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Abstract. In this paper we construct a new family of flat Minkowski planes of group dimen-
sion 3. These planes share the positive half with the classical real Minkowski plane and admit
simple groups of automorphisms isomorphic to PSL2ðRÞ acting diagonally on the torus. We
further determine the full automorphism groups and the Klein–Kroll types of these flat Min-
kowski planes.
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1 Introduction and result

A flat Minkowski plane M is an incidence structure of points, circles and two kinds
of parallel classes whose point set is the torus S1 � S1 (where the 1-sphere S1 usually
is represented as RU fyg), whose circles are graphs of homeomorphisms of S1 and
whose parallel classes of points are the horizontals and verticals on the torus. We fur-
thermore require that for every point p of M the associated incidence structure Ap

whose point set Ap consists of all points of M that are not parallel to p and whose set
of lines Lp consists of all restrictions to Ap of circles of M passing through p and of
all parallel classes not passing through p is an a‰ne plane. We call Ap the derived

a‰ne plane at p; compare [5] or [4], Chapter 4. This implies that three mutually non-
parallel points can be joined by a unique circle and that for two non-parallel points
p and q and a circle K C p there is a unique circle which touches K at p and passes
through q. The classical flat Minkowski plane is obtained in this way as the geometry
of all graphs of fractional linear maps on S1. Each derived a‰ne plane of the classi-
cal flat Minkowski plane is Desarguesian.

When the circle sets are topologized by the Hausdor¤ metric with respect to a
metric that induces the topology of the torus, then the planes are topological in the
sense that the operations of joining three mutually non-parallel points by a circle,
intersecting of two circles, and touching are continuous with respect to the induced
topologies on their respective domains of definition. For more information on topo-
logical Minkowski planes we refer to [5] and [4], Chapter 4. The flat Minkowski
planes are precisely the 2-dimensional topological Minkowski planes.



The circle space C of a flat Minkowski plane has two connected components; one,
Cþ, consists of all circles in C that are graphs of orientation-preserving homeomor-
phisms S1 ! S1 and the other, C�, consists of all circles in C that are graphs of
orientation-reversing homeomorphisms. We call Cþ and C� the positive and negative

half of M, respectively. It turns out that these two halves are completely independent
of each other, that is, we can interchange components from di¤erent flat Minkowski
planes and obtain another flat Minkowski plane; see [4], 4.3.1.

An automorphism of a flat Minkowski plane is a homeomorphism of the torus such
that parallel classes are mapped to parallel classes and circles are mapped to circles.
The collection of all automorphisms of a flat Minkowski plane M forms a group with
respect to composition, the automorphism group G of M. This group is a Lie group
of dimension at most 6 with respect to the compact-open topology; see [4], 4.4. We
say that a flat Minkowski plane has group dimension n if its automorphism group is
n-dimensional. All flat Minkowski planes of group dimension at least 4 have been
classified by Schenkel [5], see also [4], 4.4.5. In particular, the classical flat Minkowski
plane is the only flat Minkowski plane of group dimension at least 5 and every flat
Minkowski plane of group dimension 4 fixes two parallel classes. Many flat Min-
kowski planes of group dimension 3 have also been constructed, see [4], 4.3 for a
summary, but no complete classification flat Minkowski planes of group dimension 3
has yet been achieved.

In this paper we contribute to the eventual classification by constructing a new
family of flat Minkowski planes of group dimension 3. These planes admit simple
groups of automorphisms isomorphic to PSL2ðRÞ. They are obtained from the clas-
sical flat Minkowski plane by replacing the circles in the negative half in such a way
that PSL2ðRÞ acts diagonally. Thus these planes are not isomorphic to the well-
known flat Minkowski planes that admit PSL2ðRÞ as a group of automorphisms in
one of the kernels.

Main Theorem. Each incidence structure MðkÞ for k > 1, see the beginning of Section

2, is a flat Minkowski plane. Furthermore, these planes are mutually non-isomorphic

and the full automorphism group of each such plane is isomorphic to PGL2ðRÞ and acts

diagonally on the torus. Each MðkÞ is of Klein–Kroll type IV.A.1.

The author wishes to thank the referee for his suggestions and comments in the
preparation of the final version of this paper.

2 The incidence structures M (k)

We construct a flat Minkowski plane MðkÞ by replacing the negative half of the
classical flat Minkowski plane by the images of the generating circle

Ck ¼ fðx;�xjxjk�1Þ j x A RgU fðy;yÞg

under the group

S ¼ fðx; yÞ 7! ðdðxÞ; dðyÞÞ j d A PSL2ðRÞg:
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More precisely, let k > 1. Then the incidence structure MðkÞ on the torus S1 � S1

has circles of the following form.

. The graphs of elements in PSL2ðRÞ, that is,

x;
axþ b

bxþ d

� ���� x A S1

� �

where a; b; c; d A R, ad � bc > 0, with the obvious definitions for x ¼ y and when
the denominator becomes 0. These circles are the same as the circles in the positive
half of the classical flat Minkowski plane.

. The graphs of dfkd
�1 for d A PSL2ðRÞ where

fkðxÞ ¼ �xjxjk�1; if x A R;

y; if x ¼ y:

�

We shall show in the following that MðkÞ is indeed a flat Minkowski plane. Note
that the restriction gk of �fk on R, that is, the function given by

gkðxÞ ¼ xjxjk�1

for x AR is a multiplicative strictly increasing homeomorphism of R. Moreover, gk is
continuously di¤erentiable and its derivative is given by g 0

kðxÞ ¼ kjxjk�1
d 0. Hence

kgkðxÞ ¼ xg 0
kðxÞ for all x A R.

The multiplicativity of gk implies that fk commutes with the transformation
s A PSL2ðRÞ given by

sðxÞ ¼ �1=x:

Hence d and ds define the same circle. In fact, this is the only instance that this
happens, that is, if dfkd

�1 ¼ gfkg
�1 for g; d A PSL2ðRÞ, then g ¼ d or g ¼ ds. More

generally, we show the following.

Proposition 2.1. Let a A PSL2ðRÞ. Then the homeomorphism a�1 f �1
k afk of S1 fixes at

least three points of S1 if and only if a ¼ id or a ¼ s as above.

Proof. For a A PSL2ðRÞ let Fa JS1 be the set of all fixed points of a�1 f �1
k afk and

let GJPSL2ðRÞ be the collection of all a A PSL2ðRÞ such that Fa contains at least
three points. By definition, a A G if and only if the cardinality of Ck V a�1ðCkÞ is at
least 3. From sðCkÞ ¼ Ck we infer s A G. Applying a and s to the intersection, we see
that the set fa; a�1; as; sa ¼ ðsa�1Þ�1; sasg is contained in G if one of its elements is.

Given a A PSL2ðRÞ one finds

a as sa sas

x 7! axþb
cxþd

x 7! bx�a
dx�c

x 7! �cx�d
axþb

x 7! �dxþc
bx�a
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From the above table we see that if a : x 7! axþb
cxþd

belongs to G we may assume that
either all coe‰cients a; b; c; d A R are nonzero or that c ¼ 0.

We first assume that c ¼ 0. Then a can be written in the form a : x 7! rðxþ sÞ
where r; s A R, r > 0. Since a�1 A G too, we may further assume that sd 0. More-
over, a�1 f �1

k afk fixes y A S1 and has at least two fixed points x1 < x2 in R. For these
fixed points xi one then finds afkðxÞ ¼ fkaðxÞ, that is, jrjk�1

gkðxi þ sÞ ¼ gkðxiÞ � s for
i ¼ 1; 2. Eliminating r from these two equations, we obtain hðsÞ ¼ 0 where

hðsÞ ¼ gkðsþ x2Þðs� gkðx1ÞÞ � gkðsþ x1Þðs� gkðx2ÞÞ

¼ sðgkðsþ x2Þ � gkðsþ x1ÞÞ þ gkðx2ðsþ x1ÞÞ � gkðx1ðsþ x2ÞÞ:

Since x1 < x2 and sd 0, the first term sðgkðsþ x2Þ � gkðsþ x1ÞÞ is nonnegative.
The second term gkðx2ðsþ x1ÞÞ � gkðx1ðsþ x2ÞÞ is 0 if and only if x2ðsþ x1Þ ¼
x1ðsþ x2Þ, that is, if and only if s ¼ 0. Since gkðx2ðsþ x1ÞÞ � gkðx1ðsþ x2ÞÞ ¼
gkðsÞ gk x2 þ x1x2

s

� �
� gk x1 þ x1x2

s

� �� �
> 0 for large s > 0, it follows by continuity

that gkðx2ðsþ x1ÞÞ � gkðx1ðsþ x2ÞÞ > 0 for all s > 0. Hence hðsÞd gkðx2ðsþ x1ÞÞ�
gkðx1ðsþ x2ÞÞ > 0 for s > 0. This shows that we must have s ¼ 0. But then r ¼ 1.
Therefore a ¼ id in this case.

