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Abstract. The fundamental theorem of projective geometry is generalized for projective spaces
over rings. Let RM and SN be modules. Provided some weak conditions are satisfied, a mor-
phism g : PðMÞnE ! PðNÞ between the associated projective spaces can be induced by a
semilinear map f : M ! N. These conditions are satisfied for instance if S is a left Ore domain
and if the image of g contains three independent free points. No assumptions are made on the
module M, and both modules may have some torsion.

Introduction

Two di¤erent approaches to projective spaces associated to modules are usually
considered. One may choose as set of points the set of all submodules generated by a
unimodular element, as defined in [20], or one may choose the lattice of all sub-
modules, as defined in [3]. In the first approach one avoids the pathology (?) of small
points contained in big points. But the price to pay is important.

Following [9] it would be desirable if one had a functor from the category of
modules and semilinear maps to a category of projective spaces and morphisms. But
this is impossible with the first approach. Consider the ring R :¼ Z=4Z and the linear
map f : R3 ! R3 defined by f ðx; y; zÞ ¼ ðxþ y; xþ 3y; zÞ. One easily shows that f

cannot induce a map PðR3Þ ! PðR3Þ that preserves the incidence relation. So with
this first approach we must restrict our attention to semilinear maps that preserve
unimodular elements, and this is not natural.

In the present paper the projective space PðMÞ associated to a module M is de-
fined as the set of all cyclic (i.e. one-generated) submodules. This is equivalent to the
second approach. Using axioms of Faigle and Herrmann [5] we propose a definition
of projective spaces based on a single operator4.

Morphisms of projective spaces are defined in the second section. It is shown that
one has a functor from the category of modules and semilinear maps to the category
of projective spaces and morphisms (this implies that a morphism must be a partially
defined map between the point sets).



The main result of this paper is a generalization of the fundamental theorem of
projective geometry. It is proved in Section 3 by following mainly the lines of the
proof given in [6]. Let RM and SN be modules and g : PðMÞnE ! PðNÞ a morphism

between the associated projective spaces. We suppose that the ring S is directly finite,
and that the image of g contains three independent free points B1;B2;B3 satisfying a

weak condition (C3). Then there exists a semilinear map f : M ! N which induces g.

Moreover, the map f is unique up to multiplication with a unit.

This condition (C3) requires that for any C1;C2 A PðNÞ, there exists a point Bi

which is independent from all the points of the line C14C2. In Section 4 we show
that this condition is satisfied provided S is a left Ore domain. In Section 5 we show
that it is satisfied provided S is a right Bezout domain and B1;B2;B3 generate a direct
summand.

In the literature, most generalizations of the fundamental theorem deal with iso-
morphisms. See for instance [18], [13], [12], [4] and [15]. Several interesting results
in that direction (and others) can be found in [10]. Closer to our theorem is the result
of Brehm [2]. His triangle-property resembles condition (C3), but it applies to the
module M, not to N. The reason is that Brehm’s homomorphisms preserve disjoint-
ness. Since we do not make such assumptions, our Theorem 3.2 generalizes Theorem
1 in [2]. On the other hand, Brehm’s result is very general, because homomorphisms
do not preserve cyclic submodules.

For classical projective spaces (over division rings), the present version of the fun-
damental theorem was first proved in [8] and independently by Havlicek [11]. It
generalized a former version due to Brauner [1] on linear maps. In the case of pro-
jective lattice geometries, these linear maps are discussed in [14]. Recently, a further
generalization of the fundamental theorem for classical projective spaces appeared in
[7]. It is possible that this generalization also applies to the case of projective spaces
associated to modules.

The author wishes to thank Professor Lashkhi for several valuable discussions on
projective geometry over rings.

1 Projective spaces

Definition 1.1. A projective space is a set P of points together with a binary operator
4 : P� P ! 2P which satisfies (at least) the following axioms:

(P1) a A b4a for all a; b A P,

(P2) if a A b4c, then a4bJ b4c,

(P3) if a4a ¼ b4b, then a ¼ b,

(P4) if a A b4p and p A c4d, then there exists q A b4c with a A q4d,

(P5) if a A b4c and a B b4b, then there exists d A c4c with a4b ¼ b4d.

According to axioms (P1) and (P2) one has a4b ¼ b4a. The last two axioms were
introduced by Faigle and Herrmann in [5] as properties (A7) and (A6).
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In an equivalent way, a projective space can be defined as a partially ordered set
together with a binary operator satisfying suitable axioms. The partial order asso-
ciated to a projective space P is given by ac b if and only if a A b4b.

