
Adv. Geom. 4 (2004), 165–179 Advances in Geometry
( de Gruyter 2004

Complex structures on the Iwasawa manifold
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Abstract. We identify the space of left-invariant oriented complex structures on the complex
Heisenberg group, and prove that it has the homotopy type of the disjoint union of a point and
a 2-sphere.

Introduction

It is well known that every even-dimensional compact Lie group has a left-invariant
complex structure [12], [14]. By contrast, not all nilpotent groups admit left-invariant
complex structures. In 6 real dimensions there are 34 isomorphism classes of simply-
connected nilpotent Lie groups, and the study [11] reveals that 18 of these admit in-
variant complex structures. The complex Heisenberg group G possesses a particularly
rich structure in this regard, since it has a 2-sphere of abelian complex structures in
addition to its standard bi-invariant complex structure J0.

The Iwasawa manifold M ¼ GnG is a compact quotient of G, and any left-
invariant tensor on G induces a tensor on M. As explained in §2, studies of Dolbeault
cohomology suggest that the moduli space of complex structures on M is determined
by the space of left-invariant complex structures on G. The set of such structures
compatible with a standard metric g and orientation is the union of fJ0g and the 2-
sphere already mentioned [1]. The present paper shows that this description remains
valid at the level of homotopy when one no longer insists on compatibility with g.
This requires a new approach, in which complex structures are described by a basis of
ð1; 0Þ-forms in echelon form (see Proposition 2.3). Similar techniques can be applied
to other Lie groups and nilmanifolds, though we refer the reader to [10] for related
studies.

We work mainly with the Lie algebra g of G, and regard left-invariant di¤erential
forms on G as elements of 5k

g�. A special feature of the space CðgÞ of all invariant
complex structures on M is that any J in CðgÞ is compatible with the fibration of
M as a T 2 bundle over T 4. Algebraically, this amounts to asserting that the 4-
dimensional kernel D of d : g� ! 52

g� is necessarily J-invariant. As we show in §2,
the essential features of an invariant complex structure J are captured by its restric-
tion to D, and are described by a complex 2 � 2 matrix X . In this way, topological



questions are related to properties of the eigenvalues of XX and some matrix analysis
described in [6].

The orientation of the restriction of an almost complex structure J to D determines
two connected components of CðgÞ that we study separately. We establish global
complex coordinates on the component Cþ containing the complex structure induced
by J0, and show that it has the structure of a contractible complex 6-dimensional
manifold. By exploiting an SU(2) action on the second component C�, we prove that
this retracts onto the 2-sphere of negatively-oriented orthogonal almost complex
structures on D.

1 Preliminaries

The Iwasawa manifold M is defined as the quotient GnG, where

G ¼
1 z1 z3

0 1 z2

0 0 1

0@ 1A : zi A C

8<:
9=;

is the complex Heisenberg group and G is the lattice defined by taking z1; z2; z3 to be
Gaussian integers, acting by left multiplication. We shall regard M as a real manifold
of dimension 6, and we let g denote the real 6-dimensional Lie algebra associated to
G.

An invariant complex structure on M is by definition one induced from a left-
invariant complex structure on the real Lie group underlying G. Such a structure
is invariant by the action of the centre Z of G, that persists on M (Z consists of
matrices for which z1 ¼ 0 ¼ z2). The set of such structures can be identified with the
set CðgÞ of almost complex structures on the real Lie algebra g that satisfy the Lie
algebraic counterpart

½JX ; JY � ¼ ½X ;Y � þ J½JX ;Y � þ J½X ; JY �

of the Newlander–Nirenberg integrability condition.
The natural complex structure J0 of G, for which z1; z2; z3 are holomorphic, is

a point of CðgÞ that satisfies the stronger condition ½JX ;Y � ¼ J½X ;Y �. It induces a
bi-invariant complex structure of G that therefore passes to a G-invariant complex
structure on M. We shall denote by CþðgÞ the subset consisting of complex structures
inducing the same orientation as J0.

