheme if the following conditions are satisfied.

1. $\left\{R_{i}\right\}_{0 \leqslant i \leqslant d}$ is a partition of $X \times X$.
2. R_{0} is diagonal, that is, $R_{0}=\{(x, x) \mid x \in X\}$.
3. $\left\{(y, x) \mid(x, y) \in R_{i}\right\}=R_{i}$ for any i.
4. For any $i, j, k \in\{0,1, \ldots, d\}, p_{i j}^{k}:=\left|\left\{z \in X \mid(x, z) \in R_{i},(y, z) \in R_{j}\right\}\right|$ is independent of the choice of (x, y) in R_{k}.
For $i \in\{0, \ldots, d\}$, let A_{i} be the adjacency matrix of the relation R_{i}, that is, A_{i} is indexed by X and

$$
\left(A_{i}\right)_{x y}:= \begin{cases}1 & \text { if }(x, y) \in R_{i}, \\ 0 & \text { if }(x, y) \notin R_{i} .\end{cases}
$$

Then we have

$$
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k}
$$

for any $i, j \in\{0, \ldots, d\}$. So $A_{0}, A_{1}, \ldots, A_{d}$ form a basis of the commutative algebra generated by $A_{0}, A_{1}, \ldots, A_{d}$ over the complex field (which is called the Bose-Mesner algebra of $\mathfrak{X})$. Moreover this algebra has a unique basis $E_{0}, E_{1}, \ldots, E_{d}$ of primitive idempotents. One of the primitive idempotents is $|X|^{-1} J$ where J is the matrix whose entries are all 1 . So we may assume $E_{0}=|X|^{-1} J$. Let $P=\left(p_{j}(i)\right)_{0 \leqslant i, j \leqslant d}$ be the matrix defined by

$$
\left(A_{0} \quad A_{1} \ldots A_{d}\right)=\left(\begin{array}{ll}
E_{0} & E_{1} \ldots E_{d}
\end{array}\right) P .
$$

We call P the first eigenmatrix of \mathfrak{X}. Note that $\left\{p_{j}(i) \mid 0 \leqslant i \leqslant d\right\}$ is the set of eigenvalues of A_{j}. The first eigenmatrix satisfies the orthogonality relation:

$$
\sum_{v=0}^{d} \frac{1}{k_{v}} p_{v}(i) p_{v}(j)=\frac{|X|}{m_{i}} \delta_{i j},
$$

where $k_{i}=p_{i i}^{0}$ and $m_{i}=\operatorname{rank} E_{i}$. We say that \mathfrak{X} is pseudo-cyclic if there exists an integer m such that rank $E_{i}=m$ for all $i \in\{1, \ldots, d\}$. Note that in this case, $|X|=$ $d m+1$ and $k_{i}=p_{i i}^{0}=m$ for all $i \in\{1, \ldots, d\}$ (see [1, p. 76]).

Let G be a finite group and K be a subgroup of G. Then G acts naturally on the set $G / K \times G / K$ with orbitals $R_{0}, R_{1}, \ldots, R_{d}$, where we let $R_{0}=\{(g K, g K) \mid g K \in G / K\}$. If all orbitals are self-paired, then $\mathfrak{X}=\left(G / K,\left\{R_{i}\right\}_{0 \leqslant i \leqslant d}\right)$ forms a symmetric association scheme. We denote this association scheme by $\mathfrak{X}(G, K)$.

For a strongly regular graph with parameters (n, k, λ, μ), one of the eigenvalues of its adjacency matrix is k, and the others θ_{1}, θ_{2} are the solutions of $x^{2}+(\mu-\lambda) x+$ $(\mu-k)=0$. We can identify the pair of a strongly regular graph and its complement with a two-class symmetric association scheme whose first eigenmatrix is

$$
\left[\begin{array}{ccc}
1 & k & n-k-1 \tag{1}\\
1 & \theta_{1} & -1-\theta_{1} \\
1 & \theta_{2} & -1-\theta_{2}
\end{array}\right]
$$

In the paper [10], Mathon constructed a strongly regular graph from the pseudocyclic symmetric association scheme $\mathfrak{X}\left(\mathrm{SL}(2,8), O^{-}(2,8)\right)$. The next lemma is a generalization of this construction, due to Brouwer and Mathon [2]. Godsil [7] remarks that it can also be proved by Koppinen's identity [9] (see also [6, Theorem 2.4.1]).