Proposition 1.2. Let M be a (left) module over an arbitrary ring R (with 1). On the set

PðMÞ of all nonzero cyclic submodules of M we define an operator4by A A B4C if

and only if AJBþ C. Then PðMÞ becomes a projective space.

Proof. We verify axiom (P5). Let A;B;C A PðMÞ with AJBþ C and AUB. Say
A ¼ Ra, B ¼ Rb and C ¼ Rc. There exist l; m A R such that a ¼ lbþ mc and mc0 0.
Putting D ¼ Rmc one easily shows that Aþ B ¼ BþD. r

Definition 1.3. A subspace of a projective space P is a subset EJP with the property
that a; b A E implies a4bJE. Trivially, the set LðPÞ of all subspaces of P is closed
under arbitrary intersections and directed unions. Therefore LðPÞ is a complete alge-
braic lattice for the inclusion order.

Lemma 1.4. Let P be a projective space. Then for any points a; b A P the set a4b is the

smallest subspace containing a and b (this justifies the notation). In particular, a4a is

the smallest subspace containing a.

Proof. Let p; q A a4b and r A p4q. By axiom (P4) there exists s A p4a such that
r A s4b. Since p A a4b implies p4aJ a4b by (P2), one gets s A b4a. Therefore
r A s4bJ b4a, and this shows that a4b is a subspace. r

Lemma 1.5. Let E;F be two subspaces of a projective space P. Then the set G :¼
6fa4b j a A E and b A Fg is also a subspace of P.

Proof. Let p A p14p2 where p1; p2 A G. There exist a1; a2 A E and b1; b2 A F with
p1 A a14b1 and p2 A a24b2. We now apply three times axiom (P4):

1) Since p A p14p2 and p2 A a24b2, there exists q A p14a2 with p A q4b2.

2) Since q A a24p1 and p1 A a14b1, there exists a A a24a1 with q A a4b1.

3) Since p A b24q and q A b14a, there exists b A b24b1 with p A b4a.

Therefore p A G, and this shows that G is a subspace. r

Proposition 1.6. For any projective space P the lattice LðPÞ of all subspaces of P is

modular.

Proof. Let E;F ;G be three subspaces of P with EJG. We have to show that
ðE4F Þ5GJE4ðF5GÞ (the other inclusion holds trivially). We may assume that
E and F are not empty. This implies E4F ¼ 6fa4b j a A E and b A Fg by the pre-
vious lemma. Let p A ðE4FÞ5G. There exist a A E and b A F such that p A a4b. If
p A a4a, then p A EJE4ðF5GÞ. Otherwise, axiom (P5) implies that there exists a

Morphisms of projective spaces over rings 21



point c A b4b such that p4a ¼ a4c. One thus gets c A ðb4bÞV ðp4aÞJF5G,
and hence p A a4cJE4ðF5GÞ. r

Proposition 1.7. Let M be a module over a ring R. Then the lattice LðMÞ of all sub-
modules of M is isomorphic to the lattice LðPðMÞÞ.

Proof. For every submodule NJM the set jðNÞ :¼ fA A PðMÞ jAJNg is a sub-
space of PðMÞ, and we thus get a monotone map j : LðMÞ ! LðPðMÞÞ. Its in-
verse is the map c defined by cðEÞ ¼ 6E if E0q and cðqÞ ¼ f0g. r

2 Morphisms

Definition 2.1. Let P;Q be two projective spaces. A morphism from P into Q is a
partially defined map g : PnE ! Q satisfying the following axioms:

(M1) a; b; c B E and a A b4c imply ga A gb4gc,

(M2) a; b B E, x A E and a A b4x imply ga A gb4gb,

(M3) E is a subspace of P, called the kernel of g.

The following lemma gives an equivalent (and shorter) definition of a morphism:

Lemma 2.2. A partially defined map g : PnE ! Q between projective spaces is a mor-

phism if and only if g�1ðFÞUE is a subspace for every subspace F JQ.

Proof. ()) Let b; c A g�1ðFÞUE and a A b4c. We show that a A g�1ðFÞUE by con-
sidering the cases 1) b; c A g�1ðFÞ, 2) b A g�1ðFÞ and c A E, 3) b; c A E.

