Morphisms of projective spaces over rings

Claude-Alain Faure
(Communicated by A. Kreuzer)

Dedicated to Francis Buekenhout on the occasion of his 65th birthday

Abstract

The fundamental theorem of projective geometry is generalized for projective spaces over rings. Let ${ }_{R} M$ and ${ }_{S} N$ be modules. Provided some weak conditions are satisfied, a morphism $g: \mathscr{P}(M) \backslash E \rightarrow \mathscr{P}(N)$ between the associated projective spaces can be induced by a semilinear map $f: M \rightarrow N$. These conditions are satisfied for instance if S is a left Ore domain and if the image of g contains three independent free points. No assumptions are made on the module M, and both modules may have some torsion.

Introduction

Two different approaches to projective spaces associated to modules are usually considered. One may choose as set of points the set of all submodules generated by a unimodular element, as defined in [20], or one may choose the lattice of all submodules, as defined in [3]. In the first approach one avoids the pathology (?) of small points contained in big points. But the price to pay is important.

Following [9] it would be desirable if one had a functor from the category of modules and semilinear maps to a category of projective spaces and morphisms. But this is impossible with the first approach. Consider the ring $R:=\mathbb{Z} / 4 \mathbb{Z}$ and the linear map $f: R^{3} \rightarrow R^{3}$ defined by $f(x, y, z)=(x+y, x+3 y, z)$. One easily shows that f cannot induce a map $\mathscr{P}\left(R^{3}\right) \rightarrow \mathscr{P}\left(R^{3}\right)$ that preserves the incidence relation. So with this first approach we must restrict our attention to semilinear maps that preserve unimodular elements, and this is not natural.

In the present paper the projective space $\mathscr{P}(M)$ associated to a module M is defined as the set of all cyclic (i.e. one-generated) submodules. This is equivalent to the second approach. Using axioms of Faigle and Herrmann [5] we propose a definition of projective spaces based on a single operator v.

Morphisms of projective spaces are defined in the second section. It is shown that one has a functor from the category of modules and semilinear maps to the category of projective spaces and morphisms (this implies that a morphism must be a partially defined map between the point sets).

The main result of this paper is a generalization of the fundamental theorem of projective geometry. It is proved in Section 3 by following mainly the lines of the proof given in [6]. Let ${ }_{R} M$ and ${ }_{S} N$ be modules and $g: \mathscr{P}(M) \backslash E \rightarrow \mathscr{P}(N)$ a morphism between the associated projective spaces. We suppose that the ring S is directly finite, and that the image of g contains three independent free points B_{1}, B_{2}, B_{3} satisfying a weak condition (C3). Then there exists a semilinear map $f: M \rightarrow N$ which induces g. Moreover, the map f is unique up to multiplication with a unit.

This condition (C3) requires that for any $C_{1}, C_{2} \in \mathscr{P}(N)$, there exists a point B_{i} which is independent from all the points of the line $C_{1} \vee C_{2}$. In Section 4 we show that this condition is satisfied provided S is a left Ore domain. In Section 5 we show that it is satisfied provided S is a right Bezout domain and B_{1}, B_{2}, B_{3} generate a direct summand.

In the literature, most generalizations of the fundamental theorem deal with isomorphisms. See for instance [18], [13], [12], [4] and [15]. Several interesting results in that direction (and others) can be found in [10]. Closer to our theorem is the result of Brehm [2]. His triangle-property resembles condition (C3), but it applies to the module M, not to N. The reason is that Brehm's homomorphisms preserve disjointness. Since we do not make such assumptions, our Theorem 3.2 generalizes Theorem 1 in [2]. On the other hand, Brehm's result is very general, because homomorphisms do not preserve cyclic submodules.

For classical projective spaces (over division rings), the present version of the fundamental theorem was first proved in [8] and independently by Havlicek [11]. It generalized a former version due to Brauner [1] on linear maps. In the case of projective lattice geometries, these linear maps are discussed in [14]. Recently, a further generalization of the fundamental theorem for classical projective spaces appeared in [7]. It is possible that this generalization also applies to the case of projective spaces associated to modules.

The author wishes to thank Professor Lashkhi for several valuable discussions on projective geometry over rings.

1 Projective spaces

Definition 1.1. A projective space is a set P of points together with a binary operator $\vee: P \times P \rightarrow 2^{P}$ which satisfies (at least) the following axioms:
(P1) $a \in b \vee a$ for all $a, b \in P$,
(P2) if $a \in b \vee c$, then $a \vee b \subseteq b \vee c$,
(P3) if $a \vee a=b \vee b$, then $a=b$,
(P4) if $a \in b \vee p$ and $p \in c \vee d$, then there exists $q \in b \vee c$ with $a \in q \vee d$,
(P5) if $a \in b \vee c$ and $a \notin b \vee b$, then there exists $d \in c \vee c$ with $a \vee b=b \vee d$.
According to axioms (P 1) and (P 2) one has $a \vee b=b \vee a$. The last two axioms were introduced by Faigle and Herrmann in [5] as properties (A7) and (A6).

In an equivalent way, a projective space can be defined as a partially ordered set together with a binary operator satisfying suitable axioms. The partial order associated to a projective space P is given by $a \leqslant b$ if and only if $a \in b \vee b$.

Proposition 1.2. Let M be a (left) module over an arbitrary ring R (with 1). On the set $\mathscr{P}(M)$ of all nonzero cyclic submodules of M we define an operator \vee by $A \in B \vee C$ if and only if $A \subseteq B+C$. Then $\mathscr{P}(M)$ becomes a projective space.

Proof. We verify axiom (P5). Let $A, B, C \in \mathscr{P}(M)$ with $A \subseteq B+C$ and $A \nsubseteq B$. Say $A=R a, B=R b$ and $C=R c$. There exist $\lambda, \mu \in R$ such that $a=\lambda b+\mu c$ and $\mu c \neq 0$. Putting $D=R \mu c$ one easily shows that $A+B=B+D$.