Lemma 2.1. Let $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leqslant i \leqslant d}\right)$ be a pseudo-cyclic symmetric association scheme on dm +1 points. Then the graph $\Delta(\mathfrak{X})$ whose vertex set is $X \times X$, where two distinct vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are adjacent if and only if $\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in R_{i}$ for some $i \neq 0$, is a strongly regular graph of Latin square type with parameters

$$
\left(|X|^{2}, m(|X|-1),|X|+m(m-3), m(m-1)\right)
$$

Proof. The direct product of \mathfrak{X} is $\left(X \times X,\left\{R_{i j}\right\}_{0 \leqslant i, j \leqslant d}\right)$, where

$$
R_{i j}:=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\left(x, x^{\prime}\right) \in R_{i},\left(y, y^{\prime}\right) \in R_{j}\right\} .
$$

If P is the first eigenmatrix of \mathfrak{X}, then $P \otimes P$ is the first eigenmatrix of $(X \times X$, $\left.\left\{R_{i j}\right\}_{0 \leqslant i, j \leqslant d}\right)$. The edge set of $\Delta(\mathfrak{X})$ is defined to be $\bigcup_{j=1}^{d} R_{j j}$. Then the eigenvalues of the adjacency matrix of $\Delta(\mathfrak{X})$ are

$$
\left\{\sum_{j=1}^{d} p_{j}(i) p_{j}\left(i^{\prime}\right) \mid 0 \leqslant i, i^{\prime} \leqslant d\right\}
$$

Since \mathfrak{X} is psuedo-cyclic, $k_{0}=m_{0}=1, k_{j}=m_{i}=m$ for $i, j \neq 0$. Hence the orthogonality relation implies

$$
\sum_{j=1}^{d} p_{j}(i) p_{j}\left(i^{\prime}\right)=\frac{m|X|}{m_{i}} \delta i i^{\prime}-m= \begin{cases}m(|X|-1) & \text { if } i=i^{\prime}=0 \\ |X|-m & \text { if } i=i^{\prime} \neq 0 \\ -m & \text { if } i \neq i^{\prime}\end{cases}
$$

Therefore $\Delta(\mathfrak{X})$ has three eigenvalues. This implies that $\Delta(\mathfrak{X})$ is strongly regular. The parameters of $\Delta(\mathfrak{X})$ can easily be calculated.

In Lemma 2.1, if $\mathfrak{X}=\mathfrak{X}(G, K)$ for some finite group G and its subgroup K, then $\Delta(\mathfrak{X})$ has the following geometric interpretation.

Lemma 2.2. Suppose that a finite group G and its subgroup K form a pseudo-cyclic symmetric association scheme $\mathfrak{X}=\mathfrak{X}(G, K)$. Then the graph $\Delta(\mathfrak{X})$ of Lemma 2.1 is isomorphic to the collinearity graph of the coset geometry $\left(G^{2} / K^{2}, G^{2} / D(G), *\right)$ where $D(G):=\{(x, x) \mid x \in G\}$ and for $x_{1}, x_{2}, y_{1}, y_{2} \in G,\left(x_{1}, x_{2}\right) K^{2} *\left(y_{1}, y_{2}\right) D(G)$ if and only if $\left(x_{1}, x_{2}\right) K^{2} \cap\left(y_{1}, y_{2}\right) D(G)=\varnothing$.

Proof. Since each relation of $\mathfrak{X}(G, K)$ is an orbital of the action of G on $G / K \times G / K$, two pairs $\left(x_{1} K, y_{1} K\right),\left(x_{2} K, y_{2} K\right)$ are adjacent in the graph $\Delta(\mathfrak{X}(G, K))$ if and only if there exists $w \in G$ such that $y_{1} K=w x_{1} K, y_{2} K=w x_{2} K$. On the other hand, two pairs $\left(x_{1}, y_{1}\right) K^{2},\left(x_{2}, y_{2}\right) K^{2}$ are adjacent in the collinearity graph of $\left(G^{2} / K^{2}, G^{2} / D(G), *\right)$ if and only if $\left(x_{1}^{-1} x_{2}, y_{1}^{-1} y_{2}\right)$ is in $K^{2} D(G) K^{2}$ (cf. [4, p. 15]).

For $x_{1}, x_{2}, y_{1}, y_{2} \in G$,

$$
\begin{aligned}
\left(x_{1}^{-1} x_{2}, y_{1}^{-1} y_{2}\right) \in K^{2} D(G) K^{2} & \Leftrightarrow x_{1}^{-1} x_{2}, y_{1}^{-1} y_{2} \in K w K \text { for some } w \in G \\
& \Leftrightarrow x_{1}^{-1} x_{2} \in K y_{1}^{-1} y_{2} K \\
& \Leftrightarrow y_{1} k x_{1}^{-1}=y_{2} k^{\prime} x_{2}^{-1} \text { for some } k, k^{\prime} \in K \\
& \Leftrightarrow y_{1} \in w x_{1} K, y_{2} \in w x_{2} K \text { for some } w \in G
\end{aligned}
$$

Hence the mapping $G / K \times G / K \ni(x K, y K) \mapsto(x, y) K^{2} \in G^{2} / K^{2}$ is an isomorphism between the above two graphs.

For the rest of this section, we recall some terminology on finite projective spaces. In this paper, let q be a power of 2 and let $\operatorname{PG}(3, q)$ be the three-dimensional projective space over $\operatorname{GF}(q)$. For a non-degenerate quadratic form Q on $\operatorname{GF}(q)^{4}$, we say that a point $p=\langle v\rangle$ is singular if $Q(v)=0$, and we call the set of singular points a quadric. For a set of points X, we say that a line l is external (respectively secant) to the set X if the number of points in $l \cap X$ is 0 (respectively 2).

