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Preface

The Colloquium on Differential and Difference Equations - CDDE 2000 - was
held in Brno, September 5-8, 2000. It was organized by the Faculty of Science,
Masaryk University and the Mathematical Institute of the Academy of Science of
the Czech Republic in cooperation with the Union of Czech Mathematicians and
Physicists and the Union of Slovak Mathematicians and Physicists.

Due to the growing interest in the relationship between qualitative theory of
differential and difference equations it was decided to organize a meeting in Brno
which would have brought together various people working in these areas. The
topic of this meeting was ”Qualitative theory of differential and difference equa-
tions and their applications”. It followed the tradition of the previous conferences
and seminars on differential equations held in Brno, as there were Equadiff 3
(1972), Equadiff 6 (1985), Equadiff 9 (1997), Workshop on Qualitative Theory of
Differential Equations (1998) and Bor̊uvka Mathematical Symposium (1999). We
hope it will be possible to continue in the tradition like this.

The Colloquium was prepared by the Organizing Committee consisting of
Miroslav Bartušek (chairman), Zuzana Došlá, Ondřej Došlý, Alexander Lomtatidze
and Jaromı́r Vosmanský. The help of the Honorary and Advisory Board was very
appreciated as well. There were 92 participants at the conference from 14 coun-
tries. The scientific program consisted of 5 survey plenary lectures (O. Došlý, L.
Górniewitz, I. Györi, T. Kusano and Š. Schwabik), 56 communications, 10 posters
and 9 extended abstracts.

The social program which took an advantage of the nice surroundings of the
Brno dam lake, where the conference site was situated, was organized, too.

The CDDE 2000 Proceedings is published as the supplementary issue of To-
mus 36 (2000) of Archivum mathematicum journal and will be distributed to all
subscribers of this journal as well as to the participants of CDDE 2000. Additional
orders of this Proceedings ($ 35) should be sent to the Managing Editor of AM.

In this volume there are published all submitted papers which have passed
an usual AM reviewing process and were accepted for publication. Volume starts
with 3 survey papers by invited speakers and other 26 contributions are ordered
alphabetically.

The edition of the Proceedings was partly supported by the grant of the Grant
Agency of the Czech Republic no. 201/99/0295 and the Research Project no.
J07/98:143100001 of the Ministry of Education of the Czech Republic.



The electronic edition of the CDDE 2000 Proceedings is available in PDF
format on http://www.emis.de/journals/.

We would like to thank our colleagues for their help which enabled us to publish
this volume in short time, the editors of Archivum mathematicum for their kind
agreements to publish this Proceedings in the frame of the journal, the referees
for their good work and quick responses and, last but not least, to Jǐŕı Šremr,
our PhD student, for the TEX adaptation of the great number of papers and for
preparing the electronic version of this volume.

Brno, February 2001 Editors
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1. Introduction

The aim of this paper is to present a brief survey of the basic results of the discrete
oscillation theory, to compare these results with their continuous counterparts, and
to formulate some open problems in this area.

Let us start, as a motivation for our investigation, with the very famous second
order linear difference equation, namely the equation

xk+2 = xk+1 + xk(1)

which determines the Fibonacci numbers. The characteristic equation of (1) is
λ2 − λ− 1 = 0, hence

x
[1]
k =

(
1 +

√
5

2

)k

, x
[2]
k =

(
1 −

√
5

2

)k

is a pair of linearly independent solutions of (1). Obviously, the solution x[1] is a
monotonically increasing sequence, whereas x[2] is an oscillatory sequence. From
this point of view, it seems that the Sturmian separation theorem concerning the
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zero points of the linearly independent solutions of the Sturm-Liouville differential
equation

(r(t)x′)′ + c(t)x = 0, r(t) > 0,(2)

has no discrete analogue.
To show that this is not the case, let us return to the motivation for the

investigation of oscillatory properties of (2) (more precisely, distribution of zero
points of its solutions). One of these motivations consists in the investigation of
positivity of the quadratic functional

Fc(y) :=
∫ b

a

[
r(t)y′2 − c(t)y2

]
dt(3)

over the class of (nontrivial, sufficiently smooth) functions y satisfying y(a) = 0 =
y(b). The functional F is (upon a certain transformation) the functional of the
second variation of the fixed end points variational problem∫ b

a

f(t, x(t), x′(t)) dt→ min, x(a) = A, x(b) = B.(4)

and its positivity is a sufficient condition for an extremal to be a local minimum
of (4), for a more detailed treatment of this topic see [19].

The important role in the investigation of positivity of the functional Fc is
played by the so-called Picone identity. This identity relates the quadratic func-
tional Fc to the Riccati equation

w′ + c(t) +
w2

r(t)
= 0(5)

which is related to (2) by the substitution w := r(t)x′

x . This identity reads as
follows; let w be a solution of (5) which exists on the whole interval [a, b], then

Fc(y) = w(t) y2
∣∣b
a

+
∫ b

a

1
r(t)

(r(t)y′ − w(t)y)2 dt,(6)

in particular, if y(a) = 0 = y(b), this formula shows that the existence of a solution
x of (2) without zero in [a, b] (and hence the existence of w solving (5) on [a, b])
implies that Fc can be “completed to the square” (compare the integral term on
the right-hand-side of (6)) and hence Fc is positive over the class of y satisfying
y(a) = 0 = y(b).

If we replace the integral in (4) by its partial Riemann sum, after some rela-
beling of variables in this extremal problem, its discrete version is

N∑
k=0

f(k, xk+1,∆xk) → min, x0 = A, xN+1 = B,(7)
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for a more detailed description of this discretization process we refer to [2,22]. The
investigation of sufficient conditions for a local minimum of (7) leads (using essen-
tially the same arguments as in the continuous case) to the problem of positivity
of the discrete quadratic functional

Fd(y) :=
N∑

k=0

[
rk(∆yk)2 − cky2k+1

]
, ∆yk := yk+1 − yk,(8)

in the class of nontrivial sequences y = {yk}N+1
k=0 satisfying y0 = 0 = yN+1. This

functional is connected with the Sturm-Liouville difference equation

∆(rk∆xk) + ckxk+1 = 0, rk �= 0,(9)

in the same way as (3) and (2) in the continuous case. The discrete analogue of
(5) is the equation

∆wk + ck +
w2
k

rk + wk
= 0(10)

and this equation is related to (9) by the substitution wk = rk∆xk

xk
. Here one can see

already a certain difference between the discrete and continuous case, namely the
presence of w in the denominator of the last expression of (10), we will return to
this phenomenon later in this paper. Following the same idea as in the continuous
case we reveal the discrete Picone identity

Fd(y) = wky
2
k

∣∣N+1

0
+

N∑
k=0

1
rk + wk

(rk∆yk − wkyk)2 ,(11)

where w is a solution of (10) defined for every k ∈ [0, N + 1]. In particular, the
term r+w plays the same role as the term r in the continuous case and hence Fd is
positive (for nontrivial y satisfying y0 = 0 = yN+1) provided there exists a solution
w of (10) defined for k ∈ [0, N + 1] and satisfying wk + rk > 0 for k ∈ [0, N ].
Substituting for w = r∆x

x , the last inequality is equivalent to rkxkxk+1 > 0.
Consequently, this leads to the following definition.

Definition 1. We say that an interval (m,m+ 1], m ∈ Z, contains a generalized
zero of a solution x of (9) if xm �= 0 and xmxm+1rm ≤ 0.

The Fibonacci equation (1) can be rewritten into the (self-adjoint) form

∆
(
(−1)k∆xk

)
+ (−1)kxk+1 = 0,

see [2, Chap. I]. Applying the above definition (with rk = (−1)k) to this equa-
tion we easily see that both solutions x[1], x[2] are actually oscillatory, they have
infinitely many generalized zeros.

Finally note that the discrepancies between discrete and continuous oscillation
theories are mostly caused by differences between continuous calculus (differential
and integral calculus) and its discrete counterpart (the calculus of differences and
sums).
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2. Oscillation theory of Sturm-Liouville difference equations

Using the definition of a generalized zero from the previous section we can now
formulate the main statement of the oscillation theory of Sturm-Liouville difference
equations (9), the so-called Roundabout theorem, see e.g. [2].

Theorem 1. The following statements are equivalent:

(i) Equation (9) is disconjugate on [0, N ], i.e., the solution x̃ given by the initial
condition x̃0 = 0, r0x̃1 = 1 has no generalized zero in (0, N + 1].

(ii) There exists a solution of (9) having no generalized zero in [0, N + 1].
(iii) There exists a solution w of (10) which is defined for every k ∈ [0, N + 1] and

satisfies rk + wk > 0 for k ∈ [0, N ].
(iv) The quadratic functional Fd(y) is positive for every nontrivial y satisfying

y0 = 0 = yN+1.

This theorems shows that the Sturmian separation and comparison theory does
extend to (9). Indeed, the separation theorem is given by the equivalence (i) ⇐⇒
(ii) and the comparison theorem is “hidden” in the equivalence (i) ⇐⇒ (iv). Let
us also remind the main ideas used in the proof of Theorem 1. The implication
(i) =⇒ (ii) follows from the continuous dependence of solutions of (9) on a
parameter. More precisely, if the solution x̃ given in (i) has no generalized zero in
(0, N + 1], then the solution x[ε] given by the initial condition x[ε]0 = ε, r0x

[ε]
1 = 1

has no generalized zero in [0, N + 1] if ε > 0 is sufficiently small. The implication
(ii) =⇒ (iii) is just the Riccati substitution and the already mentioned fact that
rk + wk > 0 if and only if rkxkxk+1 > 0. The implication (iii) =⇒ (iv) follows
immediately from Picone’s identity. Finally, the implication (iv) =⇒ (i) is proved
by contradiction. If x̃ would have a generalized zero in (0, N+1], one can construct
a nontrivial y = {yk}N+1

k=0 with y0 = 0 = yN+1 such that Fd(y) ≤ 0. More details
concerning this proof can be found e.g. in [5].

The Roundabout theorem (observe that this name for the theorem comes from
its proof) immediately suggests two main methods of the discrete oscillation theory.
The first one consists in the equivalence (i) ⇐⇒ (iv) and is called the variational
method, whereas the second method, leaned on the equivalence (i) ⇐⇒ (iii), is
usually referred as the Riccati technique. Recall that equation (9) is said to be
nonoscillatory if there exists N ∈ N such that (9) is disconjugate on [N,M ] for
every M > N , in the opposite case (9) is said to be oscillatory.

To prove (via the variational method) that (9) is oscillatory, it suffices to con-
struct for every N ∈ N a sequence y = {yk}∞k=N , such that yN = 0, only finitely
many yk are nonzero (this class of sequence we will denote by D(N)) and

Fd(y;N,∞) :=
∞∑

k=N

[
rk(∆yk)2 − cky2k+1

]
< 0.

On the other hand, to prove nonoscillation of (9) we need to show that there
exists N ∈ N such that for every nontrivial y ∈ D(N) we have Fd(y;N,∞) > 0.
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A typical example of the oscillation criterion proved using the variational method
is the discrete version of the Leighton-Wintner oscillation criterion.

Theorem 2. Suppose that rk > 0 for large k and

∞∑
r−1k = ∞ =

∞∑
ck.(12)

Then equation (9) is oscillatory.

Proof. Let N ∈ N be arbitrary. Define for N < n < m < M (which will be
determined later) a sequence y ∈ D(N) as follows

yk =



(∑k−1
j=N r

−1
j

)(∑n−1
j=N r

−1
j

)−1
, N + 1 ≤ k ≤ n,

1, n+ 1 ≤ k ≤ m− 1,(∑M−1
j=k r−1j

)(∑M−1
j=m r−1j

)−1
, m ≤ k ≤M − 1,

0, k ≥M.

Then we have

Fd(y;N,∞) =
∞∑

k=N

[
rk(∆yk)2 − cky2k+1

]
=

M−1∑
k=N

[
rk(∆yk)2 − cky2k+1

]
=

(
n−1∑
k=N

+
m−1∑
k=n

+
M−1∑
k=m

)[
rk(∆yk)2 − cky2k+1

]
=

(
n−1∑
k=N

r−1k

)−1
−

n−1∑
k=N

cky
2
k+1−

m−2∑
k=n

ck−
M−1∑

k=m−1
cky

2
k+1+

(
M−1∑
k=m

r−1k

)−1
.

Now, using the discrete version of the second mean value theorem of the sum
calculus (see, e.g. [11]), there exists m̃ ∈ [m− 1,M − 1] such that

M−1∑
k=m−1

cky
2
k+1 ≤

m̃∑
k=m−1

ck.

Let n > N be fixed. Since (12) holds, for every ε > 0 there exist M > m > n such

that
∑m̃

k=n ck > Fd(y;N,n − 1) + ε whenever m̃ > m and
(∑M−1

k=m r−1k

)−1
< ε.

Consequently, we have

Fd(y;N,∞) = Fd(y;N,n− 1) −
m̃∑

k=n

ck +

(
M−1∑
k=m

r−1k

)−1
< 0

what we needed to prove.
A more sophisticated application of the construction of the sequence y leads to

a discrete versions of Nehari-type oscillation criteria, for more details we refer to
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[11], where the variational method is used to derive oscillation criteria for 2n-order
Sturm-Liouville difference equations.

In proving nonoscillation criteria using the variational method, the following
discrete version of the Wirtinger-type inequality is a very useful tool, see [23].

Theorem 3. Let Mk be a positive sequence such that ∆Mk �= 0 for k ≥ N . Then
for every y ∈ D(N) we have

∞∑
k=N

|∆Mk|y2k+1 ≤ ψN

∞∑
k=N

MkMk+1

|∆Mk|
(∆yk)2,

where

ψN :=
(

sup
k≥N

Mk

Mk+1

){
1 +

(
sup
k≥N

|∆Mk|
|∆Mk−1|

)1/2
}2

.(13)

A typical example of the application of the Wirtinger inequality is the next
Nehari-type nonoscillation criterion which is proved for higher order equations in
[23].

Theorem 4. Suppose that there exists a positive sequence Mk such that ∆Mk is
eventually nonzero and satisfies 0 < ψ := lim supN→∞ ψN < ∞, where ψN is
defined by (13). If

lim sup
k→∞

1
Mk

∞∑
j=k

c+j <
1
ψ
, c+k := max{0, ck},

then equation (9) is nonoscillatory.

We finish this section with a Hille-Nehari type nonoscillation criterion proved
using the Riccati technique. This criterion is presented in [16] for the half-linear
second order difference equation

∆(rkΦ(∆xk)) + ckΦ(xk+1) = 0, Φ(x) := |x|p−2x, p > 1,

but for the sake of simplicity we formulate it for linear equation (9).
Observe that according to the Sturm comparison theorem for (9), to prove

nonoscillation of (9), it actually suffices to find N ∈ N and a sequence wk defined
for k ≥ N, satisfying wk + rk and the inequality

∆wk + ck +
w2
k

wk + rk
≤ 0.(14)

Theorem 5. Suppose that rk > 0 for large k,
∑∞

ck is convergent and

lim
k→∞

r−1k∑k−1
r−1j

= 0.(15)
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If

lim sup
k→∞

(
k−1∑

r−1j

) ∞∑
j=k

cj

 <
1
4
, lim inf

k→∞

(
k−1∑

r−1j

) ∞∑
j=k

cj

 > −3
4

(16)

then (9) is nonoscillatory.

Note that assumption (15) has no analogue in the continuous version of Theo-
rem 5 (see e.g. [12]) and necessity of this assumption in Theorem 5 is caused by the
term rk +wk in the denominator of the last term in (10). We define the sequence

wk :=
1
4

(
k−1∑

r−1j

)−1
+
∞∑
j=k

cj

and in order to show that (16) imply that w is a solution of (14) satisfying wk+rk >
0 we need just assumption (15). In the continuous case, the denominator of the
last term in the Riccati equation (5) is r, i.e. does not contain the function w and
no analogue of (15) is needed in the continuous modification of this proof.

Finally note that the oscillation theory of (9) is now deeply developed and many
oscillation and nonoscillation criteria for (2) have their continuous counterparts,
see e.g. [1, Chap. VI].

3. Transformation and oscillation theory of symplectic

difference systems

Denote uk = rk∆xk in (9). Then we can write this equation as the 2-dimensional
first order system

∆

(
xk
uk

)
=
(

0 r−1k

−ck 0

)(
xk+1

uk

)
(17)

and expanding the difference operator as recurrence system(
xk+1

uk+1

)
= Sk

(
xk
uk

)
, Sk :=

(
1 1

rk

− ck

rk
1 − ck

rk

)
.

By a direct computation it is not difficult to verify that the matrix in the last

system is symplectic, i.e., it satisfies the identity ST
k JSk = J , J =

(
0 1
−1 0

)
.

Consider now the general 2n× 2n symplectic difference system

zk+1 = Skzk,(18)

where z =
(
x
u

)
, Sk =

(
Ak Bk

Ck Dk

)
is a symplectic matrix, i.e., it satisfies

ST
k JSk = J , J =

(
0 I
−I 0

)
,
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x, u ∈ R
n and A,B, C,D ∈ R

n×n . Symplectic difference systems cover a large
variety of difference equations and systems. For example, the linear Hamiltonian
difference system

∆xk = Akxk+1 +Bkuk, ∆uk = Ckxk+1 −AT
k uk

with symmetric n×n matrices B,C and the matrix (I −A) invertible is a special
case of (18), see [2]. Since the 2n-order Sturm-Liouville equation

n∑
ν=0

∆ν
(
r
[ν]
k ∆

νyk+n−ν
)

= 0, ∆ν := ∆(∆ν−1)(19)

can be written as (3) with special matrices A,B,C (see, e.g. [2]), symplectic dif-
ference systems cover Sturm-Liouville equations as well.

Let Z =
(
X
U

)
, Z̄ =

(
X̄
Ū

)
be 2n× n solutions of (18), then ∆(ZT

k J Z̄k) = 0, i.e.,
ZT
k J Z̄k = M, where M is a constant n×n matrix. This identity can be regarded

as the extension of the classical Casoratian identity to (18). If Z̄ = Z, M = 0 and
rank Zk = n, then Z is called a conjoined basis of (18). Oscillatory properties of
solutions of (18) are defined using the concept of a focal point in the same way as
oscillatory properties of (9) via the concept of generalized zero.

Recall that an interval (m,m + 1] contains a focal point of a 2n × n solution
Z =

(
X
U

)
of (18) if

KerXm+1 ⊆ KerXm and Dm := XmX
†
m+1Bm �≥ 0

fail to hold. Here Ker, † and ≥ mean kernel, Moore-Penrose generalized inverse
and nonnegative definiteness of the matrix indicated.

Let Rk =
(
Hk Mk

Kk Nk

)
be symplectic 2n× 2n matrices (H,K,M,N being

n× n matrices) and consider the transformation

zk = Rkz̃k.(20)

This transformation transforms (18) into the system z̃k+1 = S̃kz̃k, S̃k = R−1k+1SkRk

and this new system is again symplectic as can be verified by a direct computa-
tion. Moreover, if Mk ≡ 0 in Rk, then transformation (20) preserves focal points
of transformed systems and hence also their oscillatory behavior as it is shown in
[6]. In that paper the Roundabout theorem for (18) is presented, in particular, it
is proved that the quadratic functional

F(z) :=
N∑

k=0

zTk {ST
k KSk −K}zk, K =

(
0 0
I 0

)
over the class of sequences satisfying Kzk+1 = KSkzk, Kz0 = 0 = KzN+1, and the
Riccati matrix difference equation

Qk+1 = (Ck + DQk)(Ak + BQk)−1
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play the same role as (8) and (10) in the oscillation theory of (9).
In the remaining part of this section we present two particular transformations

of (18) where the so-called trigonometric difference system appears. A trigono-
metric difference systems (introduced by Anderson [3]) is the symplectic difference
system whose matrix satisfies the additional condition J TSkJ = Sk. This means
that transformation (20) with Rk = J (the so-called reciprocity transformation,
see [6]) transforms system (18) into itself. Hence, trigonometric system can be
written in the form (

sk+1

ck+1

)
=
(
Pk Qk

−Qk Pk

)(
sk
ck

)
,(21)

where the matrices P ,Q satisfy the identities

PT
k Qk = QT

kPk, PT
k Pk + QT

kQk = I.(22)

In particular, if n = 1, then (22) implies the existence of ϕk ∈ [0, 2π) such that

sinϕk = Qk, cosϕk = Pk(23)

and then (
sk
ck

)
=
(sin

(∑k−1 ϕj

)
cos

(∑k−1
ϕj

)), (
ck
−sk

)
=
(cos

(∑k−1 ϕj

)
sin

(∑k−1
ϕj

))

form the basis of the solution solution space of (21).

Theorem 6. (Trigonometric transformation, [7]) There exist n × n matrices H
and K such that H is nonsingular, HTK = KTH, and the transformation(

s

c

)
=
(
H−1 0
−KT HT

)(
x

u

)
(24)

transforms the symplectic system (18) into trigonometric system (21) without
changing the oscillatory behavior. Moreover, the matrices P and Q from (21) may
be explicitly given by

Pk = H−1k+1(AkHk + BkKk) and Qk = H−1k+1BkH
T−1
k .(25)

The previous statement is a discrete version of the trigonometric transformation
of linear Hamiltonian differential systems established in [10], where it is proved
that any linear Hamiltonian differential system

x′ = A(t)x+B(t)u, u′ = C(t)x−AT (t)u(26)

with B,C symmetric, can be transformed by a transformation preserving oscilla-
tory nature of transformed systems into the trigonometric differential system

s′ = Q(t)c, c′ = −Q(t)s(27)



338 ONDŘEJ DOŠLÝ

with a symmetric matrix Q. The terminology trigonometric system is again justi-
fied by the scalar case n = 1 since sin

(∫ t
Q(s) ds

)
, cos

(∫ t
Q(s) ds

)
is a solution

of this system. It is known (see [26, Chap. VII] that (27) with Q(t) ≥ 0 is os-
cillatory (i.e., there exists a conjoined basis

(
S
C

)
and a sequence tn → ∞ such

that detS(tn) = 0) if and only if
∫∞TrQ(t) dt = ∞, Tr stands for the trace of

the matrix indicated. In the discrete case a necessary and sufficient condition for
oscillation of (21) is known only in case when Q is nonsingular and reads

∞∑
arccotgλ[1]

(
Q−1k Pk

)
= ∞,

λ[1](·) denotes the least eigenvalue of the matrix indicated, see [7]. Since the ma-
trix Q is given by (25), nonsingularity of Q is equivalent to nonsingularity of B.
However, symplectic systems with B nonsingular do not cover many important
cases, e.g. the higher order Sturm-Liouville equation (19). For this reason it would
be very useful to know a necessary and sufficient condition for oscillation of (21)
also in the case when Q is allowed to be singular.

We finish this section with a discrete version of the Prüfer transformation.

Theorem 7. ([8]) Let Z =
(
X
U

)
be a 2n× n matrix conjoined basis of (18). Then

there exist nonsingular n×n matrix H and n×n matrices S,C such that
(
X
U

)
can

be expressed in the form

Xk = ST
k Hk, Uk = CT

k Hk,(28)

where
(
S
C

)
is a solution of the trigonometric system (21) satisfying ST

k Sk+CT
k Ck =

I, ST
k Ck − CT

k Sk = 0. The matrices P ,Q are given by the formulas

P = (HT
k+1)−1

(
Xk

Uk

)TST
k

(
Xk

Uk

)
H−1k −∆Hk,

Q = (HT
k+1)−1

(
Xk

Uk

)TST
k J

(
Xk

Uk

)
H−1k

and H solves the first order system

∆Hk = (Z̃k+1)T (SkZ̃k −∆Z̃k)Hk, Z̃ =
(
ST

CT

)
.

In the continuous case, the Prüfer transformation for linear Hamiltonian dif-
ferential systems (26) was established in [4] as a matrix extension of the classical
Prüfer transformation for (2) proved in [25]. If n = 1 in Theorem 7 and (18) is
rewritten Sturm-Liouville equation (9) (compare (17)), then (28) reduces to

xk = Hk sin

(
k−1∑

ϕj

)
, rk∆xk = Hk cos

(
k−1∑

ϕj

)
,

where ϕk is given by (23), and Theorem 7 is really a discrete version of the classical
Prüfer transformation.



DISCRETE OSCILLATION THEORY 339

4. Higher order linear difference equations

Consider the n-th order linear difference equation

L(y)k := xk+n + a
[n−1]
k xk+n−1 + . . . a

[1]
k xk+1 + a

[0]
k xk = 0.(29)

Basic facts of the qualitative theory of (29) can be found in [1,17]. One of the
motivation for the investigation of oscillatory properties of linear differential and
difference equations is the so-called Polya factorization. In the continuous case
this problem was resolved in [24] (see also [9]) and in the discrete case it is treated
in the fundamental paper of Hartman [21]. Recall now some statements of that
paper. An integer k +m is said to be the generalized zero point of multiplicity m
of a sequence xk if xk �= 0, xk+1 = · · · = xk+m−1 = 0 and (−1)m−1xk+mxk ≤ 0. If
m = 1 and n = 2 then this definition complies with the definition of the generalized
zero of (9) with rk ≡ 1. Observe also that a nontrivial solution of linear equation
(29) cannot have a generalized zero of multiplicity greater than n − 1 as can
be verified by a direct computation. Equation (29) is said to be disconjugate on
the interval [0, N ] if every nontrivial solution has at most n− 1 generalized zeros
(counting multiplicity) in [0,M+n] and the solutions satisfying x0 = · · · = xj = 0,
xj+1 �= 0, j ∈ {0, . . . , n−2} have at most n−j−2 generalized zeros (again counting
multiplicity) in (j + 1, N + n− j − 1].

Theorem 8. Suppose that (29) is disconjugate on [0, N ]. Then there exists a fun-
damental system of solutions of this equation x[1], . . . , x[n] such that n Casoratians

C(x[1], . . . , x[j])k :=

∣∣∣∣∣∣∣∣
x
[1]
k . . . x

[j]
k

...
...

x
[1]
k+j−1 . . . x

[j]
k+j−1

∣∣∣∣∣∣∣∣ > 0

for k ∈ [0, N ] and j = 1, . . . , n. Moreover, the operator L admits Polya’s factor-
ization

L(y)k = α
[0]
k α

[1]
k · · ·α[n−1]k ∆

{
1

α
[n−1]
k

∆

[
. . .∆

(
yk

α
[0]
k

)
. . .

]}
,(30)

where (for j = 2, . . . , n− 1)

α
[0]
k = x

[1]
k , α

[1]
k = ∆

(
x
[2]
k

x
[1]
k

)
, α

[j]
k =

C(x[1], . . . , x[j−1])k+1C(x[1], . . . , x[j+1])k
C(x[1], . . . , x[j])k+1C(x[1], . . . , x[j])k

(31)

Another important statement concerning Polya’s factorization is the so-called
Trench canonical factorization, see [20].

Theorem 9. Suppose that (29) is eventually disconjugate, i.e., there exists N ∈
N such that this equation is disconjugate on [N,M ] for every M > N . Then
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the operator L can be expressed on [N,∞) in the form (30) with the sequences
α[1], . . . , α[n−1] satisfying

∞∑
α
[j]
k = ∞, j = 1, . . . , n− 1.

Recall that the canonical factorization for disconjugate linear differential op-
erators was established by Trench [27] and that disconjugate linear differential
operators have many properties similar to those of the simple operator of the n-th
derivative L̃(y) := y(n), see e.g. [18]. This book also represent a good motivation
for discretization of continuous results.

Now let us turn out attention to the higher order, two-term, Sturm-Liouville
equation

(−1)n∆n(rk∆nyk) = qkyk+n(32)

with rk �= 0. The most of the next results can be extended to the general equation
(19), but to see better the similarity between the second order case (9) and higher
order equations, we consider two-term equation (32) only. Since this equation can
be written as a linear Hamiltonian difference system and hence also as a symplectic
difference system (18), oscillatory properties of (32) are defined via those of the
corresponding symplectic difference system. Denote

Dn(N)={y={yk}∞k=N : yN = . . .=yN+n−1=0, ∃M > N + n− 1, yk =0, k≥M}

(observe that the class of sequences D(N) defined in Section 2 coincides with
D1(N)). The quadratic functional associated with (32) is

F(y;N,∞) =
∞∑

k=N

[
rk(∆nyk)2 − qky2k+n

]
and equation (32) is nonoscillatory if and only if there exists N ∈ N such that
F(y;N,∞) > 0 for every nontrivial y ∈ Dn(N). This statement is a direct exten-
sion of the of the variational oscillation method for second order equations to (32).
Using a modified construction from Section 2, one can prove the following higher
order extension of the Leighton-Wintner criterion given in Theorem 2.

Theorem 10. ([11]) Suppose that rk > 0 for large k,
∑∞

r−1k = ∞ and there
exists j ∈ {0, . . . , n− 1} such that

∑∞ qkk(j) = ∞, where k(j) := k(k− 1) · · · (k−
j + 1), k(0) = 1 is the so-called generalized j-th power. Then equation (32) is
oscillatory.

Concerning a higher order extension of the Hille-Nehari-type nonoscillation
criterion given in Theorem 5, the proof of this extension is essentially the same
as those of Theorem 5, only one has to apply the Wirtinger inequality n-times
(instead of once as in Theorem 5). We do not formulate the result explicitly, but
we refer to the recent papers [13,23].
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In Theorem 10 and also in its nonoscillatory counterpart given in [13], equation
(32) is viewed in a certain sense as a perturbation of the one-term (nonoscillatory)
equation (−1)n∆n(rk∆nyk)(n) = 0 and it is shown that if the sequence qk is
“sufficiently positive”, i.e.,

∑∞
qkk

(j) = ∞, (“not too positive”) then (32) becomes
oscillatory (remains nonoscillatory).

To formulate an open problem connected with (32), consider the 2n-order
Sturm-Liouville differential equation

(−1)n
(
tαy(n)

)(n)
= q(t)y,(33)

where α �∈ {1, 3, . . . , 2n − 1} is a real constant. A typical approach when inves-
tigating oscillatory properties of (33) used e.g. in [14,15], is that this equation is
not viewed as a perturbation of the one-term equation (−1)n(tαy(n)) = 0, but as
a perturbation of the Euler-type equation

(−1)n(tαy(n)) +
γn,α
t2n−α

y = 0(34)

γn,α = (−4)−n
∏n−1

i=0 (2n− α− 2i− 1)(2n+ α− 2i− 1) being the so-called critical
oscillation constant. In the discrete case we also have in disposal an Euler-type
equation

(−1)n∆2nxk +
γ

(k + 2n− 1)(2n)
xk = 0(35)

whose solutions are of the form xk = Γ (λ+k)
Γ (k) , Γ (t) =

∫∞
0

e−sts−1 ds being the
classical Γ function, and λ is a solution of the characteristic equation (−1)nλ(λ−
1) · · · (λ− 2n+ 1) + γ = 0, see [1, Chap. III]. However, equation (35) (in contrast
to (34)) is not in self-adjoint form, since the second term on left-hand-side of
this equation contains x with index k instead of k + n (compare (32)). Hence the
above mentioned “continuous” idea cannot be directly applied to difference equa-
tions.This suggests the following open problem; to find a two-term self-adjoint
nonoscillatory difference equation which can be solved explicitly (like (34) in the
continuous case) and to use this equation as “perturbation equation” in the oscil-
lation theory of (32).
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4. J. H. Barrett, A Prüfer transformation for matrix differential equations, Proc.
Amer. Math. Soc. 8 (1957), 510-518.

5. M. Bohner, Linear Hamiltonian difference systems: disconjugacy and Jacobi-type
conditions, J. Math. Anal. Appl. 199 (1996), 804–826.
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1. Introduction

In 1923, H. Kneser proved that the Peano existence theorem can be formulated
in this way that the set of all solutions is not only nonempty but also compact
connected (comp. also [139], [140]). Later, in 1942 N. Aronszajn improved the
Kneser theorem by showing that the set of all solutions is even Rδ-set. Evidently
the characterization of the set of fixed points for some operators implies the re-
spective result for solution sets. This paper is an attempt to give a systematic
presentation of results and methods which concern the topological structure of
fixed point sets and solution sets. In this subject there are three methods so called
Browder–Gupta method, Banach method and inverse limit method. We survey
most important results concerning the above three methods. Our considerations
concentrate on simplest cases and main ideas. We included rich literature in which
the reader can find further results.

Our paper is devoted for mathematicians and students interested in the topo-
logical fixed point theory or in the qualitative theory of differential equations and
differential inclusions.

In what follows we shall assume that all topological spaces considered in our
paper are metric.

2. Browder–Gupta type results

The famous Schauder Fixed Point Theorem or more generally the Lefschetz Fixed
Point Theorem says that there exists a fixed point theorem for some classes of
mappings. So, a natural question is to characterize the set of fixed points. The
first result, which is still a main one, was proved in 1969 by F. Browder and C.
Gupta (comp [21]). Below we shall present a slight generalization of the above
mentioned result.

To do this we need some topological notions (for details see: [69]).

Definition 2.1. A space X is called contractible provided there exists a (contin-
uous) homotopy h : X × [0, 1] → X such that:

h(x, 0) = x for every x ∈ X

and
h(x, 1) = x0 for every x ∈ X and some fixed x0 ∈ X .

Definition 2.2. A space X is called an absolute retract (written X ∈ AR) pro-
vided that for every space Y , its closed subset B ⊂ Y and continuous map
f : B → X there exists a continuous extension f̃ : Y → X of f over Y , i.e.
f̃(x) = f(x) for every x ∈ B.

Definition 2.3. A space X is called an Rδ-set provided that there exists a se-
quence of compact nonempty contractible spaces {Xn} such that:

Xn+1 ⊂ Xn for every n;(2.1)
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X =
∞⋂
n=1

Xn.(2.2)

Let us remark (comp. [69]) that a space X ∈ AR if and only if X is a convex
subsetW of a normed space E orX is homeomorphic to a retract1 of a convex sub-
setW ⊂ E. So any absolute retract is contractible. If we restrict our considerations
to compact spaces then we have:

AR ⊂ CONTRACTIBLE ⊂ Rδ

Note that any Rδ-set is a compact nonempty connected space which is acyclic
with respect to the Čech homology functor (comp. again [69]), i.e. it has the same
homology as the one point space {x0}.