The 1-forms

o1 ¼ dz1; o2 ¼ dz2; o3 ¼ �dz3 þ z1 dz2; ð1Þ

are left-invariant on G. Define a basis fe1; . . . ; e6g of real 1-forms by setting

o1 ¼ e1 þ ie2; o2 ¼ e3 þ ie4; o3 ¼ e5 þ ie6: ð2Þ
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These 1-forms are pullbacks of corresponding 1-forms on the quotient M, which we
denote by the same symbols. They satisfy

dei ¼ 0; 1c ic 4;

de5 ¼ e13 þ e42;

de6 ¼ e14 þ e23:

8<: ð3Þ

Here, we make use of the notation eij ¼ ei5e j.
Let T k GRk=Zk denote a real k-dimensional torus. Then M is the total space

of a principal T 2-bundle over T 4. The mapping p : M ! T 4 is induced from
ðz1; z2; z3Þ 7! ðz1; z2Þ. The space of invariant 1-forms annihilating the fibres of p is

D ¼ he1; e2; e3; e4i ¼ kerðd : g� ! 52
g�Þ;

and this 4-dimensional subspace of g� will play a crucial role in the theory.

Theorem 1.1. Let J be any invariant complex structure on M. Then p induces a com-

plex structure ĴJ on T 4 such that p : ðM; JÞ ! ðT 4; ĴJÞ is holomorphic.

Proof. Let J be an element of CðgÞ. The essential point is that D is J-invariant. Once
this is established, it su‰ces to define ĴJ to be the T 4-invariant complex structure de-
termined on cotangent vectors by JjD. The pullback of a ð1; 0Þ-form on T 4 is then an
invariant ð1; 0Þ-form on M.

Let L denote the space of ð1; 0Þ-forms relative to J. Then

dimðhe1; e2; e3; e4; e5ic VLÞ ¼ 2:

If dimðDc VLÞ ¼ 2 then JD ¼ D, as required. If not, there exists a ð1; 0Þ-form dþ e5

with d A D. This implies that

de5 A L2;0 lL1;1;

and consequently that de5 A L1;1. Similarly for e6, and thus

o15o2 ¼ do3 ¼ de5 þ ide6 A L1;1;

implying that Jo15Jo2 ¼ o15o2 and hence

hJo1; Jo2i ¼ ho1;o2i:

Thus, the subspace ho1;o2i is J-invariant, and JD ¼ D. r

Decreeing the 1-forms ei to be orthonormal determines a left-invariant metric
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g ¼
X6

i¼1

ei n ei ð4Þ

on G. This induces metrics on T 4 and M (that we also denote by g) for which
p is a Riemannian submersion. The subset Cþðg; gÞ of CþðgÞ corresponding to g-
orthogonal oriented complex structures is now easy to describe in terms of Theorem
1.1.

Lemma 1.2. The restriction of the mapping J 7! ĴJ to Cþðg; gÞ is injective.

Proof. We need to describe the set of invariant orthogonal complex structures on
T 4 in terms of 2-forms on D. First recall that an element of Cþðg; gÞ is determined by
the corresponding fundamental 2-form g satisfying gðX ;YÞ ¼ gðJX ;YÞ. Given J in
Cþðg; gÞ, both D and D? ¼ he5; e6i are J-invariant and there exists an orthonormal
basis f f 1; f 2; Jf 1; Jf 2g of D for which

g ¼ f 15Jf 1 þ f 25Jf 2 G e55e6: ð5Þ

Then the fundamental 2-form of ĴJ is

ĝg ¼ f 15Jf 1 þ f 25Jf 2: ð6Þ

The fact that the overall orientation of J on g is positive then determines uniquely the
sign in (5). r

To continue the discussion in the above proof, fix either a plus or minus sign. Then

e12 G e34; e13 G e42; e14 G e23 ð7Þ

constitutes a basis of the 3-dimensional subspace 52

G D giving rise to the celebrated
decomposition

52 D ¼ 52

þ Dl52

� D: ð8Þ

This determines a double covering SOð4Þ ! SOð3Þþ � SOð3Þ�, and there exist cor-
responding subgroups SUð2Þþ, SUð2Þ� of SO(4) acting trivially on 52

� D, 52

þ D re-
spectively.

The 2-form (6) belongs to the disjoint union

Sþ tS�; ð9Þ

where SG is a 2-sphere in 52

G D. The choice of sign depends on whether ĴJ is posi-
tively or negatively oriented and is duplicated in (5). For example J0 has fundamental
2-form

g ¼ e12 þ e34 þ e56;
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and ĝg ¼ e12 þ e34 A Sþ. The product Sþ �S� may be identified with the Grassman-
nian of oriented 2-planes in R4 and this was the origin of the concept of self-duality
[2], [13]. Notice that (3) implies that Im d lies in the subspace 52

þ D of self-dual 2-
forms; from this point of view M is an ‘instanton’ over the torus T 4.