It is well known that there are two types of non-degenerate quadratic forms on $\mathrm{GF}(q)^{4}$, which are called elliptic type or hyperbolic type. For a point p, denote by p^{\perp} the orthogonal complement of p with respect to the symmetric bilinear form obtained from Q. Define for a line l or a plane $\pi, l^{\perp}:=\bigcap_{p \in l} p^{\perp}, \pi^{\perp}:=\bigcap_{p \in \pi} p^{\perp}$.

For a hyperbolic quadric in $\operatorname{PG}(3, q)$, since q is even, the polarity \perp is a null polarity, that is, if p is a point, then $p \in p^{\perp}$. More precisely, if p is on the hyperbolic quadric, then p^{\perp} is the plane determined by the two generators of the quadric through p. If p is not on the quadric, then through p there are $q+1$ tangent lines to the quadric and these $q+1$ lines are coplanar. The plane determined by these $q+1$ tangent lines is p^{\perp}. For a line l, we have $l^{\perp}=\left\{\pi^{\perp} \mid l \subseteq \pi\right\}$. If l is external, then since every plane π containing l satisfies the point π^{\perp} is nonsingular and not on l, the line l^{\perp} is also external to the quadric and skew to l. On the other hand, for an external line l to an ovoid, the line l^{\perp} is skew to l and secant to the ovoid (see [8, pp. 24-26]).

A canonical form of the quadratic form of hyperbolic type is

$$
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}+x_{2} x_{3} .
$$

Denote by $\Omega^{+}(4, q)$ the commutator group of the orthogonal group defined from the above Q.

3 Main results

A four-class symmetric association scheme on the set of secant lines with respect to any ovoid was constructed:

Theorem 3.1 ([5]). Let $q=2^{f} \geqslant 4$. Then the following relations on the set of secant lines of $\mathrm{PG}(3, q)$ with respect to an ovoid

$$
\begin{aligned}
& R_{1}=\{(l, m) \mid l \cap m \text { is a singular point }\} \\
& R_{2}=\{(l, m) \mid l \cap m \text { is a nonsingular point }\} \\
& R_{3}=\left\{(l, m) \mid l^{\perp} \cap m \neq \varnothing\right\} \\
& R_{4}=\left\{(l, m) \mid l \cap m=\varnothing, l^{\perp} \cap m=\varnothing\right\}
\end{aligned}
$$

and the diagonal relation R_{0} define a four-class symmetric association scheme.
We can regard the above association scheme as defined on the set of external lines. The relations R_{1}, R_{2}, R_{3} and R_{4} correspond to the following relations on the set of external lines

$$
\begin{aligned}
& \left\{(l, m) \mid\langle l, m\rangle^{\perp} \text { is a singular point }\right\} \\
& \left\{(l, m) \mid\langle l, m\rangle^{\perp} \text { is a nonsingular point }\right\} \\
& \left\{(l, m) \mid l^{\perp} \cap m \neq \varnothing\right\} \\
& \left\{(l, m) \mid l \cap m=\varnothing, l^{\perp} \cap m=\varnothing\right\},
\end{aligned}
$$

respectively.
In the paper [5], a plane π is called tangent if its orthogonal complement is a singular point.

For a hyperbolic quadric, we can construct a four-class symmetric association scheme similar to the above one. Let \mathbf{L} be the set of external lines with respect to a hyperbolic quadric in $\operatorname{PG}(3, q)$.

Theorem 3.2. Let $q=2^{f} \geqslant 4$. Then the following relations on the set \mathbf{L} of external lines of $\mathrm{PG}(3, q)$ with respect to a hyperbolic quadric

$$
\begin{aligned}
& R_{1}=\{(l, m) \mid l \cap m \text { is a point }\} \\
& R_{2}=\left\{(l, m) \mid m=l^{\perp}\right\} \\
& R_{3}=\left\{(l, m) \mid l^{\perp} \cap m \text { is a point }\right\} \\
& R_{4}=\left\{(l, m) \mid l \cap m=\varnothing, l^{\perp} \cap m=\varnothing\right\}
\end{aligned}
$$

and the diagonal relation R_{0} define a four-class symmetric association scheme.
Moreover we can construct a strongly regular graph from this symmetric association scheme by taking a quotient.

Theorem 3.3. Let $\Gamma=\Gamma_{q}\left(q=2^{f} \geqslant 4\right)$ be the graph with vertex set $\left\{\left\{l, l^{\perp}\right\} \mid l \in \mathbf{L}\right\}$, where two distinct vertices of $\Gamma,\left\{l, l^{\perp}\right\},\left\{m, m^{\perp}\right\}$ are adjacent if and only if $l \cap m \neq \varnothing$ or $l \cap m^{\perp} \neq \varnothing$. Then Γ is a strongly regular graph of Latin square type with parameters

$$
v=\frac{1}{4} q^{2}(q-1)^{2}, \quad k=\frac{1}{2}(q-2)(q+1)^{2}, \quad \lambda=\frac{1}{2}\left(3 q^{2}-3 q-4\right), \quad \mu=q(q+1) .
$$

Note that $l \cap m \neq \varnothing$ is equivalent to $l^{\perp} \cap m^{\perp} \neq \varnothing$, and $l \cap m^{\perp} \neq \varnothing$ is equivalent to $l^{\perp} \cap m \neq \varnothing$. So the adjacency in Γ is well-defined.