Definition 2.4. Let f : X → Y be a continuous function and let y ∈ Y . We shall
say that f is proper at the point y provided that there exists ε > 0 such that for
any compact set K ⊂ B(y, ε) the set f−1(K) is compact, where B(y, ε) is the open
ball in Y with the center at y ∈ Y and radius ε.

Recall that f : X → Y is called proper provided that for any compact K ⊂ Y
the set f−1(K) is compact. Of course any proper map f : X → Y is proper at
every point y ∈ Y .

Now we are able to formulate our reformulation of the Browder–Gupta theorem:

Theorem 2.1. Let E be a Banach space and f : X → E be a continuous map
such that the following conditions are satisfied:

(2.1.1) f is proper at 0 ∈ E,
(2.1.2) for every ε > 0 there exists a continuous map fε : X → E for which we

have:
(i) ‖f(x) − fε(x)‖ < ε for every x ∈ X,
(ii) the map f̃ε : f−1ε (B(0, ε)) → B(0, ε), f̃ε(x) = fε(x) for every x ∈
f−1ε (B(0, ε)), is a homeomorphism.

Then the set f−1({0}) is an Rδ-set.

Sketch of proof. First, we have to prove that f−1({0}) is nonempty. We take for
every ε = 1/n, n = 1, 2 . . . a map fn : X → E which satisfies (2.1.2). In view of
(2.1.2)(ii) for every n we can find a point xn ∈ X such that fn(x) = 0. It follows
that:

‖f(xn)‖ = ‖f(xn) − fn(xn)‖ < 1
n
.

So the sequence {f(xn)} is convergent to the point 0 ∈ E. Since f is proper
at 0 ∈ E, we can assume without loss of generality that the sequence {xn} is

1 A space A is a retract of W if there exists a continuous function r :W → A such that
r(x) = x for every x ∈ A (we have assumed that A ⊂W ).
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convergent to a point x ∈ E. Now from the continuity of f it follows that f(x) = 0
and consequently f−1({0}) �= ∅.

Now let us denote by S the set f−1({0}). It follows from (2.1.1) that S is
compact. Moreover, we have proved that S �= ∅. For every ε = 1/n, n = 1, 2 . . .
let An = fn(S) where fn are chosen according to (2.1.2). Then from (2.1.2)(i) we
deduce that An ⊂ B(0, 1/n). Note that {An} is a sequence of compact sets. We
let:

Cn = conv(An).

It follows from the Mazur’s Lemma (comp. [69] or [90]) that Cn is a compact convex
subset of B(0, 1/n). Now by using (2.1.2)(ii) we deduce that set Dn = f−1n (Cn) is
an absolute retract (because it is homeomorphic to the convex set Cn). Therefore
we can proceed in the same way as in the proof of Theorem 7 ([21]) and our
theorem follows from Lemma 5 in [21].

Note that assumptions in 2.1 are analogous to Theorem 7 ([21]).
Let us remark also that Theorem 2.1 has exactly the same proof if we replace

the Banach space E by an arbitrary Fréchet space and open balls by convex sym-
metric open neighbourhoods of the zero point 0 ∈ E. We shall show it in the
multivalued case.

Now, we are going to explain the scope of fixed point interpretation of Theorem
2.1.

Assume that X ⊂ E and F : X → E is a given mapping. We let f : X → E,
f(x) = x− F (x). Then f is called the field associated with F . We have:

f−1({0}) = Fix(F ) = {x ∈ X | F (x) = x}.
Observe that if Fε : X → E is an ε-approximation of F then fε (fε(x) = x−Fε(x))
is an ε-approximation of f (f(x) = x− F (x)).

It is well known that if F is a compact map or k-set contraction or condensing
map which has ε-approximation of the same type then all assumptions of Theorem
5.2 are satisfied for the field f f(x) = x− F (x)) associated with F .

We would like to conclude that Theorem 5.2 contains as a special case many
results, the called generalizations of the Browder–Gupta theorem (com. [21], [38],
[39], [54], [55], [56], [101], [102], [141], [147], [158], [175], [176]).

There is a natural and essential problem to formulate an appropriate multival-
ued version of the Browder–Gupta Theorem. In this order see: [6], [12], [19], [34],
[35], [61], [62], [60], [75], [84], [88], [101], [123], [124], [54]. The most general result
was obtained in 1999 by G. Gabor (see [60]). We shall present below the Gabor
result.

To do this recall some notation. In what follows the symbol ϕ : X ( Y is
reserved for multivalued mappings. In this Section we shall assume that for every
x ∈ X the set ϕ(x) is compact nonempty.

A map ϕ : X ( Y is called upper semicontinuous (u.s.c.) provided that for
every open U ⊂ Y the set {x ∈ X | ϕ(x) ⊂ U} is open; ϕ is called lower semicon-
tinuous (l.s.c.) provided that for every open U ⊂ Y the set:

{x ∈ X | ϕ(x) ∩ U �= ∅}
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is open; ϕ is continuous, if ϕ is both u.s.c. and l.s.c.
A map ϕ : X ( Y is proper provided that for every compact K ⊂ Y the set

{x ∈ X | ϕ(x) ∩K �= ∅}

is compact. In what follows for given ϕ : X ( Y and A ⊂ Y we let:

ϕ−1(A) = {x ∈ X | ϕ(x) ⊂ A},
ϕ−1+ (A) = {x ∈ X | ϕ(x) ∩A �= ∅}.

Assume that X ⊂ Y and ϕ : X ( Y is a given multivalued map. We let

Fix(ϕ) = {x ∈ X | x ∈ ϕ(x)}.

Now we are able to formulate the multivalued version of the Browder–Gupta
Theorem (see: [60]).

Theorem 2.2. Let X be a metric space, E a Fréchet space, {Uk} a base of open
convex symmetric neighbourhoods of the origin in E, and let ϕ : X ( E be an
u.s.c. proper map with compact values. Assume that there is a sequence of compact
convex valued u.s.c. proper maps ϕk : X → E such that

(i) ϕk(x) ⊂ ϕ(N1/k(x)) + Uk, for every x ∈ X,
(ii) if 0 ∈ ϕ(x), then ϕk(x) ∩ Uk �= 0,
(iii) for every k ≥ 1 and every u ∈ E with u ∈ Uk the inclusion u ∈ ϕk(x) has an

acyclic set of solutions.

Then the set S = ϕ−1(0) is compact and acyclic2.

Proof. We show that S is nonempty. To this end, notice that for every k ≥ 1 we
can find xk ∈ X such that 0 ∈ ϕk(xk). Assumption (i) implies that there are zk ∈
N1/k(xk), yk ∈ ϕk(zk) and uk ∈ Uk such that 0 = yk +uk. Thus yk → 0. Consider
the compact set K = {yk} ∪ {0}. Since ϕ is proper, the set ϕ−1+ (K) is compact.
Moreover, {zk} ⊂ ϕ−1+ (K). Thus we can assume, without loss of generality, that
{zk} converges to some point x ∈ X . By the upper semicontinuity of ϕ, we have
0 ∈ ϕ(x) and, what follows, S �= ∅.

Since ϕ is proper, the set S is compact. We show that it is acyclic. By assump-
tion (ii), the set Ak = ϕ−1k+(Uk) is nonempty. Consider the map ψ : Ak ( Uk,
ψk(x) = ϕk(x) ∩ Uk. Since Uk is contractible and ψk is u.s.c. convex valued sur-
jection (see (iii)), we can apply Corollary 3.12 in [60] to obtain that Ak is acyclic.

Now we show that for every open neighbourhood U of S in X there exists
k ≥ 1 such that Ak ⊂ U . Indeed, assume on the contrary that there is an open
neighbourhood U of S in X such that Ak �⊂ U or every k ≥ 1. It means that
there are xk ∈ Ak with xk �∈ U and, consequently, there are yk ∈ ϕk(xk) such that

2 i.e. the Čech homology of S are the same as a singleton {x0}.
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yk ∈ Uk. Assumption (i) implies that there are zk ∈ B(xk, 1/k), vk ∈ ϕ(zk) and
uk ∈ Uk such that yk = vk + uk. Therefore, vk = yk − uk ∈ 2Uk which implies
that vk → 0. Consider the compact set K0 = {vk}∪{0}. Since ϕ is proper, we can
assume that {zk} and, consequently, {xk} converges to some point x ∈ X . Thus
x ∈ S. On the other hand, x �∈ U , a contradiction and our theorem follows from
Lemma 3.10 in [60].

Remark 2.1. It is easy to see that in the above result we can assume that X is a
subset of a Fréchet space. Then, instead of neighbourhoods, we can consider sets
x+ Vk, where {Vk} is the base of open convex symmetric neighbourhoods of the
origin.

As a consequence of Theorem 3.6 and properties of a topological degree of u.s.c.
compact convex valued maps (see e.g. [69] or [104]) one can obtain the following
theorem generalizing the result of Czarnowski in [39].

Theorem 2.3. Let Ω be an open subset of a Fréchet space E, {Uk} the base
of open convex symmetric neighbourhoods of the origin in E, and Φ : Ω ( E
a compact u.s.c. map with compact convex values. Suppose that x �∈ Φ(x) for
every x ∈ ∂Ω, and the topological degree deg(j − Φ,Ω, 0) of (j − Φ) is different
from zero, where j : Ω → E is an inclusion. Assume that there exists a sequence
{Φk : Ω( E} of compact u.s.c. maps with compact convex values such that

(i) Φk(x) ⊂ Φ(x+ Uk) + Uk, for every x ∈ Ω,
(ii) if x ∈ Φ(x), then x ∈ Φk(x) + Uk,
(iii) for every u ∈ Uk the set Sk

u of all solutions to the inclusion x−Φk(x) $ u is
acyclic or empty, for every n > 0.

Then the fixed point set Fix(Φ) of Φ is compact and acyclic.

Proof. Define the maps ϕ, ϕk : Ω ( E, ϕ = j − Φ, ϕk = j − Φk. One can check
that ϕ, ϕk are proper maps. To apply Theorem 2.2 it is sufficient to show that,
for sufficiently big k and for every u ∈ Uk the set Sk

u is nonempty.
For each k ≥ 1 define the map Ψ : Ω ( E, Ψ(x) = Φk(x) +u, for every x ∈ Ω.

We prove that, for sufficiently big k, deg(j − Ψk, Ω, 0) �= 0 which implies, by the
existence property of a degree, a nonemptiness of Sk

u .
Since ϕ is a closed3 map (see e.g. [69]), we can find, for sufficiently big k, a

neighbourhood Uk of the origin such that ϕ(∂Ω) ∩ Uk = ∅.
Consider the following homotopy Hk : Ω × [0, 1]( E, H(x, t) = (1− t)Φ(x) +

tΨk(x). We show that

Zk = {x ∈ ∂Ω | x ∈ Hk(x, t) for some t ∈ [0, 1]} = ∅

for sufficiently big k. Suppose, on the contrary, that there are a subsequence of
{Hk} (we denote it also by {Hk}), points xk ∈ ∂Ω, and numbers tk ∈ [0, 1]

3 ϕ is closed provided for every closed K ⊂ Ω the set Φ(K) =
S

x∈K Φ(x) is a closed
subset of E.



TOPOLOGICAL STRUCTURE OF SOLUTION SETS: CURRENT RESULTS 349

such that xk ∈ Hk(xk, tk), that is xk = (1 − tk)yk + tksk + tku, for some yk ∈
Φ(xk) and sk ∈ Φ(xk). Assumption (i) implies that there are zk ∈ xk + Uk and
vk ∈ Φ(zk) such that sk ∈ vk + Uk. By the compactness of Φ, we can assume
that yk → y and vk → v. Therefore, sk → v. Moreover, we can assume that
tk → t ∈ [0, 1]. This implies that xk → x0 = (1 − t)y + tv + tu or, equivalently,
that 0 = (1 − t)(x0 − y) + t(x0 − v) − tu. But by the upper semicontinuity of
ϕ, we obtain that x0 − y ∈ ϕ(x0) and x0 − v ∈ ϕ(x0). Since ϕ is convex valued,
0 ∈ (1 − t)ϕ(x0) + tϕ(x0) − tu ⊂ ϕ(x0) − tu. This implies that ϕ(x0) ∩ Uk �= ∅, a
contradiction.

Now, by the homotopy property of a topological degree, one obtains

deg(Ψk, Ω, 0) = deg(Φ,Ω, 0) �= 0

which ends the proof of the theorem.

3. Aronszajn type results

In 1890 Peano [140] showed that the Cauchy problem

ẋ(t) = g(t, x(t)) for t ∈ [0, a],
x(0) = x0,

}
(3.1)

where g : [0, a] × R
n → R

n is continuous, has local solutions although the unique-
ness property does not hold in general.

This observation became a motivation for studying the structure of the set S
of solutions to (3.1). Peano himself showed that, in the case n = 1, all sections
S(t) = {x(t) | x ∈ S} are nonempty, compact and connected (that is, a continuum)
in the standard topology of the real line, for t in some neighbourhood of t0. Kneser
generalized this result in 1923 [89] into the case of arbitrary n. In 1928 Hukuhara
[80] proved that S is a continuum in the Banach space of continuous functions
with the sup norm.

A more precise characterization of S was found in 1942 by Aronszajn [10],
who showed that S is an Rδ-set, i.e. it is homeomorphic to the intersection of a
decreasing sequence of compact contractible spaces (or compact absolute retracts).
This implies that S is acyclic which means that, without a lipschitzianity of the
right hand side f of (3.1), the set S of solutions (3.1) may not be a singleton but,
from the point of view of algebraic topology, it is equivalent to a point, in the sense
that it has the same homology groups as one point space {x0}.

Aronszajn’s result was improved by several authors (see: [1], [3], [4]–[6], [9],
[14], [15], [16], [17], [19], [23], [24], [32], [34], [13], [38]–[39], [40], [42]–[44], [46]–[47],
[48]–[49], [53], [54], [60], [66], [68], [73], [75], [77]–[78], [97]–[98], [101], [121]–[138],
[156]–[168], [171]–[173], [174]–[178]) but always a main tool to do it is a version of
the Browder–Gupta theorem. We shall sketch it in the case of problem (3.1) first
for the singlevalued case and later for the multivalued case.

The singlevalued case follows immediately from the Browder–Gupta Theorem
and the Szufla’s type lemma (see [164] or [68]) which we shall present below.

The following result is a slight reformulation of Lemma 1 in [164].
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Theorem 3.1. Let E = C([0, a],Rm ) be the Banach space of continuous maps
with the usual max-norm and let X = K(0, r) = {u ∈ E | ‖u‖ ≤ r} be the closed
ball in E.

If F : X → E is a compact map and f : X → E is a compact vector field
associated with F , i.e. f(u) = u − F (u), such that the following conditions are
satisfied:

(3.1.1) there exists an x0 ∈ R
m such that F (u)(0) = x0, for every u ∈ K(0, r);

(3.1.2) for every ε ∈]0, a] and for every u, v ∈ X, if u(t) = v(t) for each t ∈ [0, ε],
then F (u)(t) = F (v)(t) for each t ∈ [0, ε];

then there exists a sequence fn : X → E of continuous proper mappings satisfying
conditions (2.1.1)–(2.1.2) with respect to f .

Sketch of proof. For the proof it is sufficient to define a sequence Fn : X → E of
compact maps such that:

F (x) = lim
n→∞

Fn(x), uniformly in x ∈ X ,(i)

and

fn : X → E, fn(x) = x− Fn(x), is a one-to-one map.(ii)

To do this we additionally define the mappings rn : [0, a] → [0, a] by putting:

rn(t) =


0, t ∈

[
0,
a

n

]
,

t− a

n
, t ∈

(
a

n
, a

]
.

Now we are able to define the sequence {Fn} as follows:

Fn(x)(t) = F (x)(rn(t)), for x ∈ X, n = 1, 2, . . . .(iii)

It is easily seen that Fn is a continuous and compact mapping, n = 1, 2, . . . . Since
|rn(t) − t| ≤ a/n we deduce from compactness of F and (iii) that

lim
n→∞

Fn(x) = F (x), uniformly in x ∈ X.

Now we shall prove that fn is a one-to-one map. Assume that for some x, y ∈ X
we have

fn(x) = fn(y).

This implies that
x− y = Fn(x) − Fn(y).

If t ∈ [0, a/n] then we have

x(t) − y(t) = F (x)(rn(t)) − F (y)(rn(t)) = F (x)(0) − F (y)(0).
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Thus, in view of (3.1.1), we obtain

x(t) = y(t), for every t ∈ [0, a/n].

Finally, by successively repeating the above procedure n times we infer that

x(t) = y(t), for every t ∈ [0, a].

Therefore fn is a one-to-one map and the proof is complete.

Now from Theorems 2.1 and 3.1 we get:

Corollary 3.1. Assume that f and F are as in Theorem (3.1). Then f−1(0) =
Fix(F ) is an Rδ-set.

Now we come back to problem (3.1). We shall denote by S(g, 0, x0) the set of
all solutions of the Cauchy problem (3.1).

Theorem 3.2 (Aronszjan). 4 Let g : [0, a] × R
n → R

n be a mapping such that:

(3.2.1) g( · , x) is a measurable function for every x ∈ R
n ,

(3.2.2) g(t, · ) is a continuous function for every t ∈ [0, a],
(3.2.3) there exists a Lebesgue integrable function α : [0, a] → [0,+∞) such that:

‖g(t, x)‖ ≤ α(t) for every (t, x) ∈ [0, a] × R
n .

Then S(g, 0, x0) is an Rσ-set.

Sketch of proof. We define the integral operator:

F : C([0, a],Rn ) → C([0, a],Rn )

by putting

F (u)(t) = x0 +
∫ t

0

g(τ, u(τ)) dτ for every u and t.(3.2)

Then Fix(F ) = S(g, 0, x0). It is easy to see that F satisfies all the assumptions
of Theorem 2.1. Consequently we deduce Theorem 3.2 from 3.1 and the proof is
complete.

Now, let g be a Carathéodory map with linear growth. Assume further that
u ∈ S(g, 0, x0). Then we have (cf. (3.2.1))

u(t) = F (u)(t) = x0 +
∫ t

0

g(τ, u(τ)) dτ,

4 A mapping g : [0, a]× R
n → R

n satisfying conditions (3.2.1) and (3.2.2) will be called
a Carathéodory function; if g satisfies (3.2.3) then it is called integrably bounded.
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and consequently

‖u(t)‖ ≤ ‖x0‖ +
∫ a

0

µ(τ) dτ +
∫ t

0

µ(τ)‖u(τ)‖ dτ.

Therefore from the well-known Gronwall inequality we get

‖u(t)‖ ≤ (‖x0‖|γ) exp(γ) for every t,

where γ =
∫ a

0 µ(τ) dτ . We let

g0 : [0, a] × R
n → R

n

by putting

g0(t, x) =
{
g(t, x), if ‖x‖ ≤M and t ∈ [0, a],
g(t,Mx/‖x‖), if ‖x‖ ≥M and t ∈ [0, a],

where M = (‖x0‖ + γ) exp(γ).

Proposition 3.1. If g is a Carathéodory map with linear growth, then

(3.1.a) g0 is Carathéodory and integrably bounded; and
(3.1.b) S(g0, 0, x0) = S(g, 0, x0).

The proof of Proposition 3.1 is straightforward (cf. [68], [69], [91]).
Now from Theorem 3.2 and Proposition 3.1 we obtain immediately:

Corollary 3.2. If g : [0, a] × R
n → R

n is a Carathéodory map and has linear
growth, then S(g, 0, x0) is an Rσ-set.

We recall the following classical result:

Theorem 3.3. If g : [0, a] × R
n → R

n is a mapping which is integrably bounded
and satisfies condition (3.41) and it is locally Lipschitz with respect to the second
variable5, then S(g, 0, x0) is an Rδ-set.

In 1986 F. S. De Blasi and J. Myjak (see [47]) generalized Aronszajn’s result
for differential inclusions with u.s.c. convex valued right hand sides. Below we shall
show the method presented in [68] (comp. also [101], [102]). For the simplicity we
shall consider the following Cauchy problem:

x′(t) ∈ ϕ(t, x(t)),
x(0) = x0,

}
(3.3)

where ϕ : [0, a]×R
n
( R

n is an u.s.c. bounded map with compact convex values.
We shall denote by S(ϕ; 0, x0) the set of all solutions of (3.3). In what follows

we keep all assumptions on ϕ contained in (3.3).
First we have:

5 Such a mapping g is called integrably bounded measurable-locally Lipschitz.
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Proposition 3.2. If ϕ possesses a measurable-locally Lipschitz selector f : [0, a]×
R
n → R

n , (written f ⊂ ϕ ), i.e. f(t, x) ∈ ϕ(t, x) for every (t, x) ∈ [0, a]×R
n , then

S(ϕ; 0, x0) is contractible.

Sketch of proof. Let f ⊂ ϕ be measurable-locally Lipschitz selector. By Theorem
3.3 the following Cauchy problem:

x′(t) = f(t, x(t)),
x(t0) = u0,

}
(3.4)

has exactly one solution for every t0 ∈ [0, a] and u0 ∈ R
n . For the proof it is

sufficient to define a homotopy h : S(ϕ, 0, x0) × [0, 1] → S(ϕ, 0, x0) such that

h(x, s) =
{
x for s = 1 and x ∈ S(ϕ, 0, x0),
x for s = 0,

where x = S(ϕ, 0, x0) is exactly one solution given for the Cauchy problem (3.4).
We put

h(x, s)(t) =
{
x(t), 0 ≤ t ≤ sa,
S(f, sa, x(sa))(t), sa ≤ t ≤ a.

Then h is a continuous homotopy contracting S(ϕ, 0, x0) to the point S(ϕ, 0, x0).

Observe that if ϕ : [0, a]×Rn
( R

n is an intersection of the decreasing sequence
ϕk : [0, a] × R

n
( R

n i.e. ϕ(t, x) =
⋂∞

k=1 ϕk(t, x) and ϕk+1(t, x) ⊂ ϕk(t, x) for
almost all t ∈ [0, a] and for all x ∈ R

n , then

S(ϕ, 0, x0) =
∞⋂
k=1

S(ϕk, 0, x0).

We have (see: [102] or [69]):

Theorem 3.4. Assume that ϕ is as in (3.3). Then there exists a decreasing se-
quence ϕk : [0, a]×Rn

( R
n of compact convex valued and bounded u.s.c. mappings

such that:

(3.4.1) ϕ(t, x) =
⋂∞

k=1 ϕk(t, x) for every t, x) ∈ [0, a] × R
n ,

(3.4.2) every ϕk possesses a measurable locally Lipschitz selector fk ⊂ ϕk.

Now we are in the position to prove the following Aronszajn-type result:

Theorem 3.5. Under assumptions of (3.3) the set S(ϕ; 0, x0) is Rδ.

Sketch of proof. Consider the sequence {ϕk} according to (3.4). Then:

S(ϕ; 0, x0) =
∞⋂
k=1

S(ϕk, 0, x0).

In view of Proposition 3.2 the set S(ϕk; 0, x0) is contractible. Since ϕk is u.s.c.
bounded with convex compact values if follows that S(ϕk; 0, x0) is compact non-
empty (see for example [69]). Therefore S(ϕ; 0, x0) is an intersection of compact
nonempty and contractible spaces and hence S(ϕ; 0, x0) is Rδ.
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Remark 3.1. Theorem (3.5) remains true for ϕ a Carathéodory map with sublinear
growth (see: [69] or [47]).

Above we have showed only an application of Browder-Gupta Theorem to the
Cauchy problem for the first order ordinary differential equations (inclusions) in
the Euclidean space Rn . We would like to point out that another applications are
possible, namely:

(A) to the Cauchy problem in Banach spaces on compact or noncompact intervals
(see: [2], [4], [9], [18], [32], [34], [35], [38], [39], [40], [49], [50], [53], [55], [56],
[59], [61], [62], [66]–[68], [77], [78], [88], [97], [98], [94]–[96], [121]–[138], [152],
[174], [175], [171]–[173]);

(B) to higher order differential equations or inclusions (see: [14], [15], [22], [16],
[29], [34], [47], [48], [107], [108], [156]–[168], [169], [170]);

(C) to more general boundary value problems both ordinary differential equations
and inclusions (see: [5], [6], [12], [17], [72], [13], [93], [149]–[151], [110]–[117]);

(D) to integral equations and inclusions (see: [1], [23]–[25], [87], [171], [172]).

We shall end this section by showing you another possibility. We mean differen-
tial equations (inclusions) on compact subsets of Rn or more generally of Banach
spaces. There are only few papers devoted this problem (see: [17], [13], [54], [72],
[66], [121]–[123] [143]). For simplicity we shall restrict our considerations to subsets
of Rn (for the Banach case see: [13], [72] and [54]).

Let K be a compact subset of Rn . For a point x ∈ K by TxK we shall denote
the Bouligand tangent cone to K at x.

We have (see: [66] or [69]):

TxK =
{
y ∈ R

n

∣∣∣∣ lim inf
t→0+

dist(x+ ty,K)
t

= 0
}
.

A compact subset K ⊂ R
n is called a proximate retract provided there exists

an open neighbourhood U of K in R
n and a retraction r : U → K such that:

‖x− r(x)‖ = dist(x,K), for every x ∈ U.

It is well known that the class of all proximate retracts is quite rich, in particular
it contains convex sets and C2-manifolds.

Now, let ϕ : [0, a] ×K ( R
n be an u.s.c. map which is bounded and compact

convex valued. We shall assume also the following:

ϕ(t, x) ∩ TxK �= ∅, for every (t, x) ∈ [0, a] ×K.(3.5)

For such a map ϕ we consider the following Cauchy problem:

x′(t) ∈ ϕ(t, x(t)),
x(0) = x0, x0 ∈ K,

}
(3.6)

where solutions are considered as absolutely continuous functions x : [0, a] → R
n

such that x(t) ∈ K for every t ∈ [0, a].
Let SK(ϕ; 0, x0) denote the set of all solutions of (3.6).
In 1992 S. Plaskacz proved (see: [143])
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Theorem 3.6. Under all of the above assumptions the set SK(ϕ; 0, x0) is Rδ.

For the proof of Theorem 3.6 we recommend [143] or [66] or [69].

Remark 3.2. There exists a recent result of R. Bader and W. Kryszewski ([13])
where Theorem 3.6 is taken up for regular sets in Hilbert spaces and Carathéodory-
type mappings.

4. Fixed points of multivalued contractions and applications

The Banach contraction principle is one of few fixed point theorems, where, besides
the existence, some further information is included, namely how the unique fixed
point can be successively approximated with arbitrary accuracy. In the case of a
multivalued contraction we have the set of fixed points. So a natural question of its
topological characterization arises. In this section we shall review most important
results of this type. For more details we recommend: [20], [7], [37], [54], [61], [70],
[71], [105], [144], [145].

For a metric space (X, d), by C(X) we shall denote the family of all closed
nonempty subsets of X For A ∈ C(X) and ε > 0, we let

0ε(A) = {x ∈ X | ∃y ∈ A, d(x, y) < ε}.

Let A,B ∈ C(X). We define the Hausdorff distance dH(A,B) between A and B
as follows:

dH(A,B) = inf{ε > 0 | A ⊂ Oε(B) and B ⊂ Oε(A)}.

It is well known that dH(A,B) can be equal to infinity. If we restrict our consid-
erations to the family BC(X) of all bounded closed and nonempty subsets of X ,
then dH is a metric BC(X), the so called Hausdorff metric.

Let E be a Banach space and A, B, C, D ∈ BC(E). It is easy to see that:

dH(A+B,C +D) ≤ dH(A,C) + dH(B,D), (i)
dH({x+A}, {y}) = dH({x}, {y −A}), (ii)
dH(tA, tB) ≤ dH(A,B), for t ∈ [0, 1], (iii)

where A + B = {x+ y | x ∈ A and y ∈ B} is the algebraic sum of A and B and
tA = {tx | x ∈ A}.

Recall that a mapping F : Y → BC(X) is called Hausdorff-continuous if it is
continuous w.r.t. the metric d in Y and dH in BC(X).

F is called measurable if, for every closed U ⊂ X , the set F−1+ (U) is measurable.

Proposition 4.1 ([69]). A map F : Y → BC(X) is Hausdorff-continuous with
compact values if and only if F is both u.s.c. and l.s.c.

Note that, for F : Y → BC(X), the Hausdorff continuity implies only l.s.c.
(see again [69]). It is easy to see that the following proposition is true.
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Proposition 4.2. If F : Y → BC(X) is l.s.c. with connected values and F (Y ) =⋃
y∈Y F (y) = X, then X is connected, provided Y is connected.

If what follows we need some additional topological notions. A metric space
(X, d) is Cn (i.e. n-connected) if, for every k ≤ n, every continuous map from the
k-sphere Sk into X is null homotopic (i.e. homotopic to a constant map). Namely,

it means that every continuous map f : Sk → X has a continuous extension
over the closed ball Kn+1, where Sn and Kn+1 stand for the unit sphere and the
unit closed ball in the Euclidean (n+ 1)-space Rn , respectively.

A space X is C∞ (i.e. infinitely connected), if it is Cn, for every n. A collection
ε ⊂ 2X is equi-LCn if, for every y ∈

⋃
{B | B ∈ ε}, every neighbourhood V of y

in X contains a neighbourhood W of y in X such that, for all B ∈ ε and k ≤ n,
every map from Sk into W ∩ B is null-homotopic over V ∩ E (i.e. a homotopy
taking values in V ∩E). We shall also make use of the following (comp. [69]).

Theorem 4.1 (Michael’s Selection Theorem). Let X be a metric space and
Y be a complete metric space. Let F : X → BC(Y ) be a l.s.c. map such that the
topological dimension dimX ≤ n + 1 and F (x) is Cn and for all x ∈ X with the
collection {F (x) | x ∈ X} equi-LCn. Then F has a continuous selection.

A mapping F : X → C(X) is called a multivalued contraction if there exists
α < 1 such that:

dH(F (x), F (y)) < αd(x, y), for every x, y ∈ X .

In 1970, H. Covitz and S. B. Nadler proved:

Theorem 4.2 ([37]). If X is a complete metric space and F : X → C(X) is a
contraction, then Fix(F ) = {x ∈ X | x ∈ F (x)} �= ∅.

Let F : X → C(X) be a contraction. Obviously, the set Fix(F ) is not a
singleton, in general. For example, let F (x) = A, for every x ∈ A, be a constant
map. Evidently, F is a contraction and Fix(F ) = A.

The following theorem is due to B. Ricceri ([145]).

Theorem 4.3. Let E be a Banach space and let F : E → C(E) be a contraction
such that F (x) is convex, for every x ∈ E. Then Fix(F ) is a retract of E.

In 1991, A. Bressan, A. Cellina and A. Fryszkowski proved:

Theorem 4.4 ([20]). If E = L1(T ) is the space of integrable functions on a
measure space T and F : E → BC(E) is a contraction with decomposable6 values,
then Fix(F ) is a compact AR-space.
6 A ⊂ L1(T ) is decomposable if, for every γ, µ ∈ A and a measurable subset J ⊂ T , we
have:

(γ · χJ + µχT\J ) ∈ A,
where χS is the characteristic function of the subset S ⊂ T .
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In view of [70] and [71], we would like to generalize both 4.4 and 4.5.
A simple argument shows that the following proposition [71], Proposition 1.1

is true.

Proposition 4.3. Let X be a separable metric space and let X0 be a nonempty
closed subset of X. If X ∈ AR and, for any separable space Y and any nonempty
closed set Y0 ⊂ Y , every continuous function f0 : Y0 → X0 admits a continuous
extension over Y , then X0 ∈ AR.

Let (T, F, µ) be a finite, positive, nonatomic measure space and let (E, ‖ · ‖)
be a Banach space. We denote by L1(T,E) the Banach space of all (equivalent
classes of) µ-measurable functions u : T → E such that the function t→ ‖u(t)‖ is
µ-integrable, equipped with the norm

‖u‖L1(T,E) =
∫
T

‖u(t)‖ dµ.

We always assume that the space L1(T,E) is separable. The multifunction F :
X → C(X) is called Lipschitzean if there exists a real number L ≥ 0 such that
dH(F (x′), F (x′′)) ≤ Ld(x′, x′′), for all x′, x′′ ∈ X . If L < 1, we say that F is a mul-
tivalued contraction. It can be easily checked that any Lipschitzean multifunction
is l.s.c. The following property of Lipschitz multifunctions will play an important
role in proving the main result of this section.

Proposition 4.4. Let (X, d) be a metric space and let F : X → C(X) be a
Lipschitzean multifunction. Set, for every x ∈ X, ϕ(x) = d(x, F (x)). Then the
function ϕ : X → [0,+∞) is Lipschitzean.

Proof. Let L ≤ 0 be such that dH(F (x′), F (x′′)) ≤ Ld(x′, x′′), for all x′, x′′ ∈ X .
Pick x′, x′′ ∈ X and choose ε > 0. Owing to the definition of ϕ, there exists
z′ ∈ F (x′) fulfilling

−ϕ < −d(x′, z′) + ε.

Using the inequality d(z′, F (x′′)) ≤ Ld(x′, x′′), we can find z′′ ∈ F (x′′) such that,

d(z′, z′′) < Ld(x′, x′′) + ε.

Therefore,

e(x′′) − e(x′) < d(x′′, F (x′′)) − d(x′, z′) + ε
≤ d(x′′, z′′) − d(x′, z′) + ε < (L+ 1)d(x′, x′′) + 2ε.

Since ε is arbitrary, we actually have

ϕ(x′′) − ϕ(x′) ≤ (L+ 1)d(x′, x′′)

and, interchanging x′ with x′′,

ϕ(x′) − ϕ(x′′) ≤ (L+ 1)d(x′, x′′).