We now show that the second case where a; b; c; d0 0 is not possible. We write a

in the form aðxÞ ¼ r xþs
xþt

where r; s; t A R, rðt� sÞ > 0. By passing over to a�1; as; . . . ;
if necessary, we may further assume that 0 < s < t or s < 0 < t. This then implies
that r > 0. Note that in this case neither y nor a�1ðyÞ can be fixed by a�1 f �1

k afk.
Then fkaðxÞ ¼ afkðxÞ is equivalent to hr; s; tðxÞ ¼ 0 where x A R and

hr; s; tðxÞ ¼ jrjk�1
gkðxþ sÞðgkðxÞ � tÞ þ gkðxþ tÞðgkðxÞ � sÞ

We show that hr; s; t has at most two real zeros. By looking at where the factors
gkðxþ sÞ; gkðxÞ � t; gkðxþ tÞ; gkðxÞ � s occurring in hr; s; tðxÞ are positive or negative
we find that hr; s; tðxÞ > 0 for x > maxf�s; g�1

k ðtÞ; g�1
k ðsÞg or x < minf�s;�t; g�1

k ðsÞg
(note that t > 0).

Using kgkðxÞ ¼ xg 0
kðxÞ one finds for the derivative of hr; s; t that

xh 0
r; s; tðxÞ � khr; s; tðxÞ ¼ ðjrjk�1

g 0
kðxþ sÞ þ g 0

kðxþ tÞÞðxgkðxÞ þ stÞ: ð*Þ

The first factor jrjk�1
g 0
kðxþ sÞ þ g 0

kðxþ tÞ on the right-hand side is always posi-
tive. We now assume that 0 < s < t. Then the second factor xgkðxÞ þ st in (*) is
also positive. This implies that h 0

r; s; tðx0Þ > 0 for every positive zero x0 of hr; s; t and
h 0
r; s; tðx0Þ < 0 for every negative zero x0 of hr; s; t. Hence there can be at most one

positive and at most one negative zero of hr; s; t. Since

hr; s; tð0Þ ¼ �tjrjk�1
gkðsÞ � sgkðtÞ ¼ �stðjrsjk�1 þ jtjk�1Þ < 0;

we see that hr; s; t has precisely two zeros in case 0 < s < t.
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We finally assume that s < 0 < t. In this case one further finds that hr; s; tðxÞ > 0 for
maxf�t; g�1

k ðsÞgc xcminf�s; g�1
k ðtÞg; see also Table 1 below.

Thus every zero of hr; s; t must be in the open intervals

I� ¼ ðminf�t; g�1
k ðsÞg;maxf�t; g�1

k ðsÞgÞ and

Iþ ¼ ðminf�s; g�1
k ðtÞg;maxf�s; g�1

k ðtÞgÞ:

Note that for g�1
k ðsÞ ¼ �t we have I� ¼ q and hr; s; tðxÞ > 0 for all x < 0. Like-

wise, g�1
k ðtÞ ¼ �s implies Iþ ¼ q and hr; s; tðxÞ > 0 for all x > 0. We will see below

that hr; s; t can have at most two zeros in IG. Therefore in each of the above two
cases where one of the intervals is empty we obtain the desired result. In order to
avoid unnecessary special cases in the following, we now assume that g�1

k ðsÞ0�t

and g�1
k ðtÞ0�s, that is, that both intervals IG are nonempty.

The map x 7! xgkðxÞ þ st has precisely two zeros x0 ¼ jstj1=ðkþ1Þ and �x0. Since
sþ gkðtÞ and tþ g�1

k ðsÞ have the same sign, we see from Table 1 that xgkðxÞ þ st

takes on opposite signs at the boundary points of I�. We similarly obtain that
xgkðxÞ þ st takes on opposite signs at the boundary points of Iþ. This shows that
x0 A Iþ and �x0 A I�.

If x0 x0 is a zero of hr; s; t, then we obtain from Equation (*) that h 0
r; s; tðxÞ > 0 for

x > x0 or �x0 < x < 0 and h 0
r; s; tðxÞ < 0 for 0 < x < x0 or x < �x0. As before this

implies that hr; s; t has at most one zero in each of the intervals ðminf�t; g�1
k ðsÞg;�x0Þ,

ð�x0;maxf�t; g�1
k ðsÞgÞ, ðminf�s; g�1

k ðtÞg; x0Þ and ðx0;maxf�s; g�1
k ðtÞgÞ. Thus hr; s; t

has at most two zeros in IG unless perhaps hr; s; tð�x0Þ ¼ 0 or hr; s; tðx0Þ ¼ 0. Suppose
that hr; s; tðx0Þ ¼ 0. Then h 0

r; s; tðx0Þ ¼ 0 too by (*) and di¤erentiating (*) at x0 we ob-
tain

x0h
00
r; s; tðx0Þ ¼ ðjrjk�1

g 0
kðx0 þ sÞ þ g 0

kðx0 þ tÞÞðgkðx0Þ þ x0g
0
kðx0ÞÞÞ

¼ ðjrjk�1
g 0
kðx0 þ sÞ þ g 0

kðx0 þ tÞÞðk þ 1ÞÞgkðx0Þ:

Hence h 00
r; s; tðx0Þ > 0 and it then follows that x0 is the only zero of hr; s; t in Iþ. The case

hr; s; tð�x0Þ ¼ 0 is dealt with similarly and results in only one zero of hr; s; t in I�. So in
any case hr; s; t has at most two zeros in IG.

We still have to exclude the case that hr; s; t has more than two zeros in Iþ U I�.
Let

x hr; s; tðxÞ xgkðxÞ þ st

�t jrjk�1
tðjtjk�1 þ 1Þgkðt� sÞ > 0 tðsþ gkðtÞÞ

g�1
k ðsÞ �ðt� sÞjrjk�1

gkðsÞgkðjsj1=k�1 þ 1Þ > 0 sðtþ g�1
k ðsÞÞ

g�1
k ðtÞ ðt� sÞgkðtÞgkðjtj1=k�1 þ 1Þ > 0 tðsþ g�1

k ðtÞÞ
�s �sðjsjk�1 þ 1Þgkðt� sÞ > 0 sðtþ gkðsÞÞ

Table 1.
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rþ ¼ � gkðx0 þ tÞðgkðx0Þ � sÞ
gkðx0 þ sÞðgkðx0Þ � tÞ

� �1=ðk�1Þ

r� ¼ � gkð�x0 þ tÞðgkð�x0Þ � sÞ
gkð�x0 þ sÞðgkð�x0Þ � tÞ

� �1=ðk�1Þ

that is, rG are such that hrþ; s; tðx0Þ ¼ hr�; s; tð�x0Þ ¼ 0. Then

rk�1
þ � rk�1

� ¼ s

t

x0 � t

x0 � s

����
����
k�1

� x0 þ t

x0 þ s

����
����
k�1

 !
> 0:

Hence rþ > r� > 0. Since gkðx0 þ sÞðgkðx0Þ � tÞ < 0 on Iþ, we obtain that
hr; s; tðx0Þ < 0, ¼ 0, > 0 for r > rþ, r ¼ rþ, r < rþ, respectively. Similarly,
gkð�x0 þ sÞðgkð�x0Þ � tÞ > 0 on I� implies that hr; s; tð�x0Þ < 0, ¼ 0, > 0 for r < r�,
r ¼ r�, r > r�, respectively.