The main result of [1] may now be summarized by

Theorem 1.3. The space Cþðg; gÞ is the disjoint union of fJ0g and the 2-sphere of all

g-orthogonal almost complex structures J on g for which ĴJ A S�.

Let

Z 0
� ¼ fJ A Cþðg; gÞ : ĴJ A S�g

denote the 2-sphere featuring in this theorem; we use the notation of [1]. Consider
SO(4) as a subgroup of GLð6;RÞ by letting it act trivially on e5; e6. Since dðg�Þ is
spanned by 2-forms in 52

þ D, the subgroup SUð2Þ� is a group of Lie algebra auto-
morphisms of g, acting transitively on Z 0

�. This observation will be important in §4.

2 Deformation of J0

The main purpose of what follows is to generalize Theorem 1.3 by removing the
orthogonality constraint. We begin by decomposing the space of all almost complex
structures on D as

Aþ tA�;

where AG consists of those structures inducing a G orientation on D. This is the
extension of (9) in the non-metric situation, and

AG G
GLþð4;RÞ
GLð2;CÞ I

SOð4Þ
Uð2Þ GSG:

We then set

Definition 2.1. Let CG ¼ fJ A CþðgÞ : ĴJ A AGg.

In contrast to AG, the definition of CG incorporates the requirement of integrability.
If the overall orientation of g is not fixed, we obtain

CðgÞ ¼ Cþ t C� t ð�CþÞ t ð�C�Þ;

where �CG ¼ f�J : J A CGg. Signs that appear as subscripts refer exclusively to the
orientation on D.

In order to gain a greater understanding of the subsets Cþ;C�, we now describe a
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completely di¤erent set-theoretic partition of CþðgÞ, in which J0 plays the role of an
origin. We use the notation (1), with o123 ¼ o15o25o3 etc.

Definition 2.2. Let C�
0 be the open subset of CþðgÞ consisting of complex structures

admitting a basis fa1; a2; a3g of ð1; 0Þ-forms for which a1235o123 0 0, and let Cy
0 be

the complement CþðgÞnC�
0 .

The zero subscript emphasizes that comparisons are being made with reference to
J0, elements of Cy

0 are ‘infinitely far’ from J0 in the sense that the coe‰cients in (10)
below become unbounded.

Proposition 2.3. If J A C�
0 then there exists a basis fa ig of ð1; 0Þ-forms and a; b; c; d;

x; y A C such that

a1 ¼ o1 þ ao1 þ bo2;

a2 ¼ o2 þ co1 þ do2;

a3 ¼ o3 þ xo1 þ yo2 þ uo3;

8><>: ð10Þ

where u ¼ �ad þ bc.

Proof. Theorem 1.1 implies that a1; a2 can be chosen so that their real and imaginary
components span D. The condition a1235o123 0 0 ensures that o1;o2;o3 appear
with non-zero coe‰cients. We thus obtain the description (10) for some u A C. The
equation relating a; b; c; d; u is a direct consequence of the integrability condition

da35a123 ¼ 0

expressing the fact that da3 has no ð0; 2Þ-component. r

For the remainder of this section, we focus on C�
0 . In (10), ĴJ is the almost complex

structure on D with ð1; 0Þ-forms

a1 ¼ o1 þ ao1 þ bo2;

a2 ¼ o2 þ co1 þ do2;

�
ð11Þ

and is conveniently represented by the matrix

X ¼ a b

c d

� �
: ð12Þ

The characteristic polynomial of XX has the form

cðxÞ ¼ x2 � gxþ d;

where
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g ¼ trðXX Þ ¼ jaj2 þ jdj2 þ 2 ReðbcÞ;

d ¼ detðXXÞ ¼ juj2:

Let l; m denote the roots of cðxÞ. An inspection of the coe‰cients g; d shows that l; m
are either both real of the same sign or complex conjugates. The following result is
less obvious.

Lemma 2.4. If l; m are real and non-positive, then l ¼ mc 0.