(() Choose the subspaces F1 ¼ gb4gc, F2 ¼ gb4gb and F3 ¼ q. r

Definition 2.3. Let g1 : P1nE1 ! P2 and g2 : P2nE2 ! P3 be two morphisms of pro-
jective spaces. The composite g2 � g1 is defined as follows: its kernel is the subspace
E ¼ g�1

1 ðE2ÞUE1 and any element a B E is mapped to g2g1a. It is a morphism be-
cause one has ðg2 � g1Þ�1ðFÞUE ¼ g�1

1 ðg�1
2 ðFÞUE2ÞUE1.

Remark 2.4. Morphisms from P1 to P2 are in one-to-one correspondence with maps
LðP1Þ ! LðP2Þ preserving arbitrary joins and cyclic subspaces (where the empty
subspace is considered as a cyclic one).

Definition 2.5. Let RM and SN be modules and s : R ! S a homomorphism of rings.
A map f : M ! N is called s-semilinear if it is additive and if one has f ðlxÞ ¼
sðlÞ f ðxÞ for all x A M and l A R.

Proposition 2.6. Let RM and SN be modules and f : M ! N a s-semilinear map.
Then the map Pf : PðMÞnPðker f Þ ! PðNÞ defined by Pf ðRxÞ ¼ Sf ðxÞ, where

x B ker f , is a morphism of projective spaces.
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Proof. The map Pf is well defined, because Rx ¼ Ry implies Sf ðxÞ ¼ Sf ðyÞ. The
conditions of Definition 2.1 (or Lemma 2.2) are easily verified. r

Proposition 2.7. If f1 : M1 ! M2 and f2 : M2 ! M3 are two semilinear maps between

modules, then Pð f2 � f1Þ ¼ Pf2 �Pf1. This means that P is a functor from the cate-

gory of modules to the category of projective spaces.

Proof. One has Pðkerð f2 � f1ÞÞ ¼ Pf �1
1 ðPðker f2ÞÞUPðker f1Þ. r

Definition 2.8. Let M be a module over R. We recall that an element a A M is free if
la ¼ 0 implies l ¼ 0. A family of n elements a1; . . . ; an A M is called

1) o-independent if l1a1 þ � � � þ lnan ¼ 0 implies l1a1 ¼ � � � ¼ lnan ¼ 0,

2) linearly independent if l1a1 þ � � � þ lnan ¼ 0 implies l1 ¼ � � � ¼ ln ¼ 0.

One trivially shows that a family a1; . . . ; an is linearly independent if and only if it is
o-independent and each ai is free.

Theorem 2.9. Let RM and SN be modules and f ; h : M ! N two semilinear maps

satisfying Pf ¼ Ph. We suppose that the image of f contains two linearly independent

elements y1; y2 with the following condition:

(C2) for every non-zero z A N there exists i such that yi; z are o-independent.

If S is a directly finite ring (that is, lm ¼ 1 implies ml ¼ 1), then there exists a unit

e A S such that hðcÞ ¼ ef ðcÞ for every c A M.

Proof. Let xi A M with f ðxiÞ ¼ yi. Since Sf ðx1Þ ¼ Shðx1Þ, there exist d; e A S such
that f ðx1Þ ¼ dhðx1Þ and hðx1Þ ¼ ef ðx1Þ. So one obtains f ðx1Þ ¼ def ðx1Þ, which im-
plies de ¼ 1. Therefore e is a unit. We want to show that hðxÞ ¼ ef ðxÞ for every x B
ker f ¼ ker h. We first suppose that f ðx1Þ; f ðxÞ are o-independent. Since Pf ¼ Ph,
there exist two elements l; m A S such that hðxÞ ¼ l f ðxÞ and hðx1 þ xÞ ¼ mf ðx1 þ xÞ.
From the equality

mf ðx1Þ þ mf ðxÞ ¼ hðx1 þ xÞ ¼ ef ðx1Þ þ l f ðxÞ

it follows that m ¼ e and mf ðxÞ ¼ l f ðxÞ. Hence hðxÞ ¼ ef ðxÞ. We now suppose that
f ðx1Þ; f ðxÞ are o-dependent. Then f ðx2Þ; f ðxÞ are o-independent, and we can apply
the same argument (one has hðx2Þ ¼ ef ðx2Þ by the first case). r

Condition (C2) clearly implies Greferath’s condition ðDÞ. However, the other as-
sumptions of Proposition 2.10 in [10] are stronger.