Definition 1.3. A subspace of a projective space P is a subset $E \subseteq P$ with the property that $a, b \in E$ implies $a \vee b \subseteq E$. Trivially, the set $\mathscr{L}(P)$ of all subspaces of P is closed under arbitrary intersections and directed unions. Therefore $\mathscr{L}(P)$ is a complete algebraic lattice for the inclusion order.

Lemma 1.4. Let P be a projective space. Then for any points $a, b \in P$ the set $a \vee b$ is the smallest subspace containing a and b (this justifies the notation). In particular, $a \vee a$ is the smallest subspace containing a.

Proof. Let $p, q \in a \vee b$ and $r \in p \vee q$. By axiom (P4) there exists $s \in p \vee a$ such that $r \in s \vee b$. Since $p \in a \vee b$ implies $p \vee a \subseteq a \vee b$ by (P2), one gets $s \in b \vee a$. Therefore $r \in s \vee b \subseteq b \vee a$, and this shows that $a \vee b$ is a subspace.

Lemma 1.5. Let E, F be two subspaces of a projective space P. Then the set $G:=$ $\bigcup\{a \vee b \mid a \in E$ and $b \in F\}$ is also a subspace of P.

Proof. Let $p \in p_{1} \vee p_{2}$ where $p_{1}, p_{2} \in G$. There exist $a_{1}, a_{2} \in E$ and $b_{1}, b_{2} \in F$ with $p_{1} \in a_{1} \vee b_{1}$ and $p_{2} \in a_{2} \vee b_{2}$. We now apply three times axiom (P4):

1) Since $p \in p_{1} \vee p_{2}$ and $p_{2} \in a_{2} \vee b_{2}$, there exists $q \in p_{1} \vee a_{2}$ with $p \in q \vee b_{2}$.
2) Since $q \in a_{2} \vee p_{1}$ and $p_{1} \in a_{1} \vee b_{1}$, there exists $a \in a_{2} \vee a_{1}$ with $q \in a \vee b_{1}$.
3) Since $p \in b_{2} \vee q$ and $q \in b_{1} \vee a$, there exists $b \in b_{2} \vee b_{1}$ with $p \in b \vee a$.

Therefore $p \in G$, and this shows that G is a subspace.
Proposition 1.6. For any projective space P the lattice $\mathscr{L}(P)$ of all subspaces of P is modular.

Proof. Let E, F, G be three subspaces of P with $E \subseteq G$. We have to show that $(E \vee F) \wedge G \subseteq E \vee(F \wedge G)$ (the other inclusion holds trivially). We may assume that E and F are not empty. This implies $E \vee F=\bigcup\{a \vee b \mid a \in E$ and $b \in F\}$ by the previous lemma. Let $p \in(E \vee F) \wedge G$. There exist $a \in E$ and $b \in F$ such that $p \in a \vee b$. If $p \in a \vee a$, then $p \in E \subseteq E \vee(F \wedge G)$. Otherwise, axiom (P5) implies that there exists a
point $c \in b \vee b$ such that $p \vee a=a \vee c$. One thus gets $c \in(b \vee b) \cap(p \vee a) \subseteq F \wedge G$, and hence $p \in a \vee c \subseteq E \vee(F \wedge G)$.

Proposition 1.7. Let M be a module over a ring R. Then the lattice $\mathscr{L}(M)$ of all submodules of M is isomorphic to the lattice $\mathscr{L}(\mathscr{P}(M))$.

Proof. For every submodule $N \subseteq M$ the set $\varphi(N):=\{A \in \mathscr{P}(M) \mid A \subseteq N\}$ is a subspace of $\mathscr{P}(M)$, and we thus get a monotone $\operatorname{map} \varphi: \mathscr{L}(M) \rightarrow \mathscr{L}(\mathscr{P}(M))$. Its inverse is the map ψ defined by $\psi(E)=\bigcup E$ if $E \neq \varnothing$ and $\psi(\varnothing)=\{0\}$.

2 Morphisms

Definition 2.1. Let P, Q be two projective spaces. A morphism from P into Q is a partially defined map $g: P \backslash E \rightarrow Q$ satisfying the following axioms:
(M1) $a, b, c \notin E$ and $a \in b \vee c$ imply $g a \in g b \vee g c$,
(M2) $a, b \notin E, x \in E$ and $a \in b \vee x$ imply $g a \in g b \vee g b$,
(M3) E is a subspace of P, called the kernel of g.
The following lemma gives an equivalent (and shorter) definition of a morphism:
Lemma 2.2. A partially defined map $g: P \backslash E \rightarrow Q$ between projective spaces is a morphism if and only if $g^{-1}(F) \cup E$ is a subspace for every subspace $F \subseteq Q$.

Proof. (\Rightarrow) Let $b, c \in g^{-1}(F) \cup E$ and $a \in b \vee c$. We show that $a \in g^{-1}(F) \cup E$ by considering the cases 1) $b, c \in g^{-1}(F)$, 2) $b \in g^{-1}(F)$ and $c \in E$, 3) $b, c \in E$.
(\Leftarrow) Choose the subspaces $F_{1}=g b \vee g c, F_{2}=g b \vee g b$ and $F_{3}=\varnothing$.
Definition 2.3. Let $g_{1}: P_{1} \backslash E_{1} \rightarrow P_{2}$ and $g_{2}: P_{2} \backslash E_{2} \rightarrow P_{3}$ be two morphisms of projective spaces. The composite $g_{2} \circ g_{1}$ is defined as follows: its kernel is the subspace $E=g_{1}^{-1}\left(E_{2}\right) \cup E_{1}$ and any element $a \notin E$ is mapped to $g_{2} g_{1} a$. It is a morphism because one has $\left(g_{2} \circ g_{1}\right)^{-1}(F) \cup E=g_{1}^{-1}\left(g_{2}^{-1}(F) \cup E_{2}\right) \cup E_{1}$.

Remark 2.4. Morphisms from P_{1} to P_{2} are in one-to-one correspondence with maps $\mathscr{L}\left(P_{1}\right) \rightarrow \mathscr{L}\left(P_{2}\right)$ preserving arbitrary joins and cyclic subspaces (where the empty subspace is considered as a cyclic one).