4 Proof of Theorem 3.2

To prove Theorem 3.2, we recall some facts about $\mathrm{PG}(3, q)$ with a hyperbolic quadric from Hirschfeld’s book [8, §15-III]. From now on, put $q=2^{f} \geqslant 4$. Let Π be the set of planes whose orthogonal complement is a nonsingular point.

Proposition 4.1. For a hyperbolic quadric in $\operatorname{PG}(3, q)$, the following statements hold.
(i) A plane containing an external line is in Π.
(ii) The number of external lines is $q^{2}(q-1)^{2} / 2$ and there are $q+1$ planes of Π containing a given external line.
(iii) The number of planes in Π is $q\left(q^{2}-1\right)$ and there are $q(q-1) / 2$ external lines in a given plane of Π.
(iv) For $\pi \in \Pi$, there is no external line through π^{\perp} on π. For a nonsingular point p of π distinct from π^{\perp}, there are $q / 2$ external lines through p on π.
(v) There are $q(q-1) / 2$ external lines through a given nonsingular point.
(Remark: when q is an odd prime power, (i), (ii), (iii) and (v) also hold. For a plane π of Π, π^{\perp} is not in π.)

First we show that the relations R_{0}, \ldots, R_{4} form a partition of $\mathbf{L} \times \mathbf{L}$. It is clear that any pair (l, m) of $\mathbf{L} \times \mathbf{L}$ is in one of $\left\{R_{i}\right\}_{0 \leqslant i \leqslant 4}$. Since any external line l is skew to l^{\perp}, R_{1} and R_{2} have no intersection. Suppose that $l, m \in \mathbf{L}$ satisfy that l meets m. Then the point $\langle l, m\rangle^{\perp}$ is on l^{\perp}, so m is skew to l^{\perp} by Proposition 4.1 (iv). Hence R_{1} and R_{3} have no intersection. Therefore $\left\{R_{i}\right\}_{0 \leqslant i \leqslant 4}$ is a partition of $\mathbf{L} \times \mathbf{L}$.

Next we show that each relation is symmetric. It is clear that R_{1}, R_{2} and R_{4} are symmetric. If $(l, m) \in R_{3}$, then $\left\langle l^{\perp}, m\right\rangle$ forms a plane and $\left\langle l^{\perp}, m\right\rangle^{\perp}=l \cap m^{\perp}$, hence $(m, l) \in R_{3}$. Therefore R_{3} is also symmetric.

Finally we show that for any $i, j, k \in\{0, \ldots, 4\}$,

$$
p_{i j}^{k}=\left|\left\{n \in \mathbf{L} \mid(l, n) \in R_{i},(n, m) \in R_{j}\right\}\right|
$$

is independent of the choice of $(l, m) \in R_{k}$. The assertion is clear when $k=0$. For
the moment, we put $p_{i j}(l, m)=\left|\left\{n \in \mathbf{L} \mid(l, n) \in R_{i},(n, m) \in R_{j}\right\}\right|$. We can easily see that when $(l, m) \in R_{k}, p_{0 j}(l, m)=\delta_{j k}$. Since each relation is symmetric, $p_{j i}(l, m)=$ $p_{i j}(m, l)$. Since R_{0}, \ldots, R_{4} form a partition of $\mathbf{L} \times \mathbf{L}$, we have

$$
\sum_{i=0}^{4} p_{i i}^{0}=|\mathbf{L}|=\frac{1}{2} q^{2}(q-1)^{2}
$$

and

$$
\sum_{j=0}^{4} p_{i j}(l, m)=p_{i i}^{0}
$$

for any $i \in\{0, \ldots, 4\}$ and for any pair (l, m). Let σ be the permutation $(0,2)(1,3)$ on $\{0, \ldots, 4\}$. Then since $(l, m) \in R_{i}$ if and only if $\left(l, m^{\perp}\right) \in R_{\sigma(i)}$,

$$
\begin{equation*}
p_{i j}(l, m)=p_{i \sigma(j)}\left(l, m^{\perp}\right)=p_{\sigma(i) \sigma(j)}(l, m) \tag{2}
\end{equation*}
$$

Hence we only need to show that $p_{11}^{k}(1 \leqslant k \leqslant 4)$ are independent of the choice of $(l, m) \in R_{k}$.

