A four-class association scheme derived from a hyperbolic quadric in PG(3,q)

Tatsuya Fujisaki

(Communicated by E. Bannai)

Abstract. We prove the existence of a four-class association scheme on the set of external lines with respect to a hyperbolic quadric of PG(3,q) where $q \ge 4$ is a power of 2. This result is an analogue of the one by Ebert, Egner, Hollmann and Xiang. Taking a quotient of this association scheme yields a strongly regular graph of Latin square type. We show that this strongly regular graph can also be obtained by a generalization of the construction given by Mathon.

1 Introduction

In the paper [5], Ebert, Egner, Hollmann and Xiang constructed a four-class symmetric association scheme by using the set of secant lines with respect to an ovoid \mathcal{O} of PG(3, q) for $q \ge 4$ a power of 2. We can regard this association scheme as defined on the set of external lines by taking the null polarity with respect to \mathcal{O} . In this paper, we consider an analogous construction by a hyperbolic quadric. We construct a fourclass symmetric association scheme by using the set of external lines with respect to a hyperbolic quadric of PG(3, q). Each relation is invariant under the action of the orthogonal group $O^+(4,q)$ but the set of relations is not the set of orbitals on the set of external lines. Indeed, there are more orbitals than relations. Moreover, a quotient of this association scheme forms a strongly regular graph of Latin square type. We also prove that this strongly regular graph is isomorphic to the one constructed from a direct product of a pseudo-cyclic symmetric association scheme defined by the action of SL(2, q) on the right cosets SL(2, q)/ $O^-(2, q)$, which is a generalization of the construction given by Mathon [10]. This isomorphism is obtained by an isomorphism between SL(2, q)² and $\Omega^+(4, q)$.

2 Association schemes, strongly regular graphs and projective spaces

Let X be a finite set and let $\{R_i\}_{0 \le i \le d}$ be relations on X, that is, subsets of $X \times X$. Then $\mathfrak{X} = (X, \{R_i\}_{0 \le i \le d})$ is called a *d*-class symmetric association scheme if the following conditions are satisfied.

- 1. $\{R_i\}_{0 \le i \le d}$ is a partition of $X \times X$.
- 2. R_0 is diagonal, that is, $R_0 = \{(x, x) | x \in X\}$.
- 3. $\{(y, x) | (x, y) \in R_i\} = R_i$ for any *i*.
- 4. For any $i, j, k \in \{0, 1, ..., d\}$, $p_{ij}^k := |\{z \in X | (x, z) \in R_i, (y, z) \in R_j\}|$ is independent of the choice of (x, y) in R_k .

For $i \in \{0, ..., d\}$, let A_i be the adjacency matrix of the relation R_i , that is, A_i is indexed by X and

$$(A_i)_{xy} := \begin{cases} 1 & \text{if } (x, y) \in R_i, \\ 0 & \text{if } (x, y) \notin R_i. \end{cases}$$

Then we have

$$A_iA_j = \sum_{k=0}^d p_{ij}^kA_k$$

for any $i, j \in \{0, ..., d\}$. So $A_0, A_1, ..., A_d$ form a basis of the commutative algebra generated by $A_0, A_1, ..., A_d$ over the complex field (which is called the Bose–Mesner algebra of \mathfrak{X}). Moreover this algebra has a unique basis $E_0, E_1, ..., E_d$ of primitive idempotents. One of the primitive idempotents is $|X|^{-1}J$ where J is the matrix whose entries are all 1. So we may assume $E_0 = |X|^{-1}J$. Let $P = (p_j(i))_{0 \le i,j \le d}$ be the matrix defined by

$$(A_0 \quad A_1 \dots A_d) = (E_0 \quad E_1 \dots E_d)P.$$

We call *P* the first eigenmatrix of \mathfrak{X} . Note that $\{p_j(i) | 0 \le i \le d\}$ is the set of eigenvalues of A_j . The first eigenmatrix satisfies the orthogonality relation:

$$\sum_{\nu=0}^d \frac{1}{k_\nu} p_\nu(i) p_\nu(j) = \frac{|X|}{m_i} \delta_{ij},$$

where $k_i = p_{ii}^0$ and $m_i = \operatorname{rank} E_i$. We say that \mathfrak{X} is *pseudo-cyclic* if there exists an integer *m* such that rank $E_i = m$ for all $i \in \{1, \ldots, d\}$. Note that in this case, |X| = dm + 1 and $k_i = p_{ii}^0 = m$ for all $i \in \{1, \ldots, d\}$ (see [1, p. 76]).

Let *G* be a finite group and *K* be a subgroup of *G*. Then *G* acts naturally on the set $G/K \times G/K$ with orbitals R_0, R_1, \ldots, R_d , where we let $R_0 = \{(gK, gK) | gK \in G/K\}$. If all orbitals are self-paired, then $\mathfrak{X} = (G/K, \{R_i\}_{0 \le i \le d})$ forms a symmetric association scheme. We denote this association scheme by $\mathfrak{X}(G, K)$.