This completes the proof.
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We now recall the notion of the Michael family of subsets of a metric space
[71], Definition 1.4.

Definition 4.1. Let X be a metric space and let M(X) be a family of a closed
subsets of X , satisfying the following conditions:

(4.1.1) X ∈ M(X), {x} ∈ M(X), for all x ∈ X , and, if {Ai}i∈I is any sub-class
of M(X), then

⋂
i∈I Ai ∈M(X);

(4.1.2) for every k ∈ N and every x1, x2, . . . , xk ∈ X , the set

A(x1, x2, . . . , xk) =
⋂

{A | A ∈M(X), x1, x2, . . . , xk ∈ A}

is infinitely connected;
(4.1.3) to each ε > 0, there corresponds δ > 0 such that, for any A ∈M(X), any
k ∈ N, and any x1, x2, . . . , xk ∈ Oδ(A), one has A(x1, x2, . . . , xk) ⊆ Oε(A);

(4.1.4) A ∩B(x, r) ∈M(X), for all A ∈M(X), x ∈ X , and r > 0;

then we say that M(X) is the Michael family of subsets of X .

This concept is closely related to the existence of continuous selections. Indeed,
we have the following (see [69] or GMS):

Proposition 4.5. Let X,Y be two metric spaces and let F : X → C(Y ) be a l.s.c.
multifunction. If Y is complete and there exists a Michael family M(Y ) of subsets
of Y such that F (x) ∈ M(Y ), for each x ∈ X, then, for any nonempty closed set
X0 ⊆ X, every continuous selection f0 from F |X0 admits a continuous extension
f over X such that f(x) ∈ F (x), for all x ∈ X.

The proceeding result gains interest if we realize that significant classes of sets
are the examples of the Michael families.

Example 4.1. Let X be a convex subset of a normed space and let M(X) be the
class of all sets A ⊆ X such that A = ∅ or A is convex and closed in X . Then
M(X) is a Michael family of subsets of X .

Example 4.2 (comp. [70]). Let X be a metric space and let M(X) be a simplicial
convexity on X , whose elements are closed in X . Then M(X) is a Michael family
of subsets of X .

Definition 4.2. Let X be a metric space, let F : X → C(X) be l.s.c., and let D
be a family of metric spaces. We say that F has the selection property w.r.t. D if,
for any Y ∈ D, any pair of continuous functions f : Y → X and h : Y → (0,+∞)
such that

G(y) = F ((y)) ∩B(f(y), h(y)) �= ∅, y ∈ Y,
and any nonempty closed set Y0 ⊆ Y , every continuous selection g0 from G|Y0

admits a continuous extension g over Y fulfilling g(y) ∈ G(y), for all y ∈ Y . If
D is a family of all metric spaces, then we say that F has selection property (in
symbols, F ∈ SP (X)).
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Such notion has some meaningful features, as the remarks below point out.

Remark 4.1. Let X be a metric space and let F : X → C(X) be a l.s.c. m ulti-
function. If X is complete and there exists a Michael family M(X) of subsets of
X such that F (x) ∈M(X), for all x ∈ X , then F ∈ SP (X). This is an immediate
consequence of Proposition 3.6.

Remark 4.2. Let X be a nonempty closed subset of L1(T,E) and F : X → C(X)
be a l.s.c. multifunction with decomposable values. Then, arguing as in [71], it is
possible to see that F has the selection property w.r.t. the family of all separable
metric spaces.

We are now in a position to prove the main result of this section (see: [70] or
[71]).

Theorem 4.5. Let X be a complete absolute retract and let F : X → C(X) be a
multivalued contraction. Suppose F ∈ SP (X). Then the set Fix(F ) is a complete
absolute retract.

Proof. Since Fix(F ) is nonempty and closed in X , we only have to show that if Y
is a metric space, Y � is a nonempty closed subset of Y , and f� : Y � → Fix(F ) is a
continuous function, then there exists a continuous extension f : Y → Fix(F ) of f�

over Y . Let d be the metric of Y , let L ∈ (0, 1) be such that dH(F (x′), F (x′′)) ≤
Ld(x′, x′′), for all x′, x′′ ∈ X , and let M ∈ (1, L−1). The assumption X ∈ AR
yields a continuous function f0 : Y → X fulfilling f0(y) = f�(y) in Y . We claim
that there is a sequence {fn} of continuous functions from Y into X with the
following properties:

(i) fn|Y � = f�, for every n ∈ N,
(ii) fn(y) ∈ F (fn−1(y)), for all y ∈ Y , n ∈ N,
(iii) d(fn(y), fn−1(y)) ≤ Ln−1d(f1(y), f0(y) +M1−n, for every y ∈ Y , n ∈ N.

To see this, we proceed by induction on n. It follows from Proposition 3.4 that the
function h0 : Y → (0,+∞), defined by

h0(y) = d(f0(y), F (f0(y))) + 1, y ∈ Y,

is continuous; moreover, one clearly has F (f0(y))∩B(f0(y), h0(y)) �= ∅, for all y ∈
Y . Having in mind that F ∈ SP (X), we obtain a continuous function f1 : Y → X
satisfying f1(y) = f�(y) in Y � and f1(y) ∈ F (f0(y)) in Y . Hence, conditions (i),
(ii), and (iii) are true for f1. Now, suppose that we have constructed p continuous
functions f1, f2, . . . , fp from Y into X in such way that (i), (ii), and (iii) hold,
whenever n = 1, 2, . . . , p. Since F is Lipschitzean with the constant L, (ii) and
(iii) apply for n = p, and LM < 1, for every y ∈ Y , we achieve

d(fp(y), F (fp(y))) ≤ dH(F (fp−1(y)), F (fp(y))) ≤ Ld(fp−1(y), fp(y))
≤ Lpd(f1(y), f0(y)) + LM1−p
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≤ Lpd(f1(y), f0(y)) +M−p,

and subsequently

F (fp(y)) ∩B(fp(y), Lpd(f1(y), f0(y)) +M−p) �= ∅.

Because of the assumption F ∈ SP (X), this produces a continuous function fp+1 :
Y → X with the properties:

fp+1|Y � = f�; fp+1(y) ∈ F (fp(y)), for every y ∈ Y ;
d(fp+1(y), fp(y)) ≤ Lpd(f1(y), f0(y)) +M−p, for all y ∈ Y .

Thus, the existence of the sequence {fn} is established. We next define, for any
a > 0, Ya = {y ∈ Y | d(f1(y), f0(y)) < a}. Obviously, the family of sets {Ya |
a > 0} is an open convering of Y . Moreover, due to (iii) and the completeness
of X , the sequence {fn} converges uniformly on each Ya. Let f : Y → X be the
point-wise limit of {fn}. It can be easily seen that the function f is continuous.
Furthermore, owing to (i), one has f |Y � = f�. Finally, the range of f is a subset of
Fix(F ), because, by (ii), f(y) ∈ F (f(y)), for all y ∈ Y . This completes the proof.

The same arguments as in the proof of Theorem 4.5 actually lead to the fol-
lowing more general result.

Theorem 4.6. Let D be a family of metric spaces, let X be a complete absolute
retract, and let F : X → C(X) be a multivalued contraction having the selection
property w.r.t. D. Then, for any Y ∈ D and any nonempty closed set Y0 ⊆ Y ,
every continuous function f0 : Y0 → Fix(F ) admits a continuous extension over
Y .

Theorem 4.6 has a variety of special cases of a particular interest. As an ex-
ample, Remark 4.10 combined with Theorem 4.6 lead to

Theorem 4.7. Let X be a complete absolute retract and let F : X → C(X) be
a multivalued contraction. If there exists a Michael family M(X) of subsets of X
such that F (x) ∈M(X), for all x ∈ X, then the set Fix(F ) is an absolute retract.

Evidently, Theorem 4.6 generalizes earlier results formulated in (4.5) and (4.6).
For details concerning 4.6 see: [70] and [71]. Now, we would like to study the
topological dimension of the set Fix(F ) for some multivalued contractions. Note
that the above mentioned problem was initiated by J. Saint Raymond [144]. At
first, we recall the following result (see: [144] or [7]).

Proposition 4.6. If F : X → BC(X) is a contraction with compact values, then
Fix(F ) is compact.

The following result due to Z. Dzedzej and B. Gelman ([58]) is a generalization
of the result obtained by J. Saint Raymond ([144]).
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Theorem 4.8. Let E be a Banach space and F : E → BC(E) be a contraction
with convex values and a constant α < 1/2. Assume, furthermore, that the topo-
logical dimension dimF (x) of F (x) is greater or equal to n, for some n and every
x ∈ E. If Fix(F ) is compact, then dim Fix(F ) > n.

Problem 1. Is it possible to prove 4.8, for E = X , to be a complete AR-space and
F : X → CB(X) with values belonging to a Michael family M(X)?

Following D. Miklaszewski, we would like to discuss some generalizations of
4.8.

Theorem 4.9. Let X be a retract of a Banach space E, and F : X → BC(X)
be a compact continuous multivalued map with values being such elements of the
Michael family M(X) that F (x) \ {x} ∈ Ck−2, for every x ∈ Fix(F ). Then the set
Fix(F ) has the dimension greater or equal to k.

Proof. Suppose on the contrary that dim(Fix(F )) < k. Let us consider the maps
ψ : Fix(F ) → BC(E) and ϕ : Fix(F ) → E \ {0} defined by the formulae: ψ(x) =
F (x) − x = {y − x | y ∈ F (x)} and ϕ = ψ(x) \ {0} = (F (x) \ {x}) − x. We
are going to prove that the family {ϕ(x) | x ∈ Fix(F )} is equi-LC∞. Let y ∈
ϕ(x0) and r be a positive number such that 0 �∈ BE(y, 3r). Suppose that the set
BE(y, r) ∩ ϕ(x) is non-empty, for a fixed point x of F . Then BE(y, r) ∩ ϕ(x) =
[(BE(y + x, r) ∩ F (x)) − x]. Let z ∈ BE(y + x, r) ∩ F (x). It is easy to show that
BE(y + x, r) ∩ F (x) ⊂ BE(y + x, 3r) ∩ F (x). But the second set of these three
sets being in the Michael family M(X) is C∞ as well as its translation, so the
inclusion of BE(y, r) ∩ ϕ(x) into the set BE(y, 3r) ∩ ϕ(x) is homotopically trivial,
and the family {ϕ(x) | x ∈ Fix(F )} is equi-LC∞. It follows from Theorem 1.8
that ϕ has a selection f . Then the map g : Fix(F ) → X defined by the formula:
g(x) = f(x) + x is a selection of F . We conclude that, in view of Theorem 4.10,
there exists a selection h of F being an extension of g. But h has a fixed point
x′ ∈ Fix(F ), h(x′) = g(x′) = f(x′) + x′ = x′, f(x′) = 0 ∈ ϕ(x), which is a
contradiction.

In the case when dimX < +∞, by analogous considerations as in the proof of
4.9 we obtain:

Theorem 4.10. Let X be a retract of a Banach space E and F : X → BC(X) be
a continuous (i.e. both l.s.c. and u.s.c.) map such that F (X) =

⋃
{F (x) | x ∈ X}

is a compact set. Assume that the values of F satisfy the following conditions:

(i) F (x) \ {x} is Ck−2, for every x ∈ Fix(F ),
(ii) F (x) is Ck for every x ∈ X,
(iii) {F (x) | x ∈ Fix(F )} is equi-LCk−2 in E,
(iv) {F (x) | x ∈ X} is equi-LCk in X.

Them dim(Fix(F )) ≥ k.
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The proof of 4.10 is quite analogous to that of 4.9. Finally, note that one can
show an example of a continuous (i.e. both l.s.c. and u.s.c.) map with contractible
values of the local dimension 2 such that (iii) and (iv) are satisfied, but the di-
mension of the set of fixed points equals 1.

It is evident that the above results can be applied directly to differential in-
clusions where the right hand side is a measurable-Lipschitz multivalued map
f : [0, a] × R

n → CB(R). A very general application to the so called almost-
periodicity problem for differential inclusions in Banach spaces is presented in
Section 5 of [7].

Namely, we shall give a topological characterization of the set of solutions of
some boundary value problems for differential inclusions of order k.

Let E be a separable Banach space and let φ : [0, a]×Ek
( E be a multivalued

mapping, where Ek = E × . . .×E (k-times).
We shall consider the following problem

x(k)(t) ∈ φ(t, x(t), x′(t), . . . , x(k−1)(t))
x(0) = x0
x′(0) = x1

...
x(k−1)(0) = xk−1,


(4.1)

where the solution x : [0, a] → E is understood in the sense of t almost everywhere
(a.e., t ∈ [0, a]) and x0, . . . , xk−1 ∈ E.

Observe that for k = 1 problem (4.1) reduces to the well-known Cauchy prob-
lem for differential inclusions. In what follows we shall denote by S(φ, x0, . . . , xk−1)
the set of all solutions of (4.1).

Our first application of Theorem 4.6 is the following:

Theorem 4.11. Assume that ϕ is a mapping with compact values. Assume further
that the following conditions hold:

(4.11.1) ϕ is bounded, i.e. there is an M > 0 such that ‖y‖ ≤ M for every
t ∈ [0, a], x ∈ Ek and y ∈ ϕ(t, x),

(4.11.2) the map ϕ( · , x) is measurable for each x ∈ Ek,
(4.11.3) ϕ is a Lipschitz map with respect to the second variable, i.e. there exists

an L > 0 such that for every t ∈ [0, a] and for every z = (z1, . . . , zk), y =
(y1, . . . , yk) ∈ Ek we have:

dH(ϕ(t, z), ϕ(t, y) ≤ L
k∑

i=1

‖zi − yi‖.

Then the set S(ϕ, x0, . . . , xk−1) of all solutions of the problem (4.1) is an AR-
space.
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Sketch of proof. For the proof we define (single-valued) mappings7:
hj : M([0, a], E) → ACj , j = 0, . . . , k − 1, by putting

(hj(z))(t) = x0 + tx1 + . . .+ (tj/j!)xj +
∫ t

0

∫ s1

0

. . .

∫ sj

0

z(s) ds dsj . . . ds1,

where ACj = {u ∈ Cj([0, a], E) : u(j) is absolutely continuous} and for u ∈ ACj

we put:
‖u‖ = ‖u‖Cj + sup esst∈[0,a]{‖u(j+1)(t)‖}.

Now consider a multivalued mapping ψ : M([0, a], E) → M([0, a], E) defined
as follows:

ψ(x) = {z ∈M([0, a], E) | z(t) ∈ ϕ(t, hk−1(x)(t), . . . , h0(x)(t)), for a.e. t ∈ [0, a]}.

It follows from the Kuratowski–Ryll–Nardzewski Selection Theorem and (4.11.1)
that ψ is well defined (with closed decomposable values in M([0, a], E). Moreover,
it is easy to see that hk−1(Fix(ψ)) = S(ϕ, x0, . . . , xk−1). Consequently, since hk−1
is a homeomorphism onto its image, in view of Theorem 4.6, it is sufficient to show
that ψ is a contractive mapping. We shall do this by using the M([0, a], E)-version
of Bielecki’s method and the Kuratowski–Ryll–Nardzewski Theorem. In fact it is
enough to see that for every u, z ∈ M([0, a], E) and for every y ∈ ψ(u) there is a
v ∈ ψ(z) such that

‖y − v‖1 ≤ α‖u− z‖1,(�)

where α ∈ [0, 1) and ‖w‖1 = sup esst∈[0,a]{e−Lakt‖w(t)‖} is the Bielecki norm
in M([0, a], E). Observe that using Theorem 4.2 (in [66]) for ψ and z, we get a
mapping v ∈ ψ(z) and now (�) follows directly from 4.11.3. The proof of Theorem
4.11 is complete.

Remark 4.3. Note that if we impose more assumptions on ϕ then we are able to
get better information on = S(ϕ, x0, . . . , xk−1) ( for details see [7], [66], [69]).

Now following [12], [61], [62] we would like to add that if we consider problem
(4.1) for k = 1 and in Theorem 4.11 we assume moreover that ϕ(t, x) is convex and
dimϕ(t, x) ≥ n for some n and every (t, x) ∈ [0, a] ×E, then, in view of Theorem
4.9 we get that:

dimS(ϕ, x0) ≥ n.

Finally, let us remark that if we reject the assumption that ϕ has compact
values, then still a characterization of S(ϕ, x0) is possible (see Theorem 3.1 in
[105]).

7 here M([0, a], E) is the Banach space of continuous essentialy bounded mappings.
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5. The inverse limit method

The inverse limit method in differential equations and inclusions is quite new and
it was indicated in 1999 by J. Andres, G. Gabor and L. Górniewicz (see: [5], [6]
and [60]).

We shall start from the topological preparation. By an inverse system of topo-
logical spaces we mean a family IS = {Xα, π

β
α, Σ}, where Σ is a set directed

by the relation ≤, Xα is a topological (Hausdorff) space for every α ∈ Σ and
πβα : Xα → Xβ is a continuous mapping for every two elements α, β ∈ Σ such
that α ≤ β. Moreover, for each α ≤ β ≤ γ the following conditions should hold:
παα = idXα and πβαπ

γ
β = πγα.

A subspace of the product Πα∈ΣXα is called a limit of the inverse system IS
and it is denoted by lim← IS or lim←{Xα, π

β
α, Σ} if

lim
←

IS = {(xα) ∈ Πα∈ΣXα | πβα(xβ) = xα for all α ≤ β}.

An element of lim← IS is called a thread or a fibre of the system IS. One can
see that if we denote by πα : lim← IS → Xα a restriction of the projection
pα : Πα∈ΣXα → Xα onto the α-th axis, then we obtain πα = πβαπβ for each
α ≤ β.

Now we summarize some useful properties of limits of inverse systems which
are well known (comp. [60]):

Proposition 5.1. Let IS = {Xα, π
β
α, Σ} be an inverse system.

(5.1.1) The limit lim← IS is a closed subset of Πα∈ΣXα.
(5.1.2) If, for every α ∈ Σ, Xα is

(i) compact, then lim← IS is compact;
(ii) compact and nonempty, then lim← IS is compact and nonempty;
(iii) a continuum, then lim← IS is a continuum;
(iv) acyclic, and lim← IS is nonempty, lim← IS is acyclic;
(v) metrizable, Σ is countable, and lim← IS is nonempty, then lim← IS is

metrizable.

The following further information is useful for applications.

Proposition 5.2 ([60]). Let IS = {Xn, π
p
n,N} be an inverse system. If each Xn

is an Rδ-set, then so is lim← S.

The following example shows that a limit of an inverse system of compact
absolute retracts does not have to be an absolute retract.

Example 5.1. Consider a family {Xn}∞n=1 of subsets of R2 defined as follows:

Xn =
([

0,
1
nπ

]
× [−1, 1]

)
∪
{

(x, y)
∣∣∣∣ y = sin

1
x

and
1
nπ

< x ≤ 1
}
.

One can see that for each m,n ≥ 1 such that m ≥ n we have Xm ⊂ Xn.
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Define the maps πmn : Xm → Xn, πmn (x) = x. Therefore IS = {Xn, π
m
n ,N}

is an inverse system of compact absolute retracts. It is evident that lim← IS is
homeomorphic to the intersection of all Xn. On the other hand

X =
∞⋂
n=1

Xn = {(0, y) | y ∈ [−1, 1]} ∪
{

(x, y)
∣∣∣∣ y = sin

1
x

and 0 < x ≤ 1
}

and X is not an absolute retract since, for instance, X is not locally connected.

Note that in [60] the following information on a limit of an inverse system of
absolute retracts has been formulated.

Proposition 5.3. Let IS = {Xn, π
p
n,N} be an inverse system of compact absolute

retracts such that Xn ⊂ Xp and πpn is a retraction for all n ≤ p. Then lim← IS
has the fixed point property, i.e. every continuous map f : lim← IS → lim← IS
has a fixed point.

Example 5.2. Consider the inverse system S = {Xn, π
p
n,N} such that Xn = [n,∞)

and πpn : Xp ↪→ Xn are inclusion maps for n ≤ p. It is obvious that lim← S is
homeomorphic to the intersection of all Xn which is an empty set.

Let us give important examples of inverse systems.

Example 5.3. Let, for every m ∈ N, Cm = C([0,m],Rn ) be a Banach space of all
continuous functions of the closed interval [0,m] into R, and C = C([0,∞),Rn )
be an analogous Fréchet space of continuous functions.

Consider the maps πpm : Cp → Cm, πpm(x) = x|[0,m]. It is easy to see that C
is isometrically homeomorphic to a limit of the inverse system {Cm, π

p
m,N}. The

maps πm : C → Cm, πm(x) = x|[0,m] correspond to suitable projections.

Remark 5.1. In the same manner as above we can show that Fréchet spaces C(J,
R
n ), where J is an arbitrary interval, L1

loc(J,R
n ) of all locally integrable functions,

ACloc(J,Rn ) of all locally absolutely continuous functions and Ck(J,Rn ) of all
continuously differentiable functions up to the order k can be considered as limits
of suitable inverse systems.

More generally, every Fréchet space is a limit of some inverse system of Banach
spaces.

Now we introduce the notion of multivalued maps of inverse systems. Suppose
that two systems IS = {Xα, π

β
α, Σ} and IS′ = {Yα′ , πβ

′

α′ , Σ′} are given.

Definition 5.1. By a multivalued map of the system IS into the system IS′ we
mean a family {σ, ϕσ(α′)} consisting of a monotone function σ : Σ′ → Σ, that
is σ(α′) ≤ σ(β′), and of multivalued maps ϕσ(α′) : Xσ(α′) ( Yα′ with nonempty
values, defined for every α′ ∈ Σ′ and such that

πβ
′

α′ϕσ(β′) = ϕσ(α′)π
σ(β′)
σ(α′),(5.1)
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for each α′ ≤ β′.
A map of systems {σ, ϕσ(α′)} induces a limit map ϕ : lim← IS ( lim← IS′

defined as follows:

ϕ(x) = Πα′∈Σϕσ(α′)(xσ(α′)) ∩ lim
←

IS.

In other words, a limit map is a map such that

πα′ϕ = ϕσ(α′)πσ(α′)(5.2)

for every α′ ∈ Σ′.

Since a topology of a limit of an inverse system is the one generated by the base
consisting of all sets of the form πα(Uα), where α runs over an arbitrary set cofinal
in Σ and Uα are open subsets of the space Xα, it is easy to prove the following
continuity property for limit maps:

Proposition 5.4 (see [5], Proposition 2.7). Let IS = {Xα, π
β
α, Σ} and

IS′ = {Yα′ , πβ
′

α′ , Σ′} be two inverse systems, and ϕ : lim← IS ( lim← IS′ be a
limit map induced by the map {σ, ϕσ(α′)}.

If, for every α′ ∈ Σ, ϕσ(α′) is

(i) u.s.c., then ϕ is u.s.c.;
(ii) l.s.c., then ϕ is l.s.c.;
(iii) continuous, then ϕ is continuous (continuous means both u.s.c. and l.s.c.).

The following crucial result allows us to study a topological structure of fixed
point sets of limit maps.

Theorem 5.1 ([60]). Let IS = {Xα, π
β
α, Σ} be an inverse system, and ϕ :

lim← IS ( lim← IS be a limit map induced by a map {id, ϕα}, where ϕα : Xα (

Xα. If fixed point sets of ϕα are acyclic, and the fixed point set of ϕ is nonempty,
then it is acyclic, too.

Theorem 5.2. Let IS = {Xn, π
p
n,N} be an inverse system, and ϕ : lim← IS (

lim← IS be a limit map induced by a map {id, ϕn}, where ϕn : Xn( Xn. If fixed
point sets ϕn are compact Rδ, then the fixed point set of ϕ is Rδ, too.

Corollary 5.1. Let IS = {Xn, π
p
n,N} be an inverse system, and ϕ : lim← IS (

lim← IS be a limit map induced by a map {id, ϕn}, where ϕn : Xn ( Xn. If all
Xn are Fréchet spaces and all ϕn are contractions.

Remark 5.2. Note that, following [70], we can prove Corollary 5.1 for a little larger
class of multivalued maps (see [5], Corollary 2.9).

The inverse system approach described above gives us an easy way to study
a topological structure of solution sets of differential problems on noncompact
intervals. To illustrate it consider the following example:
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Example 5.4. Let F : [0,∞) × R
n
( R

n be a Carathéodory map, i.e.

(i) values of F are nonempty, compact and convex for all (t, x) ∈ [0,∞) × R
n ,

(ii) F (t, · ) is u.s.c. for a.a. t ∈ [0,∞),
(iii) F ( · , x) is measurable for all x ∈ R

n ,

with at most linear growth, i.e. there exists a locally integrable function α :
[0,∞) → [0,∞) such that, for every x ∈ R

n and for a.a. t ∈ [0,∞),

|F (t, x)| ≤ α(t)(1 + ‖x‖),

where |F (t, x)| = sup{|y| | y ∈ F (t, x)}.

Consider the Cauchy problem

ẋ(t) ∈ F (t, x(t)) for a.a. t ∈ [0,∞),
x(0) = x0.

}
(5.3)

We shall show, using the inverse systems technique, that the set of solutions S of
problem (5.3) is Rδ. To do it, consider the family of Cauchy problems

ẋ(t) ∈ F (t, x(t)) for a.a. t ∈ [0,m],
x(0) = x0,

}
(5.4)

where m ≥ 1. It is well known (see [46]) that, for every m ≥ 1, the set Sm of the
above problem is compact Rδ.

On the other hand, Sm is a fixed point set of the following map Ψm : Cm =
C([0,m],Rn )( Cm,

Ψm(x) =

�
x0 +

Z t

0

u(s) ds

����u ∈ L1([0, m],Rn) and u(t) ∈ G(t, x(t)) for a.a. t ∈ [0, m]

�
.

One can check that {Ψm} is a map of the inverse system {C([0,m],Rn ), πpm,N},
where πpm(x) = x|[0,m] for every x ∈ C([0, p],Rn ). Moreover, it induces the limit
map on C([0,∞),Rn )

Ψ(x) =

�
x0 +

Z t

0

u(s) ds

����u ∈ L1
loc([0,∞),Rn) and u(t) ∈ G(t, x(t)) for a.a. t ∈ [0,∞)

�

with the fixed point set S. By Theorem 5.2 it follows that S is compact Rδ, as
required.

Note that the above result on a topological structure of the solution set of the
Cauchy problem on a halfline can be obtained by using different techniques (see
e.g. [4] for the proof by using the Scorza–Dragoni type result).

Further applications of the inverse systems approach can be found in [5] and
[60].
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6. Concluding remarks and comments

Above we have presented different techniques of characterization of the set of fixed
points and consequently solution sets for differential equations and inclusions. Now,
we would like to show some consequences, which can be obtained by using the
topological structure of solution sets.

We would like to show only results connected with multivalued Poincaré oper-
ator indicated by G. Dylawerski and L. Górniewicz in 1983 ([57]). We recommend
also the following papers: [3], [8], [66], [69], [72], [91], [143], [45].

We shall formulate the simplest version. Most general results of this type are
contained in [45].

Let f : [0, a]×R
n → R

n be a continuous and bounded map. We shall consider
both the Cauchy problem:

x′(t) = f(t, x(t)),
x(t0) = x0,

}
(6.1)

and the following periodic problem:

x′(t) = f(t, x(t)),
x(0) = x(a).

}
(6.2)

We shall associate with (6.2) the multivalued Poincaré operator:

Pa : Rn
( R

n

defined as a composition of the following two maps:

R
P'→ C([0, a],Rn ) ea→ R

n ,

where P (x) = S(f ; 0, x) and ea(x) = x(a). It follows from the Aronszajn Theorem
that P has Rδ-values. On the other hand it is well known that P is u.s.c. (comp.
[69] or [11]). Hence Pa = ea ◦ P as a composition of u.s.c. Rδ-valued map P with
a continuous map ea is admissible in the sense of [67]. Therefore the topological
degree of the field (idRn − P ) on any ball B(0, r) ⊂ R

n such that8 Fix(P ) ∩
∂B(0, r) = ∅ is well defined (see: [67], [45] or [92]). In what follows P is called the
Poincaré operator associated with (6.2).

The following proposition is straightforward.

Proposition 6.1. If Fix(Pa) �= ∅, then problem (6.2) has a solution.

In the terms of topological degree theory Proposition 6.3 can be expressed as
follows:

Proposition 6.2. Assume that for some r > 0 we have Fix(P )∩ ∂B(0, r) = ∅. If
the topological degree deg(idRn − Pa, B(0, r)) of idRn − Pa with respect to B(0, r)
is different from zero, then problem (6.2) has a solution.
8 ∂B(0, r) denotes the boundary of B(0, r) in Rn .
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In order to calculate the topological degree of Poincaré field idRn −Pa we shall
use the guiding function (or potential function) method (see: [91] or [45]).

A C1-map V : Rn → R is called a guiding function ( potential) for f provided
that there exists r0 > 0 such that:

〈gradV (x), f(t, x)〉 > 0(6.3)

for every t ∈ [0, a] and x ∈ R
n such that ‖x‖ ≥ r0, where gradV (x) =

(
∂f
∂x1

(x), . . . ,
∂f
∂xn

(x)
)

is the gradient of V at the point x and 〈 , 〉 stands for the inner product
in R

n .
It follows from (6.3) that for every r ≥ r0 and x ∈ R

n such that ‖x‖ ≥ r0 we
have gradV (x) �= 0 so from the localization property of the topological degree it
follows that for every r ≥ r0 we have deg(gradV,B(0, r)) = deg(gradV (x), B(0,
r0)). We let:

Ind(V ) = deg(gradV (x), B(0, r)).(6.4)

Finally we obtain:

Theorem 6.1. If f has a potential V such that Ind(V ) �= 0, then deg(Pa, B(0,
r)) �= 0 for some r ≥ r0.
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119. V. V. Obukhovskĭı, Semilinear functional differential inclusions in a Banach space
and controlled parabolic systems, Soviet J. Automat. Inform. Sci. 24, No. 3 (1991),
71–79.

120. C. Olech, On the existence and uniqueness of solutions of an ordinary differential
equation in the case of a Banach space, Bull. Acad. Polon. Math. 8 (1969), 667–673.

121. N. S. Papageorgiou, Kneser’s Theorem for differential equations in Banach spaces,
Bull. Austral. Math. Soc. 33, No. 3 (1986), 419–434.

122. N. S. Papageorgiou, On the solution set of differential inclusions in a Banach space,
Appl. Anal. 25, No. 4 (1987), 319–329.



TOPOLOGICAL STRUCTURE OF SOLUTION SETS: CURRENT RESULTS 375

123. N. S. Papageorgiou, A property of the solution set of differential inclusions in Ba-
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192. V. I. Blagodatskikh and P. Ndĭı Convexity of the solution set of a differential inclu-
sion, Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., (1998), 21–22.

193. F. S. De Blasi, G. Pianigiani and V. Staicu, On the solution sets of some nonconvex
hyperbolic differential inclusions, Czechoslovak Math. J., 45 (1995), 107–116.

194. D. Bugajewska, On implicit Darboux problem in Banach spaces, Bull. Austral. Math.
Soc., 56 (1997), 149–156.

195. D. Bugajewska, On the equation of nth order and the Denjoy integral, Nonlinear
Anal., 34 (1998), 1111–1115.

196. D. Bugajewska, A note on the global solutions of the Cauchy problem in Banach
spaces, Acta Math. Hung., 88 (2000), 341–346.

197. D. Bugajewska, On the structure of solution sets of differential equations in Banach
spaces, Math. Slovaca, 50 (2000), 463–471.

198. D. Bugajewska and D. Bugajewski On the equation x
(n)
ap = f(t, x), Czech. Math.

Journal, 46 (1996), 325–330.
199. D. Bugajewska and D. Bugajewski, On nonlinear equations in Banach spaces and

axiomatic measures of noncompactness, Funct. Differ. Equ., 5 (1998), 57–68.
200. D. Bugajewski, On the structure of the Lp1,p2 -solution sets of Volterra integral equa-

tions in Banach spaces, Comment. Math. Prace Mat., 30 (1991), 253–260.
201. D. Bugajewski, On differential and integral equations in locally convex spaces,

Demonstr. Math., 28 (1995), 961–966.
202. D. Bugajewski, On the structure of solution sets of differential and integral equa-

tions, and the Perron integral, Proceedings of the Prague Mathematical Conference
1996, Icaris, Prague, 1997, 47–51.

203. D. Bugajewski and S. Szufla, Kneser’s theorem for weak solutions of the Darboux
problem in Banach spaces, Nonlinear Anal., 20 (1993), 169–173.

204. D. Bugajewski and S. Szufla, On the Aronszajn property for differential equations
and the Denjoy integral, Comment. Math., 35 (1995), 61–69.

205. T. Cardinali, On the structure of the solution set of evolution inclusions with Fréchet
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276. V. G. Zvyagin, The structure of the solution set of a nonlinear elliptic boundary
value problem under fixed boundary conditions, Topological and Geometric Methods
of Analysis, Voronezh. Gos. Univ., Voronezh, 1989, 152–158, 173. (in Russian)



ARCHIVUM MATHEMATICUM (BRNO)
Tomus 36 (2000), 383–393, CDDE 2000 issue

GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS AND
DISCRETE SYSTEMS
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1. Integration

The concept of a generalized ordinary differential equation is based on a special
integration process wich is interesting by itself and plays a nice and important role
in integration theory and in real analysis in general.

Assume that a bounded interval [a, b] ⊂ R is given, −∞ < a < b <∞.

A finite set of points

D := a = α0 ≤ τ1 ≤ α1 ≤ · · · ≤ αk−1 ≤ τk ≤ αk = b

with α0 < α1 < · · · < αk is called a partition of the interval [a, b].

A positive function δ : [a, b] → (0,∞) will be called a gauge on the interval
[a, b].

The partition D is called δ- fine (with respect to the gauge δ) if

[αj−1, αj ] ⊂ [τj − δ(τj), τj + δ(τj)].
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Assume that a function U(τ, t) : [a, b] × [a, b] → R
n is given.