Proof. Let z ¼ bc A C. The inequality 0c jzj þ ReðzÞ implies that

0c jbcj þ ReðbcÞc jbc� adj þ jadj þ ReðbcÞ:

Thus,

0c 2jad � bcj þ jaj2 þ jdj2 þ 2 ReðbcÞ ¼ 2
ffiffiffi
d

p
þ g:

If g < 0 then the discriminant g2 � 4d is negative and the roots of cðxÞ are not real.
r

A direct calculation reveals that

a125a12 ¼ ð1 � gþ dÞo125o12 ¼ cð1Þo125o12:

Whence

Proposition 2.5.

a125a12 ¼ 4ð1 � lÞð1 � mÞe1234;

a1235a123 ¼ �8ið1 � lÞð1 � mÞð1 � lmÞe12���6:

This proposition implies that the sign of ð1 � lÞð1 � mÞ corresponds to that of CG.
Moreover, lmd 0, so that

(i) J A Cþ VC�
0 ) 0c lm < 1,

(ii) J A C� VC�
0 ) lm > 1.

Note that m ¼ l implies that cð1Þ ¼ j1 � lj2 > 0, and is only admissible for J A Cþ.
The possibilities for the unordered pair fl; mg are illustrated schematically in Figure
1. The two labelled regions correspond to Condition (i), with the origin a common
point of intersection. The semi-circular region corresponds to Im l > 0 and jlj < 1.
By contrast, points ðl; mÞ south-east of the diagonal line l ¼ m represent those of the
real plane in the usual way: the triangular region bounds points arising from Cþ with
l > md 0 and the shaded region represents points satisfying (ii).
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Figure 1

Remark. The similarity class of XX is invariant by the action

X 7! g�1Xg; g A GLð2;CÞ;

that characterizes the relation of ‘consimilarity’ [6]. This action is known to be tran-
sitive on the set of X corresponding to a fixed similarity class of XX , provided
XX 0 0. In particular, if XX is diagonalizable with l; m positive then there exists
g A GLð2;CÞ such that

X ¼ g�1

ffiffiffi
l

p
0

0
ffiffiffi
m

p

 !
g

(the sign of the square roots can be changed by modifying X ) [6, 4.6.11]. Points in
the open triangular region therefore represent GLð2;CÞ orbits of Aþ that consist of
projections (via Theorem 1.1) of complex structures in Cþ. On the other hand, C�
contains elements for which l is infinite and the corresponding eigenvector of XX

determines a point of CP1 that re-appears as a 2-sphere in Theorem 4.5 below.
We are focussing attention on the set CðgÞ of left-invariant complex structures on

G. The right action of G induces a transitive action on M and an induced action on
CþðgÞ. Given an element J of CþðgÞ, let RGðJÞ denote the orbit of J induced by this
action.

Proposition 2.6. If J is given by (10) and (12), then

dimC RGðJÞ ¼
0 if X ¼ 0;

1 if u ¼ 0 and X 0 0;

2 otherwise:

8<:
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Proof. Right translation leaves invariant the 1-forms o1;o2 in (1), but maps o3 to
o3 þ po1 þ qo2 for arbitrary p; q A C. Thus

a3 7! a3 þ po1 þ qo2 þ uðpo1 þ qo2Þ

¼ a3 þ pða1 � ao1 � bo2Þ þ qða2 � co1 � do2Þ þ uðpo1 þ qo2Þ

¼ a3 þ pa1 þ qa2 þ ðup� ap� qcÞo1 þ ðuq� bp� dqÞo2:

This has the e¤ect of replacing ðx; yÞ by ðxþ up� ap� cq; yþ uq� bp� dqÞ in (10).
If X ¼ 0 then J is unchanged, and RGðJÞ ¼ fJg. The remaining cases follow from
the fact that u ¼ 0 if and only if apþ cq is proportional to bpþ dq. r

A point of the moduli space of complex structures on M consists of an equivalence
class of a complex structure (invariant or not) under the action of the di¤eomorphism
group. A neigbourhood of it at a smooth point J can be identified with a subset of
H 1ðM;OðTJÞÞ, where T ¼ TJ denotes the holomorphic tangent bundle of J. This
vector space is isomorphic to the corresponding cohomology group of the Dolbeault
complex

0 ! W0;0ðTÞ ! W0;1ðTÞ ! W0;2ðTÞ ! W0;3ðTÞ ! 0: ð13Þ

Now, at least if J has rational coe‰cients relative to the basis feig, it is known that
the cohomology of (13) coincides with that of the finite-dimensional subcomplex
formed by restricting to left-invariant forms of type ðp; qÞ [3], [4].