For a strongly regular graph with parameters (n, k, λ, μ) , one of the eigenvalues of its adjacency matrix is k, and the others θ_1, θ_2 are the solutions of $x^2 + (\mu - \lambda)x + (\mu - k) = 0$. We can identify the pair of a strongly regular graph and its complement with a two-class symmetric association scheme whose first eigenmatrix is

106

A four-class association scheme derived from a hyperbolic quadric in PG(3,q) 107

$$\begin{bmatrix} 1 & k & n-k-1 \\ 1 & \theta_1 & -1-\theta_1 \\ 1 & \theta_2 & -1-\theta_2 \end{bmatrix}$$
(1)

In the paper [10], Mathon constructed a strongly regular graph from the pseudocyclic symmetric association scheme $\mathfrak{X}(SL(2,8), O^{-}(2,8))$. The next lemma is a generalization of this construction, due to Brouwer and Mathon [2]. Godsil [7] remarks that it can also be proved by Koppinen's identity [9] (see also [6, Theorem 2.4.1]).

Lemma 2.1. Let $\mathfrak{X} = (X, \{R_i\}_{0 \le i \le d})$ be a pseudo-cyclic symmetric association scheme on dm + 1 points. Then the graph $\Delta(\mathfrak{X})$ whose vertex set is $X \times X$, where two distinct vertices (x, y) and (x', y') are adjacent if and only if $(x, x'), (y, y') \in R_i$ for some $i \ne 0$, is a strongly regular graph of Latin square type with parameters

$$(|X|^2, m(|X|-1), |X| + m(m-3), m(m-1)).$$

Proof. The direct product of \mathfrak{X} is $(X \times X, \{R_{ij}\}_{0 \le i, j \le d})$, where

$$R_{ij} := \{ ((x, y), (x', y')) \mid (x, x') \in R_i, (y, y') \in R_j \}.$$

If *P* is the first eigenmatrix of \mathfrak{X} , then $P \otimes P$ is the first eigenmatrix of $(X \times X, \{R_{ij}\}_{0 \le i, j \le d})$. The edge set of $\Delta(\mathfrak{X})$ is defined to be $\bigcup_{j=1}^{d} R_{jj}$. Then the eigenvalues of the adjacency matrix of $\Delta(\mathfrak{X})$ are

$$\left\{\sum_{j=1}^d p_j(i)p_j(i') \,|\, 0\leqslant i,i'\leqslant d\right\}.$$

Since \mathfrak{X} is psuedo-cyclic, $k_0 = m_0 = 1$, $k_j = m_i = m$ for $i, j \neq 0$. Hence the orthogonality relation implies

$$\sum_{j=1}^{d} p_j(i) p_j(i') = \frac{m|X|}{m_i} \delta ii' - m = \begin{cases} m(|X| - 1) & \text{if } i = i' = 0, \\ |X| - m & \text{if } i = i' \neq 0, \\ -m & \text{if } i \neq i'. \end{cases}$$

Therefore $\Delta(\mathfrak{X})$ has three eigenvalues. This implies that $\Delta(\mathfrak{X})$ is strongly regular. The parameters of $\Delta(\mathfrak{X})$ can easily be calculated.

In Lemma 2.1, if $\mathfrak{X} = \mathfrak{X}(G, K)$ for some finite group G and its subgroup K, then $\Delta(\mathfrak{X})$ has the following geometric interpretation.

Lemma 2.2. Suppose that a finite group G and its subgroup K form a pseudo-cyclic symmetric association scheme $\mathfrak{X} = \mathfrak{X}(G, K)$. Then the graph $\Delta(\mathfrak{X})$ of Lemma 2.1 is isomorphic to the collinearity graph of the coset geometry $(G^2/K^2, G^2/D(G), *)$ where $D(G) := \{(x, x) | x \in G\}$ and for $x_1, x_2, y_1, y_2 \in G, (x_1, x_2)K^2 * (y_1, y_2)D(G)$ if and only if $(x_1, x_2)K^2 \cap (y_1, y_2)D(G) = \emptyset$.

Proof. Since each relation of $\mathfrak{X}(G, K)$ is an orbital of the action of G on $G/K \times G/K$, two pairs (x_1K, y_1K) , (x_2K, y_2K) are adjacent in the graph $\Delta(\mathfrak{X}(G, K))$ if and only if there exists $w \in G$ such that $y_1K = wx_1K$, $y_2K = wx_2K$. On the other hand, two pairs $(x_1, y_1)K^2$, $(x_2, y_2)K^2$ are adjacent in the collinearity graph of $(G^2/K^2, G^2/D(G), *)$ if and only if $(x_1^{-1}x_2, y_1^{-1}y_2)$ is in $K^2D(G)K^2$ (cf. [4, p. 15]).