For a partition D we denote by

S(U,D) =
K∑
j=1

(U(τj , αj) − U(τj , αj−1))

the integral sum corresponding to the function U and the partition D. The fun-
damental definition reads as follows.

Definition 1. The function U : [a, b] × [a, b] → R
n is called Kurzweil integrable

over [a, b] (shortly U ∈ K([a, b])) if there is a J ∈ R
n such that for every ε > 0

there is a gauge δ on [a, b] and

‖S(U,D) − J‖ < ε

if D is a δ-fine partition of [a, b].

We use the formal notation J =
∫ b

a DU(τ, t) for the generalized Kurzweil
integral of U over [a, b].

Remark 1. Typical situations are for example U(τ, t) = f(τ) · t or U(τ, t) = f(τ) ·
g(t) where f, g : [a, b] → R or f : [a, b] → R

n , g : [a, b] → R or f : [a, b] → R,
g : [a, b] → R

n .

Looking for example at the sum S(U,D) if U(τ, t) = f(τ) · t, we can see easily
that

S(U,D) =
K∑
j=1

f(τj)(αj − αj−1)

is the usual Riemann integral sum corresponding to the function f : [a, b] → R.

Reading the definition of the integral
∫ b

a
DU(τ, t) =

∫ b

a
f(s)d(s) we can see that

it differs from the classical Darboux type definition of the Riemann integral in only
one point, namely our δ is a gauge, i.e. a function which need not be a constant,
instead of the positive constant gauge used for defining the Riemann integral.

Nevertheless, this slight change in the definition has dramatic consequences for
the concept of the integral and integrability of functions.

It is well known that a function f : [a, b] → R is integrable in the sense of
our definition for U(τ, t) = f(τ) · t if and only if it is integrable in the sense of
Perron (the narrow Denjoy integral) and this is a nonabsolutely convergent integral
including the Lebesgue integral.

The definition of the integral is based strongly on the following statement which
goes back to a paper of P. Cousin from 1895.
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Lemma 1. If δ is an arbitrary gauge on [a, b], then there is a partition D of [a, b]
which is δ-fine.

(See e.g. [2], [3].)

The generalized Kurzweil integral given by Definition 1 has all the good prop-
erties usual in reasonable integration theories. Among others we have the following

Theorem 1. If U, V ∈ K([a, b]) and c1, c2 ∈ R, then c1U + c2V ∈ K([a, b]) and∫ b

a

D[c1U(τ, t) + c2V (τ, t)] = c1

∫ b

a

DU(τ, t) + c2

∫ b

a

DV (τ, t).

If U ∈ K([a, b]), then U ∈ K([c, d]) for every [c, d] ⊂ [a, b].

If c ∈ [a, b] and U ∈ K([a, c]) and U ∈ K([c, b]), then U ∈ K([a, b]) and∫ b

a

DU(τ, t) =
∫ c

a

DU(τ, t) +
∫ b

c

DU(τ, t).

(See Theorems 1.9, 1.10 and 1.11 in [3].)

Also a less usual result holds for the integral.

Theorem 2. If U ∈ K([a, c]) for every c ∈ [a, b) and

lim
c→b−

(
∫ c

a

DU(τ, t) − [U(b, c) − U(b, b)]) = J ∈ R,(1)

then U ∈ K([a, b]) and ∫ b

a

DU(τ, t) = J.

If U ∈ K([c, b]) for every c ∈ (a, b] and

lim
c→a+

(
∫ b

c

DU(τ, t) + U(a, c) − U(a, a)) = J ∈ R,(2)

then U ∈ K([a, b]) and ∫ b

a

DU(τ, t) = J.

(See Theorem 1.14 in [3].)

Remark 2. The property of the integral presented in the previous Theorem 2 is
sometimes called Hake’s Theorem and it is essential when considering generalized
ordinary differential equations.
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Let us mention that e.g. in the special case of U(τ, t) = f(τ) · t the relation (1)
represents the existence of the limit

lim
c→b−

∫ c

a

f(s)ds = J ∈ R

and by Theorem 2 we have the existence
∫ b

a
f(s)ds as well as the equality

lim
c→b−

∫ c

a

f(s)ds =
∫ b

a

f(s)ds.

This property is not possessed by the Riemann or Lebesgue integral. This is a
typical property of the Denjoy-Perron integral.

2. Generalized ordinary differential equations

Let us have a function F : R × R → R and assume that [α, β] ⊂ R is a compact
interval.

A function x : [α, β] → R
n is called a solution of the generalized ordinary

differential equation

dx

dτ
= DF (x, t)(3)

on the interval [α, β] if

x(s2) − x(s1) =
∫ s2

s1

DF (x(τ), t)

for every s1, s2 ∈ [α, β]. (The integral on the right hand side of this relation is the
integral presented in Definition 1 in the previous section.)

It can be shown easily that x : [α, β] → R
n is a solution of (3) if and only if

x(s) = x(γ) +
∫ s

γ

DF (x(τ), t)

for every s ∈ [α, β] where γ ∈ [α, β] is fixed.

Theorem 2 yields the following

Proposition 1. If x : [α, β] → R
n is a solution of (3) then

lim
s→σ

[x(s) − [F (x(σ), s) − F (x(σ), σ)]] = x(σ)

for every σ ∈ [α, β].
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Moreover, if the limit

lim
s→σ+

[F (x(σ), s) − F (x(σ), σ)] = J+(σ) ∈ R
n

or
lim

s→σ−
[F (x(σ), s) − F (x(σ), σ)] = J−(σ) ∈ R

n

exists, then
lim

s→σ+
x(s) = x(σ+) = x(σ) + J+(σ)

or
lim

s→σ−
x(s) = x(σ−) = x(σ) + J−(σ),

respectively.

This proposition shows that in the solution of the generalized ordinary differ-
ential equation (3) discontinuities can occur if J+(σ) or J−(σ) is different from
zero. Consequently, a solution of (3) can be a discontinuous function in general.

Details on these concepts and properties of a solution of a generalized ordinary
differential equation (3) can be found in [3].

Let us now turn our attention to a class of functions F : Rn × R → R
n which

leads to a reasonable theory for equations of the form (3).

Assume that h : R → R is a nondecreasing function and that ω : [0,∞) → R is
continuous, increasing with ω(0) = 0 (a modulus of continuity).

Let us define the class F(h, ω) of functions F : Rn × R → R
n satisfying

‖F (x, t2) − F (x, t1)‖ ≤ |h(t2) − h(t1)|(4)

and

‖F (x, t2) − F (x, t1) − [F (y, t2) − F (y, t1)]‖ ≤ ω(‖x− y‖) · |h(t2) − h(t1)|(5)

for x, y ∈ R
n , t1, t2 ∈ R. (See 3.8 Definition in [3].)

The main statement concerning the class F(h, ω) is a local existence result for
a solution of (3) which has to satisfy a given initial condition.

Theorem 3. If x̃ ∈ R
n , t0 ∈ R and F ∈ F(h, ω), then there exist ∆−,∆+ > 0

such that on [t0−∆−, t0 +∆+] there exists a solution x : [t0−∆−, t0 +∆+] → R
n

of the generalized ordinary differential equation (3) for which x(t0) = x̃.

(See 4.2 Theorem in [3].)

3.10 Lemma in [3] states the following:

If F ∈ F(h, ω) and x : [α, β] → R
n is a solution of (3), then for every

s1, s2 ∈ [α, β] we have

‖x(s2) − x(s1)‖ ≤ |h(s2) − h(s1)|.(6)
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This implies immediately that if F ∈ F(h, ω) and x : [α, β] → R
n is a solution

of (3) on [α, β] then x ∈ BV ([α, β]) (x is a function of bounded variation on [α, β])
and

varβαx ≤ h(β) − h(α) <∞
if −∞ < α < β <∞.

Moreover, if h is continuous from the left (i.e. lims→t− h(s) = h(t−) = h(t))
then x(t−) = x(t) and the solution of (3) is continuous from the left. This is an
easy consequence of the inequality (6).

Concerning the uniqueness of solutions of (3) we have the following general
result.

Theorem 4. If F ∈ F(h, ω), h(t−) = h(t) and

lim
v→0+

∫ u

v

1
ω(r)

dr = ∞

for some u > 0, then every solution of (3) with x(t0) = x̃ is locally unique for
t > t0.

(See 4.8 Theorem in [3].)

Remark 3. If g : Rn × R → R
n and g(x, ·) is Lebesgue measurable for x ∈ R and

‖g(x, s)‖ ≤ m(s),

‖g(x, s) − g(y, s)‖ ≤ l(s)ω(‖x− y‖),

where m, l ∈ L1
loc(R), then for

G(x, t) =
∫ t

0

g(x, s)ds : Rn × R → R
n

we have G ∈ F(h, ω) with

h(t) =
∫ t

0

m(s)ds+
∫ t

0

l(s)ds.

The following result connects generalized ordinary differential equations with the
classical ordinary differential equations in the Carathéodory sense.

A function x : [α, β] → R
n is a solution of

ẋ = g(x, t)

if and only if x is a solution of the generalized ordinary differential equation

dx

dτ
= DG(x, t)
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on [α, β].

If Ji : Rn → R
n satisfies

‖Ji(x) − Ji(y)‖ ≤ ω(‖x− y‖)

for i ∈ N, x, y ∈ R
n and if Hd : R → R is given for d ∈ R by the relations

Hd(t) = 0, t ≤ d, Hd(t) = 1, t > d,

then define

F (x, t) = G(x, t) +
∞∑
j=1

Jj(x)Hj(t).

The function F : Rn ×R → R
n is well defined, it belongs to a certain class F(h, ω)

and the generalized ordinary differential equation

dx

dτ
= DF (x, t)

is equivalent to the so called system with impulses given by the ordinary differential
equation

ẋ = g(x, t)

and the conditions
x(i+) = x(i) + Ji(x(i)), i ∈ N

describing the jumps of a solution at the instants i ∈ N.

Let us now consider the function

F (x, t) =
∞∑
i=1

Ji(x)Hi(t).

with Ji,Hi, i ∈ N given above and assume for simplicity that

‖Ji(x)‖ < K = const., x ∈ R
n .(7)

Then F ∈ F(h, ω) with h(t) = K
∑∞

i=1Hi(t).

Note that the assumption (7) of the uniform boundedness of the functions Ji
is very strong and restrictive. We use it for simplicity only, in fact for a reasonable
theory it is sufficient to require (7) on compact subsets of Rn only and moreover
the constant K need not be the same for all i ∈ N.

Consider the generalized ordinary differential equation

dx

dτ
= DF (x, t) = D[

∞∑
i=1

Ji(x)Hi(t)],
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i.e. the integral equation

x(s) = x(γ) +
∫ s

γ

D[
∞∑
j=1

Jj(x(τ))Hj(t)], s ∈ [0,∞),

or more conveniently

x(s) = x(γ) +
∫ s

γ

∞∑
j=1

Jj(x(t))dHj(t), s ∈ [0,∞),(8)

where γ ∈ R is fixed.

Since F (x, s2)−F (x, s1) = 0 for s1, s2 ∈ (j, j + 1], j ∈ N and for s1, s2 ∈ [0, 1],
we get for a solution x of (8) on [0,∞) the relation

x(s2) = x(s1)

if s1, s2 ∈ (j, j + 1], j ∈ N or s1, s2 ∈ [0, 1], i.e the solution x is constant on [0, 1]
and on intervals (j, j + 1], j ∈ N.

Moreover, we have

x(j+) = x(j) + Jj(x(j)), j ∈ N.

If we assume that γ = 0 and x(γ) = x(0) = x̃ ∈ R
n , then for a solution x of

(8) on [0,∞) we have
x(s) = x̃, s ∈ [0, 1],

x(s) = x(1) + J1(x(1)), s ∈ (1, 2],

x(s) = x(k) + Jk(x(k)), s ∈ (k, k + 1], k ∈ N.

The solution of (8) is evidently a piecewise constant function defined on [0,∞)
which is constant on the intervals [0, 1], (k, k + 1], k ∈ N

3. Discrete equations

Let us consider equations of the form

xk+1 = Sk(xk), k ∈ N(9)

where Sk : Rn → R
n with

‖Sk(x) − Sk(y)‖ ≤ ω1(‖x− y‖)(10)

and ω1 : [0,∞) → [0,∞) has the character of a modulus of continuity.

Given x1 = x̃ ∈ R
n , by (9) a sequence (xk), k ∈ N in Rn is uniquely determined.
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Also, if xk∗ ∈ R
n is given for some k∗ ∈ N, the values xk for k ≥ k∗, k ∈ N can

be computed according to (9).

In this situation it is sometimes useful to know the ”ancestors” of xk∗ , i.e. the
values xk for k ∈ N, k < k∗ for which (9) is satisfied and of course it is nice to
have these values determined uniquely. For this reason we require that

the inverse S−1k : Rn → R
n to Sk exists for k ∈ N

and S−1k is defined on the whole Rn , i.e. the range R(Sk) of Sk equals Rn for every
k ∈ N.

Let us set

Jk(x) = Sk(x) − x(11)

for x ∈ R
n , k ∈ N. Then by (10) we have

‖Jk(x) − Jk(y)‖ ≤ ω1(‖x− y‖) + ‖x− y‖ = ω(‖x− y‖)

and ω : [0,∞) → [0,∞) has again the shape of a modulus of continuity.

Let us now consider the generalized ordinary differential equation of the form
(8) with Jk given by (11).

It can be seen immediately that given x̃ ∈ R
n the sequence (xk), k ∈ N defined

by the discrete system (9) with x1 = x̃ is such that the piecewise constant function
defined by x(s) = x1 = x̃ for s ∈ [0, 1], x(s) = xk for s ∈ (k, k + 1], k ∈ N is a
solution of the generalized ordinary differential equation (8) and vice versa: if x
is a solution of the generalized ordinary differential equation (8) on [0,∞) with
x(0) = x̃ then xk+1 = x(s), s ∈ (k, k + 1], k ∈ N gives the sequence in R

n defined
by (9) with x1 = x̃.

We conclude this section by stating that

there is a one-to-one correspondence between sequences (xk), k ∈ N given by
(9) and solutions of the generalized ordinary differential equation in the special
form (8), where Jk(x) = Sk(x) − x for x ∈ R

n , k ∈ N.

4. Some possible applications

Results known for generalized ordinary differential equations can be used for the
investigation of discrete systems of the form (9).

For example, there are many stability concepts known for discrete systems
(9) (see e.g. the book [1]). They are mostly motivated by analogous concepts for
classical ordinary differential equations.

Let us define a new stability concept for discrete equations (9)

xk+1 = Sk(xk), k ∈ N,
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where we assume that Sk(0) = 0 for every k ∈ N.

The sequence xk ≡ 0 evidently satisfies (9) and we will consider stability of
this sequence.

Definition 2. xk ≡ 0 is called variationally stable if for every ε > 0 there is a
δ = δ(ε) > 0 such that if yk0 , . . . , yk0+l, l ∈ N satisfies

‖yk0‖ < δ and
k0+l∑
j=k0

‖Sj(yj)‖ < δ,

then ‖yj‖ < ε for j = k0, . . . , k0 + l.

xk ≡ 0 is called variationally attractive if there exists a δ0 > 0 and for every
ε > 0 there exist K(ε) ∈ N, γ(ε) > 0 such that if yk0 , . . . , yk0+l, l ∈ N satisfy

‖yk0‖ < δ0 and
k0+l∑
j=k0

‖Sj(yj)‖ < γ(ε),

then ‖yj‖ < ε provided j = k0 +K(ε), . . . , k0 + l.

xk ≡ 0 is called asymptotically variationally stable if it is variationally stable
and variationally attractive.

Another concept is given by the following definition.

Definition 3. xk ≡ 0 is called stable with respect to perturbations if for every
ε > 0 there is a δ = δ(ε) > 0 such that if pk0 , . . . , pk0+l, l ∈ N satisfies

k0+l∑
j=k0

‖pj‖ < δ, yk0 ∈ R
n , ‖yk0‖ < δ

and
yk+1 = Sk(yk) + pk, k = k0, . . . , k0 + l,

then ‖yj‖ < ε for j = k0, . . . , k0 + l.

xk ≡ 0 is called attractive with respect to perturbations if there exists a δ0 > 0
and for every ε > 0 there exist K(ε) ∈ N, γ(ε) > 0 such that if

‖yk0‖ < δ0 and
k0+l∑
j=k0

‖pj‖ < γ,

then for
yk+1 = Sk(yk) + pk, k = k0, . . . , k0 + l,

we have ‖yj‖ < ε if j = k0 +K(ε), . . . , k0 + l.

xk ≡ 0 is called asymptotically stable with respect to perturbations if it is stable
and attractive with respect to perturbations.
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Similar concepts have been presented for generalized differential equations in Chap-
ter 10 of [3]. Presenting the results from [3] in terms of discrete systems we can
state e.g. the following

Theorem 5. xk ≡ 0 is variationally stable if and only if it is stable with respect
to perturbations.

xk ≡ 0 is variationally attractive if and only if it is attractive with respect to
perturbations.

For characterizing e.g. the concept of variational stability of xk ≡ 0 for (9)
the following Ljapunov-type result can be derived using the theory of generalized
ordinary differential equations (see Theorems 10.13 and 10.23 in [3]).

Theorem 6. xk ≡ 0 is variationally stable if and only if there is a sequence of
functions Vk : Bd ⊂ R

n → R, d > 0 (Bd = {x ∈ R
n ; ‖x‖ ≤ d} is the closed ball in

R
n centered at 0 with radius d) such that

a(‖x‖) ≤ Vk(x), Vk(0) = 0,

|Vk(x) − Vk(y)| ≤ K‖x− y‖

for x, y ∈ Bd, K is a constant and a : [0,∞) → R is a continuous increasing
function such that a(r) = 0 if and only if r = 0.

There is a fairly complete theory for linear generalized ordinary differential
equations (see Chapter VI in [3]) which can be used in the above described way
for investigating linear discrete systems of the form

xk+1 = Skxk + bk, k ∈ N,

where Sk ∈ L(Rn ) are n × n-matrices, bk ∈ R
n , k ∈ N. With the assumption

of existence of the inverse S−1k , k ∈ N we get a theory of linear systems with
nice properties and the results known for linear generalized ordinary differential
equations presented in [3] lead to results for linear discrete systems like variation-
of-constant formula, periodic systems, Floquet theory, multipliers, etc.
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Abstract. In the paper sufficient conditions are given under which the
equation y(n) = f(t, y, . . . , y(n−2))g(y(n−1)) has a singular solution y :
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Consider the n-th order differential equation

y(n) = f(t, y, y′, . . . , y(n−2))g(y(n−1))(1)

where n ≥ 2, f ∈ Co(R+ × R
n−1 ), g ∈ Co(R),R+ = [0,∞),R = (−∞,∞), there

exists α ∈ {−1, 1} such that

αf(t, x1, . . . , xn−1)x1 > 0 for x1 �= 0 and g(x) ≥ 0 for x ∈ R.(2)

Hence, (1) fulfills the sign condition.
A solution y defined on [T, τ) ⊂ R+ is called singular if τ < ∞ and y cannot

be defined for t = τ . A singular solution y is called nonoscillatory if y �= 0 in a left
neighbourhood of τ , otherwise it is called oscillatory.

The problem of the existence of a nonoscillatory singular solution y of (1)
fulfilling

y(i)(t)y(t) > 0, i = 0, 1, . . . , n− 1(3)

� Supported by the grant no. 201/99/0295 of the Czech Republic Grant Agency.
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in a left neighbourhood of τ is posed and studied in [5,6] (in case α = 1) for
Emden-Fowler equation

y(n) = r(t)|y|λ sgn y, r �= 0,(4)

see [1] and [2], too. For Eq. (1) the results are generalized in [7,8]. The existence
of oscillatory singular solution is proved only for Eq. (4) in [3]. Note that singular
solutions of (4) (with all derivatives) are unbounded, see e.q. [9].

On the other hand singular solutions with different asymptotic behaviour than
(3) may exist. Jaroš and Kusano announced that in [4] they studied a special case
of (1), the second order equation

y′′ = r(t)|y|σ|y′|λ sgn y, σ > 0, r < 0 on R+ .

They proved that the necessary and sufficient condition for the existence of a
singular solution y fulfilling

lim
t→τ−

y(t) = c ∈ [0,∞), lim
t→τ−

y′(t) = −∞(5)

is λ > 2; solutions fulfilling (5) are called black hole solutions.
In our paper we generalize this result for (1).
We will study the existence of a singular solution y fulfilling the conditions:

τ ∈ (0,∞), limt→τ− y
(i)(t) = ci ∈ R, i = 0, 1, . . . , n− 2,

limt→τ− |y(n−1)(t)| = ∞.(6)

This solution is nonoscillatory. Moreover the sign of y(n−1), α and c0 cannot be
arbitrary.

Lemma 1. Let y be a solution of (1) fulfilling (6).
(a) If limt→τ− y

(n−1)(t) = ∞ then αc0 ≥ 0.
(b) If limt→τ− y

(n−1)(t) = −∞ then αc0 ≤ 0.

Proof. (a) Let α = 1 for simplicity and suppose c0 < 0. Then according to (1) and
(2) y(n)(t) ≤ 0 for large t that contradicts limt→τ− y

(n−1)(t) = ∞. Hence c0 ≥ 0.
(b) The proof is similar.

Denote by [[x]] the entire part of x.

Theorem 1. Let τ ∈ (0,∞), λ > 2, c0 �= 0, ci ∈ R for i = 1, . . . , n − 2 and
M ∈ (0,∞). Let β = α sgn c0 and

g(x) ≥ |x|λ for βx ≥M.(7)

Then there exists a singular solution y of (1) fulfilling (6) that is defined in a left
neighbourhood of τ .
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If, moreover, ε > 0,

n+
1 − α

2
is odd, (−1)icic0 ≥ 0 for i = 1, 2, . . . , n− 2(8)

and ∣∣∣∣∣
∫ βε

0

ds

g(s)

∣∣∣∣∣ = ∞(9)

then y is defined on [0, τ).

Proof. We prove the statement for α = 1 and c0 > 0 (thus β = 1). For the other
cases the proof is similar.

Let N > 2 max(c0, |c1|, . . . , |cn−2|). Consider the auxilliary problem

y(n) = f
(
t, χ0, (y), χ(y′), . . . , χ(y(n−2))

)
g(y(n−1)),

y(i)(τ) = ci, i = 0, 1, . . . , n− 2, y(n−1)(τ) = k
(10)

where k ∈ {k0, k0 + 1, . . . }, k0 ≥ [[2M ]],

χ0(s) = s for c0
2 ≤ s ≤ N,

= N for s > N,
= c0/2 for s < c0/2,

χ(s) = s for |s| ≤ N,
= N for s > N,
= −N for s < −N.

(11)

Denote by yk a solution of (10) and by J1 the penetration of its definition
interval and [0, τ ]. Note, that (2), (10) and (11) yield

y
(n)
k (t) ≥ 0 on J1.(12)

Put

M1 = min{f(t, x1, . . . , xn−1) : t ∈ [0, τ ],
c0
2

≤ x1 ≤ N,

|xj | ≤ N, j = 2, . . . , n− 1} > 0,

M2 = max{f(t, x1, . . . , xn−1) : t ∈ [0, τ ],
c0
2

≤ x1 ≤ N,

|xj | ≤ N, j = 2, . . . , n− 1},

M3 =[(λ− 1)M1]
− 1

λ−1 .

Further, let J = [T, τ ] ⊂ J1 be such that T < τ ,

n−2∑
j=i

|cj |
(j − i)! (τ − T )j−i +

λ− 1
λ− 2

M3(τ − T )n−i−1−
1

λ−1 ≤ N, i = 0, 1, . . . , n− 2,

(13)

n−2∑
j=1

|cj |
j!

(τ − T )j +
λ− 1
λ− 2

M3(τ − T )n−1−
1

λ−1 ≤ c0
2

(14)
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and

M2(τ − T ) <
∫ 2M

M

ds

g(s)
.(15)

As (7), λ > 2 and n ≥ 2, J exists.
We prove that

y
(n−1)
k (t) ≥M, t ∈ J.(16)

Suppose, contrarily, that T1 ∈ [T, τ) exists such that y(n−1)k (T1) = M . Then with
respect to (10) and (12) y(n−1)k (t) ≥ M for t ∈ [T1, τ ]. From this and from (10)
and (11)

y
(n)
k (t) ≤M2g

(
y
(n−1)
k (t)

)
, t ∈ [T1, τ ]

and hence, by the integration on [T1, τ ],∫ 2M

M

ds

g(s)
≤
∫ k

M

ds

g(s)
≤M2(τ − T1) ≤M2(τ − T ).

The contradiction with (15) proves that y(n−1) �= M for t ∈ J . From this, from
(12) and y(n−1)k (τ) = k > M (16) holds.

Further, (7), (10), (11) and (16) yield

y
(n)
k (t) ≥M1g

(
y(n−1)(t)

)
≥M1

(
y(n−1)(t)

)λ

, t ∈ J

and by the integration on [t, τ ] ⊂ J we have

(y(n−1)k (t))1−λ − k1−λ ≥M1(λ− 1)(τ − t),

y
(n−1)
k (t) ≤M3(τ − t)−

1
λ−1 , t ∈ [T, τ), k ≥ k0.(17)

Hence, using the Taylor series formula at τ , (13), (17) and λ > 2, we have∣∣∣y(i)k (t)
∣∣∣ ≤ n−2∑

j=i

|cj |
(j − i)! (τ − t)

j−i +
∣∣∣∣∫ t

τ

(t− s)n−i−2
(n− i− 2)!

y
(n−1)
k (s)ds

∣∣∣∣ ≤
≤

n−2∑
j=i

|cj |
(j − i)! (τ − T )j−i +

M3(τ − t)n−i−2
(n− i− 2)!

∣∣∣∣∫ t

τ

(τ − s)− 1
λ−1 ds

∣∣∣∣
≤ N , i = 0, 1, . . . , n− 2, t ∈ [T, τ), k ≥ k0.

Similarly, using (14) and (17)

yk(t) ≥ c0 −
n−2∑
j=1

|cj |
j!

(τ − T )j − λ− 1
λ− 2

M3(τ − T )n−1−
1

λ−1 ≥ c0
2
,

t ∈ [T, τ), k ≥ k0.
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From these estimations and (11) we can see that yk is the solution of Eq. (1),
too. Moreover, the sequences {y(i)k }∞k0

, i = 0, . . . , n− 1 are uniformly bounded and
equipotentially continuous on every segment of [T, τ). Hence according to Arzel-
Ascoli Theorem there exists a subsequence that converges uniformly to a solution
y of (1). Evidently, the conditions (6) are fulfilled with limt→τ− y

(n−1)(t) = ∞.
Let (8) and (9) be valid. Let the above given solution y be defined on (τ̄ , τ) ⊂

[0, τ) and cannot be extended to t = τ̄ . Then

lim sup
t→τ̄+

∣∣∣y(n−1)(t)∣∣∣ = ∞.(18)

First, we prove that

y(n−1)(t) > 0 on (τ̄ , τ).(19)

Thus, suppose that there exists τ1 ∈ (τ̄ , τ) such that y(n−1)(τ1) = 0 and y(n−1)(t) >
0 on (τ1, τ). It follows from this and from (6) that y(j), j = 0, 1, . . . , n − 2 are
bounded, |y(j)(t)| ≤ K, j = 0, 1, . . . , n− 2, t ∈ [τ1, τ). Let τ2 ∈ (τ1, τ) be such that
y(n−1)(τ2) = ε. Then by the integration of (1) and by (9)

∞ =
∫ ε

0

ds

g(s)
=
∫ τ2

τ1

f
(
t, y(t), . . . , y(n−2)(t)

)
dt <∞.

Hence, (19) is valid, and (8) and (19) yield y(t) > 0 on (τ̄ , τ). From this and
from (1) y(n)(t) > 0 on (τ̄ , τ), that, together with (19), contradicts (18). Thus y
is defined at t = τ̄ and τ̄ = 0.

Corollary 1. Let λ > 2 and M ∈ R+ be such that

g(x) ≥ xλ for x ≥M.

Then (1) has a singular solution.

Remark 1. For α = 1 the conclusion of Corollary 1 is known, see, e.g., [9, Theorem
11.3].

The following result shows that for the existence of a singular solution with (6)
λ cannot be equal to 2.

Theorem 2. Let M ∈ (0,∞) be such that g(x) ≤ x2 for |x| ≥ M . Then Eq. (1)
has no singular solution y fulfilling (6).

Proof. Let y be singular and fulfil (6). Suppose, for simplicity, α = 1 and
limt→τ− y

(n−1)(t) = ∞. From this there exists a left neighbourhood [τ1, τ) of τ
such that |y(i)(t)| ≤ M1 < ∞ for i = 0, 1, . . . , n − 2 and y(n−1)(t) ≥ M on [τ1, τ)
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where M1 is a suitable constant. Hence, using the assumptions of the theorem we
have

∞ = ln
y(n−1)(τ)
y(n−1)(τ1)

=

τ∫
τ1

y(n)(s)
y(n−1)(s)

ds ≤
τ∫

τ1

∣∣∣f (s, y(s), . . . , y(n−2)(s)
)∣∣∣ y(n−1)(s)ds

≤
(
cn−2 − y(n−2)(τ1)

)
max |f(s, x1, . . . , xn−1)| <∞

where the maximum is taken for s ∈ [τ1, τ ], |xi| ≤ M1, i = 1, . . . , n − 1. The
contradiction proves the conclusion.

Corollary 2. Let c0 �= 0,M ∈ (0,∞) and g(x) = |x|λ for |x| ≥M . Then (1) has
a singular solution y fulfilling (6) if and only if λ > 2.

Proof. It follows from Theorems 1 and 2.

Remark 2. Note, that, especially, eq.

y(n) = f(t, y, y′, . . . , y(n−2))

has no singular solutions satisfying (6).

In the next part of the paper the case c0 = 0 will be investigated.

Theorem 3. Let β ∈ {−1, 1}, σ > 0, ε > 0, τ ∈ (0,∞), M ∈ (0,∞), α ∈ {−1, 1}

λ > σ(n− 2) + 2,(20)

c0 = 0, (−1)iβ ci ≥ 0 for i = 1, 2, . . . , n− 2,(21)

and

n+
1 − α

2
be odd.(22)

Let (7) hold and a continuous function r : R+ → R exist such that

αr(t) > 0 on R+,

|f(t, x1, x2, . . . , xn−1)| ≥ |r(t)| |x1|σ for t ∈ [0, τ ],

βx1 ∈ [0, ε], (−1)jβxj+1 ∈
[
(−1)jβcj , (−1)jβcj + ε

]
, j = 1, 2, . . . , n− 2.

Then there exists a singular solution y of (1) fulfilling (6) that is defined in a left
neighbourhood of τ . If, moreover, (9) holds, then y is defined on [0, τ).

Proof. Let α = 1 and β = 1; thus n is odd. For the other cases the proof is similar.
Put for i ∈ {0, 1, . . . , n− 2}

χi(s) = s for (−1)ici ≤ (−1)is ≤ (−1)ici + ε,
= ci + (−1)iε for (−1)is > (−1)ici + ε,
= ci for (−1)is < (−1)ici.

(23)
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Consider the Cauchy problem

y(n) = f
(
t, χ0(y), χ1(y′), . . . , χn−2(y(n−2))

)
g
(
y(n−1)

)
,

y(i)(τ) = ci, i = 0, 1, . . . , n− 2, y(n−1)(τ) = k
(24)

where k ∈ {k0, k0 + 1, . . . }, k0 ≥ [[2M ]].
Denote by yk a solution of (24) and J1 the penetration of its definition interval

and [0, τ ]. Note, that α = 1, (23), (24) yield

y
(n)
k (t) ≥ 0 and y

(n−1)
k is nondecreasing on J1.(25)

Put M1 = 1
[(n−1)!]σ mint∈[0,τ ] r(t) > 0, M2 =

[
M1

σ(n−1)+1 (λ+ σ − 1)
]− 1

λ+σ−1
,

σ1 =
σ(n− 1) + 1
λ+ σ − 1

,M3 = max f(t, x1, . . . , xn−1),

where the maximum is given for t ∈ [0, τ ], 0 ≤ x1 ≤ ε, (−1)ici ≤ (−1)ixi+1 ≤
(−1)ici + ε, i = 1, . . . , n− 2. Then (20) yields σ1 ∈ (0, 1).

Further, let J = [T, τ ] ⊂ J1 be such that T < τ ,

n−2∑
j=i

|cj |
(j − i)! (τ − T )j−i +

M2

(n− i− 2)!(1 − σ1)
(τ − T )n−i−σ1−1 ≤ (−1)ici + ε

i = 0, 1, . . . , n− 2(26)

and

M3(τ − T ) <
∫ 2M

M

ds

g(s)
.(27)

Using (27), it can be proved similarly to the proof of Theorem 1, that (16)
holds. Hence, using (21) and (22) we have

(−1)iy(i)k (t) ≥ (−1)ici ≥ 0 on J, i = 0, 1, 2, . . . , n− 2.(28)

The Taylor series formula at t = τ , (16), (21), (25) and n be odd yield

yk(t) =
n−2∑
j=0

cj
(t− τ)j

j!
+
∫ t

τ

(t− s)n−2
(n− 2)!

y
(n−1)
k (s)ds ≥

∫ t

τ

(t− s)n−2
(n− 2)!

y
(n−1)
k (s)ds

≥ (τ − t)n−1
(n− 1)!

y
(n−1)
k (t), t ∈ J,

and from (24), (16), (25), (28) and the assumptions of the theorem

y
(n)
k (t) ≥ r(t)(yk(t))σ [y(n−1)k (t)]λ ≥M1(τ − t)σ(n−1)

(
y
(n−1)
k (t)

)λ+σ

, t ∈ J.
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Hence, by the integration on [t, τ ] we obtain similarly to the proof of Theorem 1

y
(n−1)
k (t) ≤M2(τ − t)−σ1 , t ∈ [T, τ), k = k0, k0 + 1, . . .