Definition 2.5. Let ${ }_{R} M$ and ${ }_{S} N$ be modules and $\sigma: R \rightarrow S$ a homomorphism of rings. A map $f: M \rightarrow N$ is called σ-semilinear if it is additive and if one has $f(\lambda x)=$ $\sigma(\lambda) f(x)$ for all $x \in M$ and $\lambda \in R$.

Proposition 2.6. Let ${ }_{R} M$ and ${ }_{S} N$ be modules and $f: M \rightarrow N$ a σ-semilinear map. Then the map $\mathscr{P} f: \mathscr{P}(M) \backslash \mathscr{P}(\operatorname{ker} f) \rightarrow \mathscr{P}(N)$ defined by $\mathscr{P} f(R x)=S f(x)$, where $x \notin \operatorname{ker} f$, is a morphism of projective spaces.

Proof. The map $\mathscr{P} f$ is well defined, because $R x=R y$ implies $S f(x)=S f(y)$. The conditions of Definition 2.1 (or Lemma 2.2) are easily verified.

Proposition 2.7. If $f_{1}: M_{1} \rightarrow M_{2}$ and $f_{2}: M_{2} \rightarrow M_{3}$ are two semilinear maps between modules, then $\mathscr{P}\left(f_{2} \circ f_{1}\right)=\mathscr{P} f_{2} \circ \mathscr{P} f_{1}$. This means that P is a functor from the category of modules to the category of projective spaces.

Proof. One has $\mathscr{P}\left(\operatorname{ker}\left(f_{2} \circ f_{1}\right)\right)=\mathscr{P} f_{1}^{-1}\left(\mathscr{P}\left(\operatorname{ker} f_{2}\right)\right) \cup \mathscr{P}\left(\operatorname{ker} f_{1}\right)$.
Definition 2.8. Let M be a module over R. We recall that an element $a \in M$ is free if $\lambda a=0$ implies $\lambda=0$. A family of n elements $a_{1}, \ldots, a_{n} \in M$ is called

1) ω-independent if $\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n}=0$ implies $\lambda_{1} a_{1}=\cdots=\lambda_{n} a_{n}=0$,
2) linearly independent if $\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n}=0$ implies $\lambda_{1}=\cdots=\lambda_{n}=0$.

One trivially shows that a family a_{1}, \ldots, a_{n} is linearly independent if and only if it is ω-independent and each a_{i} is free.

Theorem 2.9. Let ${ }_{R} M$ and ${ }_{S} N$ be modules and $f, h: M \rightarrow N$ two semilinear maps satisfying $\mathscr{P} f=\mathscr{P} h$. We suppose that the image of f contains two linearly independent elements y_{1}, y_{2} with the following condition:
$(\mathrm{C} 2)$ for every non-zero $z \in N$ there exists i such that y_{i}, z are ω-independent.
If S is a directly finite ring (that is, $\lambda \mu=1$ implies $\mu \lambda=1$), then there exists a unit $\varepsilon \in S$ such that $h(c)=\varepsilon f(c)$ for every $c \in M$.

Proof. Let $x_{i} \in M$ with $f\left(x_{i}\right)=y_{i}$. Since $S f\left(x_{1}\right)=\operatorname{Sh}\left(x_{1}\right)$, there exist $\delta, \varepsilon \in S$ such that $f\left(x_{1}\right)=\delta h\left(x_{1}\right)$ and $h\left(x_{1}\right)=\varepsilon f\left(x_{1}\right)$. So one obtains $f\left(x_{1}\right)=\delta \varepsilon f\left(x_{1}\right)$, which implies $\delta \varepsilon=1$. Therefore ε is a unit. We want to show that $h(x)=\varepsilon f(x)$ for every $x \notin$ ker $f=\operatorname{ker} h$. We first suppose that $f\left(x_{1}\right), f(x)$ are ω-independent. Since $\mathscr{P} f=\mathscr{P} h$, there exist two elements $\lambda, \mu \in S$ such that $h(x)=\lambda f(x)$ and $h\left(x_{1}+x\right)=\mu f\left(x_{1}+x\right)$. From the equality

$$
\mu f\left(x_{1}\right)+\mu f(x)=h\left(x_{1}+x\right)=\varepsilon f\left(x_{1}\right)+\lambda f(x)
$$

it follows that $\mu=\varepsilon$ and $\mu f(x)=\lambda f(x)$. Hence $h(x)=\varepsilon f(x)$. We now suppose that $f\left(x_{1}\right), f(x)$ are ω-dependent. Then $f\left(x_{2}\right), f(x)$ are ω-independent, and we can apply the same argument (one has $h\left(x_{2}\right)=\varepsilon f\left(x_{2}\right)$ by the first case).

Condition (C2) clearly implies Greferath's condition (Δ). However, the other assumptions of Proposition 2.10 in [10] are stronger.

3 The fundamental theorem

Definition 3.1. Let ${ }_{S} N$ be a module and $\mathscr{P}(N)$ the associated projective space. A point $B \in \mathscr{P}(N)$ is called free if $B=S b$ for some free element $b \in N$. A family of n points $B_{1}, \ldots, B_{n} \in \mathscr{P}(N)$ is called independent if one has

$$
\left\langle B_{i}\right\rangle \cap\left\langle B_{1}, \ldots, B_{i-1}, B_{i+1}, \ldots, B_{n}\right\rangle=\varnothing
$$

for every $i=1, \ldots, n$ (where $\langle\mathscr{A}\rangle$ denotes the subspace generated by a set \mathscr{A}). One easily shows that a family $b_{1}, \ldots, b_{n} \in N$ is ω-independent in N if and only if $S b_{1}, \ldots, S b_{n}$ is independent in $\mathscr{P}(N)$.