For $x_1, x_2, y_1, y_2 \in G$,

$$(x_1^{-1}x_2, y_1^{-1}y_2) \in K^2 D(G)K^2 \Leftrightarrow x_1^{-1}x_2, y_1^{-1}y_2 \in KwK \text{ for some } w \in G,$$

$$\Leftrightarrow x_1^{-1}x_2 \in Ky_1^{-1}y_2K$$

$$\Leftrightarrow y_1kx_1^{-1} = y_2k'x_2^{-1} \text{ for some } k, k' \in K,$$

$$\Leftrightarrow y_1 \in wx_1K, y_2 \in wx_2K \text{ for some } w \in G$$

Hence the mapping $G/K \times G/K \ni (xK, yK) \mapsto (x, y)K^2 \in G^2/K^2$ is an isomorphism between the above two graphs.

For the rest of this section, we recall some terminology on finite projective spaces. In this paper, let q be a power of 2 and let PG(3,q) be the three-dimensional projective space over GF(q). For a non-degenerate quadratic form Q on $GF(q)^4$, we say that a point $p = \langle v \rangle$ is *singular* if Q(v) = 0, and we call the set of singular points a *quadric*. For a set of points X, we say that a line l is *external* (respectively *secant*) to the set X if the number of points in $l \cap X$ is 0 (respectively 2).

It is well known that there are two types of non-degenerate quadratic forms on $GF(q)^4$, which are called elliptic type or hyperbolic type. For a point p, denote by p^{\perp} the orthogonal complement of p with respect to the symmetric bilinear form obtained from Q. Define for a line l or a plane π , $l^{\perp} := \bigcap_{p \in I} p^{\perp}$, $\pi^{\perp} := \bigcap_{p \in \pi} p^{\perp}$.

For a hyperbolic quadric in PG(3, q), since q is even, the polarity \perp is a null polarity, that is, if p is a point, then $p \in p^{\perp}$. More precisely, if p is on the hyperbolic quadric, then p^{\perp} is the plane determined by the two generators of the quadric through p. If p is not on the quadric, then through p there are q + 1 tangent lines to the quadric and these q + 1 lines are coplanar. The plane determined by these q + 1 tangent lines is p^{\perp} . For a line l, we have $l^{\perp} = {\pi^{\perp} | l \subseteq \pi}$. If l is external, then since every plane π containing l satisfies the point π^{\perp} is nonsingular and not on l, the line l^{\perp} is also external to the quadric and skew to l. On the other hand, for an external line l to an ovoid, the line l^{\perp} is skew to l and secant to the ovoid (see [8, pp. 24–26]).

A canonical form of the quadratic form of hyperbolic type is

$$Q(x_1, x_2, x_3, x_4) = x_1 x_4 + x_2 x_3.$$

Denote by $\Omega^+(4,q)$ the commutator group of the orthogonal group defined from the above Q.

3 Main results

A four-class symmetric association scheme on the set of secant lines with respect to any ovoid was constructed:

Theorem 3.1 ([5]). Let $q = 2^f \ge 4$. Then the following relations on the set of secant lines of PG(3, q) with respect to an ovoid

$$R_{1} = \{(l,m) \mid l \cap m \text{ is a singular point}\}$$

$$R_{2} = \{(l,m) \mid l \cap m \text{ is a nonsingular point}\}$$

$$R_{3} = \{(l,m) \mid l^{\perp} \cap m \neq \emptyset\}$$

$$R_{4} = \{(l,m) \mid l \cap m = \emptyset, l^{\perp} \cap m = \emptyset\}$$

and the diagonal relation R_0 define a four-class symmetric association scheme.

We can regard the above association scheme as defined on the set of external lines. The relations R_1, R_2, R_3 and R_4 correspond to the following relations on the set of external lines

$$\{(l,m) \mid \langle l,m \rangle^{\perp} \text{ is a singular point} \},$$

$$\{(l,m) \mid \langle l,m \rangle^{\perp} \text{ is a nonsingular point} \},$$

$$\{(l,m) \mid l^{\perp} \cap m \neq \emptyset \},$$

$$\{(l,m) \mid l \cap m = \emptyset, l^{\perp} \cap m = \emptyset \},$$

respectively.

In the paper [5], a plane π is called tangent if its orthogonal complement is a singular point.

For a hyperbolic quadric, we can construct a four-class symmetric association scheme similar to the above one. Let L be the set of external lines with respect to a hyperbolic quadric in PG(3, q).