From this, using the Taylor series formula at t = τ , (26), (28) and σ1 < 1 we have

0 ≤ (−1)ici ≤ (−1)iy(i)k (t) =
n−2∑
j=i

|cj |
(j − i)! (τ − t)

j−i +

(−1)i
∫ t

τ

(t− s)n−i−2
(n− i− 2)!

y
(n−1)
k (s)ds

≤
n−2∑
j=i

|cj |
(j − i)! (τ − t)

j−i +
M2(τ − t)n−i−1−σ1

(n− i− 2)!(1 − σ1)
≤ (−1)ici + ε,

i = 0, 1, . . . , n− 2.

Thus, according to (23), yk is a solution of Eq. (1), too and the rest of the proof
is similar as in Theorem 1.

The following theorem shows that the condition (20) cannot be weaken.

Theorem 4. Let ci = 0, i = 0, 1, . . . , n − 2, σ > 0, n ≥ 2, n + 1−α
2 be odd, α ∈

{−1, 1} and let r ∈ C0(R+ ), αr > 0 on R+ . Then the equation

y(n) = r(t)|y|σ |y(n−1)|λ sgn y(29)

has a singular solution y fulfilling (6) if, and only if λ > σ(n− 2) + 2.

Proof. In view of Theorem 3 we must prove the necessity only. Let λ ≤ σ(n−2)+2,
y be singular and fulfilling (6). Suppose, for simplicity, that r > 0, lim

t→τ−
y(n−1)(t) =

∞ and thus n be odd. In the other cases the proof is similar. Then there exists
t0 ∈ [0, τ) such that

(−1)iy(i)(t) > 0, i = 0, 1, . . . , n− 2, y(n−1)(t) ≥ 1, y(n)(t) ≥ 0 on J = [t0, τ).
(30)

Then using the Taylor series formula on [t, τ ] and (6) we obtain

y(t) =
∫ t

τ

(t− s)n−2
(n− 2)!

y(n−1)(s)ds ≤ (τ − t)n−2
(n− 2)!

|yn−2(t)|, t ∈ J.(31)

Further,

|y(n−2)(t)| =
∫ τ

t

y(n−1)(s)ds ≥ y(n−1)(t)(τ − t), t ∈ J

and hence, using (31)

y(t)[y(n−1)(t)]n−2 ≤ [y(n−2)(t)]n−1

(n− 2)!
≤M1, t ∈ J
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where M1 is a suitable number. From this,(30) and from λ ≤ σ(n− 2) + 2

∞ = ln
y(n−1)(τ)
y(n−1)(t0)

=
∫ τ

t0

y(n)(s)
y(n−1)(s)

ds =
∫ τ

t0

r(s) yσ(s)[y(n−1)(s)]λ−1ds ≤

≤Mσ
1

∫ τ

t0

r(s)[y(n−1)(s)]λ−1−σ(n−2)ds

≤Mσ
1

∫ τ

t0

r(s)y(n−1)(s)ds ≤Mσ
1 max

0≤s≤τ
r(s)

∣∣∣y(n−2)(t0)
∣∣∣ <∞.

The contradiction proves the conclusion.

The following proposition shows that condition (22) in Theorem 3 cannot be
weaken.

Proposition 1. Let β ∈ {−1, 1}, (21), cn−2 = 0 and n+ 1−α
2 be even. Then (1)

has no singular solution fulfilling (6).

Proof. Let for the simplicity α = 1 and β = −1; for the other cases the proof is
similar. Hence, n is even. Let y be a singular solution of (1) fulfilling (6). Then (1)
and (21) yield y(t) < 0, y(n−1)(t) > 0. Thus y(n)(t) > 0 in a left neighbourhood J
of τ that contradicts (1), (2) and α = 1.

Remark 3. The following conclusion follows from Corollary 2 and Theorem 4. Let
n = 2. Then Eq. (29) has a singular solution y, fulfilling (6) if, and only if λ > 2.
Hence our results generalize the above mentioned one of Jaroš and Kusano.

Open problem. It is possible to look for sufficient and (or) necessary conditions
under which there is a singular solution y of (1) satisfying

τ ∈ (0,∞), k ∈ {0, 1, . . . , n− 2},
lim
t→τ−

y(i)(t) = ci ∈ R, i = 0, 1, . . . , k,

lim
t→τ−

|y(j)(t)| = ∞, j = k + 1, . . . , n− 1.
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Abstract. In the present paper the differential equation

ẏ(t) = α(t)[y(t)− y(t− τ (t))]

with positive coefficient α and with positive bounded delay τ (which can
have the property τ (+∞) = 0) is considered. Explicit tests for convergence
of all its solutions (for t→ +∞) are proved.
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1. Introduction

We will deal with the linear homogeneous differential equation with delay

ẏ(t) = α(t) [y(t) − y(t− τ(t))] ,(1)

where α ∈ C(I,R+ ), I = [t0,∞), t0 ∈ R, R+ = (0,+∞), τ ∈ C(I,R+ ); τ(t) ≤ τ0 =
const and the difference t−τ(t) is increasing on I. Let us denote I1 = [t0+τ(t0),∞).

A function y is called a solution of Eq. (1) corresponding to initial point t∗ ∈ I
if y is defined and is continuous on [t∗ − τ(t∗),∞), differentiable on [t∗,∞) and
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satisfies (1) for t ≥ t∗. By a solution of (1) we mean a solution corresponding
to some initial point t∗ ∈ I. We denote y(t∗, ϕ)(t) a solution of Eq. (1) which
is generated by continuous initial function ϕ : [t∗ − τ(t∗), t∗] '→ R and which
corresponds to initial point t∗ ∈ I.

In the case of the linear Eq. (1) the solution y(t∗, ϕ)(t) is unique on its maximal
existence interval [t∗,∞) ([13]). We say that a solution of Eq. (1) corresponding
to initial point t∗ is convergent or asymptotically convergent if it has a finite limit
at +∞.

The main goal of this paper is to formulate and prove several explicit tests for
convergence of all solutions of Eq. (1).

Problems concerning asymptotic constancy of solutions, asymptotic convergen-
ce of solutions or existence of so called asymptotic equilibrium of various classes
of retarded functional differential equations were investigated, e.g., by O. Arino,
I. Györi and M. Pituk [1], O. Arino and M. Pituk [2], F.V. Atkinson and
J.R. Haddock [3], R. Bellman and K.L. Cooke [4], I. Györi and M. Pituk
[11], [12], K. Murakami [17], and T. Krisztin [14]–[16].

So called nonconvergence case (i.e. the case when there exists a monotone
increasing divergent solution of Eq. (1)) was considered e.g. by S.N. Zhang [18]
and by J. Dibĺık [10]. Some closely connected questions were discussed in the
cycle of recent papers by J. Čermák [5]–[8] as well.

In the paper [9] the equation

ẏ(t) =
n∑

j=1

αj(t)[y(t) − y(t− τj(t))],(2)

was considered, where αj ∈ C(I,R+ ),
∑n

j=1 αj(t) > 0 on I, τj ∈ C(I,R+ ),
functions t− τj(t), j = 1, 2, . . . , n are increasing on I and τj are bounded on I.

The following theorem is the main result of [9]:

Theorem 1. For the convergence of all solutions of Eq. (2), corresponding to the
initial point t0, a necessary and sufficient condition is that there exist functions
ki ∈ C(I,R+ ), i = 1, 2, . . . , n satisfying the system of integral inequalities

1 + ki(t) ≥ exp

 ∫ t

t−τi(t)

n∑
j=1

αj(s)kj(s) ds

 , i = 1, 2, . . . , n

on interval I1.

In this paper the following partial case of this result with respect to Eq. (1)
will be used:

Theorem 2. All solutions of Eq. (1), corresponding to the initial point t0, con-
verge if and only if there exists a function k ∈ C(I,R+ ), such that

1 + k(t) ≥ exp

[ ∫ t

t−τ(t)
α(s)k(s) ds

]
(3)
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on the interval I1.

Theorem 2 serves as a source for several explicit convergence tests. In the sequel
we will prove one test which uses the values of the function α(t) itself (point test)
and two tests which use an integral weighted average of the function α(t). Note
that the case τ(+∞) = 0 is not excluded from our investigation.

2. Point test of convergence

Theorem 3. If for a sufficiently large t

α(t) ≤ 1
τ(t)

− L

t
,(4)

where L > 1/2 is a constant, then each solution of Eq. (1) is convergent.

Proof. Without loss of generality, let us suppose t sufficiently large. Let us put

k(t) ≡ ε

t
·
(

1
τ(t)

− L

t

)−1
,(5)

where ε is a positive number (then k(t) > 0 for t → +∞), and verify inequality
(3). Develop the asymptotic expansion L(t) of the left hand side of (3). We get

L(t) = 1 + k(t) = 1 +
ε

t
·
(

1
τ(t)

− L

t

)−1
= 1 +

ετ(t)
t(1 − Lτ(t)/t)

=

1 +
ετ(t)
t

·
(

1 +
Lτ(t)
t

+
L2τ2(t)
t2

· (1 + o(1))
)
.

Here and throughout this paper “o” is the Landau symbol “small” o. The symbol
“O” used in the sequel is the Landau symbol “big” O. These symbols are used in
the neighbourhood of the point t = ∞.

Now estimate the right hand side R(t) of (3). With the aid of (4) and (5) we
get

R(t) = exp

[ ∫ t

t−τ(t)
α(s)k(s)ds

]
≤

exp

[ ∫ t

t−τ(t)

(
1
τ(s)

− L

s

)
ε

s
·
(

1
τ(s)

− L

s

)−1
ds

]
=

exp

[
ε

∫ t

t−τ(t)

1
s
ds

]
= exp

[
ε ln

t

t− τ(t)

]
=
(
t− τ(t)

t

)−ε
=
(

1 − τ(t)
t

)−ε
=

1 +
(
−ε
1

)(
−τ(t)

t

)
+
(
−ε
2

)(
−τ(t)

t

)2

· (1 + o(1)) =

1 +
ετ(t)
t

+
ε(ε+ 1)

2
· τ

2(t)
t2

· (1 + o(1)).
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We conclude that (3) will hold (supposing t0 sufficiently large) if

L(t) = 1 +
ετ(t)
t

+
εLτ2(t)
t2

+
εL2τ3(t)

t3
· (1 + o(1)) ≥

1 +
ετ(t)
t

+
ε(ε+ 1)

2
· τ

2(t)
t2

· (1 + o(1)) ≥ R(t).

Comparing corresponding terms, we can see that this will hold when L > (ε+1)/2.
Since ε is a positive number and may be chosen arbitrarily small, we get L > 1/2.
Theorem 3 is proved.

3. Integral tests of convergence

Theorem 4. If for a sufficiently large t

(6)
1
τ(t)

·
∫ t

t−τ(t)
τ(s)α(s)ds ≤ 1 − τ(t)

t− τ(t)
− τ(t)

(t− τ(t)) ln(t− τ(t))
−

Lτ(t)
(t− τ(t)) ln(t− τ(t)) ln2(t− τ(t))

,

with L > 1, L = const and ln2 t = ln ln t, then each solution of Eq. (1) is conver-
gent.

Proof. Without loss of generality, let us suppose t sufficiently large. Let us put

k(t) ≡ τ(t)
t ln t(ln2 t)ε

,

where ε > 1 is a constant. Obviously, the inequality (3) will be valid if

L(t) ≡ 1 + k(t) ≥ R(t) ≡ exp

[ ∫ t

t−τ(t)
α(s)k(s) ds

]
, t ∈ I1.(7)

We estimate the expression R(t). With the aid of the inequality (6), we have

R(t) ≤ exp(R�(t))

where

R�(t) ≡ τ(t)
(t− τ(t)) ln(t− τ(t))(ln2(t− τ(t)))ε

·
(

1 − τ(t)
t− τ(t)

−

τ(t)
(t− τ(t)) ln(t− τ(t))

− Lτ(t)
(t− τ(t))(ln(t− τ(t)))(ln2(t− τ(t)))

)
.

Let us develop the asymptotic expansion of the expression R�(t). At first, it is
trivial to verify that the following asymptotic expansions hold:

1
t− τ(t)

=
1
t

(
1 +

τ(t)
t

+
τ2(t)
t2

+ o

(
τ2(t)
t2

))
,
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1
ln(t− τ(t))

=
1

ln t

(
1 +

τ(t)
t ln t

+
τ2(t)

2t2 ln t
+ o

(
τ2(t)
t2 ln t

))
and

1
ln2(t− τ(t))

=
1

ln2 t

(
1 +

τ(t)
t ln t ln2 t

+
τ2(t)

2t2 ln t ln2 t
+ o

(
τ2(t)

t2 ln t ln2 t

))
.

Thus

R�(t) =
τ(t)

t ln t(ln2 t)ε
·
(

1 +
τ(t)
t

+
τ2(t)
t2

+ o

(
τ2(t)
t2

))
×(

1 +
τ(t)
t ln t

+
τ2(t)

2t2 ln t
+ o

(
τ2(t)
t2 ln t

))
×(

1 +
ετ(t)

t ln t ln2 t
+

ετ2(t)
2t2 ln t ln2 t

+ o

(
τ2(t)

t2 ln t ln2 t

))
×[

1 − τ(t)
t

− τ2(t)
t2

+ o

(
τ2(t)
t2

)
− τ(t)
t ln t

(
1 +

τ(t)
t

+ o

(
τ(t)
t

))
×(

1 +
τ(t)
t ln t

+ o

(
τ(t)
t ln t

))
−

Lτ(t)
t ln t ln2 t

(
1 +

τ(t)
t

+ o

(
τ(t)
t

))
·
(

1 +
τ(t)
t ln t

+ o

(
τ(t)
t ln t

))
×(

1 +
τ(t)

t ln t ln2 t
+ o

(
τ(t)

t ln t ln2 t

))]
=

τ(t)
t ln t(ln2 t)ε

·
(

1 +
ετ(t) − Lτ(t)
t ln t ln2 t

− τ2(t)
t2

+ o

(
τ2(t)
t2

))
.

At the end we get

exp(R�(t)) = 1 +
τ(t)

t ln t(ln2 t)ε
·
(

1 +
ετ(t) − Lτ(t)
t ln t ln2 t

− τ2(t)
t2

+ o

(
τ2(t)
t2

))
+

τ2(t)
2t2 ln2 t(ln2 t)2ε

·
(

1 +
ετ(t) − Lτ(t)
t ln t ln2 t

− τ2(t)
t2

+ o

(
τ2(t)
t2

))2

· (1 + o(1)) =

1 +
τ(t)

t ln t(ln2 t)ε
+
ετ2(t) − Lτ2(t)
t2 ln2 t ln1+ε

2 t
+

τ2(t)
2t2 ln2 t ln2ε2 t

+ o

(
τ3(t)
t3

)
.

For the validity of the inequality (7) it is sufficient to suppose that (for sufficiently
large t)

L(t) ≥ exp(R�(t)),

i.e. that

1+
τ(t)

t ln t(ln2 t)ε
≥ 1+

τ(t)
t ln t(ln2 t)ε

+
ετ2(t) − Lτ2(t)
t2 ln2 t ln1+ε

2 t
+

τ2(t)
2t2 ln2 t ln2ε2 t

+o
(
τ3(t)
t3

)
.
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This will hold (we take into account the supposition ε > 1) if L > ε. Since ε may
be chosen arbitrarily close to 1 – this assumption is necessary for the asymptotic
dominance of the third term in the right-hand side in above inequality, we obtain
L > 1. Theorem 4 is proved.

Theorem 5. If for sufficiently large t

1
τ(t)

·
∫ t

t−τ(t)

τ(s)α(s)
sm

ds ≤ τ(t)
(t− τ(t))m

− Lτ(t)
(t− τ(t))m+1

,

where m,L = const,m ≥ 1, L > m then each solution of Eq. (1) is convergent.

Proof. Without loss of generality, let us suppose t sufficiently large. Let us put

k(t) ≡ τ(t)
tm+p

,

where p is a positive constant. Obviously, the of inequality (3) will be valid if, as
above, inequality (7) holds. Let us develop (suppposing t sufficiently large) the
asymptotic expansion of R(t). We get

R(t) ≡ exp

[ ∫ t

t−τ(t)

τ(s)α(s)
sm+p

ds

]
≤ exp

[
1

(t− τ(t))p

∫ t

t−τ(t)

τ(s)α(s)
sm

ds

]
≤

exp
[

τ(t)
(t− τ(t))m+p

− Lτ2(t)
(t− τ(t))m+p+1

]
=

1 +
τ(t)

(t− τ(t))m+p
− Lτ2(t)

(t− τ(t))m+p+1
+

τ2(t)
2(t− τ(t))2(m+p)

(1 + o(1)) =

1 +
τ(t)
tm+p

(
1 − τ(t)

t

)−(m+p)

− Lτ2(t)
tm+p+1

(
1 − τ(t)

t

)−(m+p+1)

+O

(
τ2(t)
t2(m+p)

)
=

1 +
τ(t)
tm+p

(
1 +

(m+ p)τ(t)
t

+O

(
τ2(t)
t2

))
−

Lτ2(t)
tm+p+1

(
1 +O

(
τ(t)
t

))
+O

(
τ2(t)
t2(m+p)

)
=

1 +
τ(t)
tm+p

+
(m+ p)τ2(t) − Lτ2(t)

tm+p+1
+O

(
τ3(t)
tm+p+2

)
+O

(
τ2(t)
t2(m+p)

)
.

Now, for

L(t) ≡ 1 +
τ(t)
tm+p

≥

1 +
τ(t)
tm+p

+
(m+ p)τ2(t) − Lτ2(t)

tm+p+1
+O

(
τ3(t)
tm+p+2

)
+O

(
τ2(t)
t2(m+p)

)
≥ R(t)

is m + p > 1 (this assumption is necessary for the asymptotic dominance of the
third term in the right-hand side in above inequality) and L > (m+ p) sufficient.
Since p may be arbitrarily small positive number, we have L > m. Theorem 5 is
proved.
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4. Concluding remarks

4.1. Sharpness of Theorem 3.

Let Eq. (1) has the form

ẏ(t) =
(
t− a

t

)
[y(t) − y(t− 1/t)](8)

with a > 1/2, a =const; i.e. α(t) = t− a/t and τ(t) = 1/t. Note that τ(+∞) = 0.
It is easy to see that the inequality (4) holds since the inequality

α(t) = t− a

t
≤ t− L

t
=

1
τ(t)

− L

t

is valid for 1/2 < L ≤ a. In accordance with Theorem 3, each solution of Eq. (8)
is convergent.

In the sequel we will show that the interval a > 1/2 is the best possible. Namely,
we will show that the property of convergence of all solutions of equation (8) is not
valid for a = 1/2. In paper [10] (see Theorem 2 in [10]), the following is proved:

Theorem 6. Equation (1) has a solution y(t) with property y(+∞) = +∞ if and
only if the inequality

ω̇(t) ≤ α(t) [ω(t) − ω(t− τ(t))]

has a solution ω(t) with property ω(+∞) = +∞.

So, it is sufficient to show that, in the case of equation (8) with a = 1/2, the
inequality

ω̇(t) ≤
(
t− 1

2t

)
[ω(t) − ω(t− 1/t)](9)

has a solution ω(t) with the property ω(+∞) = +∞. It is easy to verify that the
function

ω(t) = ln t

is such solution of inequality (9).

4.2. A comparison with Atkinson – Haddock’s results.

Let us use the equation (8) as a concrete example of the equation (1) again and let
us show with its aid that our convergence results are in some sense more general
than the results given in [3].

Really, by Theorem 3.3 in [3] all solutions of equation (1) will converge if for a
sufficiently large t ∫ t+r

t

α(s)ds ≤ 1 − r

t
− K

t ln t
(10)
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with some K > r where r is a positive constant which bounds delay. In the case
of the equation (8) the left hand side of the inequality (10) equals∫ t+r

t

α(s)ds =
∫ t+r

t

(
s− a

s

)
ds =

[
1
2
s2 − a ln s

]t+r

t

= rt+
r2

2
− a ln

(
1 +

r

t

)
and

lim
t→+∞

∫ t+r

t

α(s)ds = ∞.

So inequality (10) does not hold for a positive r. Nevertheless in this case our
Theorem 4 holds for a > 1 since the left hand side of inequality (6)

1
τ(t)

·
∫ t

t−τ(t)
τ(s)α(s)ds = t

∫ t

t−1/t

1
s

(
s− a

s

)
ds = 1 − a

t2 − 1

is not greater than the right hand side of inequality (6) which equals

1 − 1
t2 − 1

− 1
(t2 − 1) ln(t− 1/t)

− L

(t2 − 1) ln(t− 1/t) ln2(t− 1/t)
.

Note that, except this, Theorem 4 generalizes Theorem 3.3 even in the case when
the delay is constant, i.e. in the case when τ(t) ≡ τ0 > 0.

4.3. Comparisons with sufficient conditions of convergence given in

[9].

Sufficient conditions of convergence given in [9] (Theorems 8 – 10 in [9]), with
respect to the equation (1), are:

Theorem 7. If for a sufficiently large t

α(t) ≤ 1
τ0

− M1

t

where M1 > 1/2 is a constant, then each solution of Eq. (1) is convergent.

Theorem 8. If for a sufficiently large t∫ t+τ0

t

α(s)ds ≤ 1 − τ0
t
− τ0
t ln t

− M2

t ln t ln2 t

where M2 > τ0,M2 =const, then each solution of Eq. (1) is convergent.

Theorem 9. If for a sufficiently large t∫ t+τ0

t

α(s)
sm

ds ≤ 1
tm

− M3

tm+1

where m,M3 =const, m > 1,M3 > τ0m, then each solution of Eq. (1) is conver-
gent.
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The Theorems 7, 8, 9 are at the same time consequences of our Theorems 3, 4,
5 if the delay is constant. Really, putting τ(t) ≡ τ0 > 0 and L = M1 in Theorem
3; L = M2/τ0 in Theorem 4, and L = M3/τ0 in Theorem 5 we get (after the shift
t→ t+ τ0), consequently, Theorems 7, 8, 9.
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p(t)[x(t)− x(t− 1)], J. Anhui University (Natural Science Edition) 2 (1981), 11–21.
[In Chinese]



ARCHIVUM MATHEMATICUM (BRNO)
Tomus 36 (2000), 415–420, CDDE 2000 issue

A NOTE ON DIFFERENTIAL AND INTEGRAL EQUATIONS IN
LOCALLY CONVEX SPACES

Daria Bugajewska
1
and Dariusz Bugajewski

2

1 Faculty of Mathematics and Computer Science, Adam Mickiewicz University
ul. Matejki 48/49, 60-769 Poznań, Poland
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Abstract. In this survey paper we consider differential and integral equa-
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1. Introduction

Consider the initial value problem

x′ = f(t, x), x(0) = x0,(1)

where f is a bounded continuous function taking values in a quasicomplete locally
convex space E. The idea to consider problem (1) in these spaces goes back to
Millionščikov [13] and Hukuhara [8] who proved that (1) has a solution if the
function f is compact or it satisfies the Kamke condition. The existence of solutions
of (1) under different assumptions on E or f has been investigated later by many
authors (see e.g. [1], [12] and [18]).
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Moreover, there have appeared recently papers concerning the existence and
topological structure of solutions of nonlinear integral equations in locally convex
spaces (see e.g. [9] and [18]).

In Section 2 we present recently obtained by us Kneser type theorems for the
equation of nth order in quasicomplete locally convex spaces. The main conditions
in these results are formulated in terms of the Sadovski measure of noncompactness
(see [16] for the definition and properties).

In Section 3 we consider sequentially complete locally convex spaces. Moreover,
we assume that these spaces contain a compact barrel. In [1] Astala gave the
following characterization of these spaces.

Lemma 1. E is a sequentially complete locally convex space containing a compact
barrel iff

E = (X ′, τ),

where X ′ is the dual of a barrelled normed space X and τ is a locally convex
topology of X ′ that is stronger than the w∗-topology but weaker than the topology
of precompact convergence; briefly

σ(X ′, X) ≤ τ ≤ λ(X ′, X).

By the above lemma we can use in the space E the notion of the norm.
Moreover, in [1] Astala proved that for each continuous mapping f : [0, a] ×

E → E, where E is as above, there exists a local solution of the problem (1).
Additionally, he noted that applying the method from [17] one can prove that
there exists an interval J ⊂ I such that the set of all solutions of (1), defined on J ,
and considered as a subset of the space C(J,E) of all continuous functions J → E
with the topology of uniform convergence is compact and connected; shortly: it
has the Kneser property.

Here we present results concerning the existence of continuous solutions of the
nonlinear Volterra integral equation

x(t) = g(t) +
∫

A(t)

f(t, s, x(s))ds, t ∈ A,(2)

and the Urysohn integral equation

x(t) = g(t) + λ

∫
A

f(t, s, x(s))ds, t ∈ A, λ ∈ R,(3)

considered in the space E, where A = [0, a1] × [0, a2] × . . . × [0, an] (ai > 0,
i = 1, . . . , n) and A(t) = {s ∈ R

n : 0 ≤ si ≤ ti, i = 1, . . . , n}. In the above
equations the sign ”

∫
” stands for the Riemann integral.

Moreover, we characterize the topological structure of the solutions of (2) and
the Darboux problem for the hyperbolic type equation.
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2. Differential equation of nth order

Let E be a quasicomplete locally convex space and let P be a family of seminorms
which generate the topology of E. Moreover, let I = [0, a] be a compact interval
in R and B = {x ∈ E : pi(x) ≤ b, i = 1, . . . , k}, b > 0, k ∈ N and p1, . . . , pk ∈ P .

Consider the problem

x(n) = f(t, x)(4)

x(j)(0) = xj , j = 0, . . . , n− 1,

where xj ∈ E for j = 0, . . . , n − 1, x0 = 0 and f : I × B → E is a bounded,
continuous function.

Denote by (βp(·))p∈P the Sadovski measure of noncompactness. Define

ϕp(t,X) = lim
r→0+

βp(f(Itr ×X)) for t ∈ (0, a) and X ⊂ B,

where Itr = (t−r, t+r)∩I (cf. [14]). Moreover, let Bp(0, r) = {x ∈ E : p(x) ≤ r}.

Theorem 1. ([3]) Assume that for every seminorm p ∈ P there exists a contin-
uous function up, defined on I and such that up(t) > 0 for t > 0, up(0) = . . . =
u
(n−1)
p (0) = 0, u(n)p (t) is positive , integrable in Lebesgue sense and

ϕp(t,X) ≤ u
(n)
p (t)
up(t)

βp(X)(5)

for t ∈ (0, a) and for every bounded set X ⊂ B, and

lim
t→0+ r→0+

βp(f(t, Bp(0, r)))

u
(n)
p (t)

= 0.(6)

Then there exists an interval J = [0, d] ⊂ I such that the set of all solutions of
(4), defined on J and considered as a subset of the space C(J,E) is nonempty,
compact and connected.

Note that the assumption (5) in Th. 2 is inspirated by the paper [7]. In the
case of separable spaces Th. 2 has a simpler form, namely, the following theorem
holds.

Theorem 2. ([3]) If the space E is separable, then Theorem 2 remains true, if
one replaces the assumption (5) by the following one

βp(f(t,X)) ≤ u
(n)
p (t)
up(t)

βp(X).(7)

where X ⊂ B is any bounded set, t ∈ (0, a] and p ∈ P.



418 D. BUGAJEWSKA AND D. BUGAJEWSKI

Using another method of a proof as in the case of Th. 1 and Th. 2, namely
Reichert’s connectness principle from [15], the first author of this paper proved
the following

Theorem 3. ([2]) In the assumptions of Th.1 instead of (6) assume that

lim
t→0+ r→0+

ϕp(t, Bp(0, r))

u
(n)
p (t)

= 0.

Then there exists an interval J = [0, d] ⊂ I such that the set of all solutions of
(4), defined on J , is nonempty, compact and connected in C(J,E).

3. Nonlinear integral equations

Consider first the equation (2). Arguing similarly as in [1] we obtain the following

Theorem 4. ([4]) Assume that the functions g : A→ E and f : A2 ×E → E are
continuous. Then the equation (2) has a local continuous solution.

To prove the above theorem we construct the sequence of the approximate
solutions of the problem (2) and applying generalized Ascoli’s theorem ([10], p.81)
we show that this sequence has a convergent subsequence to the solution of (2).

The following Kneser-type theorem extends Th. 4.

Theorem 5. ([5]) Under the above assumptions there exists a set

J = [0, d1] × [0, d2] × . . .× [0, dn] ⊂ A

such that the set S of all continuous solutions of (2), defined on J , is nonempty,
compact and connected in the space C(J,E).

To prove Th. 5 one can not apply the method from [17]. Now, we sketch the
idea of the proof of Th. 5. Let r be any positive number. Since the ball Br = {x ∈
E : ‖x‖ ≤ r} is convex, ballanced, closed, bounded and sequentially complete,
in view of the Banach-Mackey theorem ([10], p.91) it is absorbing by the barrel
and therefore it is compact. Hence for every number r > 0 there exists a number
mr > 0 such that

‖f(t, s, x)‖ ≤ mr for (t, s) ∈ A and x ∈ Br

(cf. Lemma 1). Now, knowing that f is locally bounded we can define J = [0, d1]×
[0, d2] × . . . × [0, dn] in the classical way. Denote by B̃ the set of all continuous
functions J → Bb, where b is the suitably choosen number. We consider B̃ as a
subspace of C(J,E). Set

G(x)(t) = g(t) +
∫

A(t)

f(t, s, x(s))ds, t ∈ J, x ∈ B̃.
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One can easy show that G(B̃) ⊂ B̃ and the family G(B̃) is equiuniformly continu-
ous. Moreover, in view of the Krasnoselski-Krein-type lemma (cf. [11]) we deduce
that G is continuous.

For any ε > 0 denote by Sε the set of all x ∈ B̃ such that ‖x(t) −G(x)(t)‖ < ε
for every t ∈ J . It can be proved (cf. [6]) that for sufficiently small ε > 0, the
set Sε is nonempty and connected. Using this fact, the generalized Ascoli theorem
and the continuity of G we infer that S is nonempty and compact.

To prove that S is connected it is enough to apply standard arguments as e.g.
in [6].

Now, we pass to the equation (3). As in the above theorems we assume that
the functions g : A → E and f : A2 × E → E are continuous. Our next result is
the following

Theorem 6. ([5]) Under the above assumptions there exists η > 0 such that for
λ ∈ R with | λ |< η, the equation (3) has a continuous solution defined on A.

Analogously as in the proof of Th. 5 we deduce that f is locally bounded, next
we define η and the subset B̃ ⊂ C(A,E) in the classical way. Put

G(x)(t) = g(t) + λ

∫
A

f(t, s, x(s))ds, t ∈ A, x ∈ B̃.

The operator G maps continuously B̃ into itself. Let V = convG(B̃). By the
generalized Ascoli theorem we deduce that V is compact and we can apply the
Schauder-Tychonoff theorem for the mapping G |V .

Now, let pass on to the Darboux problem for the hyperbolic partial differential
equation.

Let B = {z ∈ E : ‖z‖ ≤ b}, A = [0, a1] × [0, a2] (a1, a2 > 0) and let
f : A×B → E be a continuous mapping. Again, by the Banach-Mackey theorem
the mapping f is norm-bounded on A×B. In view of this, we choose a subrectangle
J = [0, d1]×[0, d2] in the classical way and consider the following Darboux problem

∂2z

∂x∂y
= f(x, y, z), (x, y) ∈ J,

z(x, 0) = 0, 0 ≤ x ≤ d1, z(0, y) = 0, 0 ≤ y ≤ d2.(8)

It can be easily seen that the problem (8) is equivalent to the following integral
equation

z(x, y) =

x∫
0

y∫
0

f(ξ, η, z(ξ, η))dξdη, (x, y) ∈ J,
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where the sign”
∫ ∫

” stands for the Riemann integral. In view of this equivalence,
as a corollary from Th. 5 we obtain the following Kneser-type characterization for
the problem (8).

Theorem 7. ([5]) Under the above assumptions the set of all solutions of (8),
defined on J , is nonempty, compact and connected in C(J,E).
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Jan Čermák
�

Dept. of Math., Faculty of Mechanical Engineering, Brno University of Technology
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solutions of the delay differential equation

ẋ(t) = −a(t)x(t) + b1(t)x(τ1(t)) + b2(t)x(τ2(t))
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1. Introduction

We study the functional differential equation

ẋ(t) = −a(t)x(t) + b1(t)x(τ1(t)) + b2(t)x(τ2(t)), t ∈ I = [t0,∞),(1)

where a(t) is a positive continuous function on I, bi(t) are continuous functions
on I, τi(t) are continuously differentiable and unbounded functions on I such that
τi(t0) = t0, τi(t) < t for every t > t0, τ̇i(t0) < 1 and τ̇i(t) are nonincreasing on
I, i = 1, 2. We assume that all these conditions are fulfilled throughout the whole
paper.
� The research was supported by the grant # A101/99/02 of the Grant Agency of the
Academy of Sciences of the Czech Republic
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The investigation of these equations has been motivated by the equation

ẋ(t) = a x(t) + b x(λt), 0 < λ < 1(2)

arising in the problem of the motion of a pantograph head on an electric locomo-
tive. Equation (2) and its modifications has been subject of numerous investiga-
tions (for the methods and results see, e.g., G. Derfel [4] , A. Iserles [6], T. Kato
and J. B. McLeod [7], E. B. Lim [9], Y. Liu [10], G. Makay and J. Terjéki [11],
L. Pandolfi [13] and papers [2], [3]). In this paper, we wish to extend some of the
asymptotic results discussed in these papers to the case of the equation (1).

2. Preliminaries

Choose any σ ∈ I and let σ∗ = min{τi(σ), i = 1, 2}. By a solution of (1) we
understand a real valued function x(t) ∈ C0([σ∗,∞)) ∩ C1([σ,∞)) such that x(t)
satisfies (1) for every t ≥ σ.