The aim of the present section is to prove the following result:
Theorem 3.2. Let ${ }_{R} M$ and ${ }_{S} N$ be modules and $g: \mathscr{P}(M) \backslash E \rightarrow \mathscr{P}(N)$ a morphism between the associated projective spaces. We suppose that the image of g contains three independent free points B_{1}, B_{2}, B_{3} with the following condition:
(C3) for any $C_{1}, C_{2} \in \mathscr{P}(N)$ there exists i such that $\left(B_{i} \vee B_{i}\right) \cap\left(C_{1} \vee C_{2}\right)=\varnothing$.
If S is a directly finite ring, then there exists a semilinear map $f: M \rightarrow N$ such that $g=\mathscr{P} f$. Moreover, the map f is unique up to multiplication with a unit.

Remarks 3.3. 1) If C_{1}, C_{2} are independent, then condition (C3) implies that B_{i}, C_{1}, C_{2} are also independent.
2) If $S y$ is free, then y is free. By hypothesis one has $S y=S z$ for some free element $z \in N$, and since S is directly finite, the element y differs from z by a unit.

Condition (C3) clearly implies condition (1) of Brehm's triangle-property [2], but not condition (2). It is possible that this assumption in Theorem 3.2 can be weakened by following Brehm's idea. However, since all points have to be chosen in the image of g, the game is not worth the candle.

Lemma 3.4. Let $g\left(R x_{1}\right)$ and $g\left(R x_{2}\right)$ be two independent points, and suppose that $g\left(R x_{1}\right)=S y_{1}$ is free. Then there exists a unique element $y_{2} \in N$ such that $g\left(R x_{2}\right)=$ $S y_{2}$ and $g\left(R\left(x_{1}+x_{2}\right)\right)=S\left(y_{1}+y_{2}\right)$.

Proof. Let $z_{2} \in N$ with $g\left(R x_{2}\right)=S z_{2}$. One first remarks that $R\left(x_{1}+x_{2}\right) \notin E$, because otherwise $R x_{1} \in R x_{2} \vee R\left(x_{1}+x_{2}\right)$ would imply $S y_{1} \subseteq S z_{2}$ by (M2), in contradiction to the hypothesis. Let $z \in N$ with $g\left(R\left(x_{1}+x_{2}\right)\right)=S z$. We apply three times condition (M1):

1) $R\left(x_{1}+x_{2}\right) \in R x_{1} \vee R x_{2}$ implies $z=\lambda_{1} y_{1}+\lambda_{2} z_{2}$,
2) $R x_{1} \in R\left(x_{1}+x_{2}\right) \vee R x_{2}$ implies $y_{1}=\mu z-\mu_{2} z_{2}$,
3) $R x_{2} \in R\left(x_{1}+x_{2}\right) \vee R x_{1}$ implies $z_{2}=v z-v_{1} y_{1}$.

From the equality $y_{1}=\mu \lambda_{1} y_{1}+\left(\mu \lambda_{2}-\mu_{2}\right) z_{2}$ one obtains $\mu \lambda_{1}=1$ (because y_{1} is free) and $\mu \lambda_{2} z_{2}=\mu_{2} z_{2}$. We put $y_{2}=\mu_{2} z_{2}$. Since μ is a unit of S, one gets $g\left(R\left(x_{1}+x_{2}\right)\right)=$ $S \mu z=S\left(y_{1}+y_{2}\right)$ according to condition 2$)$. From the equality $z_{2}=\left(v \lambda_{1}-v_{1}\right) y_{1}+$ $v \lambda_{2} z_{2}$ one obtains $z_{2}=v \lambda_{2} z_{2}$. So it follows that $v \lambda_{1} y_{2}=v \lambda_{1} \mu_{2} z_{2}=v \lambda_{1} \mu \lambda_{2} z_{2}=$ $v \lambda_{2} z_{2}=z_{2}$. Therefore $S y_{2}=S z_{2}$ and the assertion is proved. The uniqueness of y_{2} is obvious.

Lemma 3.5. Let $g\left(R x_{1}\right), g\left(R x_{2}\right)$ and $g\left(R x_{3}\right)$ be three independent points. If there exist $y_{1}, y_{2}, y_{3} \in N$ such that

1) $g\left(R x_{1}\right)=S y_{1}$ is free, $g\left(R x_{2}\right)=S y_{2}$ and $g\left(R x_{3}\right)=S y_{3}$,
2) $g\left(R\left(x_{1}+x_{2}\right)\right)=S\left(y_{1}+y_{2}\right)$ and $g\left(R\left(x_{1}+x_{3}\right)\right)=S\left(y_{1}+y_{3}\right)$,
then $g\left(R\left(x_{1}+x_{2}+x_{3}\right)\right)=S\left(y_{1}+y_{2}+y_{3}\right)$ and $g\left(R\left(x_{2}+x_{3}\right)\right)=S\left(y_{2}+y_{3}\right)$.
Proof. One first remarks that $g\left(R\left(x_{1}+x_{2}\right)\right), g\left(R x_{3}\right)$ are independent, because $g\left(R\left(x_{1}+x_{2}\right)\right) \in g\left(R x_{1}\right) \vee g\left(R x_{2}\right)$ by (M1). Since $g\left(R\left(x_{1}+x_{2}\right)\right)=S\left(y_{1}+y_{2}\right)$ is free, there exists by Lemma 3.4 a unique $z_{3} \in N$ such that $g\left(R x_{3}\right)=S z_{3}$ and $g\left(R\left(x_{1}+\right.\right.$ $\left.\left.x_{2}+x_{3}\right)\right)=S\left(y_{1}+y_{2}+z_{3}\right)$. And by symmetry there exists a unique $z_{2} \in N$ such that $g\left(R x_{2}\right)=S z_{2}$ and $g\left(R\left(x_{1}+x_{2}+x_{3}\right)\right)=S\left(y_{1}+z_{2}+y_{3}\right)$. So one obtains $y_{2}=z_{2}$ and $y_{3}=z_{3}$, which proves the first assertion.