Lemma 4.2. For $1 \leqslant k \leqslant 4, p_{11}^{k}$ is independent of the choice of $(l, m) \in R_{k}$ and

$$
\begin{gathered}
p_{11}^{0}=\frac{1}{2}(q-2)(q+1)^{2}, \quad p_{11}^{1}=q^{2}-\frac{3}{2} q-2 \\
p_{11}^{2}=0, \quad p_{11}^{3}=\frac{1}{2} q^{2}, \quad p_{11}^{4}=\frac{1}{2} q(q+1)
\end{gathered}
$$

Proof. Fix $l \in \mathbf{L}$. Any line which meets l in a point is in a plane through l, and conversely any line in a plane through l meets l in a point. Hence by Proposition 4.1 (ii) and (iii),

$$
\begin{aligned}
p_{11}^{0} & =\left|\left\{n \in \mathbf{L} \mid(l, n) \in R_{1}\right\}\right| \\
& =\sum_{\pi \in \Pi_{l}}|\{n \in \mathbf{L} \mid n \subset \pi, n \neq l\}| \\
& =(q+1) \times\left(\frac{1}{2} q(q-1)-1\right) \\
& =\frac{1}{2}(q-2)(q+1)^{2}
\end{aligned}
$$

where $\Pi_{l}:=\{\pi \in \Pi \mid l \subset \pi\}$.

For $(l, m) \in R_{1}$, if $n \in \mathbf{L}$ meets both l and m, then n has a point $l \cap m$ or n is in the plane $\langle l, m\rangle$. Hence by Proposition 4.1 (iii)-(v),

$$
\begin{aligned}
p_{11}^{1} & =\left|\left\{n \in \mathbf{L} \mid(l, n),(n, m) \in R_{1}\right\}\right| \\
& =|\{n \in \mathbf{L} \mid n \subseteq\langle l, m\rangle, n \neq l, m\}|+|\{n \in \mathbf{L} \mid l \cap m \in n \nsubseteq\langle l, m\rangle\}| \\
& =\left(\frac{1}{2} q(q-1)-2\right)+\left(\frac{1}{2} q(q-1)-\frac{1}{2} q\right) \\
& =q^{2}-\frac{3}{2} q-2 .
\end{aligned}
$$

From (2), we have $p_{11}^{2}=0$. For $(l, m) \in R_{3} \cup R_{4}$, we have

$$
\left|\left\{n \in \mathbf{L} \mid(l, n),(n, m) \in R_{1}\right\}\right|=\sum_{\pi \in \Pi_{l}}|\{n \in \mathbf{L} \mid m \cap \pi \in n \subseteq \pi\}| .
$$

If $(l, m) \in R_{3}$, then there is just one plane $\pi_{0}=\left\langle l, l^{\perp} \cap m\right\rangle \in \Pi_{l}$ such that $\pi_{0}^{\perp}=m \cap \pi_{0}$. By Proposition 4.1 (iv), there is no line of \mathbf{L} through $m \cap \pi_{0}$ and in π_{0}, and for other plane π, there are $q / 2$ lines of \mathbf{L} through $m \cap \pi$ and in π. Hence

$$
\begin{aligned}
p_{11}^{3} & =\left|\left\{n \in \mathbf{L} \mid(l, n),(n, m) \in R_{1}\right\}\right| \\
& =\sum_{\pi \in \Pi_{l} \backslash\left\{\pi_{0}\right\}}|\{n \in \mathbf{L} \mid m \cap \pi \in n \subseteq \pi\}| \\
& =q \times \frac{1}{2} q .
\end{aligned}
$$

For $(l, m) \in R_{4}$, any plane π of Π_{l} has $q / 2$ lines of \mathbf{L} through $m \cap \pi$. So

$$
p_{11}^{4}=\left|\left\{n \in \mathbf{L} \mid(l, n),(n, m) \in R_{1}\right\}\right|=(q+1) \times \frac{1}{2} q .
$$

Therefore $\left(\mathbf{L},\left\{R_{i}\right\}_{0 \leqslant i \leqslant 4}\right)$ becomes a symmetric association scheme. For $i \in$ $\{0, \ldots, d\}$, let $B_{i}:=\left(p_{i j}^{k}\right)_{0 \leqslant j, k \leqslant 4}$. Then B_{0} is the identity matrix,

$$
B_{1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
p_{11}^{0} & q^{2}-3 / 2 q-2 & 0 & q^{2} / 2 & q(q+1) / 2 \\
0 & 0 & 0 & 1 & 0 \\
0 & q^{2} / 2 & p_{11}^{0} & q^{2}-3 / 2 q-2 & q(q+1) / 2 \\
0 & q^{2}(q-3) / 2 & 0 & q^{2}(q-3) / 2 & s
\end{array}\right)
$$

where $s=(q+1)\left(q^{2}-3 q-2\right) / 2$,

$$
\begin{gathered}
B_{2}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \\
B_{3}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & q^{2} / 2 & p_{11}^{0} & q^{2}-3 / 2 q-2 & q(q+1) / 2 \\
0 & 1 & 0 & 0 & 0 \\
p_{11}^{0} & q^{2}-3 / 2 q-2 & 0 & q^{2} / 2 & q(q+1) / 2 \\
0 & q^{2}(q-3) / 2 & 0 & q^{2}(q-3) / 2 & s
\end{array}\right),
\end{gathered}
$$