Theorem 3.2. Let $q = 2^f \ge 4$. Then the following relations on the set **L** of external lines of PG(3, q) with respect to a hyperbolic quadric

$$R_{1} = \{(l,m) \mid l \cap m \text{ is a point}\}$$

$$R_{2} = \{(l,m) \mid m = l^{\perp}\}$$

$$R_{3} = \{(l,m) \mid l^{\perp} \cap m \text{ is a point}\}$$

$$R_{4} = \{(l,m) \mid l \cap m = \emptyset, l^{\perp} \cap m = \emptyset\}$$

and the diagonal relation R_0 define a four-class symmetric association scheme.

Moreover we can construct a strongly regular graph from this symmetric association scheme by taking a quotient.

Theorem 3.3. Let $\Gamma = \Gamma_q$ $(q = 2^f \ge 4)$ be the graph with vertex set $\{\{l, l^{\perp}\} | l \in \mathbf{L}\}$, where two distinct vertices of Γ , $\{l, l^{\perp}\}$, $\{m, m^{\perp}\}$ are adjacent if and only if $l \cap m \neq \emptyset$ or $l \cap m^{\perp} \neq \emptyset$. Then Γ is a strongly regular graph of Latin square type with parameters

$$v = \frac{1}{4}q^2(q-1)^2$$
, $k = \frac{1}{2}(q-2)(q+1)^2$, $\lambda = \frac{1}{2}(3q^2-3q-4)$, $\mu = q(q+1)^2$.

Note that $l \cap m \neq \emptyset$ is equivalent to $l^{\perp} \cap m^{\perp} \neq \emptyset$, and $l \cap m^{\perp} \neq \emptyset$ is equivalent to $l^{\perp} \cap m \neq \emptyset$. So the adjacency in Γ is well-defined.

4 Proof of Theorem 3.2

To prove Theorem 3.2, we recall some facts about PG(3, q) with a hyperbolic quadric from Hirschfeld's book [8, §15–III]. From now on, put $q = 2^f \ge 4$. Let Π be the set of planes whose orthogonal complement is a nonsingular point.

Proposition 4.1. For a hyperbolic quadric in PG(3,q), the following statements hold.

- (i) A plane containing an external line is in Π .
- (ii) The number of external lines is $q^2(q-1)^2/2$ and there are q+1 planes of Π containing a given external line.
- (iii) The number of planes in Π is $q(q^2 1)$ and there are q(q 1)/2 external lines in a given plane of Π .
- (iv) For $\pi \in \Pi$, there is no external line through π^{\perp} on π . For a nonsingular point p of π distinct from π^{\perp} , there are q/2 external lines through p on π .
- (v) There are q(q-1)/2 external lines through a given nonsingular point.

(Remark: when q is an odd prime power, (i), (ii), (iii) and (v) also hold. For a plane π of Π , π^{\perp} is not in π .)

First we show that the relations R_0, \ldots, R_4 form a partition of $\mathbf{L} \times \mathbf{L}$. It is clear that any pair (l,m) of $\mathbf{L} \times \mathbf{L}$ is in one of $\{R_i\}_{0 \le i \le 4}$. Since any external line l is skew to l^{\perp}, R_1 and R_2 have no intersection. Suppose that $l, m \in \mathbf{L}$ satisfy that l meets m. Then the point $\langle l, m \rangle^{\perp}$ is on l^{\perp} , so m is skew to l^{\perp} by Proposition 4.1 (iv). Hence R_1 and R_3 have no intersection. Therefore $\{R_i\}_{0 \le i \le 4}$ is a partition of $\mathbf{L} \times \mathbf{L}$.

Next we show that each relation is symmetric. It is clear that R_1, R_2 and R_4 are symmetric. If $(l,m) \in R_3$, then $\langle l^{\perp}, m \rangle$ forms a plane and $\langle l^{\perp}, m \rangle^{\perp} = l \cap m^{\perp}$, hence $(m,l) \in R_3$. Therefore R_3 is also symmetric.

Finally we show that for any $i, j, k \in \{0, ..., 4\}$,

$$p_{ii}^{k} = |\{n \in \mathbf{L} \mid (l, n) \in R_{i}, (n, m) \in R_{j}\}|$$

is independent of the choice of $(l,m) \in R_k$. The assertion is clear when k = 0. For

the moment, we put $p_{ij}(l,m) = |\{n \in \mathbf{L} \mid (l,n) \in R_i, (n,m) \in R_j\}|$. We can easily see that when $(l,m) \in R_k$, $p_{0j}(l,m) = \delta_{jk}$. Since each relation is symmetric, $p_{ji}(l,m) = p_{ij}(m,l)$. Since R_0, \ldots, R_4 form a partition of $\mathbf{L} \times \mathbf{L}$, we have