If hr; s; t has two zeros in Iþ, then hr; s; tðx0Þ < 0 and thus r > rþ from above. But
then r > r� and hr; s; tð�x0Þ > 0. From what we have seen before, this then implies
that hr; s; t has no zeros in I�. The case that hr; s; t has two zeros in I� is dealt with simi-
larly. This concludes the proof that hr; s; t has at most two real zeros and the statement
of the proposition is established. r

Corollary 2.2. Two di¤erent circles of MðkÞ intersect in at most two points. Hence two

points in a derived geometry at a point of MðkÞ are on at most one line.

Proof. The circles of MðkÞ are the graphs of b and dfkd
�1 for all b; d A PSL2ðRÞ.

Since the first kind of homeomorphism is orientation-preserving and the latter kind
is orientation-reversing, we obtain that any two such associated circles intersect in at
most two points. The same is true for any two circles of the first kind because we are
essentially in the classical flat Minkowski plane.

If the circles associated with gfkg
�1 and dfkd

�1 for g; d A PSL2ðRÞ have three dis-
tinct points in common, then ðd�1gÞ�1

f �1
k ðd�1gÞ fk fixes three points so that d�1g ¼ id

or d�1g ¼ s by Proposition 2.1 and the circles are the same. This shows that if gfkg
�1

and dfkd
�1 describe di¤erent circles in MðkÞ, that is, g0 d; ds, then these circles can

have at most two points in common. r

From the definition of circles it is obvious that circles are described by homeo-
morphisms of S1. Hence, in order to verify that MðkÞ is a flat Minkowski plane, we
only have to make sure that each derived incidence geometry is an a‰ne plane.
Since the group S is a group of automorphisms of the classical flat Minkowski
plane, and, by construction, also acts on the negative half of MðkÞ, we see that S is
a group of automorphisms of MðkÞ. Furthermore, S has two orbits on the torus, the
circle

D ¼ fðx; xÞ j x A S1g
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in the positive half and its complement ðS1 � S1ÞnD. It therefore su‰ces to show that
the derived incidence geometries at the points ðy;yÞ and ðy; 0Þ are a‰ne planes.

Note moreover that S is even doubly transitive on the points of D and that D is the
only circle fixed by S.

3 The derived geometry A at (T,T)

The lines of the derived geometry A of MðkÞ at ðy;yÞ are the horizontal and ver-
tical Euclidean lines (coming from parallel classes of MðkÞ), all Euclidean lines of
positive slope (coming from circles in the positive half that pass through ðy;yÞ),
and the lines

x; rfk
x� t

r

� �
þ t

� � ��� x A R
� �

for r; t A R, r > 0 (coming from circles in the negative half that pass through
ðy;yÞ). The latter circles are the images of the generating circle Ck under the sta-
bilizer L ¼ Sðy;yÞ of ðy; yÞ, that is, the group

L ¼ fðx; yÞ 7! ðrxþ t; ryþ tÞ j r; t A R; r > 0gGL2:

Note that the transformation ŝs : ðx; yÞ 7! ð�1=x;�1=yÞ in S leaves Ck invariant.
Therefore the coset Lŝs gives rise to the same set of circles.

Using the restriction gk of �fk on R, the lines of the latter kind in A can then be
rewritten as

y ¼ sgkðx� tÞ þ t

for s; t A R, s < 0 ðs ¼ �r1�kÞ. Hence we obtain the following description of the the
lines in A.

The geometry A. The lines of A are the verticals fcg �R for c A R and

Ls; t ¼
fðx; sxþ tÞg j x A Rg; for s; t A R; sd 0;

fðx; sgkðx� tÞ þ tÞg j x A Rg; for s; t A R; s < 0:

�

Proposition 3.1. The derived geometry A of MðkÞ at ðy;yÞ is an a‰ne plane.

Proof. We first show that two distinct points of R2 can be joined by a unique line
in A. Let ðxi; yiÞ, i ¼ 1; 2, be two such points. If ðy2 � y1Þðx2 � x1Þd 0, there is a
unique Euclidean line of nonnegative slope or a vertical line through these points.
Moreover, no line Ls; t for s < 0 can pass through ðx1; y1Þ and ðx2; y2Þ. If ðy2 � y1Þ �
ðx2 � x1Þ < 0, no such Euclidean line with s > 0 can exist and we have to find a
unique line Ls; t where s < 0 through both points. Without loss of generality we may
assume that x1 < x2. From the system of equations
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y1 � t ¼ sgkðx1 � tÞ

y2 � t ¼ sgkðx2 � tÞ

we obtain ðy2 � tÞ=ðy1 � tÞ ¼ gkððx2 � tÞ=ðx1 � tÞÞ. Taking the inverse of the frac-
tional linear map t 7! ðy2 � tÞ=ðy1 � tÞ on both sides and using that gk is multi-
plicative, we obtain

y1gkðx2 � tÞ � y2gkðx1 � tÞ
gkðx2 � tÞ � gkðx1 � tÞ ¼ t:

The left-hand side defines a strictly decreasing homeomorphism h of R. Hence h has
a unique fixed point t0. Since x1 0 x2, we have t0 0 xi for at least one i ¼ 1; 2. Then
s0 ¼ ðyi � t0Þ=gkðxi � t0Þ is well defined and Ls0; t0 is the unique line in A through
ðx1; y1Þ and ðx2; y2Þ.

For the parallel axiom note that Ls; t for s > 0 and s < 0 are graphs of orientation-
preserving and orientation-reversing homeomorphisms of R. We therefore see that
the parallel axiom is clearly satisfied for horizontal or vertical lines and that the pa-
rameter s 0 of any parallel Ls 0; t 0 of a line Ls; t in A must have the same sign as s. Hence
there is a unique parallel in A to a line Ls; t, s > 0 (that is, a Euclidean line of positive
slope) through a given point. We thus only consider the case s < 0.

We first verify that two lines Ls; t and Ls 0; t 0 where s; s 0 < 0 are parallel if and only if
s ¼ s 0. Straightforward computation shows that the automorphism ðx; yÞ 7! ðaxþ b;
ayþ bÞ, where a; b A R, a > 0, takes Ls 0; t 0 to the line La1�ks 0;at 0þb. Using the group L
we may therefore assume that s 0 ¼ �1 and t 0 ¼ 0. Then

�gkðx� tÞ þ t

> �gkðxÞ þ t > �gkðxÞ; if t > 0;

¼ �gkðxÞ; if t ¼ 0;

< �gkðxÞ þ t < �gkðxÞ; if t < 0:

8<
:

This shows that L�1; t is parallel to L�1;0. If s0�1, then x 7! gkðxÞ þ sgkðx� tÞ þ t

is a continuous function on R that tends toGy as x goes toGy if �1 < s < 0 and
to Hy for x !Gy if s < �1. Therefore this function is surjective in any case and
the value 0 is attained. This shows that Ls; t intersects L�1;0 in a point if s0�1.

Now given a point ðx0; y0Þ, a line parallel to L�1;0 that passes through this point
must be of the form L�1; t. To find t just note that gkðt� x0Þ ¼ �gkðx0 � tÞ is strictly
increasing in t and y0 � t is strictly decreasing in t. Furthermore, both functions are
unbounded. Hence there is a unique t0 A R such that �gkðx0 � tÞ ¼ y0 � t, that is,
L�1; t0 is the unique line parallel to L�1;0 that passes through ðx0; y0Þ.

Hence the axioms of an a‰ne plane are satisfied. r

Note that Proposition 3.1 also follows from [3], Theorem 2.7. Rotation through
45� brings the geometry A in the form used in [3]. In the new coordinates the group
L acts on R2 as ðx; yÞ 7! ðrx; ryþ tÞ and the distinguished line fixed under L is the y-
axis. Straightforward computation shows that the triple ðfF1g; fF2g; jÞ, where F1 and
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F2 are functions from Rþ to R defined by F2ðxÞ ¼ �F1ðxÞ, F1ðxÞ ¼
ffiffiffi
2

p
u� x, where

u is the unique solution of u� fkðuÞ ¼ x, and j is given by jðxÞ ¼ �x, satisfies the
conditions (F1)–(F3) of [3], p. 7, so that A is an a‰ne plane by [3], Theorem 2.7.

The transitivity of S on D implies that Proposition 3.1 carries over to any point
on D.

Corollary 3.2. Each derived geometry of MðkÞ at a point of D is an a‰ne plane.