Now one considers the points $g\left(R\left(x_{1}+x_{2}+x_{3}\right)\right)$ and $g\left(R\left(x_{2}+x_{3}\right)\right)$. They are independent, because $g\left(R\left(x_{2}+x_{3}\right)\right) \in g\left(R x_{2}\right) \vee g\left(R x_{3}\right)$. Moreover, the first point is free. So there exists a unique $z \in N$ such that $g\left(R\left(x_{2}+x_{3}\right)\right)=S z$ and $g\left(R x_{1}\right)=$ $S\left(y_{1}+y_{2}+y_{3}+z\right)$. Obviously, this implies $z=-y_{2}-y_{3}$, and hence $g\left(R\left(x_{2}+x_{3}\right)\right)$ $=S\left(y_{2}+y_{3}\right)$, which proves the second assertion.

By hypothesis the image of the morphism g contains three independent free points B_{1}, B_{2}, B_{3}. We choose $A_{1}, A_{2}, A_{3} \in \mathscr{P}(M) \backslash E$ such that $B_{i}=g\left(A_{i}\right)$, and $a_{1}, a_{2}, a_{3} \in M$ such that $A_{i}=R a_{i}$.

Lemma 3.6. There exist $b_{1}, b_{2}, b_{3} \in N$ such that $g\left(R a_{i}\right)=S b_{i}$ for each i, and $g\left(R\left(a_{i}+a_{j}\right)\right)=S\left(b_{i}+b_{j}\right)$ for all $i \neq j$.

Proof. Let $b_{1} \in N$ with $g\left(R a_{1}\right)=S b_{1}$. By Lemma 3.4 there exist $b_{2} \in N$ such that $g\left(R a_{2}\right)=S b_{2}$ and $g\left(R\left(a_{1}+a_{2}\right)\right)=S\left(b_{1}+b_{2}\right)$, and $b_{3} \in N$ with the same properties. According to Lemma 3.5 one has $g\left(R\left(a_{2}+a_{3}\right)\right)=S\left(b_{2}+b_{3}\right)$.

Definition 3.7. According to Proposition 1.7 the kernel E can be written in a unique way as $E=\mathscr{P}\left(M_{0}\right)$ where M_{0} is a submodule of M. The map $f: M \rightarrow N$ is now defined as follows. For each element $x \in M_{0}$ we put $f(x)=0$. If $x \notin M_{0}$, then by condition (C3) there exists i such that $g\left(R a_{i}\right), g(R x)$ are independent. We put $f(x)=y$ where $y \in N$ is the unique element satisfying $g(R x)=S y$ and $g\left(R\left(a_{i}+x\right)\right)=$ $S\left(b_{i}+y\right)$ (cf. Lemma 3.4).

Lemma 3.8. The definition does not depend on the choice of the element a_{i}.
Proof. Suppose that $g\left(R a_{1}\right), g(R x)$ and $g\left(R a_{2}\right), g(R x)$ are independent pairs of points. We consider $y \in N$ with $g(R x)=S y$ and $g\left(R\left(a_{1}+x\right)\right)=S\left(b_{1}+y\right)$, and we want to show that $g\left(R\left(a_{2}+x\right)\right)=S\left(b_{2}+y\right)$. If $g\left(R a_{1}\right), g\left(R a_{2}\right), g(R x)$ are independent, then the conclusion holds by Lemma 3.5. Otherwise, condition (C3) implies that $g\left(R a_{1}\right)$, $g\left(R a_{3}\right), g(R x)$ and $g\left(R a_{3}\right), g\left(R a_{2}\right), g(R x)$ are both independent triples of points. So we apply twice the preceding argument.

Proposition 3.9. $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in M$.
Proof. Put $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. Obviously, we may assume that $x_{1} \neq 0$ and $x_{2} \notin M_{0}$. Three different cases will be considered.

Case 1: $R x_{1} \in E$. Choose i such that $g\left(R a_{i}\right), g\left(R x_{2}\right)$ are independent. Since $R\left(a_{i}+x_{2}\right) \in R\left(a_{i}+x_{1}+x_{2}\right) \vee R x_{1}$, one gets

$$
S\left(b_{i}+y_{2}\right)=g\left(R\left(a_{i}+x_{2}\right)\right)=g\left(R\left(a_{i}+x_{1}+x_{2}\right)\right)
$$

by (M2). Similarly, $S y_{2}=g\left(R x_{2}\right)=g\left(R\left(x_{1}+x_{2}\right)\right)$. By definition of the map f this shows that $f\left(x_{1}+x_{2}\right)=f\left(x_{2}\right)$.

Case 2: $R x_{1} \notin E$ and $g\left(R x_{1}\right), g\left(R x_{2}\right)$ are independent. By condition (C3) one can choose i such that $g\left(R a_{i}\right), g\left(R x_{1}\right), g\left(R x_{2}\right)$ are independent. One obtains

$$
g\left(R\left(a_{i}+x_{1}+x_{2}\right)\right)=S\left(b_{i}+y_{1}+y_{2}\right) \quad \text { and } \quad g\left(R\left(x_{1}+x_{2}\right)\right)=S\left(y_{1}+y_{2}\right)
$$

by Lemma 3.5, and this shows that $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$.
Case 3: $R x_{1} \notin E$ and $g\left(R x_{1}\right), g\left(R x_{2}\right)$ are dependent. By condition (C3) there exists i such that $\left(S b_{i} \vee S b_{i}\right) \cap\left(S y_{1} \vee S y_{2}\right)=\varnothing$. If $R\left(x_{1}+x_{2}\right) \in E$, then $f\left(a_{i}+x_{1}+x_{2}\right)=$ $f\left(a_{i}\right)$ according to the first case. And if $R\left(x_{1}+x_{2}\right) \notin E$, then $g\left(R\left(x_{1}+x_{2}\right)\right) \in$ $S y_{1} \vee S y_{2}$ implies that the points $g\left(R a_{i}\right), g\left(R\left(x_{1}+x_{2}\right)\right)$ are independent, and one thus gets $f\left(a_{i}+x_{1}+x_{2}\right)=f\left(a_{i}\right)+f\left(x_{1}+x_{2}\right)$ by the second case. So this equality holds in any cases. On the other hand, one obtains $f\left(a_{i}+x_{1}+x_{2}\right)=f\left(a_{i}+x_{1}\right)+f\left(x_{2}\right)=$ $f\left(a_{i}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)$ by applying twice Case 2, and one deduces that $f\left(a_{i}\right)+$ $f\left(x_{1}+x_{2}\right)=f\left(a_{i}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)$.