The cohomology of the invariant subcomplex is easily computed in the case of M,
using the techniques of [11]. In all cases, ker q : W0;1ðTÞ ! W0;2ðTÞ has dimension 6,
whereas qðW0;0ðTÞÞ has dimension 0; 1; 2, consistent with the above proposition. This
phenomenon leads to the jumping of Hodge numbers at J0 described in [8]. In any
case, it implies that the true moduli space of complex structures on M has dimension
4 at generic points. It is also suggests that every point is represented by an invariant
complex structure, though the moduli space is singular at J0 and other boundary
points in Figure 1.

3 Study of CB

In recovering J from ĴJ, we need only worry about the coe‰cients of a3 in (10), for
which u is determined by a; b; c; d and x; y are arbitrary complex numbers. Connec-
tivity properties of CþðgÞ are determined by those of its dense subset C�

0 , and one
expects the topology to be captured by that of the domains (i), (ii) characterizing the
choice of fl; mg. Results in this and the next sections will confirm that Cþ and C� are
the connected components of CþðgÞ.

Proposition 3.1. Cþ VCy
0 ¼ q.

Proof. Let J A Cy
0 . Suppose that fa1; a2; a3g is a basis of ð1; 0Þ-forms of J with the

real and imaginary components of a1; a2 spanning D. Consider the two cases:
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(i) a125o12 0 0. This implies that a3 A ho1;o2;o3i. The positive overall orienta-
tion of J then forces ĴJ A A�, and J cannot be in the same connected component as
J0.

(ii) a125o12 ¼ 0 and a3 B ho1;o2;o3i. Then ha1; a2iVho1;o2i0 f0g, and ĴJ

has a non-zero ð1; 0Þ-form Ao1 þ Bo2, which (without losing generality) we may
take to equal a1. If

a2 ¼ Po1 þQo2 þ Co1 þDo2;

then the integrability of J forces AD� BC ¼ 0, and (subtracting a multiple of a1) we
may suppose that C ¼ D ¼ 0. But then ĴJ A A�, and again J B Cþ. r

Theorem 3.2. Cþ is isomorphic to U�C2 where U is a star-shaped subset of C4.

Proof. Proposition 3.1 implies that fĴJ : J A Cþg is a subset of

U ¼ fX A C4 : ð1 � lÞð1 � mÞ > 0; 0c lm < 1g;

using the notation (12). We shall show that if X A U then tX A U for any t A ½0; 1�, a
fact that is illustrated by Figure 1. Indeed, if the eigenvalues l; m of XX are complex
conjugates, then the defining condition for U is jlj < 1, which becomes t2jlj < 1 and
remains valid. Suppose now that l; m A R. Then ð1 � lÞð1 � mÞ becomes

f ¼ ð1 � t2lÞð1 � t2mÞ;

an expression with roots t2
1 ¼ 1=l and t2

2 ¼ 1=m. If l; m are both negative then f has
no real roots and is always strictly positive. If l; m are both positive then at least one
of 1=l; 1=m is greater than 1, and ð1 � lÞð1 � mÞ > 0 implies that both are greater
than 1. It follows that f > 0 for all t A ½0; 1�, as required.

The restriction of p to Cþ is a trivial bundle, whose fibre is obtained by varying
only x; y, and Cþ can be identified with U�C2. r

The complex structure induced on C�
0 and U�C2 by the coe‰cients in (10) ob-

viously coincides with that induced by the natural inclusion

CðgÞ ! Gr3ðC6Þ

obtained by mapping an invariant complex structure J to the span of a ð3; 0Þ-form
a123. This is also the natural complex structure induced from that of the potential
tangent space H 1ðM;OðTJÞÞ to the moduli space [11]. From this point of view, as a
complex manifold, Cþ can be identified with an open set of the quadric in C7 defined
by the equation u ¼ �ad þ bc.