Note that k ¼ 1 does not yield an a‰ne plane because we do not get enough lines
in A. This of course means that we cannot extend the definition of MðkÞ to k ¼ 1.
Indeed, the orbit of the generating circle C1 under S only yields a 2-dimensional
family of circles so that we do not obtain enough circles in the negative half in this
case. (However, k ¼ 1 results in the Desarguesian a‰ne plane for the derived geom-
etry at ðy; 0Þ, see the following section for this geometry.)

For later, when we determine isomorphism classes, we conclude this section by
showing that A is not an a‰ne plane that occurs as a derivation of the classical flat
Minkowski plane.

Lemma 3.3. A is not Desarguesian.

Proof. We consider the triangles with vertices p1 ¼ ð0; 0Þ, p2 ¼ ð1;�1Þ, p3 ¼ ð1;�3Þ,
and q1 ¼ ð�2; 0Þ, q2 ¼ ð�1;�1Þ, q3 ¼ ð�1;�3Þ, respectively. The lines through pi
and qi are horizontals and thus are parallel for i ¼ 1; 2; 3. Furthermore, correspond-
ing lines through p2 and q2 are also parallel. (The lines p2 p3 and q2q3 are verticals
and the lines p1p2 and q1q2 are L�1;0 and L�1;�1, respectively.) Finally, the line p1 p3

is L�2;0 and the line through q1 and q3 is L�3gkð2Þ=2;�3=2. But k > 1 implies gkð2Þ > 2
and thus � 3

2 gkð2Þ0�3. Hence p1 p3 and q1q3 are not parallel, compare the proof
of Proposition 3.1, and Desargues’ configuration does not close for the above six
points. r

Note that the proof of Lemma 3.3 only uses horizontals, verticals and lines Ls; t

with s < 0, that is, parallel classes and circles in the negative half of MðkÞ.

4 The derived geometry B at (T,0)

For a description of the lines in the derived incidence geometry B of MðkÞ at ðy; 0Þ
we use the coordinate transformation ðx; yÞ 7! ðx; 1=yÞ. A circle through ðy; 0Þ is
the graph of a fractional linear map x 7! b=ðcxþ dÞ where bc ¼ �1 or the graph of
dfkd

�1 where d A PSL2ðRÞ, dfkd�1ðyÞ ¼ 0. Under the above coordinate transforma-
tion the former circles give rise to the lines y ¼ mxþ t where m; t A R, m < 0. As
for the latter circles, note that each such circle intersects the distinguished circle D

in two points, say ðu; uÞ and ðv; vÞ where u; v A Rnf0g, u0 v. Furthermore, because
the derived geometry at ðu; uÞ is an a‰ne plane by Corollary 3.2, the points ðy; 0Þ,
ðu; uÞ and ðv; vÞ determine a unique circle. We must even have uv < 0. This follows
from the fact that dfkd

�1 is strictly decreasing on Rnfwg where w ¼ df �1
k d�1ðyÞ < 0
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so that the graph must intersect D in a point with negative coordinates and one
with positive coordinates. Then d�1ðuÞ and d�1ðvÞ are both fixed points of fk so
that fd�1ðuÞ; d�1ðvÞg ¼ fy; 0g, that is, fu; vg ¼ fdðyÞ; dð0Þg. Let dðxÞ ¼ ðaxþ bÞ=
ðcxþ dÞ, ad � bc ¼ 1. Then u ¼ dðyÞ ¼ a=c, v ¼ dð0Þ ¼ b=d, or v ¼ a=c, u ¼ b=d.
In the first case we obtain a ¼ uc, b ¼ vd, and 1 ¼ ad � bc ¼ ðu� vÞcd. Therefore
dðxÞ ¼ ðucxþ vdÞ=ðcxþ dÞ and d�1ðxÞ ¼ ðdx� vdÞ=ð�cxþ ucÞ ¼ �ðd=cÞðx� vÞ=
ðx� uÞ. Furthermore, �ðvdÞ=ðucÞ ¼ d�1ð0Þ ¼ fkd

�1ðyÞ ¼ fkð�d=cÞ ¼ gkðd=cÞ.
Thus

dfkd
�1ðxÞ ¼ d �gk � d

c

x� v

x� u

� �� �

¼ d gk
d

c

� �
gk

x� v

x� u

� �� �

¼ d � vd

uc
gk

x� v

x� u

� �� �

¼ d � vdgkðx� vÞ
ucgkðx� uÞ

� �

¼
�vd

gkðx�vÞ
gkðx�uÞ þ vd

� vdgkðx�vÞ
ugkðx�uÞ þ d

¼ uv
�gkðx� vÞ þ gkðx� uÞ
�vgkðx� vÞ þ ugkðx� uÞ

Under the above coordinate transformation we obtain the lines Lu; v given by
y ¼ F ðu; v; xÞ where u; v A R, uv < 0, and

Fðu; v; xÞ ¼ 1

uv

ugkðx� uÞ � vgkðx� vÞ
gkðx� uÞ � gkðx� vÞ :

Note that the above denominator is never 0 so that the right-hand side is defined for
all x A R.

In the second case the roles of u and v are interchanged and we obtain the same
equation. Note that the above equation is symmetric in u and v. In particular, we can
always assume that u < 0 < v.

Since gk is multiplicative, it follows that Fðu; v; xÞ ¼ 1
uv

ugkð1�u=xÞ�vgkð1�v=xÞ
gkð1�u=xÞ�gkð1�v=xÞ for x0 0

and thus limx!Gy Fðu; v; xÞ ¼Gy. Furthermore, qF
qx
ðu; v; xÞ ¼ � kðv�uÞ2jx�uj k�1jx�vjk�1

uvðgkðx�uÞ�gkðx�vÞÞ2

> 0 for all x0 u; v so that Fðu; v; xÞ is strictly increasing in x. This verifies that
x 7! F ðu; v; xÞ is indeed a homeomorphism of R for all admissible u and v.

In summary, we have found the following description of the lines of the derived
geometry B.
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Figure 1. E�1; 1=2 and L�1; 1=2 for k ¼ 3

The geometry B. The lines of B are

. the verticals fcg �R for c A R;

. the Euclidean lines y ¼ mxþ t of nonpositive slope mc 0;

. the sets

Lu; v ¼ fðx;Fðu; v; xÞÞg j x A Rg

for u; v A R, u < 0 < v.

Lemma 4.1. The line Lu; v has the Euclidean line Eu; v given by y ¼ � 1
kuv

�
x� kþ1

2 ðuþ vÞ
� �

as an oblique asymptote. Furthermore, Lu; v and Eu; v have precisely

the point uþv
2 ; uþv

2uv

� �
in common and Eu; v is below Lu; v to the right of that point and

above Lu; v to the left.

Proof. Since k > 1, the function gk is continuously di¤erentiable and even twice con-
tinuously di¤erentiable for all x0 0. The respective derivatives are g 0

kðxÞ ¼ kjxjk�1

and g 00
k ðxÞ ¼ kðk � 1Þxjxjk�3. If z A R such that x and x� z are in the same open

interval ð�y; 0Þ or ð0;þyÞ, Taylor’s formula then yields

gkðx� zÞ ¼ gkðxÞ � zg 0
kðxÞ þ

z2

2
g 00
k ðzÞ

where z is between x� z and x. Note that if z is fixed and x tends toGy we obtain
that g 00

k ðzÞjxj
1�k tends to 0 and that g 00

k ðzÞxjxj
1�k ¼ g 00

k ðzÞ 1
x
jxj3�k tends to kðk � 1Þ.
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Let u < 0 < v so that x� v < v < x < u < x� u. Then

uvFðu; v; xÞ ¼
ðu� vÞgkðxÞ � ðu2 � v2Þg 0

kðxÞ þ 1
2 ðu3g 00

k ðuÞ � v3g 00
k ðvÞÞ

�ðu� vÞg 0
kðxÞ þ 1

2 ðu2g 00
k ðuÞ � v2g 00

k ðvÞÞ

¼
ðu� vÞx� ðu2 � v2Þk þ 1

2 ðu3g 00
k ðuÞ � v3g 00

k ðvÞÞjxj
1�k

�ðu� vÞk þ 1
2 ðu2g 00

k ðuÞ � v2g 00
k ðvÞÞjxj

1�k

and

uvFðu; v; xÞ þ 1

k
x

¼
�ðu2 � v2Þk þ 1

2 ðu3g 00
k ðuÞ � v3g 00

k ðvÞÞjxj
1�k þ 1

2k ðu2g 00
k ðuÞ � v2g 00

k ðvÞÞxjxj
1�k

�ðu� vÞk þ 1
2 ðu2g 00

k ðuÞ � v2g 00
k ðvÞÞjxj

1�k
:

The numerator and denominator on the right-hand side tend to �ðu2 � v2Þkþ
1

2k ðu2 � v2Þkðk � 1Þ ¼ � kþ1
2 ðu2 � v2Þ and �ðu� vÞk, respectively, as x goes to Gy.