$$\sum_{i=0}^{4} p_{ii}^{0} = |\mathbf{L}| = \frac{1}{2}q^{2}(q-1)^{2},$$

and

$$\sum_{j=0}^{4} p_{ij}(l,m) = p_{ii}^{0}$$

for any $i \in \{0, ..., 4\}$ and for any pair (l, m). Let σ be the permutation (0, 2)(1, 3) on $\{0, ..., 4\}$. Then since $(l, m) \in R_i$ if and only if $(l, m^{\perp}) \in R_{\sigma(i)}$,

$$p_{ij}(l,m) = p_{i\sigma(j)}(l,m^{\perp}) = p_{\sigma(i)\sigma(j)}(l,m).$$

$$\tag{2}$$

Hence we only need to show that p_{11}^k $(1 \le k \le 4)$ are independent of the choice of $(l,m) \in R_k$.

Lemma 4.2. For $1 \le k \le 4$, p_{11}^k is independent of the choice of $(l,m) \in R_k$ and

$$p_{11}^0 = \frac{1}{2}(q-2)(q+1)^2, \quad p_{11}^1 = q^2 - \frac{3}{2}q - 2,$$
$$p_{11}^2 = 0, \quad p_{11}^3 = \frac{1}{2}q^2, \quad p_{11}^4 = \frac{1}{2}q(q+1).$$

Proof. Fix $l \in L$. Any line which meets l in a point is in a plane through l, and conversely any line in a plane through l meets l in a point. Hence by Proposition 4.1 (ii) and (iii),

$$p_{11}^{0} = |\{n \in \mathbf{L} \mid (l, n) \in R_{1}\}|$$

= $\sum_{\pi \in \Pi_{l}} |\{n \in \mathbf{L} \mid n \subset \pi, n \neq l\}|$
= $(q+1) \times \left(\frac{1}{2}q(q-1) - 1\right)$
= $\frac{1}{2}(q-2)(q+1)^{2}$

where $\Pi_l := \{\pi \in \Pi \mid l \subset \pi\}.$

For $(l,m) \in R_1$, if $n \in L$ meets both *l* and *m*, then *n* has a point $l \cap m$ or *n* is in the plane $\langle l, m \rangle$. Hence by Proposition 4.1 (iii)–(v),

$$p_{11}^{1} = |\{n \in \mathbf{L} \mid (l, n), (n, m) \in R_{1}\}|$$

= $|\{n \in \mathbf{L} \mid n \subseteq \langle l, m \rangle, n \neq l, m\}| + |\{n \in \mathbf{L} \mid l \cap m \in n \notin \langle l, m \rangle\}|$
= $\left(\frac{1}{2}q(q-1) - 2\right) + \left(\frac{1}{2}q(q-1) - \frac{1}{2}q\right)$
= $q^{2} - \frac{3}{2}q - 2.$

From (2), we have $p_{11}^2 = 0$. For $(l,m) \in R_3 \cup R_4$, we have

$$|\{n \in \mathbf{L} \mid (l,n), (n,m) \in R_1\}| = \sum_{\pi \in \Pi_l} |\{n \in \mathbf{L} \mid m \cap \pi \in n \subseteq \pi\}|.$$

If $(l, m) \in R_3$, then there is just one plane $\pi_0 = \langle l, l^{\perp} \cap m \rangle \in \Pi_l$ such that $\pi_0^{\perp} = m \cap \pi_0$. By Proposition 4.1 (iv), there is no line of **L** through $m \cap \pi_0$ and in π_0 , and for other plane π , there are q/2 lines of **L** through $m \cap \pi$ and in π . Hence

$$p_{11}^{3} = |\{n \in \mathbf{L} \mid (l,n), (n,m) \in R_{1}\}|$$
$$= \sum_{\pi \in \Pi_{l} \setminus \{\pi_{0}\}} |\{n \in \mathbf{L} \mid m \cap \pi \in n \subseteq \pi\}|$$
$$= q \times \frac{1}{2}q.$$

For $(l,m) \in R_4$, any plane π of Π_l has q/2 lines of L through $m \cap \pi$. So

$$p_{11}^4 = |\{n \in \mathbf{L} \mid (l,n), (n,m) \in R_1\}| = (q+1) \times \frac{1}{2}q.$$