and

$$
B_{4}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & q^{2}(q-3) / 2 & 0 & q^{2}(q-3) / 2 & s \\
0 & 0 & 0 & 0 & 1 \\
0 & q^{2}(q-3) / 2 & 0 & q^{2}(q-3) / 2 & s \\
p_{44}^{0} & q(q-3)\left(q^{2}-3 q-2\right) / 2 & p_{44}^{0} & s & t
\end{array}\right),
$$

where $p_{44}^{0}=q(q-2)(q-3)(q+1) / 2$ and $t=q(q-3)\left(q^{2}-3 q-2\right) / 2$. The first eigenmatrix of this association scheme is given by

$$
P=\left(\begin{array}{ccccc}
1 & (q-2)(q+1)^{2} / 2 & 1 & (q-2)(q+1)^{2} / 2 & p_{44}^{0} \\
1 & (q-2)(q+1) / 2 & -1 & -(q-2)(q+1) / 2 & 0 \\
1 & -(q+1) & -1 & q+1 & 0 \\
1 & -(q+1) & 1 & -(q+1) & 2 q \\
1 & \left(q^{2}-3 q-2\right) / 2 & 1 & \left(q^{2}-3 q-2\right) / 2 & -q(q-3)
\end{array}\right)
$$

5 Proof of Theorem 3.3

In this section, we prove Theorem 3.3 by using Theorem 3.2. The number of vertices of the graph Γ is $|\mathbf{L}| / 2=q^{2}(q-1)^{2} / 4$. For a pair $\left\{l, l^{\perp}\right\} \in V \Gamma$,

$$
\begin{gathered}
\left\{\left\{m, m^{\perp}\right\} \in V \Gamma \mid\left\{m, m^{\perp}\right\} \text { is adjacent to }\left\{l, l^{\perp}\right\}\right\} \\
=\left\{\left\{m, m^{\perp}\right\} \in V \Gamma \mid m \text { meets } l \text { in a point }\right\} \\
=\left\{\left\{m, m^{\perp}\right\} \in V \Gamma \mid(l, m) \in R_{1}\right\}
\end{gathered}
$$

So, the size of this set is $p_{11}^{0}=(q-2)(q+1)^{2} / 2$, which is just k in the definition of strongly regular graph. Next choose $\left\{l, l^{\perp}\right\},\left\{m, m^{\perp}\right\} \in V \Gamma$ which are adjacent in Γ. We may suppose that l meets m in a point. Then

$$
\begin{aligned}
&\left\{\left\{n, n^{\perp}\right\} \in V \Gamma \mid\left\{n, n^{\perp}\right\} \text { is adjacent to both }\left\{l, l^{\perp}\right\} \text { and }\left\{m, m^{\perp}\right\}\right\} \\
&=\left\{\left\{n, n^{\perp}\right\} \in V \Gamma \mid n \text { meets both } l \text { and } m \text { in a point }\right\} \\
& \cup\left\{\left\{n, n^{\perp}\right\} \in V \Gamma \mid n \text { meets both } l \text { and } m^{\perp} \text { in a point }\right\} \\
&=\left\{\left\{n, n^{\perp}\right\} \in V \Gamma \mid(l, n) \in R_{1},(m, n) \in R_{1} \cup R_{3}\right\} .
\end{aligned}
$$

Hence the size of this set is $p_{11}^{1}+p_{13}^{1}=\left(3 q^{2}-3 q-4\right) / 2$. This is just λ in the definition of strongly regular graph.

Similarly, for $\left\{l, l^{\perp}\right\},\left\{m, m^{\perp}\right\} \in V \Gamma$ which are not adjacent in Γ, since $(l, m) \in R_{4}$,

$$
\begin{aligned}
& \mid\left\{\left\{n, n^{\perp}\right\} \in V \Gamma \mid\left\{n, n^{\perp}\right\} \text { is adjacent to both }\left\{l, l^{\perp}\right\} \text { and }\left\{m, m^{\perp}\right\}\right\} \mid \\
& \quad=p_{11}^{4}+p_{13}^{4}=q(q+1) .
\end{aligned}
$$

This is just μ in the definition of strongly regular graph.
Alternatively, we can prove Theorem 3.3 by using the quotient association scheme (cf. [1, p. 139, Theorem 9.4]). In the association scheme of Theorem 3.2, $R_{0} \cup R_{2}$ is an equivalence relation on \mathbf{L}. So we can define a quotient association scheme on the set of equivalence classes $\left\{\left\{l, l^{\perp}\right\} \mid l \in \mathbf{L}\right\}$ whose relations are

$$
\begin{aligned}
& \left\{\left(\left\{l, l^{\perp}\right\},\left\{m, m^{\perp}\right\}\right) \mid(l, m) \in R_{1} \cup R_{3}\right\}=\text { the edge set of } \Gamma, \\
& \left\{\left(\left\{l, l^{\perp}\right\},\left\{m, m^{\perp}\right\}\right) \mid(l, m) \in R_{4}\right\},
\end{aligned}
$$

and the diagonal relation. The first eigenmatrix of this association scheme can be computed from P (cf. [1, p. 148]):

$$
\left(\begin{array}{ccc}
1 & (q-2)(q+1)^{2} / 2 & q(q-2)(q-3)(q+1) / 4 \\
1 & -(q+1) & q \\
1 & \left(q^{2}-3 q-2\right) / 2 & -q(q-3) / 2
\end{array}\right)
$$

The first relation forms a strongly regular graph whose parameters are calculated from the second column of the above first eigenmatrix.