Thus limx!Gy F ðu; v; xÞ þ 1
k
x ¼ kþ1

2k ðuþ vÞ. This shows that the Eu; v is an oblique
asymptote of Lu; v.

Let

Eðu; v; xÞ ¼ � 1

kuv
x� k þ 1

2
ðuþ vÞ

� �

for u; v; x A R, u < 0 < v. Then E u; v; uþv
2

� �
¼ F u; v; uþv

2

� �
¼ uþv

2uv so that uþv
2 ; uþv

2uv

� �
is on

Eu; v VLu; v. Now consider the equation Eðu; v; xÞ ¼ Fðu; v; xÞ for fixed u < 0 < v. We
write x ¼ v�u

2 zþ vþu
2 for z A R. Then

0 ¼ Fðu; v; xÞ � Eðu; v; xÞ

¼ 1

uv

ugkðx� uÞ � vgkðx� vÞ
gkðx� uÞ � gkðx� vÞ þ 1

k
x� ðk þ 1Þ vþ u

2

� �� �

¼ 1

uv

ugkðzþ 1Þ � vgkðz� 1Þ
gkðzþ 1Þ � gkðz� 1Þ þ 1

k

v� u

2
z� k

vþ u

2

� �� �

¼ ðv� uÞððz� kÞgkðzþ 1Þ � ðzþ kÞgkðz� 1ÞÞ
2kuvðgkðzþ 1Þ � gkðz� 1ÞÞ :

Hence ðz� kÞgkðzþ 1Þ � ðzþ kÞgkðz� 1Þ ¼ 0 or ðzþ kÞ=ðz� kÞ ¼ gkðzþ 1Þ=
gkðz� 1Þ ¼ gkððzþ 1Þ=ðz� 1ÞÞ. Let t ¼ ðzþ 1Þ=ðz� 1Þ so that z ¼ ðtþ 1Þ=ðt� 1Þ.
Then the above equation becomes

gkðtÞ ¼
ðk þ 1Þt� ðk � 1Þ
ðk þ 1Þ � ðk � 1Þt
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and thus

hðtÞ ¼ ðk � 1Þjtjkþ1 � ðk þ 1Þtjtjk�1 þ ðk þ 1Þt� ðk � 1Þ ¼ 0:

The function h is di¤erentiable and even twice di¤erentiable for t0 0. For the de-
rivatives one finds

h 0ðtÞ ¼ ðk2 � 1Þtjtjk�1 � ðk þ 1Þkjtjk�1 þ k þ 1;

h 00ðtÞ ¼ kðk2 � 1Þtjtjk�3ðt� 1Þ:

Hence h 00ðtÞ > 0 for t < 0 or t > 1 and h 00ðtÞ < 0 for 0 < t < 1. Consequently, h 0 is
strictly increasing on ð�y; 0Þ and h 0ð1Þ ¼ 0 is a relative minimum of h 0 on ð0;þyÞ.
The latter implies that h is strictly increasing on ð0;þyÞ and thus 1 is the only posi-
tive zero of h. The former and the fact that h 0ð0Þ ¼ k þ 1 > 0, h 0ð�1Þ ¼ �2ðk2 � 1Þ
< 0 imply that h 0 has precisely one negative zero t� for which we have �1 < t� < 0.
Furthermore, h is strictly decreasing on the interval ð�y; t�Þ and strictly increasing
on ðt�; 0Þ. But hð0Þ ¼ �ðk � 1Þ < 0 and hð�1Þ ¼ 0. This shows that �1 is the only
negative zero of h.

In summary we have found that h has precisely two zeros, namely t ¼ 1 and
t ¼ �1. This in turn yields the only solution z ¼ 0, that is, x ¼ ðuþ vÞ=2, of our
original equation. (Note that t ¼ �1 corresponds to z ¼ 0 and that t ¼ 1 yields
z ¼ y and thus does not contribute to a solution in R.) This proves that uþv

2 ; uþv
2uv

� �
is the only point of intersection of Eu; v and Lu; v. The remaining statements on
the relative positions of Eu; v and Lu; v readily follow from Eðu; v; uÞ � Fðu; v; uÞ ¼
� ðk�1Þðv�uÞ

2kuv
> 0 and Eðu; v; vÞ � Fðu; v; vÞ ¼ ðk�1Þðv�uÞ

2kuv
< 0. r

Note that every Euclidean line of positive slope occurs precisely once as an
asymptote Eu; v for some u < 0 < v. Indeed, if m; t A R, m > 0, then u ¼ � t

ðkþ1Þm �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
km

þ t2

ðkþ1Þ2m2

q
< 0 and v ¼ � t

ðkþ1Þm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
km

þ t2

ðkþ1Þ2m2

q
> 0 are such that Eu; v is the

Euclidean line given by y ¼ mxþ t.
In the coordinates of B, the distinguished circle D induces the Euclidean hyperbola

H ¼ fðx; yÞ A R2 j xy ¼ 1g:

The stabilizer C ¼ Sðy;0Þ of ðy; 0Þ also fixes the points ð0;yÞ, ðy;yÞ and ð0; 0Þ.
Hence

C ¼ fðx; yÞ 7! ðrx; ryÞ j r > 0g:

This group induces a group F of collineations of B. In the new coordinates of B one
obtains

F ¼ fðx; yÞ 7! ðrx; y=rÞ j r > 0g:
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Lemma 4.2. The derived geometry B of MðkÞ at ðy; 0Þ is a linear space, that is, any
two distinct points can be uniquely joined by a line.

Proof. Given two distinct points ðx1; y1Þ and ðx2; y2Þ in R2 we have to find a line of
B that passes through them. Clearly, if ðx2 � x1Þðy2 � y1Þc 0, then these points are
on a vertical line or a Euclidean line of nonpositive slope. Furthermore, such a line is
unique.

We now assume that ðx2 � x1Þðy2 � y1Þ > 0. Without loss of generality we may
further assume that x1 < x2. Since the derived geometry at each point of D is an
a‰ne plane by Corollary 3.2, we may moreover assume that none of the points is on
H, that is, xiyi 0 1 for i ¼ 1; 2. A line through the two points must then be of the
form Lu; v where u < 0 < v. By Corollary 2.2 a joining line will be unique and we only
have to verify the existence of such a line.

Since each line Lu; v is the graph of a strictly increasing homeomorphism of R and
because Lu; v passes through ðu; 1=uÞ and ðv; 1=vÞ, we see that ðx1 � uÞ y1 � 1

u

� �
> 0 is

a necessary condition, that is,

ðx1 � uÞðuy1 � 1Þ < 0:

We similarly find that

ðx1 � vÞðvy1 � 1Þ > 0;

compare Figure 2.
Depending on the position of ðx1; y1Þ relative to the coordinate axes and to H one

obtains from the above two inequalities certain restrictions for u and v where I� J
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ð�y; 0Þ and Iþ J ð0;þyÞ denote the maximal (open) intervals we can choose u and
v from; see Table 2 below.