Therefore $(\mathbf{L}, \{R_i\}_{0 \le i \le 4})$ becomes a symmetric association scheme. For $i \in \{0, \ldots, d\}$, let $B_i := (p_{ij}^k)_{0 \le j,k \le 4}$. Then B_0 is the identity matrix,

$$B_{1} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ p_{11}^{0} & q^{2} - 3/2q - 2 & 0 & q^{2}/2 & q(q+1)/2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & q^{2}/2 & p_{11}^{0} & q^{2} - 3/2q - 2 & q(q+1)/2 \\ 0 & q^{2}(q-3)/2 & 0 & q^{2}(q-3)/2 & s \end{pmatrix},$$

where $s = (q+1)(q^2 - 3q - 2)/2$,

$$B_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$B_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & q^{2}/2 & p_{11}^{0} & q^{2} - 3/2q - 2 & q(q+1)/2 \\ 0 & 1 & 0 & 0 & 0 \\ p_{11}^{0} & q^{2} - 3/2q - 2 & 0 & q^{2}/2 & q(q+1)/2 \\ 0 & q^{2}(q-3)/2 & 0 & q^{2}(q-3)/2 & s \end{pmatrix},$$

and

$$B_4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & q^2(q-3)/2 & 0 & q^2(q-3)/2 & s \\ 0 & 0 & 0 & 0 & 1 \\ 0 & q^2(q-3)/2 & 0 & q^2(q-3)/2 & s \\ p_{44}^0 & q(q-3)(q^2-3q-2)/2 & p_{44}^0 & s & t \end{pmatrix},$$

where $p_{44}^0 = q(q-2)(q-3)(q+1)/2$ and $t = q(q-3)(q^2-3q-2)/2$. The first eigenmatrix of this association scheme is given by

$$P = \begin{pmatrix} 1 & (q-2)(q+1)^2/2 & 1 & (q-2)(q+1)^2/2 & p_{44}^0 \\ 1 & (q-2)(q+1)/2 & -1 & -(q-2)(q+1)/2 & 0 \\ 1 & -(q+1) & -1 & q+1 & 0 \\ 1 & -(q+1) & 1 & -(q+1) & 2q \\ 1 & (q^2 - 3q - 2)/2 & 1 & (q^2 - 3q - 2)/2 & -q(q-3) \end{pmatrix}$$

5 **Proof of Theorem 3.3**

In this section, we prove Theorem 3.3 by using Theorem 3.2. The number of vertices of the graph Γ is $|\mathbf{L}|/2 = q^2(q-1)^2/4$. For a pair $\{l, l^{\perp}\} \in V\Gamma$,

$$\{\{m, m^{\perp}\} \in V\Gamma \mid \{m, m^{\perp}\} \text{ is adjacent to } \{l, l^{\perp}\}\}\$$
$$= \{\{m, m^{\perp}\} \in V\Gamma \mid m \text{ meets } l \text{ in a point}\}\$$
$$= \{\{m, m^{\perp}\} \in V\Gamma \mid (l, m) \in R_1\}.$$

So, the size of this set is $p_{11}^0 = (q-2)(q+1)^2/2$, which is just k in the definition of strongly regular graph. Next choose $\{l, l^{\perp}\}, \{m, m^{\perp}\} \in V\Gamma$ which are adjacent in Γ . We may suppose that l meets m in a point. Then

$$\{\{n, n^{\perp}\} \in V\Gamma \mid \{n, n^{\perp}\} \text{ is adjacent to both } \{l, l^{\perp}\} \text{ and } \{m, m^{\perp}\}\}\$$
$$= \{\{n, n^{\perp}\} \in V\Gamma \mid n \text{ meets both } l \text{ and } m \text{ in a point}\}\$$
$$\cup \{\{n, n^{\perp}\} \in V\Gamma \mid n \text{ meets both } l \text{ and } m^{\perp} \text{ in a point}\}\$$
$$= \{\{n, n^{\perp}\} \in V\Gamma \mid (l, n) \in R_1, (m, n) \in R_1 \cup R_3\}.$$

Hence the size of this set is $p_{11}^1 + p_{13}^1 = (3q^2 - 3q - 4)/2$. This is just λ in the definition of strongly regular graph.

Similarly, for $\{l, l^{\perp}\}, \{m, m^{\perp}\} \in V\Gamma$ which are not adjacent in Γ , since $(l, m) \in R_4$,

$$|\{\{n, n^{\perp}\} \in V\Gamma \mid \{n, n^{\perp}\} \text{ is adjacent to both } \{l, l^{\perp}\} \text{ and } \{m, m^{\perp}\}\}$$

= $p_{11}^4 + p_{13}^4 = q(q+1).$

This is just μ in the definition of strongly regular graph.

Alternatively, we can prove Theorem 3.3 by using the quotient association scheme (cf. [1, p. 139, Theorem 9.4]). In the association scheme of Theorem 3.2, $R_0 \cup R_2$ is an equivalence relation on **L**. So we can define a quotient association scheme on the set of equivalence classes $\{\{l, l^{\perp}\} | l \in \mathbf{L}\}$ whose relations are

$$\{(\{l, l^{\perp}\}, \{m, m^{\perp}\}) \mid (l, m) \in R_1 \cup R_3\} = \text{the edge set of } \Gamma, \\\{(\{l, l^{\perp}\}, \{m, m^{\perp}\}) \mid (l, m) \in R_4\},$$

and the diagonal relation. The first eigenmatrix of this association scheme can be computed from P (cf. [1, p. 148]):

$$\begin{pmatrix} 1 & (q-2)(q+1)^2/2 & q(q-2)(q-3)(q+1)/4 \\ 1 & -(q+1) & q \\ 1 & (q^2 - 3q - 2)/2 & -q(q-3)/2 \end{pmatrix}$$

The first relation forms a strongly regular graph whose parameters are calculated from the second column of the above first eigenmatrix.