Proposition 3.10. There exists a map $\sigma: R \rightarrow S$ such that $f(\lambda x)=\sigma(\lambda) f(x)$ for all $\lambda \in R$ and $x \in M$.

Proof. For any $\lambda \in R$ and $x \notin M_{0}$ we remark that there exists $\mu \in S$ such that $f(\lambda x)=\mu f(x)$. This is trivial if $\lambda x \in M_{0}$. And if $\lambda x \notin M_{0}$, then (M1) implies that $S f(\lambda x)=g(R(\lambda x)) \subseteq g(R x)=S f(x)$. We now define $\sigma(\lambda)$ as the unique element of S with the property that $f\left(\lambda a_{1}\right)=\sigma(\lambda) f\left(a_{1}\right)$. We have to show that $f(\lambda x)=\sigma(\lambda) f(x)$ for all $x \notin M_{0}$ and $\lambda \in R$.

Case 1: $g\left(R a_{1}\right), g(R x)$ are independent. Let $\mu, v \in S$ with $f(\lambda x)=\mu f(x)$ and $f\left(\lambda\left(a_{1}+x\right)\right)=v f\left(a_{1}+x\right)$. From the equality

$$
\sigma(\lambda) f\left(a_{1}\right)+\mu f(x)=f\left(\lambda a_{1}+\lambda x\right)=v f\left(a_{1}\right)+v f(x)
$$

one obtains $\sigma(\lambda)=v$ and $\mu f(x)=v f(x)$. Therefore $f(\lambda x)=\sigma(\lambda) f(x)$.

Case 2: By condition (C3) we may assume that $g\left(R a_{2}\right), g(R x)$ are independent points. Since $f\left(\lambda a_{2}\right)=\sigma(\lambda) f\left(a_{2}\right)$ according to the first case, one can apply the preceding argument.

From the equalities $\sigma(\lambda+\mu) f\left(a_{1}\right)=f\left(\lambda a_{1}+\mu a_{1}\right)=\sigma(\lambda) f\left(a_{1}\right)+\sigma(\mu) f\left(a_{1}\right)$ and $\sigma(\lambda \mu) f\left(a_{1}\right)=\sigma(\lambda) f\left(\mu a_{1}\right)=\sigma(\lambda) \sigma(\mu) f\left(a_{1}\right)$ one deduces that σ is a homomorphism of rings. Therefore f is a semilinear map. By definition of the map f one has $g=\mathscr{P} f$. The fact that f is unique up to multiplication by a unit follows from Theorem 2.9. So the proof of Theorem 3.2 is complete.

4 Modules over left Ore domains

Let N be a module over a directly finite ring S. We suppose given two linearly independent elements $b_{1}, b_{2} \in N$. Then condition (C2) can be written as follows:
(C2) for any $c \in N$ there exists i such that $S b_{i} \cap S c=\{0\}$.
Now let $b_{1}, b_{2}, b_{3} \in N$ be three linearly independent elements. Condition (C3) in Theorem 3.2 can be written as follows:
$(\mathrm{C} 3)$ for any $c_{1}, c_{2} \in N$ there exists i such that $S b_{i} \cap\left(S c_{1}+S c_{2}\right)=\{0\}$.
We show that these conditions are satisfied provided S is a left Ore domain. We recall that a ring S is left Ore if $S \lambda \cap S \mu \neq\{0\}$ for all non-zero $\lambda, \mu \in S$.

Proposition 4.1. If S is a left Ore domain, then condition (C2) is satisfied.
Proof. Assume it is not. There exist $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in S$ such that

$$
\lambda_{1} b_{1}=\mu_{1} c \neq 0 \quad \text { and } \quad \lambda_{2} b_{2}=\mu_{2} c \neq 0
$$

Since S is left Ore, there exist $\alpha, \beta \in S$ such that $\alpha \mu_{1}=\beta \mu_{2} \neq 0$. So $\alpha \lambda_{1} b_{1}=\alpha \mu_{1} c=$ $\beta \mu_{2} c=\beta \lambda_{2} b_{2}$ implies $\alpha \lambda_{1}=\beta \lambda_{2}=0$, a contradiction.

Remark 4.2. Suppose that S is a domain. If condition (C2) holds for any two linearly independent elements $b_{1}, b_{2} \in N$ and if N contains some free element x, then, conversely, S is left Ore.

Proof. Assume on the contrary that there exist non-zero elements $\lambda, \mu \in S$ with $S \lambda \cap S \mu=\{0\}$. Then λx and μx are linearly independent, but $S \lambda x \cap S x \neq\{0\}$ and $S \mu x \cap S x \neq\{0\}$, which yields a contradiction.

Proposition 4.3. If S is a left Ore domain, then condition (C3) is satisfied.
Proof. Assume it is not. For each $i=1,2,3$ there exist $\lambda_{i}, \mu_{i}, v_{i} \in S$ such that

$$
\lambda_{i} b_{i}=\mu_{i} c_{1}+v_{i} c_{2} \neq 0
$$

We may assume that $v_{1} v_{2} \neq 0$ or $v_{1} v_{3} \neq 0$ or $v_{2} v_{3} \neq 0$, because otherwise the preceding proposition yields a contradiction. Suppose that $v_{1} v_{2} \neq 0$. There exist $\alpha_{1}, \alpha_{2} \in S$ such that $\alpha_{1} v_{1}=\alpha_{2} v_{2} \neq 0$. So we obtain

$$
\alpha_{1} \lambda_{1} b_{1}-\alpha_{2} \lambda_{2} b_{2}=\left(\alpha_{1} \mu_{1}-\alpha_{2} \mu_{2}\right) c_{1}
$$

If $v_{3} \neq 0$, a similar argument gives a second equality

$$
\beta_{1} \lambda_{1} b_{1}-\beta_{3} \lambda_{3} b_{3}=\left(\beta_{1} \mu_{1}-\beta_{3} \mu_{3}\right) c_{1}
$$

And if $v_{3}=0$, we consider the equality $\lambda_{3} b_{3}=\mu_{3} c_{1}$. So in both cases we obtain two equalities $\delta_{2} d_{2}=\gamma_{2} c_{1}$ and $\delta_{3} d_{3}=\gamma_{3} c_{1}$, where d_{2}, d_{3} are two linearly independent elements. By the preceding proposition this is impossible.