3 The fundamental theorem

Definition 3.1. Let SN be a module and PðNÞ the associated projective space. A
point B A PðNÞ is called free if B ¼ Sb for some free element b A N. A family of n
points B1; . . . ;Bn A PðNÞ is called independent if one has
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hBiiVhB1; . . . ;Bi�1;Biþ1; . . . ;Bni ¼ q

for every i ¼ 1; . . . ; n (where hAi denotes the subspace generated by a set A). One
easily shows that a family b1; . . . ; bn A N is o-independent in N if and only if
Sb1; . . . ;Sbn is independent in PðNÞ.

The aim of the present section is to prove the following result:

Theorem 3.2. Let RM and SN be modules and g : PðMÞnE ! PðNÞ a morphism be-

tween the associated projective spaces. We suppose that the image of g contains three

independent free points B1;B2;B3 with the following condition:

(C3) for any C1;C2 A PðNÞ there exists i such that ðBi4BiÞV ðC14C2Þ ¼ q.

If S is a directly finite ring, then there exists a semilinear map f : M ! N such that

g ¼ Pf . Moreover, the map f is unique up to multiplication with a unit.

Remarks 3.3. 1) If C1;C2 are independent, then condition (C3) implies that Bi;C1;C2

are also independent.
2) If Sy is free, then y is free. By hypothesis one has Sy ¼ Sz for some free element

z A N, and since S is directly finite, the element y di¤ers from z by a unit.

Condition (C3) clearly implies condition (1) of Brehm’s triangle-property [2], but
not condition (2). It is possible that this assumption in Theorem 3.2 can be weakened
by following Brehm’s idea. However, since all points have to be chosen in the image
of g, the game is not worth the candle.

Lemma 3.4. Let gðRx1Þ and gðRx2Þ be two independent points, and suppose that

gðRx1Þ ¼ Sy1 is free. Then there exists a unique element y2 A N such that gðRx2Þ ¼
Sy2 and gðRðx1 þ x2ÞÞ ¼ Sðy1 þ y2Þ.

Proof. Let z2 A N with gðRx2Þ ¼ Sz2. One first remarks that Rðx1 þ x2Þ B E, because
otherwise Rx1 A Rx24Rðx1 þ x2Þ would imply Sy1 JSz2 by (M2), in contradiction
to the hypothesis. Let z A N with gðRðx1 þ x2ÞÞ ¼ Sz. We apply three times condition
(M1):

1) Rðx1 þ x2Þ A Rx14Rx2 implies z ¼ l1 y1 þ l2z2,

2) Rx1 A Rðx1 þ x2Þ4Rx2 implies y1 ¼ mz� m2z2,

3) Rx2 A Rðx1 þ x2Þ4Rx1 implies z2 ¼ nz� n1 y1.

From the equality y1 ¼ ml1 y1 þ ðml2 � m2Þz2 one obtains ml1 ¼ 1 (because y1 is free)
and ml2z2 ¼ m2z2. We put y2 ¼ m2z2. Since m is a unit of S, one gets gðRðx1 þ x2ÞÞ ¼
Smz ¼ Sðy1 þ y2Þ according to condition 2). From the equality z2 ¼ ðnl1 � n1Þy1 þ
nl2z2 one obtains z2 ¼ nl2z2. So it follows that nl1 y2 ¼ nl1m2z2 ¼ nl1ml2z2 ¼
nl2z2 ¼ z2. Therefore Sy2 ¼ Sz2 and the assertion is proved. The uniqueness of y2 is
obvious. r
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Lemma 3.5. Let gðRx1Þ; gðRx2Þ and gðRx3Þ be three independent points. If there exist
y1; y2; y3 A N such that

1) gðRx1Þ ¼ Sy1 is free, gðRx2Þ ¼ Sy2 and gðRx3Þ ¼ Sy3,

2) gðRðx1 þ x2ÞÞ ¼ Sðy1 þ y2Þ and gðRðx1 þ x3ÞÞ ¼ Sðy1 þ y3Þ,

then gðRðx1 þ x2 þ x3ÞÞ ¼ Sðy1 þ y2 þ y3Þ and gðRðx2 þ x3ÞÞ ¼ Sðy2 þ y3Þ.