6 Another construction of Γ_{q}

In this section, we will give another construction of the strongly regular graph Γ_{q}. This construction uses a method which generalizes a construction of Mathon ($[10, \mathrm{p}$. 137], see also [3, pp. 96-97]).

Let $G=\mathrm{SL}(2, q), K=O^{-}(2, q)$. Then $\mathfrak{X}(G, K)$ is a $(q-2) / 2$-class pseudo-cyclic symmetric association scheme (cf. [3, p. 96]). By Lemma 2.1, we can construct a strongly regular graph $\Delta(\mathfrak{X}(G, K))$ with parameters

$$
\left(\frac{1}{4} q^{2}(q-1)^{2}, \frac{1}{2}(q-2)(q+1)^{2}, \frac{1}{2}\left(3 q^{2}-3 q-4\right), q(q+1)\right)
$$

which are the same as those of Γ_{q}. We shall prove that these graphs are isomorphic.

To show this, we use the isomorphism $G^{2} \simeq \Omega^{+}(4, q)$ which maps (X, Y) to $X \otimes Y\left(\right.$ see [11, p. 199]). Let l_{0} be the external line generated by $v_{1}={ }^{t}(0,1,1,0), v_{2}=$ ${ }^{t}(1,1,0, \alpha)$, where α is an element of \mathbb{F}_{q} such that the polynomial $x^{2}+x+\alpha$ is irreducible over \mathbb{F}_{q}. For an external line l, there are $2(q+1)$ bases $\left(u_{1}, u_{2}\right)$ of l such that $Q\left(x u_{1}+y u_{2}\right)=x^{2}+x y+\alpha y^{2}$ for any $x, y \in \mathbb{F}_{q}$. Indeed, by Witt's Theorem, K acts regularly on the set of bases $\left(u_{1}, u_{2}\right)$ of l with the above condition. It follows that the size of this set is equal to $|K|=2(q+1)$. Let \mathscr{P} be the set of nonsingular points in $\operatorname{PG}(3, q)$ and let $\mathscr{L}=\left\{l \cup l^{\perp} \mid l \in \mathbf{L}\right\}$. Then the following lemma holds.

Lemma 6.1. The group $\Omega^{+}(4, q)=\{X \otimes Y \mid X, Y \in G\}$ is flag-transitive on the incidence structure $(\mathscr{P}, \mathscr{L}, \in)$. Under the isomorphism $G^{2} \simeq \Omega^{+}(4, q)$, the groups $D(G), K^{2}$ are the stabilizers of an element of \mathscr{P}, \mathscr{L}, respectively.

Proof. Let $X=\left(x_{i j}\right)_{1 \leqslant i, j \leqslant 2}, \quad Y=\left(y_{i j}\right)_{1 \leqslant i, j \leqslant 2} \in G$. Since

$$
X \otimes Y=\left(\begin{array}{llll}
x_{11} y_{11} & x_{11} y_{12} & x_{12} y_{11} & x_{12} y_{12} \\
x_{11} y_{21} & x_{11} y_{22} & x_{12} y_{21} & x_{12} y_{22} \\
x_{21} y_{11} & x_{21} y_{12} & x_{22} y_{11} & x_{22} y_{12} \\
x_{21} y_{21} & x_{21} y_{22} & x_{22} y_{21} & x_{22} y_{22}
\end{array}\right)
$$

$X \otimes Y$ fixes v_{1} if and only if

$$
\begin{aligned}
& x_{11} y_{12}+x_{12} y_{11}=x_{21} y_{22}+x_{22} y_{21}=0 \\
& x_{11} y_{22}+x_{12} y_{21}=x_{21} y_{12}+x_{22} y_{11}=1 .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\Omega^{+}(4, q)_{v_{1}}=\{X \otimes X \mid X \in G\} \simeq D(G) \tag{3}
\end{equation*}
$$

For $X \in G, X \otimes X$ fixes v_{2} if and only if

$$
\begin{aligned}
x_{11}^{2}+x_{11} x_{12}+\alpha x_{12}^{2} & =1, \\
x_{11} x_{21}+x_{12} x_{21}+\alpha x_{12} x_{22} & =0, \\
x_{21}^{2}+x_{21} x_{22}+\alpha x_{22}^{2} & =\alpha .
\end{aligned}
$$

From these, we have

$$
\Omega^{+}(4, q)_{v_{1}, v_{2}}=\left\{X \otimes X \left\lvert\, X=\left(\begin{array}{cc}
a & b \\
\alpha b & a+b
\end{array}\right) \in G\right.\right\}
$$

which is of order $q+1$. Hence

$$
\begin{aligned}
\left|\left\{\left(M v_{1}, M v_{2}\right) \mid M \in \Omega^{+}(4, q)\right\}\right| & =\left|\Omega^{+}(4, q)\right| /(q+1) \\
& =q^{2}(q-1)^{2}(q+1)
\end{aligned}
$$