Corollary 4.4. Let ${ }_{R} M$ and ${ }_{S} N$ be modules and $g: \mathscr{P}(M) \backslash E \rightarrow \mathscr{P}(N)$ a morphism between the associated projective spaces. If the image of g contains three independent free points, and if the ring S is a left Ore domain, then there exists a semilinear map $f: M \rightarrow N$ such that $g=\mathscr{P} f$. Moreover, the map f is unique up to multiplication with a unit.

Remark 4.5. If each $c \in N$ is a multiple of a free element (and if the image of g contains three independent free points), then it is enough to assume that S is a left Ore ring. This is left as an easy exercise.

5 Modules over right Bezout domains

Definition 5.1. We say that a ring S satisfies the 2-diagonal condition (D2) if

$$
\binom{\mu_{1}}{\mu_{2}}\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right) \neq\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

with $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$. We say that S satisfies the 3 -diagonal condition (D3) if

$$
\left(\begin{array}{ll}
\mu_{1} & v_{1} \\
\mu_{2} & v_{2} \\
\mu_{3} & v_{3}
\end{array}\right)\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right) \neq\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

with $\lambda_{1} \neq 0, \lambda_{2} \neq 0$ and $\lambda_{3} \neq 0$.
Remark 5.2. If a ring satisfies condition (D2), then its only idempotents are 0 and 1 . In particular, it is directly finite.

Proof. If $\lambda^{2}=\lambda$, then $\binom{\lambda}{1-\lambda}\left(\begin{array}{ll}\lambda & 1-\lambda\end{array}\right)=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1-\lambda\end{array}\right)$.

As in the preceding section, we suppose given two (or three) linearly independent elements $b_{1}, b_{2}\left(\right.$ and $\left.b_{3}\right)$ in N.

Proposition 5.3. If S satisfies condition (D2) and $N=S b_{1} \oplus S b_{2} \oplus N^{\prime}$, then condition (C2) is satisfied.

Proof. Assume it is not. There exist $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in S$ such that

$$
\lambda_{1} b_{1}=\mu_{1} c \neq 0 \quad \text { and } \quad \lambda_{2} b_{2}=\mu_{2} c \neq 0
$$

Put $c=\alpha_{1} b_{1}+\alpha_{2} b_{2}+c_{3}$. Then $\lambda_{1} b_{1}=\mu_{1} c$ implies $\lambda_{1}=\mu_{1} \alpha_{1}$ and $0=\mu_{1} \alpha_{2}$, and similarly $\lambda_{2} b_{2}=\mu_{2} c$ implies $0=\mu_{2} \alpha_{1}$ and $\lambda_{2}=\mu_{2} \alpha_{2}$, in contradiction to the 2-diagonal condition.

Proposition 5.4. If S satisfies condition (D3) and $N=S b_{1} \oplus S b_{2} \oplus S b_{3} \oplus N^{\prime}$, then condition (C3) is satisfied.

Proof. Same argument.
Lemma 5.5. If S is directly finite, and if the module S^{2} satisfies the following intersection condition:
(I2) $x, y \in S^{2}$ and $S x \cap S y \neq\{0\}$ imply $x, y \in S z$ for some $z \in S^{2}$,
then the ring S satisfies both conditions (D2) and (D3).
Proof. We first show that S is a domain. Let $\alpha, \beta \in S$ with $\alpha \beta=0$ and $\alpha \neq 0$. Since $\alpha(1, \beta)=\alpha(1,0) \neq(0,0)$, one obtains $(1, \beta)=\gamma(\lambda, \mu)$ and $(1,0)=\delta(\lambda, \mu)$. One has $\delta \lambda=1$ and hence $\lambda \delta=1$. Thus $\beta=\gamma \mu=\gamma \lambda \delta \mu=0$, and the assertion is proved. Condition (D2) then easily follows. In order to verify condition (D3), we suppose on the contrary that

$$
\left(\begin{array}{ll}
\mu_{1} & v_{1} \\
\mu_{2} & v_{2} \\
\mu_{3} & v_{3}
\end{array}\right)\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

with $\lambda_{1} \neq 0, \quad \lambda_{2} \neq 0$ and $\lambda_{3} \neq 0$. From $\mu_{1}\left(\alpha_{2}, \alpha_{3}\right)+v_{1}\left(\beta_{2}, \beta_{3}\right)=(0,0)$ one gets $\mu_{1}\left(\alpha_{2}, \alpha_{3}\right)=-v_{1}\left(\beta_{2}, \beta_{3}\right)$, and one can easily show that $\mu_{1}\left(\alpha_{2}, \alpha_{3}\right) \neq(0,0)$. By hypothesis one obtains $\left(\alpha_{2}, \alpha_{3}\right)=\alpha\left(\gamma_{2}, \gamma_{3}\right)$ and $\left(\beta_{2}, \beta_{3}\right)=\beta\left(\gamma_{2}, \gamma_{3}\right)$. Then

$$
\binom{\mu_{2} \alpha+v_{2} \beta}{\mu_{3} \alpha+v_{3} \beta}\left(\begin{array}{ll}
\gamma_{2} & \gamma_{3}
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{3}
\end{array}\right)
$$

in contradiction to condition (D2). So condition (D3) is verified.

We show that the intersection condition (I2) is satisfied provided S is a right Bezout domain. We recall that a ring S is right Bezout if for any $\alpha, \beta \in S$ there exist $\gamma, \delta, \varepsilon, \lambda, \mu \in S$ such that $\alpha=\gamma \delta, \beta=\gamma \varepsilon$ and $\gamma=\alpha \lambda+\beta \mu$.