Proof. One first remarks that gðRðx1 þ x2ÞÞ; gðRx3Þ are independent, because
gðRðx1 þ x2ÞÞ A gðRx1Þ4gðRx2Þ by (M1). Since gðRðx1 þ x2ÞÞ ¼ Sðy1 þ y2Þ is free,
there exists by Lemma 3.4 a unique z3 A N such that gðRx3Þ ¼ Sz3 and gðRðx1 þ
x2 þ x3ÞÞ ¼ Sðy1 þ y2 þ z3Þ. And by symmetry there exists a unique z2 A N such that
gðRx2Þ ¼ Sz2 and gðRðx1 þ x2 þ x3ÞÞ ¼ Sðy1 þ z2 þ y3Þ. So one obtains y2 ¼ z2 and
y3 ¼ z3, which proves the first assertion.
Now one considers the points gðRðx1 þ x2 þ x3ÞÞ and gðRðx2 þ x3ÞÞ. They are

independent, because gðRðx2 þ x3ÞÞ A gðRx2Þ4gðRx3Þ. Moreover, the first point is
free. So there exists a unique z A N such that gðRðx2 þ x3ÞÞ ¼ Sz and gðRx1Þ ¼
Sðy1 þ y2 þ y3 þ zÞ. Obviously, this implies z ¼ �y2 � y3, and hence gðRðx2 þ x3ÞÞ
¼ Sðy2 þ y3Þ, which proves the second assertion. r

By hypothesis the image of the morphism g contains three independent free points
B1;B2;B3. We choose A1;A2;A3 A PðMÞnE such that Bi ¼ gðAiÞ, and a1; a2; a3 A M

such that Ai ¼ Rai.

Lemma 3.6. There exist b1; b2; b3 A N such that gðRaiÞ ¼ Sbi for each i, and

gðRðai þ ajÞÞ ¼ Sðbi þ bjÞ for all i0 j.

Proof. Let b1 A N with gðRa1Þ ¼ Sb1. By Lemma 3.4 there exist b2 A N such that
gðRa2Þ ¼ Sb2 and gðRða1 þ a2ÞÞ ¼ Sðb1 þ b2Þ, and b3 A N with the same properties.
According to Lemma 3.5 one has gðRða2 þ a3ÞÞ ¼ Sðb2 þ b3Þ. r

Definition 3.7. According to Proposition 1.7 the kernel E can be written in a unique
way as E ¼ PðM0Þ where M0 is a submodule of M. The map f : M ! N is now
defined as follows. For each element x A M0 we put f ðxÞ ¼ 0. If x B M0, then
by condition (C3) there exists i such that gðRaiÞ; gðRxÞ are independent. We put
f ðxÞ ¼ ywhere y A N is the unique element satisfying gðRxÞ ¼ Sy and gðRðai þ xÞÞ ¼
Sðbi þ yÞ (cf. Lemma 3.4).

Lemma 3.8. The definition does not depend on the choice of the element ai.

Proof. Suppose that gðRa1Þ; gðRxÞ and gðRa2Þ; gðRxÞ are independent pairs of points.
We consider y A N with gðRxÞ ¼ Sy and gðRða1 þ xÞÞ ¼ Sðb1 þ yÞ, and we want to
show that gðRða2 þ xÞÞ ¼ Sðb2 þ yÞ. If gðRa1Þ; gðRa2Þ; gðRxÞ are independent, then
the conclusion holds by Lemma 3.5. Otherwise, condition (C3) implies that gðRa1Þ;
gðRa3Þ; gðRxÞ and gðRa3Þ; gðRa2Þ; gðRxÞ are both independent triples of points. So
we apply twice the preceding argument. r
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Proposition 3.9. f ðx1 þ x2Þ ¼ f ðx1Þ þ f ðx2Þ for all x1; x2 A M.

Proof. Put y1 ¼ f ðx1Þ and y2 ¼ f ðx2Þ. Obviously, we may assume that x1 0 0 and
x2 B M0. Three di¤erent cases will be considered.

Case 1: Rx1 A E. Choose i such that gðRaiÞ; gðRx2Þ are independent. Since
Rðai þ x2Þ A Rðai þ x1 þ x2Þ4Rx1, one gets

Sðbi þ y2Þ ¼ gðRðai þ x2ÞÞ ¼ gðRðai þ x1 þ x2ÞÞ

by (M2). Similarly, Sy2 ¼ gðRx2Þ ¼ gðRðx1 þ x2ÞÞ. By definition of the map f this
shows that f ðx1 þ x2Þ ¼ f ðx2Þ.

Case 2: Rx1 B E and gðRx1Þ; gðRx2Þ are independent. By condition (C3) one can
choose i such that gðRaiÞ; gðRx1Þ; gðRx2Þ are independent. One obtains

gðRðai þ x1 þ x2ÞÞ ¼ Sðbi þ y1 þ y2Þ and gðRðx1 þ x2ÞÞ ¼ Sðy1 þ y2Þ

by Lemma 3.5, and this shows that f ðx1 þ x2Þ ¼ f ðx1Þ þ f ðx2Þ.