Remark. A completely di¤erent approach to describing complex structures on a 6-
dimensional nilmanifold is based on properties of a ð3; 0Þ-form a123 ¼ jþ ic. The
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real component j is a closed 3-form belonging to the open orbit O of elements of
53

g� GR20 with stabilizer isomorphic to SLð3;CÞ. As a consequence, any element
j of O determines a corresponding almost complex structure Jj and c ¼ Jjj [5].
The kernel of d : 53

g� ! 54
g� has dimension 15, and dðJjjÞ ¼ 0 turns out to be a

single cubic equation in the coe‰cients of j. This provides a description

CðgÞG fj A ker d VO : dðJjjÞ ¼ 0g=C�:

More details will appear elsewhere.

Consider an element J A Cþ whose restriction to D is g-orthogonal and therefore
an element of Sþ. A point of Sþ at ‘finite’ distance from bJ0J0 is given by (11) with
gða i; a iÞ ¼ 0 for i ¼ 1; 2 and gða1; a2Þ ¼ 0. This implies that a ¼ d ¼ 0 and b ¼ �c. It
follows that the space of ð1; 0Þ-forms of J has a basis

a1 ¼ o1 þ bo2;

a2 ¼ �bo1 þ o2;

a3 ¼ o3 þ xo1 þ yo2 � b2o3:

8<: ð14Þ

Thus fl; mg ¼ f�jbj2g, and jbj < 1.

Corollary 3.3. fĴJ : J A CþgVSþ is an open hemisphere.

Proof. From (14), an element ĴJ A Sþ has ð1; 0Þ-forms

a1 ¼ e1 þ ie2 þ be3 � ibe4;

a2 ¼ �be1 þ ibe2 þ e3 þ ie4:

�
Setting

A ¼ 1 � jbj2

1 þ jbj2
; B ¼ i

b� b

1 þ jbj2
; C ¼ � bþ b

1 þ jbj2

gives A2 þ B2 þ C2 ¼ 1 and

a1 � ba2

1 þ jbj2
¼ e1 þ iðAe2 þ Be3 þ Ce4Þ:

In the notation (7) with plus signs, the fundamental 2-form of ĴJ equals

e15ðAe2 þ Be3 þ Ce4Þ þ � � � ¼ Ao1 þ Bo2 þ Co3:

The condition jbj < 1 translates into A > 0, that describes a hemisphere in Sþ. r
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Example. The almost complex structure I on D with space of ð1; 0Þ-forms

he1 þ ie3; e4 þ ie2i ¼ ho1 þ io2;o2 � io1i

has b ¼ i in (14) and is a point on the equator A ¼ 0 of Sþ. If I were to equal ĴJ with
J A Cþ, then J has a ð1; 0Þ-form of type

a3 ¼ o3 þ xo1 þ yo2 þ o3;

with the final coe‰cient þ1 necessary to satisfy the integrability condition. But then
a125a125a35a3 ¼ 0, which is impossible.

4 Study of CC

We have remarked (Theorem 1.3) that the imposition of the standard metric implies
that J0 is the only orthogonal structure in its component Cþ. Whilst J0 is convenient
for the study of Cþ, it is less so for C�. For example, all the points of Z 0

� belong to
Cy

0 , making calculations di‰cult in the coordinates of (10). We shall therefore re-
formulate Definition 2.2 with respect to one particular element in Z 0

�.

Definition 4.1. Let J1 A C� denote the complex structure for which h ¼ o15o25o3

is a ð3; 0Þ-form, C�
1 be the open subset of CþðgÞ consisting of complex structures

admitting a basis fb1; b2; b3g of ð1; 0Þ-forms for which b1235h0 0, and Cy
1 be the

complement CþðgÞnC�
1 .

The analogue of Proposition 2.3 is

Proposition 4.2. If J A C�
1 then b i may be chosen so that

b1 ¼ o1 þ ao1 þ bo2;

b2 ¼ o2 þ co1 þ do2;

b3 ¼ o3 þ xo1 þ yo2 þ vo3;

8><>: ð15Þ

where a; b; c; d; x; y; v A C and d ¼ �av.

Proof. This follows from Theorem 1.1 and the equation db35b123 ¼ 0. r

Because of the equation d ¼ �av, v is unconstrained if a happens to vanish, and
this contrasts with the situation in the previous section. Let A�

1 be the set of almost
complex structures on D with a basis of ð1; 0Þ-forms consisting of

b1 ¼ o1 þ ao1 þ bo2;

b2 ¼ o2 þ co1 þ do2;

�
ð16Þ
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for some a; b; c; d A C. The almost complex structure bJ1J1 corresponds to a ¼ b ¼
c ¼ d ¼ 0.