For Lu; v to pass through ðx1; y1Þ we find the condition

y1uvðgkðx1 � uÞ � gkðx1 � vÞÞ ¼ ugkðx1 � uÞ � vgkðx1 � vÞ

which yields

ugkðx1 � uÞ
y1u� 1

¼ vgkðx1 � vÞ
y1v� 1

that is, GðuÞ ¼ GðvÞ where

GðzÞ ¼ zgkðz� x1Þ
y1z� 1

for z A R, y1z0 1. We denote by GG the restriction of G to the open interval IG. G
is di¤erentiable and has derivative

G 0ðzÞ ¼ jz� x1jk�1

ðy1z� 1Þ2
ðky1z

2 � ðk þ 1Þzþ x1Þ:

The first term jz� x1jk�1=ðy1z� 1Þ2 in G 0ðzÞ above is always positive on IG and
it readily follows that the last factor qðzÞ ¼ ky1z

2 � ðk þ 1Þzþ x1 has no zero in IG.
(Note that qðzÞ ¼ kzðy1z� 1Þ þ ðx1 � zÞ and that zðy1z� 1Þ and x1 � z have the
same sign on IG.) In the above table the sign of qG, that is, the restriction of q to IG, is
indicated in the columns labelled q� and qþ. Hence GG is strictly increasing or strictly
decreasing on IG. In Table 2 this is indicated by an arrow up " or an arrow down #,
respectively.

Clearly, Gð0Þ ¼ Gðx1Þ ¼ 0,

lim
z!Gy

GðzÞ ¼
Gy; if y1 > 0;

�y; if y1 ¼ 0;

Hy; if y1 < 0;

8<
:

x1 y1 x1y1 I� Iþ q� qþ G� Gþ a

d 0 0 ð�y; 0Þ ðx1;þyÞ > 0 < 0 " # #
< 0 0 ð�y; x1Þ ð0;þyÞ > 0 < 0 " # #
c 0 > 0 ð�y; x1Þ ð0; 1=y1Þ > 0 < 0 " # #
> 0 > 0 > 1 ð�y; 0Þ ð1=y1; x1Þ > 0 > 0 " " "
> 0 > 0 < 1 ð�y; 0Þ ðx1; 1=y1Þ > 0 < 0 " # #
d 0 < 0 ð1=y1; 0Þ ðx1;þyÞ > 0 < 0 " # #
< 0 < 0 > 1 ðx1; 1=y1Þ ð0;þyÞ < 0 < 0 # # "
< 0 < 0 < 1 ð1=y1; x1Þ ð0;þyÞ > 0 < 0 " # #

Table 2.
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and limz!1=y1
GðzÞ ¼Gy depending on the relative position of y1 0 0 to 0 and x1,

but the sign changes in any case when z approaches 1=y1 from opposite sides. It then
follows that in any case GG takes IG onto the negative real numbers ð�y; 0Þ. In par-
ticular, this shows that for each u A I� there is a unique v A Iþ such that Lu; v passes
through ðx1; y1Þ. In fact, there is a homeomorphism a1 : I� ! Iþ such that Lu;a1ðuÞ
passes through ðx1; y1Þ. Clearly, a1 ¼ G�1

þ G�, and a1 is strictly decreasing if and only
if x1y1 < 1 (that is, ðx1; y1Þ is between the two branches of the Euclidean hyperbola
H) and strictly increasing if and only if x1y1 > 1 (that is, ðx1; y1Þ is above or below
H); see Table 2. Moreover, a1 is di¤erentiable and its derivative is given by a 0

1ðuÞ ¼
G 0

�ðuÞ=G 0
þða1ðuÞÞ.

(Note that there is no explicit formula for a1 except for special cases. For exam-
ple, in the case x1 ¼ y1 ¼ 0 one has a1ðuÞ ¼ �u. It then readily follows that there is
a unique line Lu;�u through a point ðx2; y2Þ where x2y2 > 0. Hence ð0; 0Þ can be
uniquely joined to any other point in B.)

One similarly obtains a homeomorphism a2 : ~II� ! ~IIþ such that Lu;a2ðuÞ passes
through ðx2; y2Þ where ~II� J ð�y; 0Þ and ~IIþ J ð0;þyÞ are open intervals defined in
a similar fashion as the intervals I� and Iþ for a1.

We consider the three connected components of R2nH; more precisely, let

Cþ ¼ fðx; yÞ A R2 j xy > 1; x > 0g;

C0 ¼ fðx; yÞ A R2 j xy < 1g;

C� ¼ fðx; yÞ A R2 j xy > 1; x < 0g;

see Figure 2. The reflection r about the origin of R2 given by rðx; yÞ ¼ ð�x;�yÞ is
an automorphism of the incidence structure B. (Note that �F ðu; v;�xÞ ¼ F ð�v;�u;
xÞ.) Furthermore, r interchanges Cþ and C� and leaves C0 invariant. Using r and
perhaps relabelling the points, if necessary, we can assume that x1 < x2 and we can
restrict ourselves to the four cases ðx1; y1Þ A C0, ðx2; y2Þ A Cþ or ðx1; y1Þ; ðx2; y2Þ A
Cþ or ðx1; y1Þ; ðx2; y2Þ A C0 or ðx1; y1Þ A C�, ðx2; y2Þ A Cþ for the relative positions
of the two points ðx1; y1Þ and ðx2; y2Þ. In each of theses cases we are looking at either
a ¼ a1a

�1
2 or a ¼ a2a

�1
1 and verify that a fixes a point. Such a fixed point v leads to

u ¼ a�1
2 ðvÞ ¼ a�1

1 ðvÞ so that Lu; v is a line through ðx1; y1Þ and ðx2; y2Þ.
We encounter essentially two situations. In the first one a : I ! J is a strictly

increasing homeomorphism and I and J are two open intervals in R such that J is
finite and its closure J is contained in I . If J ¼ ðc; dÞ, we define vn inductively by
v0 ¼ c and vnþ1 ¼ aðvnÞ for nd 0, that is, vn ¼ anðcÞ. Then the vn’s are increasing
and bounded from above by d. Thus v ¼ limn!y vn exists and by continuity of a it
follows that a fixes v. In the other situation a : I ! J is a strictly decreasing homeo-
morphism and I and J are two open intervals in R such that I V J is nonempty and
J is finite. If I ¼ ða; bÞ, J ¼ ðc; dÞ and w A I V J, we find that limx!a aðxÞ � x ¼
d � a > w� w ¼ 0 and limx!b aðxÞ � x ¼ c� b < w� w ¼ 0. By continuity of a it
follows that there is a v A I such that aðvÞ � v ¼ 0, that is, a fixes v.

For example, if we assume that ðx1; y1Þ A C0, ðx2; y2Þ A Cþ, then I� J ~II� ¼
ð�y; 0Þ, ~IIþ ¼ ð1=y2; x2Þ is finite and Iþ V ~IIþ 0q because this intersection contains
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the first coordinate of the point of intersection of the positive branch of H and the
line segment from ðx1; y1Þ to ðx2; y2Þ. Moreover, a1 is strictly decreasing and a2 is
strictly increasing so that a ¼ a2a

�1
1 : Iþ ! a2ðI�Þ is a strictly decreasing homeo-

morphism. Since a2ðI�ÞJ ~IIþ, we obtain that a2ðI�Þ is finite. In order to show that
Iþ V a2ðI�Þ is nonempty we distinguish several cases.

If x1; y1 d 0, then I� ¼ ~II� and thus a2ðI�Þ ¼ ~IIþ. In case x1; y1 c 0 we have
Iþ ¼ ð0;þyÞ so that a2ðI�ÞH Iþ. If x1 < 0 < y1, we have I� ¼ ð�y; x1Þ and Iþ ¼
ð0; 1=y1Þ; see Table 2. But then a2ðI�Þ ¼ ð1=y2; a2ðx1ÞÞ and because 0 < y1 < y2 we
obtain that Iþ V a2ðI�Þ ¼ ð1=y2;minf1=y1; a2ðx1ÞgÞ. Finally, if x1 > 0 > y1, we have
I� ¼ ð1=y1; 0Þ and Iþ ¼ ðx1;þyÞ; see Table 2. But then a2ðI�Þ ¼ ða2ð1=y1Þ; x2Þ and
because 0 < x1 < x2 we have Iþ V a2ðI�Þ ¼ ðmaxfx1; a2ð1=y1Þg; x2Þ.

The other cases are dealt with in a similar fashion. In any case one finds that a has
a fixed point.

This finally shows that ðx1; y1Þ and ðx2; y2Þ can be joined by a line in B. r

In order to show that MðkÞ is a flat Minkowski plane we still have to verify that
the parallel axiom is satisfied in B, that is, that B is an a‰ne plane. As a first step in
that direction we characterize parallelity in B.