Case 3: Rx1 B E and gðRx1Þ; gðRx2Þ are dependent. By condition (C3) there exists i
such that ðSbi4SbiÞV ðSy14Sy2Þ ¼ q. If Rðx1 þ x2Þ A E, then f ðai þ x1 þ x2Þ ¼
f ðaiÞ according to the first case. And if Rðx1 þ x2Þ B E, then gðRðx1 þ x2ÞÞ A
Sy14Sy2 implies that the points gðRaiÞ; gðRðx1 þ x2ÞÞ are independent, and one thus
gets f ðai þ x1 þ x2Þ ¼ f ðaiÞ þ f ðx1 þ x2Þ by the second case. So this equality holds
in any cases. On the other hand, one obtains f ðai þ x1 þ x2Þ ¼ f ðai þ x1Þ þ f ðx2Þ ¼
f ðaiÞ þ f ðx1Þ þ f ðx2Þ by applying twice Case 2, and one deduces that f ðaiÞþ
f ðx1 þ x2Þ ¼ f ðaiÞ þ f ðx1Þ þ f ðx2Þ. r

Proposition 3.10. There exists a map s : R ! S such that f ðlxÞ ¼ sðlÞ f ðxÞ for all

l A R and x A M.

Proof. For any l A R and x B M0 we remark that there exists m A S such that
f ðlxÞ ¼ mf ðxÞ. This is trivial if lx A M0. And if lx B M0, then (M1) implies that
Sf ðlxÞ ¼ gðRðlxÞÞJ gðRxÞ ¼ Sf ðxÞ. We now define sðlÞ as the unique element of S
with the property that f ðla1Þ ¼ sðlÞ f ða1Þ. We have to show that f ðlxÞ ¼ sðlÞ f ðxÞ
for all x B M0 and l A R.

Case 1: gðRa1Þ; gðRxÞ are independent. Let m; n A S with f ðlxÞ ¼ mf ðxÞ and
f ðlða1 þ xÞÞ ¼ nf ða1 þ xÞ. From the equality

sðlÞ f ða1Þ þ mf ðxÞ ¼ f ðla1 þ lxÞ ¼ nf ða1Þ þ nf ðxÞ

one obtains sðlÞ ¼ n and mf ðxÞ ¼ nf ðxÞ. Therefore f ðlxÞ ¼ sðlÞ f ðxÞ.
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Case 2: By condition (C3) we may assume that gðRa2Þ; gðRxÞ are independent points.
Since f ðla2Þ ¼ sðlÞ f ða2Þ according to the first case, one can apply the preceding
argument. r

From the equalities sðlþ mÞ f ða1Þ ¼ f ðla1 þ ma1Þ ¼ sðlÞ f ða1Þ þ sðmÞ f ða1Þ and
sðlmÞ f ða1Þ ¼ sðlÞ f ðma1Þ ¼ sðlÞsðmÞ f ða1Þ one deduces that s is a homomorphism
of rings. Therefore f is a semilinear map. By definition of the map f one has g ¼ Pf .
The fact that f is unique up to multiplication by a unit follows from Theorem 2.9. So
the proof of Theorem 3.2 is complete.

4 Modules over left Ore domains

Let N be a module over a directly finite ring S. We suppose given two linearly inde-
pendent elements b1; b2 A N. Then condition (C2) can be written as follows:

(C2) for any c A N there exists i such that Sbi VSc ¼ f0g.

Now let b1; b2; b3 A N be three linearly independent elements. Condition (C3) in
Theorem 3.2 can be written as follows:

(C3) for any c1; c2 A N there exists i such that Sbi V ðSc1 þ Sc2Þ ¼ f0g.

We show that these conditions are satisfied provided S is a left Ore domain. We recall
that a ring S is left Ore if SlVSm0 f0g for all non-zero l; m A S.

Proposition 4.1. If S is a left Ore domain, then condition (C2) is satisfied.

Proof. Assume it is not. There exist l1; l2; m1; m2 A S such that

l1b1 ¼ m1c0 0 and l2b2 ¼ m2c0 0:

Since S is left Ore, there exist a; b A S such that am1 ¼ bm2 0 0. So al1b1 ¼ am1c ¼
bm2c ¼ bl2b2 implies al1 ¼ bl2 ¼ 0, a contradiction. r

Remark 4.2. Suppose that S is a domain. If condition (C2) holds for any two linearly
independent elements b1; b2 A N and if N contains some free element x, then, con-
versely, S is left Ore.