The key tool in our investigations is the theory of functional equations in a
single variable. The survey of the methods and results concerning this theory can
be found in the book M. Kuczma, B. Choczewski, R. Ger [8]. In this section, we
mention the problem of the existence of the simultaneous solution of the system
of the Schröder’s equations

ϕ(τ1(t)) = λ1ϕ(t),(3)
ϕ(τ2(t)) = λ2ϕ(t),

where t ∈ I, λ1 and λ2 are suitable reals parameters. We have the following

Proposition 1. Let λ1 = τ̇1(t0), λ2 = τ̇2(t0) and τ1 ◦ τ2 = τ2 ◦ τ1 on I. Then the
system (3) has a solution ϕ(t) ∈ C1(I) with a positive and bounded derivative on
I.

Proof. First we consider a single equation of the system (3), e.g.,

ϕ(τ1(t)) = λ1ϕ(t), t ∈ I.(4)

The existence of the solution ϕ(t) ∈ C1(I) having a positive derivative on I fol-
lows from the classical result of the theory of functional equations (see, e.g., [8]).
Differentiating (4) we obtain

ϕ̇(τ1(t)) =
λ1
τ̇1(t)

ϕ̇(t).

The inequality λ1
/
τ̇1(t) ≥ 1 now implies the boundedness of ϕ̇(t) on I.

It remains to show that ϕ(t) defines also a solution of the latter equation of
(3). This problem has been dealt with in [1] (see also F. Neuman [12] and M.
Zdun [14]). By Proposition 3 of [1], the necessary and sufficient condition for the
existence of the simultaneous solution ϕ(t) of (3) is the commutativity of the
couple τ1(t), τ2(t). -.
Remark 1. The required solution of (3) can be given in several important cases
explicitly. These cases are discussed in Section 4.
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3. Asymptotic behaviour of the solutions

In this section, we mention the main result concerning equation (1).

Theorem 1. Let τ1(t), τ2(t) be commutable functions on the interval I. Let λ1 =
τ̇1(t0), λ2 = τ̇2(t0) and let ϕ(t) ∈ C1(I) be a solution of (3) with a positive and
bounded derivative on I. Let x(t) be a solution of (1), where a(t) ≥ K

/
(ϕ(t))β

and 0 < |b1(t)|+ |b2(t)| ≤ La(t) for every t ∈ I and suitable reals K,L > 0, β < 1.
Then

x(t) = O((ϕ(t))α) as t→ ∞, α =
logL

logλ−1
, λ = max(λ1, λ2).(5)

Proof. The function ϕ(t) is obviously positive for all t > t0. Then the substitution

s = logϕ(t), z(s) = (ϕ(t))−αx(t),(6)

where t > t0, converts equation (1) into the form

z′(s) = −(a(h(s))h′(s)+α)z(s)+b1(h(s))λαh′(s)z(s−c1)+b2(h(s))λαh′(s)z(s−c2),
where s ∈ J = [s0,∞). Here ”′” means d

/
ds, h(s) ≡ ϕ−1(es) on J , c1 = logλ−11 ,

c2 = logλ−12 and s0 > logϕ(t0). Then

d
ds

[
exp{αs+

∫ h(s)

s0

a(u) du}z(s)
]

=(7)

b1(h(s))λαh′(s) exp{αs+
∫ h(s)

s0

a(u) du}z(s− c1)

+b2(h(s))λαh′(s) exp{αs+
∫ h(s)

s0

a(u) du}z(s− c2).

Due to the boundedness of ϕ̇(t) on I

1
h′(s)

=
ϕ̇(h(s))
ϕ(h(s))

= O(e−s) as s→ ∞.

From here we get

a(h(s))h′(s) ≥Me(1−β)s(8)

for a suitable real M > 0 and every s ≥ s0. Then we can choose d0 ≥ s0 such
that α + a(h(s))h′(s) > 0 for every s ≥ d0. Put c = min(c1, c2), di = d0 + ic,
Ji = [di−1, di] and Mi = max{|z(s)|, s ∈ ∪i

k=1Jk}, i = 1, 2, . . . . If we choose any
s∗ ∈ Ji+1, then we can integrate (7) over [di, s∗] to obtain

exp{αs+
∫ h(s)

s0

a(u) du}z(s)
∣∣s∗
di

=∫ s∗

di

b1(h(s))λαh′(s) exp{αs+
∫ h(s)

s0

a(u) du}z(s− c1) ds

+
∫ s∗

di

b2(h(s))λαh′(s) exp{αs+
∫ h(s)

s0

a(u) du}z(s− c2) ds.
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Then

z(s∗) = exp{α(di − s∗) −
∫ h(s∗)

h(di)

a(u) du}z(di)

+ exp{−
∫ h(s∗)

s0

a(u) du− αs∗}

×(
∫ s∗

di

b1(h(s))λαh′(s) exp{αs+
∫ h(s)

s0

a(u) du}z(s− c1) ds

+
∫ s∗

di

b2(h(s))λαh′(s) exp{αs+
∫ h(s)

s0

a(u) du}z(s− c2) ds).

Consequently,

|z(s∗)| ≤ Mi exp{α(di − s∗) −
∫ h(s∗)

h(di)

a(u) du}(9)

+Mi exp{−
∫ h(s∗)

s0

a(u) du− αs∗}

×
∫ s∗

di

(|b1(h(s))| + b2(h(s))|)λαh′(s) exp{αs+
∫ h(s)

s0

a(u) du} ds

≤ Mi exp{α(di − s∗) −
∫ h(s∗)

h(di)

a(u) du}

+Mi exp{−
∫ h(s∗)

s0

a(u) du− αs∗}

×
∫ s∗

di

a(h(s))h′(s) exp{αs+
∫ h(s)

s0

a(u) du} ds.

Now we estimate the last integral as∫ s∗

di

a(h(s))h′(s) exp{αs+
∫ h(s)

s0

a(u) du} ds ≤

exp{αs+
∫ h(s)

s0

a(u) du}
∣∣s∗
di

+ |α|
∫ s∗

di

exp{αs+
∫ h(s)

s0

a(u) du} ds.

Rewrite the last term as

|α|
∫ s∗

di

exp{αs+
∫ h(s)

s0

a(u) du} ds =∫ s∗

di

|α|
α+ a(h(s))h′(s)

d
ds

[exp{αs+
∫ h(s)

s0

a(u) du}] ds.

Notice that due to (8)

|α|
α+ a(h(s))h′(s)

= O(exp{(β − 1)s}) as s→ ∞.
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Put γ = 1 − β > 0. Then∫ s∗

di

|α|
α+ a(h(s))h′(s)

d
ds

[exp{αs+
∫ h(s)

s0

a(u) du}] ds ≤

N

∫ s∗

di

e−γs
d
ds

[exp{αs+
∫ h(s)

s0

a(u) du}] ds ≤

Ne−γdi exp{αs+
∫ h(s)

s0

a(u) du}
∣∣s∗
di

for a suitable N > 0. Consequently,∫ s∗

di

a(h(s))h′(s) exp{αs+
∫ h(s)

s0

a(u) du} ds ≤

exp{αs+
∫ h(s)

s0

a(u) du}
∣∣s∗
di

(1 +N e−γdi).

Substituting this back into (9) we obtain

|z(s∗)| ≤ Mi exp{α(di − s∗) −
∫ h(s∗)

h(di)

a(u) du}

+Mi exp{−
∫ h(s∗)

s0

a(u) du− αs∗}

× exp{αs+
∫ h(s)

s0

a(u) du}
∣∣s∗
di

(1 +N e−γdi)

≤ Mi(1 +N e−γdi).

Consequently,

Mi+1 ≤Mi(1 +N e−γdi) ≤M1

i∏
k=1

(1 +N e−γdk), i = 1, 2, . . . .

Letting i→ ∞ we can see that the infinite product

∞∏
k=1

(1 +N e−γdk)

converges. This implies that (Mi) is bounded as i → ∞, hence z(s) is bounded
as s→ ∞. Substituting this back into (6) we obtain the asymptotic property (5).
This completes the proof. -.

Remark 2. The validity of the previous statement can be easily generalized to the
case when equation (1) with m delayed arguments is considered.
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Remark 3. It is easy to verify that the function ω(t) =
(
ϕ(t)

)α occuring in (5)
defines the solution of the functional equation

ω
(
τ(t)

)
=
ω(t)
L
,

where τ(t) = max
(
τ1(t), τ2(t)

)
, t > t0.

4. Applications

In this section, we specify delays τ1(t), τ2(t) in (1) to illustrate our asymptotic
result.

Example 1. We consider the equation

ẋ(t) = −a(t)x(t) + b1(t)x(λ1t) + b2(t)x(λ2t), t ∈ I = [0,∞),(10)

where 0 < λ1 < λ2 < 1, a(t), b1(t), b2(t) ∈ C0(I). The corresponding system of
Schröder’s equations is

ϕ(λ1t) = λ1ϕ(t),
ϕ(λ2t) = λ2ϕ(t)

and admits the identity function ϕ(t) = t as the required solution. Then we can
reformulate the main result as follows:

Let a(t) ≥ K
/
tβ , 0 < |b1(t)|+ |b2(t)| ≤ La(t) for every t ∈ I and suitable reals

K, L > 0 and β < 1. If x(t) is a solution of (10), then

x(t) = O(tα) as t→ ∞, α =
logL

logλ−12

.

This asymptotic estimate generalizes some parts of [7], [11] and [3]. Particularly,
if we consider the equation

ẋ(t) = β1(t)[x(λ1t) − x(t)] + β2(t)[x(λ2t) − x(t)], t ∈ I(11)

(i.e. L = 1), where β1(t), β2(t) ≥ K
/
tβ for every t ∈ I and suitable reals K > 0,

β < 1, then all the solutions of (11) are bounded. We note that equation (11) with
βi(t) < 0 and constant delays has been investigated by J. Dibĺık [5].

Example 2. Now we investigate the asymptotic behaviour of the solutions of the
equation

ẋ(t) = −a(t)x(t) + b1(t)x(tγ1) + b2(t)x(tγ2), t ∈ I = [1,∞),(12)

where 0 < γ1 < γ2 < 1, and a(t), b1(t), b2(t) ∈ C0(I). It is easy to verify that the
corresponding system of Schröder’s equations

ϕ(tγ1) = γ1ϕ(t),
ϕ(tγ2) = γ2ϕ(t)
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has the solution ϕ(t) = log t. Substituting this into (5) we get that if a(t) ≥
K
/

(log t)β and 0 < |b1(t)| + |b2(t)| ≤ La(t) for every t ∈ I and suitable reals
K, L > 0, β < 1, then

x(t) = O
(
(log t)α

)
as t→ ∞, α =

logL
log γ−12

for all the solutions x(t) of (12).
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1. Čermák J., Note on simultaneous solutions of a system of Schröder’s equations, Math.
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The systematic study of algebraic aspects of transformations of differential and
difference operators applied to investigation of differential and difference equations
is of a persistent interest. General algebraic approach to the transformation the-
ory is described in [13], more in detail see also [12] and other related papers
of Professor Neuman. This fruitful direction has been iniciated by Professor O.
Bor̊uvka in the 1950s in the framework of his intensive research of linear differ-
ential transformations of the second order - [3]. The theory dominating by high
level of algebraization and geometrization is developing by the Bor̊uvka’s school
and his succesors up to present times.

In contemporary investigations of algebraic and geometrical structures an im-
portant role is playing by hyperstructures, formerly called multistructures, which
occur very naturally in convexity theory, harmonic analysis, in projective and affine
geometry, in the decomposition theory of noncommutative algebraic structures and
elsewhere, cf. [2,4,6,7,8,11,14,15,16].
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In this contribution we give construction of multistructures determined by
quasi-orders defined by means of derivation operators on differential rings. Some
constructions based on results of [4], par.1 chapter IV and of paper [5] are possible
for general differential rings, the other are specialized.

Recall basic concepts overtaken e.g. from [6]. A multigroupoid or a hyper-
groupoid (in recent literature) is a pair (M, ·), where M is a nonempty set and
a mapping · : M ×M → P∗(M) (the system of all nonempty subsets of M) is a
binary multioperation called also a hyperoperation. This multioperation is usually
extended onto the powerset P(M) by the rule A.B =

⋃
{a.b; a ∈ A, b ∈ B} for any

pair A �= ∅ �= B, where A,B ⊂ M and moreover by ∅.A = ∅ = A.∅. It is to be
noted that operations on powersets of carriers of ternary relational structures were
used by Professor M. Novotný in a series of his papers - started by [14] - including
also investigations of relationships between ternary structures and multistructures.
If this multioperation is associative (here A.B =

⋃
{a.b; a ∈ A, b ∈ B} for any pair

A �= ∅ �= B, A,B ⊆ M) then (M, ·) is called a semihypergroup, if (M, ·), more-
over, satisfies the reproduction axiom - a.M = M = M.a for any a ∈ M - then
(M, ·) is said to be a multigroup or a hypergroup. We will use the latter terms. A
hypergroupoid satisfying the reproduction axiom is called a quasi-hypergroup.

Let (R,+, .,∆R) be a commutative differential ring, i.e. (R,+, .) is a commu-
tative ring, ∆R is a set of derivations on the set R, which means that ∆R is a
subset of the endomorphism monoid End(R,+) of the additive abelian group of
the ring (R,+, .) satisfying the differentiation rule. Thus for d ∈ ∆R and any pair
of elements x, y ∈ R we have d(x+ y) = d(x) + d(y) and d(x.y) = d(x).y+ x.d(y).
Moreover we suppose that any d : R→ R is surjective. A differential structure ∆R

of a ring can be endowed with the Lie multiplication d1 /L d2 = d1d2 − d2d1; then
(R,+, /L) is a Lie ring of derivations. If ∆R = {d} is a singleton we say that this
differential structure is monogeneous.

By R,R+,N we denote the set of all real, positive real numbers, positive
integers, respectively.

Examples 1. Let J = (a, b) ⊆ R (possibly J = R) and C∞(J) - as usually -
be the ring of real functions f : J → R with continuous derivatives of all orders.
If ∆ = { d

dx}, where df
dx = f ′ is the usual derivative of a function f ∈ C∞(J), then

(C∞(J),+, .,∆) is a differential ring with a monogenous differential structure.
2. Let R[x1, . . . , xn], [x1, . . . , xn] ∈ Rn (for a fixed integer n) be the ring of all

polynomials with coefficients in the field (R,+, .). Denoting
∆ = {

∑n
1 λk.

∂
∂xk

; [λ1, . . . , λn] ∈ Rn} we obtain (R[x1, . . . , xn],+, .,∆) as an ex-
ample of a differential ring.

Other examples can be found e.g. in [9,10] The join operation · in a hyper-
groupoid (M, ·) has two inverses - right extension and left extension - defined by
a/b = {x; a ∈ x · b} and b\a = {x; a ∈ b · x} called also right and left fractions, re-
spectively. The reproductive axiom for (M, ·) is easily seen to be equivalent to the
condition that fractions a/b, b\a are nonempty for any pair a, b ∈ M . In the case
of a commutative join operation · evidently a/b = b\a. Now, a hypergroup (M, ·)
is called a join space if it is commutative and satisfies the transposition axiom: For
any quadruple a, b, c, d ∈M the implication a/b∩c/d �= ∅ ⇒ a.d∩c.d �= ∅ is valid -
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[6,7,8]. The concept of a join space has been introduced by W. Prenowitz and used
by him and afterwards by him and J. Jantosciak to build again several branches
of geometry. Recall that a self-map f of a hypergroupoid (M, .) is called a good
endomorphism of (M, .) if it satisfies these set equalities f(x, y) = f(x).f(y) for
any pair x, y ∈M .

Let (R,+, ·,∆R) be a differential (non necessary commutative) ring,M(∆R) be
the free monoid over∆R within the full transformation monoid of R (i.e. M(∆R) is
the set of all finite words d1 . . . dn, dk ∈ ∆R including the empty word Λ, identified
with the identity operator idR, endowed with the binary operation of concatena-
tion). We define d1 . . . dn(x) = dn(. . . (d1(x)) . . . ) which means application of the
composition of operators d1, . . . , dn- in this order - to the element x ∈ R.

Theorem 1. Let (R,+, ·,∆R) be a differential ring. Let x ∗ y = {d1 . . . dn(z); z ∈
{x, y}, dk ∈ ∆R, n ∈ N} = {δ(z); z ∈ {x, y}, δ ∈M(∆R)}. Then we have

1◦ (R, ∗) is a commutative hypergroup such that any differential endomorphism
of the ring (R,+, ·,∆R) (i.e. f ∈ End(R,+, ·) with f(dk(x)) = dk(f(x)), x ∈ R) is
a good endomorphism of (R, ∗).

2◦ The hypergroup (R, ∗) satisfies the transposition law, hence it is a join space
if and only if for any pair of elements x, y ∈ R such that there exists a pair of words
(δ, σ) ∈ M(∆R) ×M(∆R) and a suitable element z ∈ R with δ(z) = x, σ(z) = y,
we have τ(x) = ω(y) for some pair of words τ ∈M(∆R), ω ∈M(∆R).

Proof. Define a binary relation r ⊂ R×R by xry whenever there exists an m-tuple
of derivations operators d1, . . . , dm ∈ ∆R, i.e. a word δ = d1 . . . dm ∈M(∆R) such
that y = δ(x). The relation r is reflexive (if d1 = · · · = dm = idR) and transitive:
For x, y, z ∈ R such that xry, yrz, i.e. y = δ(x), z = σ(y) for suitable words
δ, σ ∈ M(∆R) we get z = δσ(x) = σ(δ(x)), with δσ ∈ M(∆R), thus xrz. If for
arbitrary pair x, y ∈ R we define

x ∗ y = {δ(z); z ∈ {x, y}, δ ∈M(∆R)} =
= {δ(x); δ ∈M(∆R)} ∪ {δ(y); δ ∈M(∆R)} = r(x) ∪ r(y)

then by the fundamental construction [4], or [5] and [16] we have that (R, ∗) is a
commutative hypergroup. Further, if f : R → R is a differential endomorphism
of the ring (R,+, .,∆R) which means f ∈ End(R,+, .) and f(d(x)) = d(f(x)) for
any d ∈ ∆R and any x ∈ R, then by the induction f(δ(x)) = δ(f(x)) for any word
δ ∈M(∆R) and each element x ∈ R, thus for any pair x, y ∈ R we have

f(x ∗ y) = {f(δ(z)); z ∈ {x, y}, δ ∈M(∆R)} =
= {δ(f(z)); z ∈ {x, y}, δ ∈M(∆R)} = f(x) ∗ f(y).

Hence the assertion 1◦ is true.
Finally, the monoidM(∆R) acts on the setR. By [5] Theorem 6 the hypergroup

(R, ∗) is a join space iff for every pair of elements x, y ∈ R such that there exists a
pair of words δ1, σ1 ∈ M(∆R) and an element z ∈ R with δ(z) = x, σ(z) = y, we
have τ(x) = ω(y) for suitable words τ, ω ∈ M(∆R), thus we obtain the assertion
2◦.

Remark. Using principal ideals within differential images of the carrier set R
of a differential ring (R,+, ., {d}) with a monogeneous differential structure, we
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can construct a countable set (in general) of commutative extensive hypergroups
(R, ◦m) with the same carrier R. (Extensivity of a hyperoperation ◦ means x, y ∈
x ◦ y for all x, y ∈ R.) This construction is based on [4], chapt.IV, Theorem 2.1
which is generalized in [15] - Propositions 2,3. More in detail, for a given positive
integer m ∈ N we define

x ◦m y = {z ∈ R;x.dm(R) ⊆ z.dm(R) or y.dm(R) ⊆ z.dm(R)},
where dm(R) = {dm(x);x ∈ R}. Then by the above mentioned theorems we obtain
that (R, ◦m) is a commutative extensive hypergroup.

Theorem 2. Let (R,+, ·,∆R) be a commutative differential ring with a monoge-
neous differential structure ∆R = {d}. Let (R, ∗d) be a commutative hypergroupoid
defined by the indefinite integral x ∗d y = d−1(x+ y) for all x, y ∈ R. Then (R, ∗d)
is a commutative quasi-hypergroup such that (x+ y)/(u+ v) = x/u+ y/v for any
quadruple x, y, u, v ∈ R and for arbitrary triad x, y, z ∈ R we have

1◦ x/y = d(x) − y,
2◦ d(x) = (x+ y)/z − y/z,
3◦ d(x/y) = d(x)/d(y),
4◦ d(x ∗d x+ y ∗d y) = d(x ∗d y) + d(x ∗d y).

Proof. We show first that the hypergroupoid (R, ∗d) satisfies the reproduction
axiom.

Let a ∈ R be an arbitrary element. Since a∗dR ⊆ R and (R, ∗d) is commutative
if suffices to prove the inclusion R ⊆ a∗dR. For any x ∈ R then d−1(x) = I(x) =
{y ∈ R; d(y) = x} is called the indefinite integral of x. Now, for arbitrary b ∈ R
we denote xb = d(b) − a. Then d(b) = a + xb, i.e. b ∈ d−1(a + xb) = I(a + xb) =
a ∗d xb ⊆

⋃
x∈R a ∗d x = a ∗d R, hence a ∗d R = R = R ∗d a for any a ∈ R. It is

easy to see that (R, ∗d) is not associative in general, thus (R, ∗d) is a commutative
quasi-hypergroup. Further, for x, y, u, v ∈ R arbitrary we have

1◦ x/y = {z ∈ R;x ∈ z ∗d y} = {z ∈ R;x ∈ I(z + y)}, thus x ∈ z ∗d y iff
d(x) = z + y, thus z = d(x) − y, hence we get that z ∈ x/y iff z = d(x) − y
consequently x/y = d(x) − y which is a singleton.
Now x/u+ y/v = d(x) − u+ d(y) − v = d(x+ y) − (u+ v) = (x+ y)/(u+ v).

2◦ For any x, y, z ∈ R we have (x+ y)/z = d(x + y) − z = d(x) + d(y) − z =
d(x) + y/z, therefore d(x) = (x+ y)/z − y/z. Similarly,

3◦ d(x/y) = d(d(x) − y) = d(d(x)) − d(y) = d(x)/d(y) and
4◦ d(x ∗d y) + d(x ∗d y) = d(d−1(x + y)) + d(d−1(x + y)) = x + y + x + y =

x+x+y+y = d(d−1(x+x+y+y)) = d(d−1(x+x)+d−1(y+y)) = d−1(x∗dx+y∗dy).

Now we specialize our considerations to the classical differential rings of real
functions f ∈ C∞(J), J = (a, b) ⊆ R (not excluding the case J = R) with the
usual differentiation. For any f ∈ C∞(J) we denote by

∫
f(x)dx the set of all

primitive functions to f , i.e.
∫
f(x)dx = {F : J → R;F ′(x) = f(x), x ∈ J}. For

any pair of function ϕ,ψ ∈ C∞(J) we define a hyperoperation V on the ring C∞(J)
by

f V(ϕ,ψ) g =
∫

(ϕ′(x)f(x) + ψ′(x)g(x))dx, f, g ∈ C∞(J).
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Evidently, (C∞(J), V(ϕ,ψ)) is a hypergroupoid (noncommutative in general).

Theorem 3. Let J ⊆ R be an open interval, ϕ,ψ ∈ C∞(J) be a pair of strictly
monotone functions (i.e. ϕ′(x).ψ′(x) �= 0 for all x ∈ J). Then the hypergroupoid
(C∞(J), V(ϕ,ψ)) is a quasi-hypergroup (i.e. it satisfies the reproduction axiom)
which is commutative if and only if the difference ϕ − ψ on the interval J is a
constant function.

Proof. Clearly, for any pair f, g ∈ C∞(J) and any function h ∈ f V(ϕ1,ϕ2) g we
have h ∈ C∞(J). Suppose f ∈ C∞(J) is an arbitrary function. Then evidently

f V(ϕ1,ϕ2) C∞(J) =
⋃
{f V(ϕ1,ϕ2) g; g ∈ C∞(J)} ⊆ C∞(J)

and
C∞(J) V(ϕ1,ϕ2) f ⊆ C∞(J), as well. We prove the opposite inclusions.
Suppose that g ∈ C∞(J) is an arbitrary function. Define

h1(x) = 1
ϕ′

2(x)
(g′(x) − ϕ′1(x)f(x)), x ∈ J .

Since ϕ′1(x).ϕ′2(x) �= 0 for each x ∈ J , then ϕ′2(x) �= 0 for any x ∈ J , thus the
function 1

ϕ′
2(x)

is defined on the interval J and 1
ϕ′

2(x)
∈ C∞(J), g′(x)−ϕ′1(x)f(x) ∈

C∞(J), hence h1 ∈ C∞(J). Then
f V(ϕ1,ϕ2) h1 =

∫
(ϕ′1(x)f(x) + ϕ′2(x)h1(x))dx =

∫
g′(x)dx = {g(x) + c; c ∈ R},

thus
g ∈ f V(ϕ1,ϕ2) h1 ⊆

⋃
{f V(ϕ1,ϕ2) h;h ∈ C∞(J)}.

Similarly if we define
h2(x) = 1

ϕ′
1(x)

(g′(x) − ϕ′2(x)f(x)), x ∈ J ,
then the assumption ϕ′1(x) �= 0 for any x ∈ J and f, g, ϕ1, ϕ2 ∈ C∞(J) implies
h2 ∈ C∞(J). Further,
h2 V(ϕ1,ϕ2) f =

∫
(ϕ′1(x)h2(x) + ϕ′2(x)f(x))dx =

∫
g′(x)dx = {g(x) + c; c ∈ R},

thus - similarly as above - we have
g ∈ h2 V(ϕ1,ϕ2) f ⊆

⋃
{h V(ϕ1,ϕ2) f ;h ∈ C∞(J)} = C∞(J) V(ϕ1,ϕ2) f .

Hence
C∞(J) ⊆ (f V(ϕ1,ϕ2) C∞(J)) ∩ (C∞(J) V(ϕ1,ϕ2) f),

consequently the hypergroupoid (C∞(J), V(ϕ1,ϕ2)) satisfies the reproduction ax-
iom. Therefore it is a quasi-hypergroup.

Now suppose ϕ1(x)−ϕ2(x) = c for some real number c ∈ R. Then ϕ′1 = ϕ′2 and
f V(ϕ1,ϕ2) g = g V(ϕ1,ϕ2) f for any pair of functions f, g ∈ C∞(J). On the contrary,
if the hyperoperation V(ϕ1,ϕ2) is commutative then

∫
(ϕ′1(x)f(x) +ϕ′2(x)g(x))dx =∫

(ϕ′1(x)g(x) + ϕ′2(x)f(x))dx which is equivalent to∫
(ϕ′1(x) − ϕ′2(x))(f(x) − g(x))dx = 0.(1)

Especially for f(x) = g(x)+1, x ∈ J the equality (1) gives
∫

(ϕ′1(x)−ϕ′2(x))dx = 0,
which implies ϕ′1(x) − ϕ′2(x) = 0 thus ϕ1(x) − ϕ2(x) is a constant function.

Remark. It is easy to see that the hyperoperation
V(ϕ1,ϕ2) : C∞(J) × C∞(J) → P∗(C∞(J))

is not associative. In a special case ϕ1(x) = ϕ2(x) = x, x ∈ J , i.e. within the
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commutative quasi-hypergroup (C∞(J), ∗), where f ∗ g =
∫

(f(x) + g(x))dx for
any pair f, g ∈ C∞(J), we get from Theorem 2 (1◦, 2◦, 3◦) the following rules:

f(x)/g(x) = df(x)
dx − g(x), d

dx(f(x)/g(x)) = df(x)
dx /dg(x)dx ,

df(x)
dx = (f(x) + g(x))/h(x) − g(x)/h(x)

for arbitrary f, g, h ∈ C∞(J). Moreover, for any quadruple f, g, u, v ∈ C∞(J) then
we have (f(x) + g(x))/(u(x) + v(x)) = f(x)/u(x) + g(x)/v(x). Using derivatives of
functions from C∞(J) we can expressed certain sufficient conditions for validity of
transposition law for the quasi-hypergroup (C∞(J), V(ϕ1,ϕ2)). Moreover, transpo-
sition hypergroups, forming an important class of hypergroups, can be constructed
from quasi-ordered groups and monoids of some transformation operators of rings
of continuously differentiable functions. These operators yielding substitutions for
some classes of ordinary differential equations will be investigated in a forthcoming
paper.
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Abstract. An n-dimensional system of nonlinear differential equations
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1. Introduction

This paper deals with the existence of solutions of the singular initial problem,
stated for n-dimensional nonlinear systems of differential equations, entering into
a singular point. Namely, we will consider the initial problems (S±), (IP) where

gi(x) y′i = ±

 n∑
j=1

aijαj(yj) − ωi(x)

 , i = 1, 2, . . . , n,(S±)

yi(0+) = 0, i = 1, 2, . . . , n.(IP)

Let us denote as Ix0 an interval of the form Ix0 = (0, x0] and Iy0 an interval of
the form Iy0 = (0, y0] with x0, y0 > 0. The systems (S±) will be considered under
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the following main assumptions:
(C1) gi ∈ C(Ix0 ,R

+ ), i = 1, 2, . . . , n, R+ = (0,∞);
(C2) αi ∈ C1(Iy0 ,R), αi > 0 on Iy0 , α

′
i > 0 on Iy0 , αi(0+) = 0, i = 1, 2, . . . , n;

(C3) ωi ∈ C1(Ix0 ,R), ωi > 0 on Ix0 , ω
′
i > 0 on Ix0 , ωi(0+) = 0, i = 1, 2, . . . , n;

(C4) aij = const, i, j = 1, 2, . . . , n; aii > 0, aij ≤ 0, i, j = 1, 2, . . . , n, i �= j, ∆ =
detA > 0, A = (aij)ni,j=1, and cofactors Cij = (−1)i+jAij ≥ 0 where Aij

are minors of the elements aij of the matrix A.

We will consider the systems (S±) in the domain Q ≡ Ix0 × Iy0 × · · · × Iy0︸ ︷︷ ︸
n

, i.e.

the corresponding results will concern the existence of solutions of this problem
having positive coordinates. More precisely, we define a solution of the problems
(S±), (IP) in the sense of the following definition:

Definition 1. A function y = y(x) = (y1(x), . . . , yn(x)) ∈ C1 (Ix∗ ,Rn ) with 0 <
x∗ ≤ x0 is said to be a solution of the singular problem (S+), (IP) (or (S−), (IP))
on interval Ix∗ if:

1) (x, y(x)) ∈ Q for x ∈ Ix∗ ;
2) y satisfies (S+) (or (S−)) on Ix∗ ;
3) yi(0+) = 0, i = 1, 2, . . . , n.

The origin of coordinates O = (0, 0, . . . , 0) is a boundary point of introduced
domain Q. The possibility gi(0+) = 0, i = 1, 2, . . . , n is not excluded from our
investigation (note that, for validity of assumptions of the theorems formulated
below, this condition is often tacitly assumed). So the problems (S±), (IP), in view
of assumptions (C1)–(C4), are really the singular problems and known theorems
about existence of solution of initial problems cannot be used.

Various initial singular problems for ordinary differential equations were widely
considered (let us cite e.g. the works of K. Balla [1], J. Baštinec and J. Dibĺık [2],
J. Dibĺık [3]–[5], I.T. Kiguradze [11], N.B. Konyukhova [12], Chr. Nowak [13], D.
O’Regan [14], M. Růžičková [15]), namely after the appearance of the pioneering
work of V.A. Chechyk [10], the solvability of the considered problems (S±), (IP)
cannot be established by using the results which are known to the authors of this
paper.

Let us explain the scheme of our investigation. We consider the implicit system
of nondifferential equations with respect to unknowns z1, . . . , zn which arise if in
the systems (S±) the left-hand sides equal zero (i.e. if gi(x) ≡ 0, i = 1, 2, . . . , n):

n∑
j=1

aijαj(zj) = ωi(x), i = 1, 2, . . . , n.(1)

Considering this system we conclude that it is equivalent to the system consisting
of separated scalar equations:

α(z) = Ω(x) ≡ A−1ω(x)
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with α(z) = (α1(z1), . . . , αn(zn))T , Ω = (Ω1, . . . , Ωn)T , ω = (ω1, . . . , ωn)T or

αi(zi) = Ωi(x), i = 1, 2, . . . , n

with (see (C4))

Ωi(x) ≡ 1
∆

·
n∑

j=1

Cjiωj(x), i = 1, 2, . . . , n.(2)

Note that in the view of our assumptions Ωi(x) > 0 on Ix0 and Ωi(0+) = 0,
i = 1, 2, . . . , n. Solving these scalar equations with respect to zi, i = 1, 2, . . . , n we
get

zi = α−1i [Ωi(x)], i = 1, 2, . . . , n,

where α−1i is the inverse function of the function αi (existence of it follows from
the condition (C2)).

It can be expected that under appropriate conditions the asymptotic behaviour
of a solution y(x) = (y1(x), . . . , yn(x)) of the problem (S+), (IP) (or (S−), (IP))
for x → 0+ will be in a sense similar to the asymptotic behaviour of z(x) =
(z1(x), . . . , zn(x)) for x→ 0+, i.e. it can be expected that the asymptotic formulae

yi(x) ≈ zi(x) if x→ 0+, i = 1, 2, . . . , n

will hold.
The proofs of Theorem 1 and Theorem 2 below are based on known qualitative

properties of solutions of differential equations. Besides, in the proof of Theorem 2
the topological method of T. Ważewski is used (see, e.g., [9], [16]). Except this,
properties of functions that are defined implicitly are applied in these proofs. Let
us note that one of the advantages of our results is the fact that although properties
of implicit functions are used, the assumptions of them are easily verifiable and
do not use any supposition which cannot be verified immediately. Moreover, it is
easy to get corresponding linear cases as a consequence of our results. Results of
this paper generalize previous ones, given in the work [8].