Proposition 5.6. If S is a right Bezout domain, then the module S^{2} satisfies the condition (I2). In particular, S satisfies both conditions (D2) and (D3).

Proof. Suppose that $\lambda\left(\xi_{1}, \xi_{2}\right)=\mu\left(\eta_{1}, \eta_{2}\right) \neq(0,0)$. We put $\omega_{1}=\lambda \xi_{1}=\mu \eta_{1}$ and $\omega_{2}=$ $\lambda \xi_{2}=\mu \eta_{2}$. By hypothesis one can write $\omega_{1}=v \zeta_{1}$ and $\omega_{2}=v \zeta_{2}$ for some $v=\omega_{1} \alpha_{1}+$ $\omega_{2} \alpha_{2}$. Since $\lambda\left(\xi_{1}, \xi_{2}\right)=\lambda\left(\xi_{1} \alpha_{1}+\xi_{2} \alpha_{2}\right)\left(\zeta_{1}, \zeta_{2}\right)$, one concludes that $\left(\xi_{1}, \xi_{2}\right)=\left(\xi_{1} \alpha_{1}+\right.$ $\left.\xi_{2} \alpha_{2}\right)\left(\zeta_{1}, \zeta_{2}\right)=\xi\left(\zeta_{1}, \zeta_{2}\right)$. Similarly, $\left(\eta_{1}, \eta_{2}\right)=\eta\left(\zeta_{1}, \zeta_{2}\right)$.

Corollary 5.7. Let ${ }_{R} M$ and ${ }_{S} N$ be modules and $g: \mathscr{P}(M) \backslash E \rightarrow \mathscr{P}(N)$ a morphism between the associated projective spaces. If the image of g contains three free points B_{1}, B_{2}, B_{3} such that $N=B_{1} \oplus B_{2} \oplus B_{3} \oplus N^{\prime}$, and if the ring S is a right Bezout domain, then there exists a semilinear map $f: M \rightarrow N$ such that $g=\mathscr{P} f$. Moreover, the map f is unique up to multiplication with a unit.

References

[1] H. Brauner, Eine geometrische Kennzeichnung linearer Abbildungen. Monatsh. Math. 77 (1973), 10-20. MR 47 \#7583 Zbl 0256.50013
[2] U. Brehm, Representation of homomorphisms between submodule lattices. Results Math. 12 (1987), 62-70. MR 89a:16035 Zbl 0627.16023
[3] U. Brehm, M. Greferath, S. E. Schmidt, Projective geometry on modular lattices. In: Handbook of incidence geometry, 1115-1142, North-Holland 1995. MR 96j:51008 Zbl 0823.51006
[4] V. P. Camillo, Inducing lattice maps by semilinear isomorphisms. Rocky Mountain J. Math. 14 (1984), 475-486. MR 86e: 16025 Zbl 0543.16023
[5] U. Faigle, C. Herrmann, Projective geometry on partially ordered sets. Trans. Amer. Math. Soc. 266 (1981), 319-332. MR 83a:51005 Zbl 0466.51001
[6] C.-A. Faure, An elementary proof of the fundamental theorem of projective geometry. Geom. Dedicata 90 (2002), 145-151. MR 2003a:51001 Zbl 0996.51001
[7] C.-A. Faure, Partial lineations between arguesian projective spaces. Arch. Math. (Basel) 79 (2002), 308-316. MR 1944955 Zbl 01837316
[8] C.-A. Faure, A. Frölicher, Morphisms of projective geometries and semilinear maps. Geom. Dedicata 53 (1994), 237-262. MR $95 \mathrm{~m}: 51001 \mathrm{Zbl} 0826.51002$
[9] C.-A. Faure, A. Frölicher, Modern projective geometry, volume 521 of Mathematics and its Applications. Kluwer 2000. MR 2001j:51002 Zbl 0972.51001
[10] M. Greferath, Global-affine morphisms of projective lattice geometries. Results Math. 24 (1993), 76-83. MR 94f:51009 Zbl 0794.06007
[11] H. Havlicek, A generalization of Brauner's theorem on linear mappings. Mitt. Math. Sem. Giessen 215 (1994), 27-41. MR 95e:51003 Zbl 0803.51004
[12] F. Machala, Projektive Abbildung von Moduln. Czechoslovak Math. J. 24(99) (1974), 26-39. MR 53 \#3027 Zbl 0308.50012
[13] M. Ojanguren, R. Sridharan, A note on the fundamental theorem of projective geometry. Comment. Math. Helv. 44 (1969), 310-315. MR 39 \#4133 Zbl 0176.17502
[14] T. Pfeiffer, S. E. Schmidt, Projective mappings between projective lattice geometries. J. Geom. 54 (1995), 105-114. MR 96g:51003 Zbl 0847.51002
[15] B. Sarath, K. Varadarajan, Fundamental theorem of projective geometry. Comm. Algebra 12 (1984), 937-952. MR 85d:16008 Zbl 0545.16010
[16] S. E. Schmidt, Projektive Räume mit geordneter Punktmenge. Mitt. Math. Sem. Giessen 182 (1987). MR 89a:51004 Zbl 0632.51001
[17] S. E. Schmidt, S. Weller, Fundamentalsatz für affine Räume über Moduln. Results Math. 30 (1996), 151-159. MR 97j:51007 Zbl 0861.51003
[18] W. Stephenson, Lattice isomorphisms between modules. I. Endomorphism rings. J. London Math. Soc. (2) 1 (1969), 177-183. MR 41 \#1794 Zbl 0212.38007
[19] G. Törner, F. D. Veldkamp, Literature on geometry over rings. J. Geom. 42 (1991), 180-200. MR 92h:51006 Zbl 0737.51001
[20] F. D. Veldkamp, Geometry over rings. In: Handbook of incidence geometry, 1033-1084, North-Holland 1995. MR 96j:51007 Zbl 0822.51004

Received 2 May, 2001; revised 3 March, 2003
C.-A. Faure, Gymnase de la Cité, case postale 329, CH-1000 Lausanne 17, Switzerland Email: cafaure@bluemail.ch