Proof. Assume on the contrary that there exist non-zero elements l; m A S with
SlVSm ¼ f0g. Then lx and mx are linearly independent, but SlxVSx0 f0g and
SmxVSx0 f0g, which yields a contradiction. r

Proposition 4.3. If S is a left Ore domain, then condition (C3) is satisfied.

Proof. Assume it is not. For each i ¼ 1; 2; 3 there exist li; mi; ni A S such that

libi ¼ mic1 þ nic2 0 0:
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We may assume that n1n2 0 0 or n1n3 0 0 or n2n3 0 0, because otherwise the preced-
ing proposition yields a contradiction. Suppose that n1n2 0 0. There exist a1; a2 A S

such that a1n1 ¼ a2n2 0 0. So we obtain

a1l1b1 � a2l2b2 ¼ ða1m1 � a2m2Þc1:

If n3 0 0, a similar argument gives a second equality

b1l1b1 � b3l3b3 ¼ ðb1m1 � b3m3Þc1:

And if n3 ¼ 0, we consider the equality l3b3 ¼ m3c1. So in both cases we obtain two
equalities d2d2 ¼ g2c1 and d3d3 ¼ g3c1, where d2; d3 are two linearly independent ele-
ments. By the preceding proposition this is impossible. r

Corollary 4.4. Let RM and SN be modules and g : PðMÞnE ! PðNÞ a morphism

between the associated projective spaces. If the image of g contains three independent

free points, and if the ring S is a left Ore domain, then there exists a semilinear map

f : M ! N such that g ¼ Pf . Moreover, the map f is unique up to multiplication with

a unit.

Remark 4.5. If each c A N is a multiple of a free element (and if the image of g con-
tains three independent free points), then it is enough to assume that S is a left Ore
ring. This is left as an easy exercise.

5 Modules over right Bezout domains

Definition 5.1. We say that a ring S satisfies the 2-diagonal condition (D2) if

m1
m2

� �
ða1 a2Þ0

l1 0

0 l2

� �

with l1 0 0 and l2 0 0. We say that S satisfies the 3-diagonal condition (D3) if

m1 n1

m2 n2

m3 n3

0
B@

1
CA a1 a2 a3

b1 b2 b3

� �
0

l1 0 0

0 l2 0

0 0 l3

0
B@

1
CA

with l1 0 0, l2 0 0 and l3 0 0.

Remark 5.2. If a ring satisfies condition (D2), then its only idempotents are 0 and 1.
In particular, it is directly finite.

Proof. If l2 ¼ l, then
l

1� l

� �
ðl 1� lÞ ¼ l 0

0 1� l

� �
. r
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As in the preceding section, we suppose given two (or three) linearly independent
elements b1; b2 (and b3) in N.

Proposition 5.3. If S satisfies condition (D2) and N ¼ Sb1 lSb2 lN 0, then condition

(C2) is satisfied.

Proof. Assume it is not. There exist l1; l2; m1; m2 A S such that

l1b1 ¼ m1c0 0 and l2b2 ¼ m2c0 0:

Put c ¼ a1b1 þ a2b2 þ c3. Then l1b1 ¼ m1c implies l1 ¼ m1a1 and 0 ¼ m1a2, and sim-
ilarly l2b2 ¼ m2c implies 0 ¼ m2a1 and l2 ¼ m2a2, in contradiction to the 2-diagonal
condition. r

Proposition 5.4. If S satisfies condition (D3) and N ¼ Sb1 lSb2 lSb3 lN 0, then
condition (C3) is satisfied.

Proof. Same argument. r

Lemma 5.5. If S is directly finite, and if the module S2 satisfies the following intersec-

tion condition:

(I2) x; y A S2 and SxVSy0 f0g imply x; y A Sz for some z A S2,

then the ring S satisfies both conditions (D2) and (D3).