Since $Q\left(x v_{1}+y v_{2}\right)=x^{2}+x y+\alpha y^{2}$ for any $x, y \in \mathbb{F}_{q}$,

$$
\begin{aligned}
& \mid\left\{\left(u_{1}, u_{2}\right) \mid Q\left(x u_{1}+y u_{2}\right)=x^{2}+x y+\alpha y^{2} \text { for all } x, y \in \mathbb{F}_{q}\right\} \mid \\
& \quad=|\mathbf{L}| \times 2(q+1) \\
& \quad=q^{2}(q-1)^{2}(q+1)
\end{aligned}
$$

Hence $\Omega^{+}(4, q)$ acts transitively on the set of pairs $\left(u_{1}, u_{2}\right)$ such that $Q\left(x u_{1}+y u_{2}\right)=x^{2}+x y+\alpha y^{2}$ for any $x, y \in \mathbb{F}_{q}$. In particular, $\Omega^{+}(4, q)$ is flagtransitive on $(\mathscr{P}, \mathscr{L}, \in)$.

The equality (3) means that the stabilizer of $\left\langle v_{1}\right\rangle \in \mathscr{P}$ is isomorphic to $D(G)$. Let

$$
A:=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad B:=\left(\begin{array}{cc}
a_{0} & b_{0} \\
\alpha b_{0} & a_{0}+b_{0}
\end{array}\right) \in G
$$

such that B is of order $q+1$. Then the group $\langle A, B\rangle$ is isomorphic to $K . A \otimes I$, $I \otimes A$ interchange l_{0} and l_{0}^{\perp}, while $B \otimes I, I \otimes B$ fix l_{0} and l_{0}^{\perp}. So $\{X \otimes Y \mid X, Y \in$ $\langle A, B\rangle\}$ is a subgroup of $\Omega^{+}(4, q)_{l_{0} \cup l_{0}^{\perp}}$. Since $\Omega^{+}(4, q)_{l_{0} \cup U_{0}^{\perp}}$ has order $4(q+1)^{2}=|K|^{2}$, we have that $\Omega^{+}(4, q)_{l_{0} \cup U_{0}^{\perp}}$ is isomorphic to K^{2}.

Theorem 6.2. The graph Γ_{q} is isomorphic to $\Delta\left(\mathfrak{X}\left(\operatorname{SL}(2, q), O^{-}(2, q)\right)\right)$.
Proof. The graph Γ_{q} is isomorphic to the collinearity graph of the dual of the incidence structure $(\mathscr{P}, \mathscr{L}, \epsilon)$. From Lemma 6.1, the dual of ($\mathscr{P}, \mathscr{L}, \epsilon$) is isomorphic to the coset geometry $\left(G^{2} / K^{2}, G^{2} / D(G), *\right)$ defined in Lemma 2.2. From Lemma 2.2, the collinearity graph of $\left(G^{2} / K^{2}, G^{2} / D(G), *\right)$ is isomorphic to $\Delta(\mathfrak{X}(G, K))$. Therefore Γ_{q} is isomorphic to $\Delta(\mathfrak{X}(G, K))$.

References

[1] E. Bannai, T. Ito, Algebraic combinatorics. I. Benjamin/Cummings Publishing Co. 1984. MR 87m:05001 Zbl 0555.05019
[2] A. E. Brouwer, R. Mathon, unpublished.
[3] A. E. Brouwer, J. H. van Lint, Strongly regular graphs and partial geometries. In: Enumeration and design (Waterloo, Ont., 1982), 85-122, Academic Press 1984. MR 87c:05033 Zbl 0555.05016
[4] P. Dembowski, Finite geometries. Springer 1968. MR 38 \#1597 Zbl 0159.50001
[5] G. L. Ebert, S. Egner, H. D. L. Hollmann, Q. Xiang, A four-class association scheme. J. Combin. Theory Ser. A 96 (2001), 180-191. MR 2002j:05152 Zbl 1010.05083
[6] C. D. Godsil, Association schemes. Preprint.
[7] C. D. Godsil, private communication.
[8] J. W. P. Hirschfeld, Finite projective spaces of three dimensions. Oxford Univ. Press 1985. MR 87j:51013 Zbl 0574.51001
[9] M. Koppinen, On algebras with two multiplications, including Hopf algebras and BoseMesner algebras. J. Algebra 182 (1996), 256-273. MR 97e:16092 Zbl 0897.16022
[10] R. Mathon, 3-class association schemes. In: Proceedings of the Conference on Algebraic Aspects of Combinatorics (Univ. Toronto, Toronto, Ont., 1975), 123-155. Congressus Numerantium, No. XIII, Utilitas Math., Winnipeg, Man. 1975. MR 54 \#2503 Zbl 0326.05023
[11] D. E. Taylor, The geometry of the classical groups. Heldermann 1992. MR 94d:20028 Zbl 0767.20001

Received 3 June, 2002
T. Fujisaki, Graduate school of Mathematics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
Email: fujisaki@math.kyushu-u.ac.jp