6 Another construction of Γ_q

In this section, we will give another construction of the strongly regular graph Γ_q . This construction uses a method which generalizes a construction of Mathon ([10, p. 137], see also [3, pp. 96–97]).

Let G = SL(2,q), $K = O^{-}(2,q)$. Then $\mathfrak{X}(G,K)$ is a (q-2)/2-class pseudo-cyclic symmetric association scheme (cf. [3, p. 96]). By Lemma 2.1, we can construct a strongly regular graph $\Delta(\mathfrak{X}(G,K))$ with parameters

$$\left(\frac{1}{4}q^2(q-1)^2, \frac{1}{2}(q-2)(q+1)^2, \frac{1}{2}(3q^2-3q-4), q(q+1)\right)$$

which are the same as those of Γ_q . We shall prove that these graphs are isomorphic.

To show this, we use the isomorphism $G^2 \simeq \Omega^+(4,q)$ which maps (X, Y) to $X \otimes Y$ (see [11, p. 199]). Let l_0 be the external line generated by $v_1 = {}^t(0, 1, 1, 0), v_2 = {}^t(1, 1, 0, \alpha)$, where α is an element of \mathbb{F}_q such that the polynomial $x^2 + x + \alpha$ is irreducible over \mathbb{F}_q . For an external line l, there are 2(q + 1) bases (u_1, u_2) of l such that $Q(xu_1 + yu_2) = x^2 + xy + \alpha y^2$ for any $x, y \in \mathbb{F}_q$. Indeed, by Witt's Theorem, K acts regularly on the set of bases (u_1, u_2) of l with the above condition. It follows that the size of this set is equal to |K| = 2(q + 1). Let \mathscr{P} be the set of nonsingular points in $\mathrm{PG}(3,q)$ and let $\mathscr{L} = \{l \cup l^{\perp} \mid l \in \mathbf{L}\}$. Then the following lemma holds.

Lemma 6.1. The group $\Omega^+(4,q) = \{X \otimes Y \mid X, Y \in G\}$ is flag-transitive on the incidence structure $(\mathcal{P}, \mathcal{L}, \epsilon)$. Under the isomorphism $G^2 \simeq \Omega^+(4,q)$, the groups $D(G), K^2$ are the stabilizers of an element of \mathcal{P}, \mathcal{L} , respectively.

Proof. Let $X = (x_{ij})_{1 \le i, j \le 2}$, $Y = (y_{ij})_{1 \le i, j \le 2} \in G$. Since

$$X \otimes Y = \begin{pmatrix} x_{11}y_{11} & x_{11}y_{12} & x_{12}y_{11} & x_{12}y_{12} \\ x_{11}y_{21} & x_{11}y_{22} & x_{12}y_{21} & x_{12}y_{22} \\ x_{21}y_{11} & x_{21}y_{12} & x_{22}y_{11} & x_{22}y_{12} \\ x_{21}y_{21} & x_{21}y_{22} & x_{22}y_{21} & x_{22}y_{22} \end{pmatrix},$$

 $X \otimes Y$ fixes v_1 if and only if

$$x_{11}y_{12} + x_{12}y_{11} = x_{21}y_{22} + x_{22}y_{21} = 0,$$

$$x_{11}y_{22} + x_{12}y_{21} = x_{21}y_{12} + x_{22}y_{11} = 1.$$

This implies

$$\Omega^+(4,q)_{v_1} = \{X \otimes X \mid X \in G\} \simeq D(G).$$
(3)

For $X \in G$, $X \otimes X$ fixes v_2 if and only if

$$x_{11}^{2} + x_{11}x_{12} + \alpha x_{12}^{2} = 1,$$

$$x_{11}x_{21} + x_{12}x_{21} + \alpha x_{12}x_{22} = 0,$$

$$x_{21}^{2} + x_{21}x_{22} + \alpha x_{22}^{2} = \alpha.$$

From these, we have

$$\Omega^{+}(4,q)_{v_{1},v_{2}} = \left\{ X \otimes X \mid X = \begin{pmatrix} a & b \\ \alpha b & a+b \end{pmatrix} \in G \right\}$$

which is of order q + 1. Hence

$$\begin{aligned} |\{(Mv_1, Mv_2) | M \in \Omega^+(4, q)\}| &= |\Omega^+(4, q)|/(q+1) \\ &= q^2(q-1)^2(q+1). \end{aligned}$$