Proof. We first show that S is a domain. Let a; b A S with ab ¼ 0 and a0 0. Since
að1; bÞ ¼ að1; 0Þ0 ð0; 0Þ, one obtains ð1; bÞ ¼ gðl; mÞ and ð1; 0Þ ¼ dðl; mÞ. One has
dl ¼ 1 and hence ld ¼ 1. Thus b ¼ gm ¼ gldm ¼ 0, and the assertion is proved. Con-
dition (D2) then easily follows. In order to verify condition (D3), we suppose on the
contrary that

m1 n1

m2 n2

m3 n3

0
B@

1
CA a1 a2 a3

b1 b2 b3

� �
¼

l1 0 0

0 l2 0

0 0 l3

0
B@

1
CA

with l1 0 0, l2 0 0 and l3 0 0. From m1ða2; a3Þ þ n1ðb2; b3Þ ¼ ð0; 0Þ one gets
m1ða2; a3Þ ¼ �n1ðb2; b3Þ, and one can easily show that m1ða2; a3Þ0 ð0; 0Þ. By hy-
pothesis one obtains ða2; a3Þ ¼ aðg2; g3Þ and ðb2; b3Þ ¼ bðg2; g3Þ. Then

m2aþ n2b

m3aþ n3b

� �
ðg2 g3Þ ¼

l2 0

0 l3

� �
;

in contradiction to condition (D2). So condition (D3) is verified. r
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We show that the intersection condition (I2) is satisfied provided S is a right
Bezout domain. We recall that a ring S is right Bezout if for any a; b A S there exist
g; d; e; l; m A S such that a ¼ gd, b ¼ ge and g ¼ alþ bm.

Proposition 5.6. If S is a right Bezout domain, then the module S2 satisfies the condi-

tion (I2). In particular, S satisfies both conditions (D2) and (D3).

Proof. Suppose that lðx1; x2Þ ¼ mðh1; h2Þ0 ð0; 0Þ. We put o1 ¼ lx1 ¼ mh1 and o2 ¼
lx2 ¼ mh2. By hypothesis one can write o1 ¼ nz1 and o2 ¼ nz2 for some n ¼ o1a1 þ
o2a2. Since lðx1; x2Þ ¼ lðx1a1 þ x2a2Þðz1; z2Þ, one concludes that ðx1; x2Þ ¼ ðx1a1 þ
x2a2Þðz1; z2Þ ¼ xðz1; z2Þ. Similarly, ðh1; h2Þ ¼ hðz1; z2Þ. r

Corollary 5.7. Let RM and SN be modules and g : PðMÞnE ! PðNÞ a morphism

between the associated projective spaces. If the image of g contains three free points

B1;B2;B3 such that N ¼ B1 lB2 lB3 lN 0, and if the ring S is a right Bezout do-

main, then there exists a semilinear map f : M ! N such that g ¼ Pf . Moreover, the
map f is unique up to multiplication with a unit.
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[16] S. E. Schmidt, Projektive Räume mit geordneter Punktmenge. Mitt. Math. Sem. Giessen

182 (1987). MR 89a:51004 Zbl 0632.51001
[17] S. E. Schmidt, S. Weller, Fundamentalsatz für a‰ne Räume über Moduln. Results Math.

30 (1996), 151–159. MR 97j:51007 Zbl 0861.51003
[18] W. Stephenson, Lattice isomorphisms between modules. I. Endomorphism rings. J. Lon-

don Math. Soc. (2) 1 (1969), 177–183. MR 41 #1794 Zbl 0212.38007
[19] G. Törner, F. D. Veldkamp, Literature on geometry over rings. J. Geom. 42 (1991),

180–200. MR 92h:51006 Zbl 0737.51001
[20] F. D. Veldkamp, Geometry over rings. In: Handbook of incidence geometry, 1033–1084,

North-Holland 1995. MR 96j:51007 Zbl 0822.51004

Received 2 May, 2001; revised 3 March, 2003

C.-A. Faure, Gymnase de la Cité, case postale 329, CH-1000 Lausanne 17, Switzerland
Email: cafaure@bluemail.ch

Morphisms of projective spaces over rings 31

http://www.ams.org/mathscinet-getitem?mr=96g:51003
http://www.emis.de/MATH-item?0847.51002
http://www.ams.org/mathscinet-getitem?mr=85d:16008
http://www.emis.de/MATH-item?0545.16010
http://www.ams.org/mathscinet-getitem?mr=89a:51004
http://www.emis.de/MATH-item?0632.51001
http://www.ams.org/mathscinet-getitem?mr=97j:51007
http://www.emis.de/MATH-item?0861.51003
http://www.ams.org/mathscinet-getitem?mr=41:1794
http://www.emis.de/MATH-item?0212.38007
http://www.ams.org/mathscinet-getitem?mr=92h:51006
http://www.emis.de/MATH-item?0737.51001
http://www.ams.org/mathscinet-getitem?mr=96j:51007
http://www.emis.de/MATH-item?0822.51004