Lemma 4.3. Two lines Lu; v and Lu 0; v 0 are parallel if and only if uv ¼ u 0v 0.

Proof. We first assume that uv0 u 0v 0. Then the Euclidean lines given by

y ¼ � 1

kuv
x� k þ 1

2
ðuþ vÞ

� �
and y ¼ � 1

ku 0v 0
x� k þ 1

2
ðu 0 þ v 0Þ

� �

have di¤erent slopes and intersect transversally in a point. Since these Euclidean lines
are oblique asymptotes to the lines Lu; v and Lu 0; v 0 by Lemma 4.1 we see that Lu; v and
Lu 0; v 0 must also intersect in a point.

Conversely assume that uv ¼ u 0v 0. Assume that Lu; v and Lu 0; v 0 have a point ðx0; y0Þ
in common. Since we already have a linear space by Lemma 4.2 the two lines
are either parallel (that is, Lu; v ¼ Lu 0; v 0 ) or ðx0; y0Þ is the only common point of
Lu; v and Lu 0; v 0 . In the latter case the asymptotes of Lu; v and Lu 0; v 0 are di¤erent
parallel Euclidean lines so that Fðu; v; xÞ � F ðu 0; v 0; xÞ has the same sign for large
jxj. This then implies that Lu; v and Lu 0; v 0 touch analytically at ðx0; y0Þ, that is,
qF
qx
ðu; v; x0Þ ¼ qF

qx
ðu 0; v 0; x0Þ.

We now show that Lu; v is uniquely determined by the point ðx0; y0Þ on it and
the slope of the Euclidean tangent line at that point, that is, the partial derivative
qF
qx
ðu; v; x0Þ. Then the second case is not possible and the two lines must be parallel.
By using the group F we may assume that uv ¼ �1. Let x0; y0; y

0
0 A R, y 0

0 > 0. We
then have to find a unique u < 0 such that

Fðu; v; x0Þ ¼ y0

qF

qx
ðu; v; x0Þ ¼ y 0

0;
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that is,

y0 ¼ 1

uv
uþ ðu� vÞðx0 � vÞg 0

kðx0 � vÞ
kðgkðx0 � uÞ � gkðx0 � vÞÞ

� �

¼ 1

uv
vþ ðu� vÞðx0 � uÞg 0

kðx0 � uÞ
kðgkðx0 � uÞ � gkðx0 � vÞÞ

� �

y 0
0 ¼ ðv� uÞðg 0

kðx0 � uÞgkðx0 � vÞ � gkðuÞg 0
kðx0 � vÞÞ

uvðgkðx0 � uÞ � gkðx0 � vÞÞ2

¼ � ðv� uÞ2
g 0
kðx0 � uÞg 0

kðx0 � vÞ
kuvðgkðx0 � uÞ � gkðx0 � vÞÞ2

:

(Note that kgkðxÞ ¼ xg 0
kðxÞ for all x A R.) Hence

y 0
0ðx0 � uÞðx0 � vÞ þ kðuy0 � 1Þðvy0 � 1Þ ¼ 0:

But v ¼ �1=u so that after multiplying through by u we obtain the quadratic equa-
tion

ðky0 þ x0y
0
0Þðu2 � 1Þ þ ðkðy2

0 � 1Þ � ðx2
0 � 1Þy 0

0Þu ¼ 0

for u. If ky0 þ x0y
0
0 0 0, then the above equation has precisely one positive and

one negative zero (the coe‰cients of the quadratic and the constant terms have
opposite signs). Thus there is at most one u < 0 that satisfies our two equations. If
ky0 þ x0y

0
0 ¼ 0, then we must also have kðy2

0 � 1Þ � ðx2
0 � 1Þy 0

0 ¼ 0. These two
equations imply that y0 ¼ �x0 and y 0

0 ¼ k. The first of these identities yields
ðx0 � uÞgkðx0 � uÞ ¼ ðx0 � vÞgkðx0 � vÞ and further x0 ¼ ðuþ vÞ=2. Thus u2 �
2x0u� 1 ¼ 0 and u ¼ x0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ 1
q

. Hence there is again a unique u < 0. r

Note that the proof of Lemma 4.3 further shows that there is at most one line Lu; v

with a given value uv through a given point, that is, we have the following.

Corollary 4.4. Through each point there is at most one line Lu 0; v 0 parallel to a line Lu; v.

Proposition 4.5. The derived geometry B of MðkÞ at ðy; 0Þ is an a‰ne plane.

Proof. It remains to show that the parallel axiom is satisfied in B. Since Euclidean
lines of negative slope and lines of the form Lu; v are graphs of orientation-reversing
and orientation-preserving homeomorphisms of R we see that a parallel of a Eucli-
dean line or of Lu; v in B must be of the same form. Hence there is a unique parallel in
B to a horizontal line, a vertical line or a Euclidean line of negative slope through a
given point. Given a point ðx0; y0Þ and a line Lu; v we know from Lemma 4.3 that any
parallel through ðx0; y0Þ must be of the form Lu 0; v 0 where u 0v 0 ¼ uv. As in the proof
of Lemma 4.3 we may assume that uv ¼ �1. Then we have to find a unique u 0 < 0
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such that F ðu 0;�1=u 0; x0Þ ¼ y0. But hðzÞ defined by hðzÞ ¼ F ðz;�1=z; x0Þ for z A R,
z < 0, is continuous and limz!�y hðzÞ ¼ þy and limz!0� hðzÞ ¼ �y. This shows
that h is onto R and there is at least one u 0 such that hðu 0Þ ¼ y0. But Corollary 4.4
shows that such a u 0 must be unique, that is, there is a unique parallel to Lu; v through
ðx0; y0Þ. r

The transitivity of S on points not on D implies that Proposition 4.5 carries over to
any point not on D.

Corollary 4.6. Each derived geometry of MðkÞ at a point not on D is an a‰ne plane.

Corollary 3.2 and Corollary 4.6 now imply the following.

Theorem 4.7. Each incidence geometry MðkÞ for k > 1 as defined at the beginning of

Section 2 is a flat Minkowski plane.

5 Isomorphism classes and automorphisms

Since each derived a‰ne plane of the classical flat Minkowski plane is Desarguesian,
we immediately obtain the following from Lemma 3.3.

Theorem 5.1. No flat Minkowski plane MðkÞ is classical.

We now turn to isomorphisms between the planes MðkÞ and their automorphisms.
We want to show that, in fact, these planes are mutually non-isomorphic. As a first
step in this direction we prove that any isomorphism must respect the point orbits.

Lemma 5.2. Let g : MðkÞ ! MðlÞ be an isomorphism between the flat Minkowski

planes MðkÞ and MðlÞ. Then g takes the distinguished circle D in MðkÞ to the corre-

sponding circle D in MðlÞ.

Proof. We assume that gðDÞ0D. Then MðlÞ admits the 3-dimensional connected
groups S and gSg�1 as groups of automorphisms. Since D is the only circle fixed by S,
it follows that S0 gSg�1 and hence that the automorphism group GðlÞ of MðlÞ must
be at least 4-dimensional. From the classification of flat Minkowski planes of group
dimension at least 4 (see [5] or [4], 4.4.5) we see that MðlÞ must be classical or that
GðlÞ fixes two parallel classes. The former case is not possible by Theorem 5.1 and the
latter cannot occur since S is already transitive on each set of all ðGÞ-parallel classes.

r

Theorem 5.3. Two flat Minkowski planes MðkÞ and MðlÞ are isomorphic if and only if

k ¼ l.

Proof. Let g : MðkÞ ! MðlÞ be an isomorphism between the flat Minkowski planes
MðkÞ and MðlÞ. Then g takes the distinguished circle D in MðkÞ to the distinguished
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circle D in MðlÞ by Lemma 5.2. Since S is doubly transitive on D, we may assume
that g takes p ¼ ðy;yÞ and ð0; 0Þ in MðkÞ to the ‘same’ respective points ðy;yÞ
and ð0; 0Þ in MðlÞ. Moreover, the stabilizer of these two points is transitive on the
set of circles in the negative half through these two points. We therefore can further
assume that g takes the generating circle Ck in MðkÞ to the generating circle Cl in
MðlÞ.