Example. Recall that the projection J 7! ĴJ maps Z 0
� onto S�. Elements of S� have

the form (16) with a ¼ d ¼ 0 and b ¼ �c, except that � bJ1J1 corresponds to b and c

infinite. Thus, any element of S�nf� bJ1J1g equals ĴJ for some J A C�
1 (compare Corol-

lary 3.3).

With respect to the basis fe1; e2; e3; e4g of D, the element bJ1J1 is represented by the
matrix

Q1 ¼

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

0BBB@
1CCCAA SOð4Þ:

We can then identify A� with the orbit fX�1Q1X : X A GLþð4;RÞg, any element of
which admits a polar decomposition

X�1Q1X ¼ SP; ð17Þ

where S is symmetric positive-definite and P A SOð4Þ.

Lemma 4.3. With the above notation, P2 ¼ �1, and the resulting mapping

r : A� ! S� defined by SP 7! P is a retraction.

Proof. By first diagonalizing S, we may find a symmetric matrix s for which

S ¼ es ¼
Xy
k¼0

1

k!
sk:

We claim that etsP A A� for all t A ½0; 1�. Since ðSPÞ2 ¼ �1,

SP ¼ �P�1S�1 ¼ ðP�1S�1PÞð�P�1Þ;

in which P�1S�1P ¼ PTS�1P is positive-definite symmetric. Uniqueness of the polar
decomposition implies that S ¼ P�1S�1P and P ¼ �P�1, so P2 ¼ �1. It follows also
that s ¼ �P�1sP and

etsP ¼ ðP�1e�tsPÞP ¼ �P�1ðetsÞ�1 ¼ �ðetsPÞ�1;

as required. r

Proposition 4.4. r�1ðQ1ÞV fĴJ : J A Cy
1 g ¼ q.
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Proof. Given an element SQ1 of r�1ðQ1ÞVA�
1 with ð1; 0Þ-forms as in (16), we claim

that b ¼ c. Identifying almost complex structures with 4 � 4 matrices, 1 þ iSQ1 an-
nihilates the ð1; 0Þ-forms b1; b2 of (16). Extending the standard metric g on D to a
complex bilinear form,

0 ¼ gðð1 þ iSQ1Þb1;Q1b
2Þ � gðQ1b

1; ð1 þ iSQ1Þb2Þ

¼ 2gðb1;Q1b
2Þ

¼ 2iðb� cÞ;

as stated.
In analogy to Proposition 2.5, we have

b125b12 ¼ �4ð1 � lÞð1 � mÞe1234; ð18Þ

where l; m are the eigenvalues of YY with Y ¼
�
a b
b d

�
. Since YY is Hermitian, l; m

are non-negative. Equation (18) forces l; m to lie in the interval ½0; 1Þ, and Y is
bounded. Thus, r�1ðQ1ÞHA�

1 . Finally suppose that SQ1 ¼ ĴJ with J A Cy
1 . From

(15), it must be the case that J has a ð1; 0Þ-form b3 belonging to the span of
o1;o2;o3. But this is impossible, given that J A CþðgÞ. r

Theorem 4.5. C� has the homotopy type of a 2-sphere.

Proof. Let V ¼ fJ A C� : ĴJ A r�1ðQ1Þg. We first show that this space is contractible.
As a consequence of the previous proposition, a complex structure J in V has a basis
of ð1; 0Þ-forms

b1 ¼ o1 þ tao1 þ tbo2

b2 ¼ o2 þ tbo1 � t2avo2

b3 ¼ o3 þ txo1 þ tyo2 þ tvo3;

8><>:
for some a; b; x; y; v A C and (for the moment) t ¼ 1. But if we now allow t to vary in
the interval ½0; 1�, these forms define a complex structure in V. This process defines a
homotopy

V� ½0; 1� ! V;

with the property that ðJ; 0Þ maps to J1 for all J in V.
The fact that all elements of Z 0

� are equivalent under a SUð2Þ� action (see the re-
marks at the end of §1) allows us to extend the above to all the fibres of r over all
points of the 2-sphere Z 0

�. r

Combined with the theorem in §3, we can conclude

Theorem 4.6. CþðgÞ has the same homotopy type as Cþðg; gÞ, where g is the inner

product (4).
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