Since $Q(xv_1 + yv_2) = x^2 + xy + \alpha y^2$ for any $x, y \in \mathbb{F}_q$,

$$\begin{aligned} |\{(u_1, u_2) | Q(xu_1 + yu_2) &= x^2 + xy + \alpha y^2 \text{ for all } x, y \in \mathbb{F}_q\}| \\ &= |\mathbf{L}| \times 2(q+1) \\ &= q^2(q-1)^2(q+1). \end{aligned}$$

Hence $\Omega^+(4,q)$ acts transitively on the set of pairs (u_1, u_2) such that $Q(xu_1 + yu_2) = x^2 + xy + \alpha y^2$ for any $x, y \in \mathbb{F}_q$. In particular, $\Omega^+(4,q)$ is flag-transitive on $(\mathcal{P}, \mathcal{L}, \epsilon)$.

The equality (3) means that the stabilizer of $\langle v_1 \rangle \in \mathscr{P}$ is isomorphic to D(G). Let

$$A := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad B := \begin{pmatrix} a_0 & b_0 \\ \alpha b_0 & a_0 + b_0 \end{pmatrix} \in G$$

such that *B* is of order q + 1. Then the group $\langle A, B \rangle$ is isomorphic to *K*. $A \otimes I$, $I \otimes A$ interchange l_0 and l_0^{\perp} , while $B \otimes I$, $I \otimes B$ fix l_0 and l_0^{\perp} . So $\{X \otimes Y \mid X, Y \in \langle A, B \rangle\}$ is a subgroup of $\Omega^+(4, q)_{l_0 \cup l_0^{\perp}}$. Since $\Omega^+(4, q)_{l_0 \cup l_0^{\perp}}$ has order $4(q+1)^2 = |K|^2$, we have that $\Omega^+(4, q)_{l_0 \cup l_0^{\perp}}$ is isomorphic to K^2 .

Theorem 6.2. The graph Γ_q is isomorphic to $\Delta(\mathfrak{X}(SL(2,q), O^-(2,q)))$.

Proof. The graph Γ_q is isomorphic to the collinearity graph of the dual of the incidence structure $(\mathscr{P}, \mathscr{L}, \epsilon)$. From Lemma 6.1, the dual of $(\mathscr{P}, \mathscr{L}, \epsilon)$ is isomorphic to the coset geometry $(G^2/K^2, G^2/D(G), *)$ defined in Lemma 2.2. From Lemma 2.2, the collinearity graph of $(G^2/K^2, G^2/D(G), *)$ is isomorphic to $\Delta(\mathfrak{X}(G, K))$. Therefore Γ_q is isomorphic to $\Delta(\mathfrak{X}(G, K))$.

References

- E. Bannai, T. Ito, Algebraic combinatorics. I. Benjamin/Cummings Publishing Co. 1984. MR 87m:05001 Zbl 0555.05019
- [2] A. E. Brouwer, R. Mathon, unpublished.
- [3] A. E. Brouwer, J. H. van Lint, Strongly regular graphs and partial geometries. In: *Enumeration and design (Waterloo, Ont.*, 1982), 85–122, Academic Press 1984. MR 87c:05033 Zb1 0555.05016
- [4] P. Dembowski, Finite geometries. Springer 1968. MR 38 #1597 Zbl 0159.50001
- [5] G. L. Ebert, S. Egner, H. D. L. Hollmann, Q. Xiang, A four-class association scheme. J. Combin. Theory Ser. A 96 (2001), 180–191. MR 2002j:05152 Zbl 1010.05083
- [6] C. D. Godsil, Association schemes. Preprint.
- [7] C. D. Godsil, private communication.
- [8] J. W. P. Hirschfeld, *Finite projective spaces of three dimensions*. Oxford Univ. Press 1985. MR 87j:51013 Zbl 0574.51001
- [9] M. Koppinen, On algebras with two multiplications, including Hopf algebras and Bose-Mesner algebras. J. Algebra 182 (1996), 256–273. MR 97e:16092 Zbl 0897.16022

A four-class association scheme derived from a hyperbolic quadric in PG(3,q) 117

- [10] R. Mathon, 3-class association schemes. In: Proceedings of the Conference on Algebraic Aspects of Combinatorics (Univ. Toronto, Toronto, Ont., 1975), 123–155. Congressus Numerantium, No. XIII, Utilitas Math., Winnipeg, Man. 1975. MR 54 #2503 Zbl 0326.05023
- D. E. Taylor, *The geometry of the classical groups*. Heldermann 1992. MR 94d:20028 Zbl 0767.20001

Received 3 June, 2002

T. Fujisaki, Graduate school of Mathematics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan Email: fujisaki@math.kyushu-u.ac.jp