2. Auxiliary Lemmas

Let us state a lemma on existence and differentiability of a function given implicitly
by the equation

α̃(y) = ω̃(x) if (x, y) ∈ Ix0 × Iy0 .(3)

Lemma 1. Let the following assumptions be valid:

α̃ ∈ C1(Iy0 ,R), α̃ > 0 on Iy0 , α̃
′ > 0 on Iy0 and α̃(0+) = 0;

ω̃ ∈ C1(Ix0 ,R), ω̃ > 0 on Ix0 , ω̃
′ > 0 on Ix0 and ω̃(0+) = 0.
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Then there exists a unique solution

y = ϕ(x) ≡ α̃−1[ω̃(x)]

of equation (3) on an interval Iδ0 ⊂ Ix0 with properties:

ϕ ∈ C1(Iδ0 ,R), ϕ ∈ Iy0 and ϕ′ > 0 on Iδ0 ;

ϕ(0+) = 0;

ϕ′(x) ≡ ω̃′(x)
α̃′[ϕ(x)]

, x ∈ Iδ0 .

The proof of Lemma 1 can be made in an elementary way and is therefore omitted.

Remark 1. The next obvious property will be used in the sequel: let ε1, ε2 be two
positive constants and ε1 < ε2. Then there exists an interval Iδ1 ⊂ Iδ0 (determined
by the requirement ϕ(ε2x) ≤ y0 on Iδ1 , i.e. δ1 = min{δ0ε−12 , δ0}) such that the
inequality ϕ(ε1x) < ϕ(ε2x) holds on Iδ1 .

Lemma 2. Let all assumptions of Lemma 1 be valid and, moreover, there exist a
constant M ∈ R

+ such that

α̃(y) ≤Mα̃′(y), y ∈ Iy0 .

Then the unique solution y = ϕ(x) of equation (3) defined on an interval Iδ0 ⊂ Ix0

satisfies the inequality:

ϕ′(x) ≤M · ω̃
′(x)
ω̃(x)

, x ∈ Iδ0 .

Proof. In view of equation (3) and the affirmation of Lemma 1 we get

ϕ′(x) =
ω̃′(x)
α̃′[ϕ(x)]

=
ω̃′(x)
ω̃(x)

· α̃[ϕ(x)]
α̃′[ϕ(x)]

≤M · ω̃
′(x)
ω̃(x)

, x ∈ Iδ0 .

Lemma 3. Let the assumptions (C2)–(C4) be valid. Then the implicit equations

αi(zi) = Ωi(x), i = 1, 2, . . . , n(4)

define on an interval Iδ2 ⊂ Ix0 implicit functions

zi = ϕi(x) ≡ α−1i [Ωi(x)], i = 1, 2, . . . , n(5)

satisfying the properties

ϕi ∈ C1(Iδ2 ,R), ϕi ∈ Iy0 and ϕ′i > 0 on Iδ2 , i = 1, 2, . . . , n;(6)

ϕi(0+) = 0, i = 1, 2, . . . , n;

ϕ′i(x) ≡ Ω′i(x)
α′i[ϕi(x)]

, i = 1, 2, . . . , n.(7)



EXISTENCE OF POSITIVE SOLUTIONS OF N-DIMENSIONAL SYSTEM 439

If, moreover, there exists a constant M ∈ R
+ such that

αi(yi) ≤Mα′i(yi), y ∈ Iy0 , i = 1, 2, . . . , n,

then

ϕ′i(x) ≤M · Ω
′
i(x)

Ωi(x)
, i = 1, 2, . . . , n.(8)

Proof. The proof follows immediately from Lemmas 1 and 2 if in their formulations
α̃ ≡ αi and ω̃ ≡ Ωi, i = 1, 2, . . . , n are put since all Ωi, i = 1, 2, . . . , n, defined by
(2) satisfy necessary conditions. The value of δ2 can be taken as minimal value of
all corresponding δ0i, i = 1, 2, . . . , n.

3. Singular problem (S+), (IP)

Let us consider the singular problem (S+) and (IP), i.e. the problem

gi(x) y′i =
n∑

j=1

aijαj(yj) − ωi(x), i = 1, 2, . . . , n,(S+)

yi(0+) = 0, i = 1, 2, . . . , n.(IP)

Theorem 1. Suppose that conditions (C1)–(C4) are satisfied, there exist con-
stants k ∈ R

+ , M ∈ R
+ , k > 1 and an interval Ix∗∗ with x∗∗ ≤ min

{
x0k
−1, y0

}
such that for x ∈ Ix∗∗ :

ωi(kx) > ωi(x) + kMgi(x) ·

n∑
j=1

Cji ω
′
j(kx)

n∑
j=1

Cji ωj(kx)
, i = 1, 2, . . . , n;(i)

αi(x) ≤Mα′i(x), i = 1, 2, . . . , n.(ii)

Then there exist infinitely many solutions of the problem (S+), (IP) on an interval
Ix∗ ⊆ Ix∗∗.

Proof. Let ϕi(x), i = 1, 2, . . . , n be the implicit functions defined on the interval
Iδ2 by means of relations (4) or (5) (see Lemma 3). Let us define a domain Ω0

1 of
the form

Ω0
1 = {(x, y) ∈ Q : x ∈ (0, δ3), ϕi(x) < yi < ϕi(kx), i = 1, 2, . . . , n},

supposing, without loss of generality, that δ3 ≤ δ2 is so small that ϕi(kx) < y0,
i = 1, 2, . . . , n on Iδ3 . (Note that in accordance with Remark 1, ϕi(x) < ϕi(kx),
i = 1, 2, . . . , n, x ∈ Iδ3 .)
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Let us define auxiliary functions

ui(x, y) ≡ ui(x, yi) ≡
(
yi − ϕi(x)

)(
yi − ϕi(kx)

)
, i = 1, 2, . . . , n

and
v(x, y) ≡ v(x) ≡ x− δ3.

Then the domain Ω0
1 can be written as

Ω0
1 = {(x, y) ∈ Q : ui(x, y) < 0, i = 1, 2, . . . , n, v(x, y) < 0}.

In the next we will show that all points of the sets

U1i = {(x, y) ∈ Q : ui(x, y) = 0, uj(x, y) ≤ 0, j = 1, 2, . . . , n, j �= i,

v(x, y) ≤ 0}, i = 1, 2, . . . , n,

are the points of strict egress of the set Ω0
1 with respect to the system (S+). (For

the corresponding definitions of this notion and for further details here and in the
sequel we refer, e.g., to the book [9]. The notation used in the proof is taken from
this book as well. Except this, the technique used is punctually explained e.g. in
the papers [3,6,7] and [15].)

For verifying this we will compute the full derivatives of the functions ui(x, y),
i = 1, 2, . . . , n along the trajectories of the system (S+) on corresponding sets
U1i, i = 1, 2, . . . , n. Let the index i be fixed. Then

dui(x, y)
dx

= (y′i − ϕ′i(x)) (yi − ϕi(kx)) +
(
yi − ϕi(x)

)(
y′i − kϕ′i(kx)

)
=

=

[
1

gi(x)
·
(

n∑
j=1

aijαj(yj) − ωi(x)

)
− ϕ′i(x)

] (
yi − ϕi(kx)

)
+

+
(
yi − ϕi(x)

) [ 1
gi(x)

·
(

n∑
j=1

aijαj(yj) − ωi(x)

)
− kϕ′i(kx)

]
.

If (x, y) ∈ U1i then either yi = ϕi(x) and ϕj(x) ≤ yj ≤ ϕj(kx), j =
1, 2, . . . , n, j �= i, or yi = ϕi(kx) and ϕj(x) ≤ yj ≤ ϕj(kx), j = 1, 2, . . . , n, j �= i.
In the first case i.e. if

(x, y) ∈ U1i, yi = ϕi(x), ϕj(x) ≤ yj ≤ ϕj(kx), j = 1, 2, . . . , n, j �= i(9)

we have

dui(x, y)
dx

∣∣∣∣
(x,y)∈U1i,yi=ϕi(x)

=

=

[
1

gi(x)
·
(
aiiαi(ϕi(x)) +

n∑
j=1,j �=i

aijαj(yj) − ωi(x)

)
− ϕ′i(x)

]
×

×
(
ϕi(x) − ϕi(kx)

)
= [see (1) with zi = ϕi(x)] =
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gi(x)

·

ωi(x) −
n∑

j=1,j �=i

aijαj(ϕj(x)) +
n∑

j=1,j �=i

aijαj(yj) − ωi(x)

− ϕ′i(x)

×

×
(
ϕi(x) − ϕi(kx)

)
=

=

− 1
gi(x)

·
n∑

j=1,j �=i

aij
[
αj(ϕj(x)) − αj(yj)

]
− ϕ′i(x)

 ·
(
ϕi(x) − ϕi(kx)

)
≥

≥ [due to (C2), (6) and (9)] ≥ −ϕ′i(x)
(
ϕi(x) − ϕi(kx)

)
> 0.

Thus, points (x, y) ∈ U1i if yi = ϕi(x) are points of strict egress. In the second
case, i.e. if

(x, y) ∈ U1i, yi = ϕi(kx), ϕj(x) ≤ yj ≤ ϕj(kx), j = 1, 2, . . . , n, j �= i,(10)

direct computation yields:

dui(x, y)
dx

∣∣∣∣
(x,y)∈U1i,yi=ϕi(kx)

=
(
ϕi(kx) − ϕi(x)

)
×

×
[

1
gi(x)

·
(
aiiαi(ϕi(kx)) +

n∑
j=1,j �=i

aijαj(yj) − ωi(x)

)
− kϕ′i(kx)

]
=

= [in view of (1) with zi = ϕi(x), (2), (4) and (7)] =
(
ϕi(kx) − ϕi(x)

)
×

×
[

1
gi(x)

·
(
ωi(kx) −

n∑
j=1,j �=i

aijαj

(
ϕj(kx)

)
+

n∑
j=1,j �=i

aijαj(yj) − ωi(x)

)
−

−k
Ω′i(kx)αi

(
ϕi(kx)

)
Ωi(kx)α′i

(
ϕi(kx)

)] =
(
ϕi(kx) − ϕi(x)

)
×

×

 1
gi(x)

·

[ωi(kx) − ωi(x)] −
n∑

j=1,j �=i

aij
[
αj(ϕj(kx)) − αj(yj)

]−

−k
Ω′i(kx)αi

(
ϕi(kx)

)
Ωi(kx)α′i

(
ϕi(kx)

)
 ≥ [in view of (C2), (2), (6), (8), (10) and (ii)] ≥

≥
(
ϕi(kx) − ϕi(x)

) ωi(kx) − ωi(x)
gi(x)

− kM ·

n∑
j=1

Cjiω
′
j(kx)

n∑
j=1

Cjiωj(kx)

 >
> [in view of (i)] > 0.
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This means that in both of the cases considered,

dui(x, y)
dx

∣∣∣∣
(x,y)∈U1i

> 0, i = 1, 2, . . . , n.(11)

So, points of the sets U1i, i = 1, 2, . . . , n are the points of strict egress. Inequality
(11) simultaneously says that, if orientation of the x-axis is changed into reverse
orientation, points (x, y) ∈ U1i, i = 1, 2, . . . , n are points of strict ingress and every
point of the set

S = {(x, y) ∈ Q : x = δ3, ϕi(x) < yi < ϕi(kx), i = 1, 2, . . . , n}

defines a unique solution y = y∗(x) such that (x, y∗(x)) ∈ Ω0
1 on interval Iδ3 , i.e.

this solution solves the problem (S+), (IP). Put x∗ = δ3. Now Theorem 1 is proved.

Corollary 1. The affirmation of the Theorem 1 can be improved. Namely, as it
follows from proof above, there exist infinitely many solutions y = y∗(x) of the
problem (S+), (IP), each of which satisfies, on the interval Ix∗ , the inequalities

ϕi(x) < y∗i (x) < ϕi(kx), i = 1, 2, . . . , n.

4. Singular problem (S−), (IP)

Now consider the singular problem (S−), (IP), i.e. the problem

gi(x) y′i = −
n∑

j=1

aijαj(yj) + ωi(x), i = 1, 2, . . . , n,(S−)

yi(0+) = 0, i = 1, 2, . . . , n.(IP)

Theorem 2. Suppose that conditions (C1)–(C4) are satisfied, there exist con-
stants k ∈ R

+ , M ∈ R
+ , k < 1 and an interval Ix∗∗ with x∗∗ ≤ min {x0, y0}

such that for x ∈ Ix∗∗ :

ωi(x) > ωi(kx) + kMgi(x) ·

n∑
j=1

Cji ω
′
j(kx)

n∑
j=1

Cji ωj(kx)
, i = 1, 2, . . . , n(iii)

and the condition (ii) holds. Then there exists at least one solution y = y∗(x) of
the problem (S−), (IP) on an interval Ix∗ ⊆ Ix∗∗.

Proof. Introduce a domain Ω0
2 of the form

Ω0
2 = {(x, y) ∈ Q : x ∈ (0, δ2), ϕi(kx) < yi < ϕi(x), i = 1, 2, . . . , n},
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where δ2 was defined in Lemma 3 and ϕi(x), i = 1, 2, . . . , n are defined as in
the proof of Theorem 1. (Note that in the case considered ϕi(kx) < ϕi(x), i =
1, 2, . . . , n, x ∈ Iδ2 .)

Let us define auxiliary functions

ui(x, y) ≡ ui(x, yi) ≡
(
yi − ϕi(x)

)(
yi − ϕi(kx)

)
, i = 1, 2, . . . , n

and
v(x, y) ≡ v(x) ≡ x− δ2.

Then the domain Ω0
2 can be written as

Ω0
2 = {(x, y) ∈ Q : ui(x, y) < 0, i = 1, 2, . . . , n, v(x, y) < 0}.

In the following we will show that all points of the sets

U2i = {(x, y) ∈ Q : ui(x, y) = 0, uj(x, y) ≤ 0, j = 1, 2, . . . , n, j �= i,

v(x, y) ≤ 0}, i = 1, 2, . . . , n,

are the points of strict ingress of the set Ω0
2 with respect to the system (S−).

Analogously as in the proof of Theorem 1 we compute the full derivatives of
the functions ui(x, y), i = 1, 2, . . . , n along the trajectories of the system (S−) on
corresponding sets U2i, i = 1, 2, . . . , n. Let the index i be fixed. Then

dui(x, y)
dx

= (y′i − ϕ′i(x)) (yi − ϕi(kx)) +
(
yi − ϕi(x)

)(
y′i − kϕ′i(kx)

)
=

=

[
− 1
gi(x)

·
(

n∑
j=1

aijαj(yj) − ωi(x)

)
− ϕ′i(x)

] (
yi − ϕi(kx)

)
+

+
(
yi − ϕi(x)

) [
− 1
gi(x)

·
(

n∑
j=1

aijαj(yj) − ωi(x)

)
− kϕ′i(kx)

]
.

If (x, y) ∈ U2i then either yi = ϕi(x) and ϕj(kx) ≤ yj ≤ ϕj(x), j =
1, 2, . . . , n, j �= i, or yi = ϕi(kx) and ϕj(kx) ≤ yj ≤ ϕj(x), j = 1, 2, . . . , n, j �= i.
In the first case i.e. if

(x, y) ∈ U2i, yi = ϕi(x), ϕj(kx) ≤ yj ≤ ϕj(x), j = 1, 2, . . . , n, j �= i(12)

we have

dui(x, y)
dx

∣∣∣∣
(x,y)∈U2i,yi=ϕi(x)

=

=

[
− 1
gi(x)

·
(
aiiαi(ϕi(x)) +

n∑
j=1,j �=i

aijαj(yj) − ωi(x)

)
− ϕ′i(x)

]
×

×
(
ϕi(x) − ϕi(kx)

)
= [see (1) with zi = ϕi(x)] =
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gi(x)

·

ωi(x) −
n∑

j=1,j �=i

aijαj(ϕj(x)) +
n∑

j=1,j �=i

aijαj(yj) − ωi(x)

− ϕ′i(x)

×

×
(
ϕi(x) − ϕi(kx)

)
=

=

 1
gi(x)

·
n∑

j=1,j �=i

aij
[
αj(ϕj(x)) − αj(yj)

]
− ϕ′i(x)

 ·
(
ϕi(x) − ϕi(kx)

)
≤

≤ [due to (C2), (6) and (12)] ≤ −ϕ′i(x)
(
ϕi(x) − ϕi(kx)

)
< 0.

Thus, points (x, y) ∈ U2i if yi = ϕi(x) are points of strict ingress. In the second
case, i.e. if

(x, y) ∈ U2i, yi = ϕi(kx), ϕj(kx) ≤ yj ≤ ϕj(x), j = 1, 2, . . . , n, j �= i,(13)

direct computation yields:

dui(x, y)
dx

∣∣∣∣
(x,y)∈U2i,yi=ϕi(kx)

=
(
ϕi(kx) − ϕi(x)

)
×

×
[
− 1
gi(x)

·
(
aiiαi(ϕi(kx)) +

n∑
j=1,j �=i

aijαj(yj) − ωi(x)

)
− kϕ′i(kx)

]
=

= [in view of (1) with zi = ϕi(x), (2), (4) and (7)] =
(
ϕi(kx) − ϕi(x)

)
×

×
[
− 1
gi(x)

·
(
ωi(kx) −

n∑
j=1,j �=i

aijαj

(
ϕj(kx)

)
+

n∑
j=1,j �=i

aijαj(yj) − ωi(x)

)
−

−k
Ω′i(kx)αi

(
ϕi(kx)

)
Ωi(kx)α′i

(
ϕi(kx)

)] =
(
ϕi(kx) − ϕi(x)

)
×

×

 1
gi(x)

·

[ωi(x) − ωi(kx)] +
n∑

j=1,j �=i

aij
[
αj(ϕj(kx) − αj(yj)

]−

−k
Ω′i(kx)αi

(
ϕi(kx)

)
Ωi(kx)α′i

(
ϕi(kx)

)
 ≤ [in view of (C2), (2), (6), (8), (13) and (ii)] ≤

≤
(
ϕi(kx) − ϕi(x)

) ωi(x) − ωi(kx)
gi(x)

− kM ·

n∑
j=1

Cjiω
′
j(kx)

n∑
j=1

Cjiωj(kx)

 <
< [in view of (iii)] < 0.
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This means that in both of the cases considered

dui(x, y)
dx

∣∣∣∣
(x,y)∈U2i

< 0, i = 1, 2, . . . , n.(14)

So, points of the sets U2i, i = 1, 2, . . . , n are the points of strict ingress. Inequality
(14) simultaneously says that, if orientation of the x-axis is changed into reverse
orientation, points (x, y) ∈ U2i, i = 1, 2, . . . , n are points of strict egress. Let us
define the set

S = {(x, y) ∈ Q : x = δ2, ϕi(kx) ≤ yi ≤ ϕi(x), i = 1, 2, . . . , n}.

It is easy to show that its boundary

∂S =

{
(x, y) ∈

n⋃
i=1

U2i : x = δ2

}

is not a retract of S but is a retract of the set
n⋃

i=1

U2i. Then, according to Ważewski’s

principle, there is a point (δ2, y∗) ∈ S \ ∂S such that the graph of corresponding
solution y = y∗(x) with y∗(δ2) = y∗ lies in the domain Ω0

2 for x ∈ (0, δ2]. Therefore
this solution solves simultaneously the problem (S−), (IP). Put x∗ = δ2. The
theorem is proved.

Corollary 2. The affirmation of the Theorem 2 can be improved. The solution
y = y∗(x) of the problem (S−), (IP) as it follows from the proof of Theorem 2,
satisfies the inequalities

ϕi(kx) < y∗i (x) < ϕi(x), i = 1, 2, . . . , n, x ∈ (0, x∗].
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1. Introduction

Let AC = AC([0, T ], E) be the space of absolutely continuous functions u :
[0, T ] → E defined on the unit interval [0, T ] with values in a Banach space E
and let f : [0, 1]×E ×E → E be a Caratheodory map, what means that f(·, u, v)
is mesurable for every (u, v) ∈ E×E and f(t, ·, ·) is continuous for a.a. t ∈ [0, T ]. If
we are to study the existence of solutions to the general boundary value problem{

u′(t) = f(t, u(t), u′(t))
l1(u(0)) + l2(u(T )) = α(u),(1)

where l1, l2 : E → E′ are linear bounded maps, α : AC ( E′ is a continuous
map, (E′ is a Banach space) then we reformulate it to the following:{

y(t) = f(t, z +
∫ t

0
y(s)ds, y(t))

l1(z) + l2(z +
∫ T

0 y(s)ds) = α(z +
∫ ·
0 y(s)ds).

(2)
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Obviously, if (z, y) ∈ E × AC is a solution to the problem (2), then u(t) =
z +

∫ t

0
y(s)ds is a solution to the problem (1).

Putting
x = (z, y),

L(z, y) = (y, l1(z) + l2(z))

and

F (z, y) =

(
f(·, z +

∫ ·
0

y(s)ds, y(·)), α(z +
∫ ·
0

y(s)ds)) − l2(
∫ T

0

y(s)ds)

)

we arrive at a coincidence problem (a generalized fixed point problem) of the form

L(x) = F (x).(3)

Such coincidence problems have been intensively studied by many authors,
especially in case when F is a compact (single- or multivalued )map and L is the
identity (the Leray-Schauder fixed point theory) or L is a Fredholm operator of
index 0 (e.g. Mawhin [9], Pruszko [10]) or of nonnegative index (Kryszewski [8]).
The situation when L is a Fredholm operator of nonnegative index and F belongs
to a more general class of nonlinear (single- or multivalued) transformations, so
called L–fundamentally contractible maps was investigated in [4]. We use some
theoretical results from this paper, but not in the most general case (i.e. only for
singlevalued maps) .

Observe that in case E = E′, l1 = idE , l2 = −idE and α ≡ 0, (1) becomes an
ordinary periodic boundary value problem.

In Section 1 we introduce some notions and cite a few results and in Section 2
we carefully describe and solve our problem.

Throughout the paper we will use the following notation: if U is a subset of a
Banach space E, then by clU we mean the closure of U , by bdU - the boundary
of U , conv (U) - the convex hull of U and conv (U) = cl conv (U). Moreover, let
BE(x0, r) = {x ∈ E; ||x0−x||E ≤ r} and if E = R

n , then Bn(x0, r) := BR
n

(x0, r).

2. Preliminaries

Let E, E′ be Banach spaces with norms || · ||E , || · ||E′ , respectively. A bounded
linear map L : E → E′ is a Fredholm operator if dimensions of its kernel (KerL)
and cokernel (CokerL := E′/Im (L), where Im (L) is the image of L), are finite.
By the index of a Fredholm operator L we mean the number

i(L) := dim KerL− dim CokerL.1

Since both Ker (L) and Im (L) are direct summands in E and E′, respectively,
we may consider continuous linear projections P : E → E and Q : E′ → E′, such
1 Observe that if L : Rm → R

n is linear, then L is Fredholm and i(L) = m− n.
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that KerL = Im (P ) and KerQ = Im (L). Clearly E, E′ split into (topological)
direct sums

Ker (P ) ⊕ Ker (L) = E, Im (Q) ⊕ Im (L) = E′.

Moreover, since Im (L) is a closed subspace of E′, L|KerP : KerP → ImL is a
linear homeomorphism onto Im (L). Denote by KP the inverse isomorphism for
L|KerP . Note also that L is proper when restricted to a closed bounded set.

Consider a continuous map F : X → E′, where X ⊂ E.

Definition 1. A closed convex and nonempty set K ⊂ E′ is called L-fundamental
for F , provided

(i) F (L−1(K) ∩X) ⊂ K; and
(ii) if for x ∈ X , L(x) ∈ conv (F (x) ∪K), then L(x) ∈ K.

It is clear that for any F some L-fundamental set exists (for instance whole E′

or conv (F (X))).
Observe that if E = E′ and L = idE is the identity on E, then K is nothing

else but a fundamental set for F in the sense of e.g. [2] (see also references therein).
Some properties of L-fundamental sets are summarized in the following result

(comp. [4] or [5]).

Proposition 1.

(i) If K is an L-fundamental set for F , then {x ∈ X | L(x) = F (x)} ⊂
L−1(K).
(ii) If K1, K2 are L-fundamental sets for F , then the set K := K1 ∩ K2 is
L-fundamental or empty.
(iii) If P ⊂ K and K is an L-fundamental set for F , then so is K ′

= conv (F (L−1(K) ∩X) ∪ P ).
(iv) If K is the intersection of all L-fundamental sets for F , then

K = conv (F (L−1(K) ∩X)).

(v) For any A ⊂ E′, there exists an L-fundamental set K such that K =
conv (F (L−1(K) ∩X) ∪A).

Definition 2. We say that F is an L-fundamentally restrictible map if for any
y ∈ E′ there exists a compact L-fundamental set for F , which contains y.

Let us collect some important examples of L-fundamentally restrictible maps.

Example 1. Let L : E → E′ be an arbitrary Fredholm operator.

(i) if F : X → E′ is compact (i.e. clF (X) is compact), then K = conv (F (X)×
{y}) is a compact L- fundamental set for F ; hence F is L-fundamentally
restrictible.
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(ii) Let µ be a measure of noncompactness in E′ having usual properties (see
e.g. [1]) and let F be L-condensing in the sense that, for any bounded set A ⊂
X , if µ(F (A)) ≥ µ(L(A)), then A is compact. If F is bounded, then one shows
that an L-fundamental set K, satisfying K = conv (F (L−1(K) ∩ X) ∪ {y})
for some y ∈ E′ (see Proposition 1) is compact; hence F is L-fundamentally
restrictible.

(iii) If F is an L-set contraction (i.e. there exists k ∈ (0, 1), such that for any
bounded A ⊂ X , µ(F (A)) ≤ kµ(L(A))), then F is L-condensing and therefore
L-fundamentally restrictible.

Some other examples one can find in [4] and in [5].

Now we are going to sketch the construction of a generalized index of coin-
cidence between L and an L-fundamentally restrictible map F . More details (in
more general, multivalued case), one can find e.g. in [3] or in [5].

Let U be an open bounded subset of Rm and let F : clU → R
n , where m ≥

≥ n ≥ 1 and suppose that 0 �∈ F (x) for x ∈ bdU . It implies that there is ε > 0
such that F (bdU) ⊂ R

n \Bn(0, ε).
We can of course define the Brouwer degree for such map, but if m > n it is

useless, because always equal to 0. Better homotopy invariant defined Kryszewski
(comp. [8]), developing some ideas from [6]. In this definition he used cohomotopy
sets. Consider the following sequence of maps:

πn(Rn ,Rn \Bn(0, ε)) F#

−→ πn(clU,bdU)
i#1←− πn(Rm ,Rm \ U)

i#2−→
i#2−→ πn(Rm ,Rm \Bm(0, r)),

where r > 0 is such that U ⊂ Bm(0, r) and i1 : (clU,bdU) → (Rm ,Rm \ U)
and i2 : (Rm ,Rm \Bm(0, r)) → (Rm ,Rm \U) are inclusions. Arrows denote maps
between cohomotopy sets induced by respective maps (see [7]). By the excision
property i#1 is a bijection. Hence we have defined the transformation

K := i#2 ◦ (i#1 )−1 ◦ F# : πn(Sn) = πn(Rn ,Rn \Bn(0, ε)) →
→ πn(Rm ,Rm \Bm(0, r)) = πn(Sm).

(4)

Definition 3. By the generalized degree of the map F on U we understand the
element

deg((F,U, 0) := K(1) ∈ πn(Sm).

(1 denotes the generator of πn(Sn) ∼= Z, i.e. the homotopy class of the identity
map id : Sn → Sn.)

It is clear that this definition does not depend on the choice of ε and r.
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Remark 1. One can check that if n = m, then deg(F,U, 0) ∈ πn(Sn) is nothing
else but the ordinary Brouwer degree of the map F (comp. the Hopf theorem [7],
th.11.5).

Now we are going to define a generalized index of coincidence between a Fred-
holm operator L of index i(L) = k and an L-fundamentally restrictible map
F : X → E′, where X is open subset of E and E, E′ are Banach spaces. Suppose
that C := {x ∈ X | L(x) ∈ F (x)} is bounded and closed. Therefore there is
an open bounded set U such that C ⊂ U ⊂ clU ⊂ X . Let K0 be any com-
pact L-fundamental set for F . In view of Proposition 1 (i), C is contained in
L−1(K0) ∩ clU . Since L|clU is proper, we gather that C being obviously closed is
also compact. Now let consider a map

F|(L−1(K0)∩X) : L−1(K0) ∩X → E′,

According to Definition 1, the range of this map is contained in K0. Hence it has
a compact extension

F : X → K0
2.

It is clear that {x ∈ X | L(x) = F (x)} = C.
There is ε0 > 0 such that

{y ∈ E′ | ∃x∈bdU y = L(x) − F (x)} ∩BE′
(0, 2ε0) = ∅.

Take ε ∈ (0, ε0] and let lε : clF (U) → E′ be a Schauder projection of the
compact set clF (U) into a finite dimensional subspace Z of E′, such that ||lε(y)−
y||E′ < ε for y ∈ clF (U). Denote by W ′ the finite dimensional subspace of Im (L)
such that Z ⊂W = W ′⊕ Im (Q). Put T := L−1(W ), UW = U ∩T . It is clear that
the closure clUW (in T ) is contained in clU ∩T and its boundary bdUW (relative
T ) in bdU ∩ T . Further let FW = lε ◦ F |clUW and LW = L|T : T → W . Observe,
that LW is a Fredholm operator of index

i(LW ) = dimT − dimW = k = i(L).

Enlarging W ′ if necessary we may assume that dimW := n ≥ k + 2. Putting
m := dimT = n+ k we arrive in a finite dimensional situation discussed above.

Definition 4. By the generalized index of the L-fundamentally restrictible map
F we understand the element

Ind L(F,X) := deg(LW − FW ), UW , 0) ∈ Πk.

By definition, deg(LW − FW , UW , 0) belongs to πn(Sm) but since m < 2n− 1
we know that πn(Sm) ∼= Πk.

One can check (see [5] or [3]) that the definition does not depend on the choice
of a compact L-fundamental set K0, an extension F of F |L−1(K0)∩X , an open
subset U , a number ε ∈ (0, ε0], a projection lε and a space W ′.
2 For instance one can take any retraction r : E′ → K0 and define F := r ◦ F .
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Definition 5. Given L-fundamentally restrictible maps F0, F1 we say that they
are (L,K)–homotopic (written F0 5K F1) if there is a homotopy H : X × [0, 1] →
E′ such that the set {x ∈ X | L(x) ∈ H(x, t)) for some t ∈ [0, 1]} is bounded
and closed in E and K is a compact L-fundamental set for any map X $ x '→
H(x, t) where t ∈ [0, 1].

At the first glance the above definition of homotopic pairs is enough for our
next considerations (comp. Theorem 1), but in applications we need the following
more general one.

Definition 6. Two L-fundamentally restrictible maps F0, F1 are L-homotopic if
there is a finite number of compact convex sets K1, . . . ,Kn and L-fundamentally
restrictible maps G1, . . . , Gn−1 such that

F0 5K1 G1 5K2 · · · 5Kn−1 Gn−1 5Kn F1.

Theorem 1. The generalized index Ind L on has the following properties (as
above, C := {x ∈ X | L(x) ∈ F (x)}):

(i) (Existence) If Ind L(F,X) �= 0, then there is x ∈ X such that L(x) ∈ F (x).
(ii) (Localization) If X ′ ⊂ X is open and C ⊂ X ′, then Ind L(F,X ′) is defined
and equal to Ind L(F,X).

(iii) (Homotopy Invariance) If F0, F1 are L-homotopic, then Ind L(F0, X) =
Ind L(F1, X).

(iv) (Additivity) If X1, X2 are open disjoint subsets of X such that C ⊂ X1 ∪
X2, then

Ind L(F,X) = Ind L((F,X1) + Ind L(F,X2).

(v) (Restriction) If F (X)) ⊂ Y , where Y ⊂ Y ′ ⊕ Im (Q) is a closed subspace
of E′, then Ind L(F,X) = Ind LY (FY , X ∩ T ), where T := L−1(Y ′ ⊕ Im (Q)),
FY = F |X∩T ) and LY = L|T .

The proof can be found in [4] or in [3].

Applying the coincidence index constructed above, we present in the following
theorem conditions sufficient for the existence of solutions to the abstract coinci-
dence problem

L(x) = F (x),(5)

where L : E → E′ is a Fredholm linear operator of nonnegative index k (E, E′ are
Banach spaces) and F is a continuous map. This result is a slight modification of
Theorem 4.1 in [4] (see Remark 4.2 therein), where the proof is included. Let P
and Q be respective projections defined for L, I ′ be the identity map on E′ and
let ImQ �= {0}.

Theorem 2. Let F : E( E′ be a map such that
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(i) there exists an open bounded subset V of E such that, for any x ∈ E \V and
λ ∈ [0, 1], 0 �∈ ((1 − λ)(I ′ −Q) +Q) ◦ F (x), and F |clV is an L-fundamentally
restrictible map with some L-fundamental set containing 0,

(ii) IndO(Q ◦ F |V ∩ImP , V ∩ ImP ) is nontrivial (O : Im (P ) → Im (Q) is a
Fredholm operator such that O(v) = 0 for all v ∈ Im (P )).

Then the problem L(x) = F (x) has a solution.

3. Boundary value problem

Below we illustrate the above result by the boundary value problem.
Let E,E′ be Banach spaces with Hausdorff measures of noncompactness 3

χ and χ′ respectively and Z be the set of all positive numbers k such that the
Fredholm linear operator D : E → E′ is (k, χ, χ′)-set contraction4. Following [1]
we define

||D||(χ,χ
′) := inf Z.

Note that ||D||(χ,χ′) ≤ ||D||.
Denote J = [0, T ] ⊂ R and let ξ be a Hausdorff measure of noncompactness in

the space L = L1(J,E) of integrable functions in the sense of Bochner with the
norm ‖u‖L =

∫ T

0
‖u(s)‖E ds.