The induced isomorphism g from the derived a‰ne plane AðkÞ of MðkÞ at p onto
the derived a‰ne plane AðlÞ of MðlÞ at p then takes ð0; 0Þ to ð0; 0Þ, the lines L1;0

induced from D and L�1;0 in AðkÞ to L1;0 and L�1;0 in AðlÞ, respectively. Further-
more, horizontal lines are mapped to horizontal lines and vertical lines to vertical
lines, or these two sets of lines are interchanged. In the former case, g is of the form
ðx; yÞ 7! ðaðxÞ; bðyÞÞ and ðx; yÞ 7! ðaðyÞ; bðxÞÞ in the latter case, where a and b are
homeomorphisms of R. Since L1;0 is taken to L1;0 and ð0; 0Þ to ð0; 0Þ, one finds a ¼ b

and að0Þ ¼ 0 in both cases.
A line L1; t, which is parallel to L1;0, must be taken to a parallel to L1;0 in AðlÞ,

that is, for every t A R there is a t 0 A R such that gðL1; tÞ ¼ L1; t 0 . In the former case,
this condition implies that aðxþ tÞ ¼ aðxÞ þ t 0. For x ¼ 0 we obtain t 0 ¼ aðtÞ so that

aðxþ tÞ ¼ aðxÞ þ aðtÞ

for all x; t A R. Hence aðxÞ ¼ ax for some a A Rnf0g. We arrive at the same form for
a in the second case where the horizontals and verticals are interchanged.

We finally look at L�1;0. This line is taken by g to the set

fðx;�agkðx=aÞÞ j x A Rg ¼ fðx;�agkðxÞ=gkðaÞÞ j x A Rg

which, of course, must be the line L�1;0 in AðlÞ. Thus

glðxÞ ¼
agkðxÞ
gkðaÞ

for all x A R. For x ¼ 1 we find a ¼ gkðaÞ and thus gl ¼ gk. This shows that k ¼ l.
In the second case we similarly obtain g�1

l ¼ gk. But g�1
l ¼ g1=l so that k ¼ 1=l.

This clearly is not possible, because k; l > 1. r

Note that the transformation g : ðx; yÞ 7! ðy; xÞ is a homeomorphism of the torus
that interchanges the horizontals with the verticals. The image gðMðkÞÞ of MðkÞ is a
again a flat Minkowski plane that, in addition, has a very similar description to our
planes as Mð1=kÞ. Thus we could have extended the definition of our flat Minkowski
planes as given in Section 2 to values for the parameter k between 0 and 1.

Since S is a group of automorphisms of the flat Minkowski plane MðkÞ, each such
plane has group dimension at least 3. In fact, all these planes have group dimension 3.

Theorem 5.4. Each flat Minkowski plane MðkÞ has group dimension 3. The connected
component S of the automorphism group of MðkÞ that contains the identity is isomor-

phic to the simple group PSL2ðRÞ. Furthermore, MðkÞ also admits the automorphism
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a : ðx; yÞ 7! ð�x;�yÞ. The group generated by a and S is the full automorphism group

of MðkÞ and is isomorphic to PGL2ðRÞ.

Proof. Let GðkÞ be the full automorphism group of MðkÞ. From Lemma 5.2 we know
that every automorphism of MðkÞ must fix the circle D. Hence the orbit under GðkÞ
of any point on D is (at most) 1-dimensional. Choosing three distinct points on D

the stabilizer of these points is 0-dimensional; see [4]. The dimension formula then
implies that GðkÞ is at most 3-dimensional. We thus conclude that a Minkowski plane
MðkÞ has group dimension 3.

It is readily verified that a is indeed an automorphism of MðkÞ. Let g A GðkÞ. Up
to automorphisms in S, we may assume that g fixes ðy;yÞ, ð0; 0Þ, D and the gen-
erating circle Ck. As in the proof of Theorem 5.3 we then see that g must be of the
form ðx; yÞ 7! ðax; ayÞ or ðx; yÞ 7! ðay; axÞ where a A R satisfies a ¼ gkðaÞ, that is,
a ¼G1. The former case gives us g ¼ id and g ¼ a for a ¼ 1 and a ¼ �1 respectively.
However, the transformation ðx; yÞ 7! ðy; xÞ does not define an automorphism of
MðkÞ, because the generating circle Ck is taken to C1=k ¼ fðx;�g1=kðxÞÞ j x A S1g and
C1=k 0Ck unless k ¼ 1. This shows that GðkÞ is generated by a and S and the re-
maining statements about GðkÞ readily follow. r

Similar to the Lenz–Barlotti classification of projective planes with respect to cen-
tral collineations, Minkowski planes have been classified by Klein and Kroll in [2]
and [1] with respect to central automorphisms, that is, automorphisms that fix at least
one point and induce central collineations in the projective extension of the derived
a‰ne plane at that fixed point; see [2] and [1] or [4] Section 4.5, for a definition of the
so-called Klein–Kroll types.

Proposition 5.5. Each flat Minkowski plane MðkÞ has Klein–Kroll type IV.A.1.

Proof. The group S from Theorem 5.4 contains the translations ðx; yÞ 7! ðxþ t; yþ tÞ
for t AR. They form a ðp;Bðp;DÞÞ-transitive group of ðp;Bðp;DÞÞ-translations where
p ¼ ðy;yÞ and Bðp;DÞ is the tangent bundle of circles that touch the distinguished
circle D at p. Since S is transitive on D, we see that MðkÞ is ðp;Bðp;DÞÞ-transitive for
each point p A D. Hence MðkÞ is of Klein–Kroll type at least IV. However, type V or
higher implies classical; see [8], Corollary 4.2. But then MðkÞ must be of combined
type IV.A.1 by [8], Theorem 6.1. r

There are flat Minkowski planes that admit the group PSL2ðRÞ as a group of
automorphisms in one of the kernels, that is, the normal subgroups of all automor-
phisms that fix each (þ)-parallel class or each (�)-parallel class. These planes are
obtained from the classical flat Minkowski plane by replacing the circles in the neg-
ative half by the graphs of the composition of all fractional linear maps not in
PSL2ðRÞ with a fixed orientation-preserving homeomorphism f of S1. The resulting
plane Mð f Þ has group dimension 3 or 4 or is classical, depending on the form of f ;
see [4], Theorem 4.3.3 or [7]. Clearly, such a plane Mð f Þ cannot be isomorphic to
any of our planes MðkÞ.
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There is however a looser connection between flat Minkowski planes via general-
ised quadrangles. From one half of a flat Minkowski plane one can construct an
antiregular 3-dimensional compact generalised quadrangle that admits a Minkowski
involution as the ‘lifted Lie geoemtry’, see [6] or [4] Chapter 6 for details. Vice versa
such a generalised quadrangle gives rise to one half of a flat Minkowski plane by
taking the set of fixed points S of the Minkowski involution t as the point set, the
fixed lines of t as the parallel classes, and as circles the traces S V p? of points p

not fixed by t. By using di¤erent Minkowski involutions of the same antiregular 3-
dimensional generalised quadrangle, one can establish a relationship between halves
of di¤erent flat Minkowski planes. Following the notation in [6] we say halves of two
flat Minkowski planes are sisters of each other if they can be obtained in this way.

Since the verification of the axioms of a Minkowski plane is straightforward for the
planes Mð f Þ, the question arises whether or not the negative half M�ðkÞ of a flat
Minkowski plane MðkÞ is a sister of the negative half of a plane Mð f Þ. Note that the
positive half in both types of planes, Mð f Þ and MðkÞ, is the same as in the classical
flat Minkowski plane. Furthermore, the negative half of Mð f Þ is also isomorphic
to the positive half of the classical flat Minkowski plane. Hence, in order for M�ðkÞ
to be a sister of a half of some Mð f Þ this half must be obtainable from the clas-
sical antiregular 3-dimensional compact generalised quadrangle. This implies that
Desargues’ configuration must close in the derived geometry of M�ðkÞ at each
of its points where all occuring lines are horizontals, verticals or in the negative
half of MðkÞ. However, as seen in the proof of Lemma 3.3 this is not the case.
Hence our planes MðkÞ are not related to the planes Mð f Þ and there is no ‘easy
way’ to verify the axioms of a Minkowski plane.
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