Let f : J ×E ×E → E be a map satisfying the following assumptions:

(f1) f(·, u, v) is a measurable map for every (u, v) ∈ E × E, and f(t, ·, ·) is con-
tinuous for almost all t ∈ J ,

(f2) there are two continuous functions λ1, λ2 : J → [0,∞) such that, for any
u1, u2, v1, v2 ∈ E and almost all t ∈ J ,

‖f(t, u1, v1) − f(t, u2, v2)‖E ≤ λ1(t)‖u1 − u2‖E + λ2(t)‖v1 − v2‖E ,

(f3) there are integrable functions m,n : J → [0,∞) such that ‖f(t, u, v)‖E ≤
m(t) + n(t)‖u‖E for any u, v ∈ E and almost all t ∈ J .

Let us consider the following boundary value problem{
u′(t) = f(t, u(t), u′(t)) for a.a. t ∈ J,
A1(u(0)) +A2(u(T )) = α(u(0)),(6)

where f satisfies assumptions (f1)-(f3), α is a continuous compact map, and
A1, A2 : E → E′ are linear operators such that A := A1 + A2 is a Fredholm
operator of nonnegative index. By a solution of problem (6) we mean an abso-
lutely continuous map satisfying the equation for a.a. t ∈ J an the boundary
condition.
3 Recall that χ is a Hausdorff measure of noncompactness on a space Banach E if for
any bounded set A ⊂ E, χ(A) = inf{ε | A has a finite ε-net}

4 i.e. for any bounded set B ∈ E, the set D(B) is bounded and χ′(D(B)) ≤ kχ(B).
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The problem (6) is equivalent to the following one:

L(z, y) = F (z, y),(7)

where L,F : E ×L → E′ ×L and

L(z, y) = (A(z), y)

F (z, y) =

(
α(z) −A2(

∫ T

0

y(s)ds), f(·, z +
∫ (·)

0

y(s)ds, y(·))
)
.

In fact, (z, y) is a solution of the coincidence problem (7) iff the map u ∈ L,
u(t) := z +

∫ t

0 y(s)ds is a solution of (6).

Assume that in the spaces E × L and E′ × L we have the norms ‖(z, y)‖1 =
max(‖z‖E, ‖y‖L) and ‖(z′, y)‖2 = max(‖z′‖E′ , ‖y‖L), respectively. Denote by µ
and µ′ the Hausdorff measures of noncompactness in E×L and E′×L, respectively,
and by prE and prL (resp. prE′ and pr′L) projections of the space E × L (resp.
E′ ×L) onto E and onto L (resp. onto E′ and L). Observe that if S is a bounded
subset of E ×L, then µ(S) = max(χ(prE(S)), ξ(prL(S))).

Let N =
∫ T

0 n(s)ds, M =
∫ T

0 m(t)dt, Λ1 =
∫ T

0 λ1(s)ds, Λ2 = supt∈J λ2 and let
PA, QA i KPA be the respective projections and the right inverse for A.

Theorem 3. Assume that f satisfies assumptions (f1) − (f3), the maps α and A
are as above, and QA �≡ 0. Moreover, let
(f4) Λ2 < 1 and Λ1(1 + ‖KPA‖(χ

′,χ)) < 1 − Λ2,
(f5) ‖A2‖ < 1,
(f6) ‖KPA‖ ·N exp(N) < 1,
(f7) ImA2 ⊂ ImA,
(f8) there exists R > 0 such that, for every z ∈ E satisfying ‖PA(z)‖E ≥ R,
QA(α(z)) �= 0 and IndO(QA◦α,BE(0, R)∩ImPA) �= 0, where O : ImPA → ImQA

and O ≡ 0

Then problem (7) has a solution.

Assumptions (f4) and (f5) will secure that F is L-condensing, while (f6)–(f8)
will allow us to check that a generalized index of F is nontrivial, which will imply
the existence of a solution to problem (7).

Proof. We show that L and F satisfy assumptions of Theorem 1. For clarity we
divide the proof into some steps but first of all, notice that L is a Fredholm operator
of index i(L) = i(A) ≥ 0. Respective projections and the right inverse of L will be
denoted in a standard way by P , Q andKP . The following equalities hold: KerL =
KerA× {0}, KerP = KerPA ×L, ImL = ImA×L and ImQ = ImQA × {0}.

STEP 1. We prove that F is continuous.
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Let (z0, y0) ∈ E × L and ε > 0 be arbitrary. By the continuity of α, there is
δ1 > 0 such that ‖α(z0) − α(z)‖E′ < ε

4 for ‖z0 − z‖E < δ1.
Take

δ < min(δ1,
ε

4‖A2‖
,
ε

8Λ1
,
ε

4Λ2
)(8)

and assume that for some (z, y) ∈ E ×L,

δ > ‖(z0, y0) − (z, y)‖E×L = max(‖z0 − z‖E, ‖y0 − y‖L) =

= max

(
‖z0 − z‖E,

∫ T

0

‖y0(s) − y(s)‖Eds
)
.

Since

‖F (z0, y0)−F (z, y)‖E′×L=

max

(∥∥∥∥∥α(z0)−A2

(∫ T

0

y0(s)ds

)
−α(z)+A2

(∫ T

0

y(s)ds

)∥∥∥∥∥
E′

,∥∥∥∥f (·, z0 +
∫ ·
0

y0(s)ds, y0(·)
)
− f

(
·, z +

∫ ·
0

y(s)ds, y(·)
)∥∥∥∥
L

)
and one can check, from (8), that∥∥∥∥∥α(z0) −A2

(∫ T

0

y0(s)ds

)
− α(z) +A2

(∫ T

0

y(s)ds

)∥∥∥∥∥
E′

≤ ε

2
,

∥∥∥∥f(·, z0 +
∫ ·
0

y0(s)ds, y0(·)) − f(·, z +
∫ ·
0

y(s)ds, y(·))
∥∥∥∥
L
≤ ε

2
,

we obtain

‖F (z0, y0) − F (z, y)‖E′×L < ε,

which implies a continuity of F .

STEP 2. We show that for any open bounded subset V of E×L, the set F (V )
is also bounded, and F |clV is L-condensing (so, L-fundamentally restrictible).

Let S be an arbitrary subset of V . We check that µ′(F (S)) < µ′(L(S)). Let
χ(prE(S)) = ε and ξ(prL(S)) = δ. Then

µ′(L(S)) = max
[
χ′(prE′(L(S))), ξ(prL(L(S)))

]
= max

[
χ′(prE′L(S))), δ

]
.

Since KerL = ImPA is a finite dimensional space,

χ(prE(S)) = χ((IE − PA) ◦ prE(S)) = χ(KPA ◦A ◦ prE(S)).
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One knows that

χ(KPA ◦A ◦ prE(S)) ≤ ‖KPA‖(χ
′,χ)χ′(A(prE(S)))

and

prE′(L(S)) = A(prE(S)),

thus

χ′(prE′(L(S))) ≥ χ(prE(S))
‖KPA‖(χ

′,χ)
=

ε

‖KPA‖(χ
′,χ)

.

This implies

µ′(L(S)) ≥ max
[

ε

‖KPA‖(χ
′,χ)

, δ

]
.

Now, calculate µ′(F (S)). Obviously,

µ′(F (S)) = max

(
χ′({α(z) −A2(

∫ T

0

y(s)ds); (z, y) ∈ S}),

ξ({f(·, z +
∫ (·)

0

y(s)ds, y(·)); (z, y) ∈ S})
)
.

Since α is a compact map, χ′({α(z)|z ∈ prE(S)}) = 0, hence, by a suitable prop-
erty of measures of noncompactness,

χ′({α(z) −A2(
∫ T

0

y(s)ds)|(z, y) ∈ S}) ≤ χ′({A2(
∫ T

0

y(s)ds)|y ∈ prL(S)}).
For every δ1 > 0 there is a finite (δ + δ1)–net in prL(S). Let yk be an arbitrary
element of this net. If ‖yk − y‖L ≤ δ + δ1 for some y ∈ prL(S), then∥∥∥∥∥A2

(∫ T

0

yk(s)ds

)
−A2

(∫ T

0

y(s)ds

)∥∥∥∥∥
E′

=

∥∥∥∥∥A2

(∫ T

0

yk(s) − y(s)ds

)∥∥∥∥∥
E′

≤

≤ ‖A2‖ ·
∥∥∥∥∥
∫ T

0

(yk(s) − y(s))ds

∥∥∥∥∥
E

≤ ‖A2‖ ·
∫ T

0

‖yk(s) − y(s)‖Eds =

= ‖A2‖ · ‖yk − y‖L <
< ‖A2‖(δ + δ1).

Therefore χ′(A2({
∫ T

0 y(s)ds|y ∈ prL(S)})) ≤ ‖A2‖δ < δ, what implies that

µ′(F (S)) ≤ max

(
δ, ξ({f(·, z +

∫ (·)

0

y(s)ds, y(·)); (z, y) ∈ S})
)
.
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Analogously, for every ε1 > 0 there is a finite (ε+ ε1)–net in prE(S). Let zl be
its arbitrary element. If ‖yk − y‖L ≤ δ + δ1 and ‖zl − z‖ ≤ ε + ε1 hold for some
y ∈ prL(S) and z ∈ prE(S), then∫ T

0

∥∥∥∥f (t, zl +
∫ t

0

yk(s)ds, yk(t)
)
− f

(
t, z +

∫ t

0

y(s)ds, y(t)
)∥∥∥∥

E

dt ≤

≤
∫ T

0

(
λ1(t)

∥∥∥∥zl +
∫ t

0

yk(s)ds− z −
∫ t

0

y(s)ds
∥∥∥∥
E

+ λ2(t)‖yk(t) − y(t)‖E
)
dt ≤∫ T

0

(
λ1(t)

(
‖zl − z‖E + ‖

∫ t

0

yk(s)ds−
∫ t

0

y(s)ds‖E
)

+λ2(t)‖yk(t) − y(t)‖E
)
dt ≤

≤
∫ T

0

λ1(t)(ε+ε1+ δ+δ1)dt+
∫ T

0

λ2(t)‖yk(t)−y(t)‖Edt ≤

≤ Λ1(ε+ε1+δ+δ1) + Λ2(δ + δ1).

Since ε1 and δ1 was arbitrary, we have

ξ(pr′L(F (S))) ≤ Λ1(ε+ δ) + Λ2δ,

and consequently, using (f4),

µ′(F (S)) = max (χ′ (prE′(F (S))) , ξ (pr′L(F (S)))) < max
(
δ,

ε

‖KPA‖(χ
′,χ)

)
≤

≤ µ′(L(S)).

This implies that F |clV is L-condensing map, hence there exists a compact L-
fundamental set for F |clV containing 0.

STEP 3. We prove that, for some open bounded set V ⊂ E × L, the map
((1 − λ)(I −Q) +Q) ◦ F has no coincidence points with L outside V (I denotes
the identity map in E′ × L). Let IE , IE′ be the identity maps on spaces E, E′

respectively
Let Z > 0 be such that α(E) ⊂ BE(0, Z). Choose R1 > 0 such that

R1 >
‖KPA‖(Z +M exp(N) +NR exp(N))

1 − ‖KPA‖N exp(N)

and let

R2 := (M +N(R+R1)) exp(N).

Define

V :={(z, y)∈E×L| PA(z)∈BE(0, R) ∩ KerA,

(IE − PA)(z)∈BE(0, R1) ∩ KerPA, y ∈ BL(0, R2)}.
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Suppose, on the contrary, that there is λ ∈ [0, 1] such that

L(z, y) = ((1 − λ)(I −Q) +Q) ◦ F (z, y).

It follows that Q ◦ F (z, y) = 0, since L(z, y) ∈ (I −Q)(E′ ×L). Moreover,

((1 − λ)(I −Q) +Q) ◦ F (z, y) =

=

(
((1 − λ)(IE′ −QA) +QA)

(
α(z) −A2(

∫ T

0

y(s)ds)

)
, f(·, z +

∫ ·
0

y(s)ds, y(·))
)
,

so we obtain that:

y(·) = f

(
·, z +

∫ ·
0

y(s)ds, y(·)
)
,(9)

A(z) = (1 − λ)(IE′ −QA)

(
α(z) −A2(

∫ T

0

y(s)ds)

)
,(10)

and

QA

(
α(z) −A2(

∫ T

0

y(s)ds)

)
= 0.(11)

The last equality and assumption (f7) imply QA(α(z)) = 0, so by (f8),

‖PA(z)‖E < R.(12)

Consider the continuous map [0, T ] $ t '→
∫ t

0
‖y(s)‖ds. From equality (9) and

assumption (f3) it follows that∫ t

0

‖y(s)‖Eds =
∫ t

0

∥∥∥∥f(s, z+
∫ s

0

y(τ)dτ, y(s)
)∥∥∥∥

E

ds≤

≤
∫ t

0

(
m(s)+n(s)

∥∥∥∥z+
∫ s

0

y(τ)dτ
∥∥∥∥
E

)
ds ≤

∫ t

0

m(s)ds+

+
∫ t

0

n(s)(‖PA(z)‖E + ‖(IE − PA)(z)‖E)ds+
∫ t

0

(n(s)
∫ s

0

‖y(r)‖Edr)ds,

and, by the Gronwall inequality,∫ t

0

‖y(s)‖Eds ≤ (M +N(‖PA(z)‖E + ‖(IE − PA)(z)‖E)) exp(
∫ t

0

n(s)ds) ≤

≤ (M +N(‖PA(z)‖E + ‖(IE − PA)(z)‖E)) exp(N).
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Combining this with (12) one obtains

‖y‖L ≤ (M +N(R+ ‖(IE − PA)(z)‖E)) exp(N).(13)

Since (IE −PA)(z) = KPA ◦A(z), conditions (10), (13) and assumption (f5) imply
that

‖(IE − PA)(z)‖E = (1 − λ)

∥∥∥∥∥KPA ◦ (IE′ −QA)

(
α(z) −A2(

∫ T

0

y(s)ds)

)∥∥∥∥∥
E

≤

≤ (1 − λ)

(
‖KPA◦(IE′ −QA)(α(z))‖E + ‖KPA◦(IE′ −QA)◦A2(

∫ T

0

y(s)ds)‖E

)
≤

≤(1−λ)

(
‖KPA‖ · ‖(IE′ −QA)(α(z))‖E′ +

+‖KPA‖ · ‖IE′ −QA‖ · ‖A2‖ · ‖
∫ T

0

y(s)ds‖E

)
≤

≤ ((1 − λ)‖KPA‖ · (Z + (M +N(R+ ‖(IE − PA)(z)‖E)) exp(N)) .

Now, if λ = 1, then ‖(IE − PA)(z)‖ = 0 < R1 and if 0 ≤ λ < 1, then also
(using the above inequalities)

‖(IE − PA)(z)‖E ≤ ‖KPA‖(Z +M exp(N) +NR exp(N))
1 − ‖KPA‖N exp(N)

≤ R1,(14)

which jointly with (13) implies

‖y‖L < (M +N(R+ R1)) exp(N) = R2.(15)

By inequalities (12), (14) and (15) we can conclude that all coincidence points
of L and maps ((1 − λ)(I −Q) +Q) ◦ F , where λ ∈ [0, 1], are contained in V .

STEP 4. We use assumptions (f7) and (f8) to obtain that, for every (z, y) ∈ V ,

Q ◦ F |V ∩ImP (z, y) = Q(α(z), 0) = QA(α(z)),

and hence, IndO(Q ◦ F |V ∩ImP , V ∩ ImP ) is nontrivial.
Resuming, in succeeding steps we have proved that the Fredholm operator

L and the map F satisfy the assumptions of Theorem 1, so problem (6) has a
solution.
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6. K. Gȩba, I. Massabo, A. Vignoli, Generalized topological degree and bifurcation, Proc.
Conf. on Nonlinear Anal. Appl., Maratea Italy, 1986, D. Reidel Publ. Co., 55-73.

7. S-T. Hu, Homotopy theory, Academic Press, New York 1959.
8. W. Kryszewski, Homotopy properties of set-valued mappings, Wyd. Uniwersytetu

Mikolaja Kopernika, Toruń 1997.
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1. The aim of this paper is to study the following eigenvalue problem

y′′′ + 2A(t)y′ + [A′(t) + λb(t)]y = 0(a)

y(a, λ) = y(b, λ) = y(c, λ) = 0, a ≤ b < c <∞(1)

as well as the boundary condition at infinity

y(t, λ) = o
(
t[k1u1(t)u2(t) + k2u

2
2(t)]

)
for t→ ∞(2)

together with the requirement that

y(t, λ) �= 0

in a certain neighborhood of infinity (t0,∞), where c ≤ t0 <∞, and u1, u2 form
a fundamental set of solutions of the second order differential equation

u′′ +
1
2
A(t)u = 0 (3)
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with initial conditions u1(t0) = 1, u′1(t0) = 0, u2(t0) = 0, u′2(t0) = 1, k1, k2 are
certain positive constants.

The basic suppositions on A and b in this paper are such that A′, b are con-
tinuous on [a,∞), b(t) > 0 for (a,∞) and the differential equation (a) is strongly
nonoscilatory for each real positive λ.

2. In this section we introduce certain auxiliary statements on the linear third
order differential equation, given in monograph [1].

Consider equation (a) and the third order differential equation

y′′′ + 2A(t)y′ + [A′(t) + b(t)]y = 0.(a1)

Lemma 1 (2, Theorem 2.1). Let A(t) < 0, b(t) > 0 for t ∈ [a,∞) and let
|A(t)| ≥

∫ t

a
b(τ)dτ for t ≥ a. Then the differential equation (a1) is disconjugate in

the interval [a,∞).

Lemma 2. Let the suppositions of Lemma 1 be fulfilled and let
∫∞
a
b(τ)dτ < ∞.

Then to each λ̄ ∈ [1,∞) there exists t0 > a such that |A(t)| > λ̄
∫ t

t0
b(τ)dτ holds for

t ≥ t0 and the differential equation (a) is disconjugate for λ = λ̄ on the interval
[t0,∞).

The proof follows immediately from Lemma 1.

Lemma 3 (2, Theorem 2.14). Let A(t) < 0, b(t) > 0 and A′(t) + b(t) > 0 for
t ∈ [a,∞). If, moreover

∞∫
T

[
A′(t) + b(t) − 4

3

√
2
3

√
−A3(t)

]
dt = +∞,

a < T <∞, then the differential equation (a1) is oscillatory in [a,∞).

Lemma 4. Let A(t) < 0, b(t) > 0 and |A(t)| < K, |A′(t)| < K, b(t) > K, K > 0,
for t ∈ [a,∞). Then there exists λ̃ > 0 such that the differential equation (a) is
oscillatory in [a,∞) for all λ ≥ λ̃.

The proof of this lemma follows immediately from Lemma 3.
Consider, moreover, the second order differential equation

y′′ +
1
2
A(t)y = 0(3)

Lemma 5. Let A(t) < 0 for t ∈ [a,∞). Let u1, u2 be independent solutions of
(3) and let u1(t0) = 1, u′1(t0) = 0, u2(t0) = 0, u′2(t0) = 1, a < t0 < ∞. Then
there is u1(t) > 0, u2(t) > 0 for t > t0 and u1(t) → ∞, u2(t) → ∞ for t→ ∞.

The proof follows from equation (3).
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Lemma 6. Let A(t) < 0, b(t) > 0 for t ∈ [a,∞) and let λ > 0. Let y be a
solution of (a) and let for λ = λ̄ be y(t0, λ̄) = 0, y′(t0, λ̄) �= 0, y′′(t0, λ̄) �= 0 and
let y(t, λ̄) �= 0 for t > t0. Then

y(t, λ̄) = u2(t)
[
y′′(t0, λ̄)

2
u2(t) + y′(t0, λ̄)u1(t)

]
−(4)

1
2
λ̄

t∫
t0

b(τ)
∣∣∣∣ u1(t) u2(t)u1(τ) u2(τ)

∣∣∣∣2y(τ, λ̄)dτ.

where u1, u2 form a fundamental set of solutions of (3) with the properties as in
the formulation of Lemma 5.

The proof of Lemma 6 is given in [2], Chap. I, §3 at the beginning of section 3
by method of variation of constants for

y′′′ + 2A(t)y′ +A′(t) = −λ̄b(t)y.

Remark 1. If in (4) y(t, λ̄) > 0 [y(t, λ̄) < 0] for t > t0, then y′(t0, λ̄) > 0 [y′(t0, λ̄)
< 0] and u2(t) > 0, u(t) = y′(t0, λ̄)u1(t)+ y′′(t0,λ̄)

2 u2(t) > 0 [u(t) = y′(t0, λ̄)u1(t)+
y′′(t0,λ̄)

2 u2(t) < 0] for t > t0.

Corollary 1. Let the supposition of Lemma 6 be fulfilled. Then there exist con-
stants k1 > 0, k2 > 0 such that |y(t, λ̄)| ≤ u2(t)[k1u1(t)+k2u2(t)] for t > t0 where
k1 = |y′(t0, λ̄)|, k2 = |y′′(t0,λ̄)|

2 , or

y(t, λ̄) = o
(
tu2(t)[k1u1(t) + k2u2(t)]

)
for t→ ∞. (2)

Adaptation of oscillation theorem [2, Theorem B, or Theorem 4.5 in the same
section] to (a) in our case yields the following lemma.

Lemma 7. Suppose that |A(t)| ≤ K, |A′(t)| ≤ K, K > 0 and b(t) ≥ k > 0
for t ∈ [a,∞). Let λ ∈ (0,∞) and let y(t, λ) be a nontrivial solution of (a) with
y(a, λ) = 0. Then for any fixed b > a, the number of zeros of y on [a, b] increases to
infinity as λ→ ∞, and the distance between any consecutive zeros of y converges
to zero.

The continuous dependence of zeros of solutions of (a) upon the parameter λ
is given in following lemma.

Lemma 8 (2, Lemma 4.2). Let y be a nontrivial solution of (a) on [a,∞) such
that y(a, λ) = 0. Then, the zeros of y on (a,∞) (if they exist) are continuous
functions of the parameter λ ∈ (0,∞).

With the help of results given in the preceding lemmas and Corollary 1 one
can prove the following theorem regarding the singular eigenvalue problem (a),
(1), (2).
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Theorem 1. Let A(t) < 0, b(t) > 0 and |A(t)| < K, |A′(t)| < K, K > 0 for
t ∈ [a,∞). Let, further,

∫∞
a
b(t)dt < ∞ and |A(t)| ≥

∫ t

a
b(τ)dτ for t ∈ [a,∞) and

let a ≤ b < c < ∞ be arbitrary, but fixed. Then there exists a natural number ν,
a sequence of the values of the parameter λ,

{
λν+p

}∞
p=0

(eigenvalues) such that
λν+p < λν+p+1, p = 0, 1, 2, . . . and lim

p→∞
λν+p = ∞ and a corresponding sequence

of functions
{
yν+p

}∞
p=0

(eigenfunctions) such that yν+p = y(t, λν+p) is a solution
of (a) for λ = λν+p, has a finite number of zeros on (a,∞) with the last zero at
tν+p
0 , fulfills the boundary conditions (1), (2) and has exactly ν + p zeros in (b, c).

Proof. Let a < b < c < ∞. Let y = y(t, λ), λ > 0 be a nontrivial solution of (a)
such that y(a, λ) = y(b, λ) = 0 for all λ > 0. Construct, now, on [a,∞) differential
equation

Y ′′′ + 2A(t)Y ′ + [A′(t) + λB(t)]Y = 0,(A)

where

B(t) =
{
b(t) for t ∈ [a, c]
b(c) for t ≥ c.

Let Y = Y (t, λ) be a solution of (A) on [a,∞) such that Y (a, λ) = Y (b, λ) = 0
and Y (t, λ) = y(t, λ) for t ∈ [a, c] and λ ∈ (0,∞).
By Lemma 4, there exists λ̄ such that the differential equation (A) is oscillatory in
[a,∞) for all λ > λ̄. Let Y (t, λ∗), λ∗ ≥ λ̄ have exactly ν zeros in (b, c). Let tν(λ)
be the ν-th zero of Y (t, λ). Then there is tν(λ∗) < c ≤ tν+1(λ∗). By Lemma 7
there exists λ̄∗ such that tν+1(λ̄∗) < c and by Lemma 8 (continuous dependence
of zeros) there exists λν , λ∗ ≤ λν < λ̄∗ such that tν+1(λν) = c and Y (t, λν)
has exactly ν zeros in (b, c). But, we know that Y (t, λν) = y(t, λν) on [a, c]. By
Lemma 2 to λν there exists tν0 ≥ c such that y(t, λν) has finite numbers of zeros to
the right of c. Let tν0 be its last zero on [c,∞). Then by Corollary 1 the inequality
(2) holds.

Continuing in the same manner we can find a sequence of values

λν , λν+1, . . . , λν+p, . . .

and the corresponding sequence of functions
{
yν+p

}∞
p=0

(eigenfunctions) with the
prescribed properties and the theorem is proved.

Remark 2. If we take in consideration the fact, that equation (a) is for λ = 1
disconjugate on [a,∞), the oscillation Lemma 7 and Lemma 8 (continuous depen-
dence of zeros on λ) then it is possible to prove Theorem 1 for ν = 0.
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1. The aim of this paper is to study these two boundary value problems

y′′′ + 2A(t)y′ + [A′(t) + λb(t)]y = 0,(a)

y(a, λ) = y(b, λ) = y(c, λ) = 0, a ≤ b < c <∞(1)

lim
t→+∞

y(t, λ) = 0(2)

and the problem (a), (1) and (2′) where

|y(t, λ)| < K, |y′(t, λ)| < K, K > 0, λ > 0,(2′)

under certain suppositions on the functions A,A′, b on [a,∞).
The result of this paper complete those which are given in monograph [1] in

the case that equation (a) is oscillatory on [a,∞) for each λ > 0, i.e. every solution
of (a) with one zero has infinite number of zeros on [a,∞).
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2. In this section we introduce certain auxiliary statements on the third order
differential equation given in [1].

In this and in the next section we will suppose thatA′(t) and b(t) are continuous
functions on [a,∞) and b(t) > 0 for all t ∈ [a,∞).

Have the linear third order differential equation

y′′′ + 2A(t)y′ + [A′(t) + b(t)]y = 0,(a1)

(i.e. equation (a) with λ = 1).

Lemma 1 (1, Theorem 3.17). Assume that every solution of the second order
differential equation

y′′ +
1
2
A(t)y = 0(3)

converges to zero as t→ +∞ and
∫ t

a b(τ)dτ converges. Then every solution of the
differential equation (a1) converges to zero as t→ ∞.

This Lemma was formulated and proved by M. Ráb in [2].
One of the sufficient conditions for the solutions of (3) to converge to zero as

t→ ∞ is given in the following lemma [3].

Lemma 2. Let A(t) > 0 be non decreasing on [a,∞) and let A′(t) ≥ l > 0 and∫∞
a

dt
A(t) = +∞. Then every solution y of (3) has the property lim

t→∞
y(t) = 0.

Lemma 3 (1, Theorem 3.18). Let the following assumptions in [a,∞) hold:

1. A(t) > 0, lim
t→∞

A(t) = ∞.

2. The function A−
1
4 (t) is convex.

3. The integral
t∫
a

b(τ)
A(τ)dτ converges.

Then every solution of (a1) and its first derivative are bounded in [a,∞).

This lemma was formulated and proved by M.Zlámal [4].

Lemma 4 (1, Corollary 2.3). Let the second order differential equation (3) be
oscillatory in [a,∞).Then (a1) is oscillatory in [a,∞) too, i.e. its every solution
having a zero is oscillatory in [a,∞).

Adaptation of the oscillation theorem [1, Theorem 4.5] to (a) yields the following
lemma.

Lemma 5. Suppose that A ≥ p
2 for all t ∈ [a,∞), where p is a real constant and

moreover b(t) ≥ k > 0 on [a,∞) for some positive constant k.
Let λ ∈ (0,∞) and let y(t, λ) be a nontrivial solution of (a) with y(a, λ) = 0.
Then, for any fixed b > a, the number of zeros of y on [a, b] increases to infinity as
λ → ∞, in which case the distance between any consecutive zeros of y converges
to zero.
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The continuous dependence of zeros of solutions of (a) upon the parameters λ is
given in following lemma.

Lemma 6 (1, Lemma 4.2). Let y be a nontrivial solution of (a) on [a,∞) such
that y(a, λ) = 0. Then, the zeros of y on [a,∞) (if they exist) are continuous
functions of the parameter λ ∈ (0,∞).

With the help of the results given in the preceding lemmas one can prove the
following two theorems regarding the multipoint eigenvalue problems (a), (1), (2)
and (a), (1), (2′).

Theorem 1. Let the suppositions on A, A′, b given in Lemma 1, be fulfilled and
let A(t) > 0 and equation (3) be oscillatory on [a,∞). Let a ≤ b < c < ∞
be arbitrary, but fixed. Then there exists a natural number ν, a sequence of the
values of parameter λ

{
λν+p

}∞
p=0

(eigenvalues) such that λν+p < λν+p+1 and

lim
p→∞

λν+p = ∞, and a sequence of functions
{
y(t, λν+p)

}∞
p=0

(eigenfunctions)

such that y(t, λν+p), p=0,1,... is a solution of (a) with λ = λν+p, which fulfills the
conditions (1), (2) and has exactly ν + p− 1 zeros on (b, c).

Proof. Let a < b < c < ∞. Let y(t, λ), λ > 0 be a nontrivial solution of (a)
such that y(a, λ) = y(b, λ) = 0. Such a solution of (a) evidently exists (see e.g.
properties of bands of solutions of (a), [1]). Solution y(t, λ) is oscillatory on [b,∞).
Construct now on [a,∞) the differential equation

Y ′′′ + 2A(t)Y ′ + [A′(t) + λB(t)]Y = 0,(A)

where

B(t) =
{
b(t) for t ∈ [a, c]
b(c) for t > c.

On account of Lemma 4 equation (A) is oscillatory on [a,∞) for all λ > 0. Let
Y (t, λ) be a solution of (A) on [a,∞) with the property Y (a, λ) = Y (b, λ) = 0.
If we denote Y ′(b, λ) = y′(b, λ), Y ′′(b, λ) = y′′(b, λ) for all λ > 0, then clearly
Y (t, λ) = y(t, λ) is the solution of (a) for t ∈ [a, b] and λ > 0, too.

The function Y (t, λ) as a solution of (A) is oscillatory on [b,∞) for all λ > 0.
Let for λ = λ̄ > 0 the solution Y (t, λ̄) have exactly ν zeros in (b, c). Then

clearly, for the ν-th zero tν(λ̄) and the (ν + 1)-st zero tν+1(λ̄) of Y (t, λ̄) we have
tν(λ̄) < c ≤ tν+1(λ̄).

It follows from Lemma 5 (oscillation lemma), that for some ¯̄λ > λ̄ we have
tν+1(¯̄λ < c. Since tν+1(λ) is a continuous function of the parameter λ (Lemma 6),
there exist λν ∈ [λ̄, ¯̄λ) such that for λ = λν we have tν+1(λν) = c, i.e Y (c, λν) =
y(c, λν) = 0 and Y (t, λν) has exactly ν zeros in (b, c).

Continuing in this manner, we can find a sequence of values of the parameters
λ > 0

λν < λν+1 < · · · < λν+p < · · · ,
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to which there corresponds a sequence of functions

Yν , Yν+1, . . . , Yν+p, . . .

such that Yν+p = y(t, λν+p) is a solution of (A) satisfying conditions (1) and
Y (t, λν+p) has exactly ν + p− 1 zeros in (b, c).

But Y (t, λν+p) = y(t, λν+p) on [a, c] with the same initial conditions in c.
Therefore the solution y(t, λν+p) of (a) fulfills the boundary condition (1) and by
Lemma 1 (where instead of

∫∞
a
b(τ)dτ < ∞ we have λν+p

∫∞
a
b(τ)dτ < ∞) the

solution y(t, λν+p) has the property (2), too and Theorem 1 is proved in the case
a < b < c <∞.

If a = b < c <∞, the proof is similar, but for the solution y with the double zero
at a for λ > 0.

By the same argument we can prove the following

Theorem 2. Let the suppositions on A,A′, b given in Lemma 3 be fulfilled on
[a,∞). Then the assertion of Theorem 1 holds with the exception that y(t, λν+p)
fulfills the condition (2′), (not the condition (2)).
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1. Introduction

The question of the existence and uniqueness for the solutions of ordinary differen-
tial equations is an old problem of great importance. There is an enormous amount
of literature offering various sufficient conditions for the uniqueness. We shall men-
tion here only several mathematicians that have contributed to this problem.

The first result on the uniqueness of a scalar initial value problem

x′ = f(t, x), x(t0) = x0(1)

where f = (f1, f2, . . . , fn), x = (x1, x2, . . . , xn), x0 = (x01, x02, . . . , x0n), was given
by A. Cauchy in 1820–1830. The result was improved by R. Lipschitz in 1876, who
introduced so called Lipschitz condition of the form

|f(t, x) − f(t, y)| ≤ L|x− y|.(2)

The Lipschitz condition was generalized by many authors such as W. F. Osgood
(1898), P. Montel (1926), L. Tonelli (1925), M. Nagumo (1926). Very general is a
condition of Perron’s type

|f(t, x) − f(t, y)| ≤ g(t, |x− y|).(3)
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Perron’s result (1926) was improved by E. Kamke (1930). His well-known theorem
(see e. g. [1, pp. 56–57]) can be formulated for vector differential equations.

Theorem 1 (Kamke). Assume that
(i) g ∈ C(R0,R

+ ), where R0 = {(t, u) ∈ R
2 : t0 < t ≤ t0 + a, 0 ≤ u ≤ 2b},

R
+ = [0,∞) and for every t1 ∈ (t0, t0+a), the function u(t) ≡ 0 is the only solution

of u′ = g(t, u) defined on (t0, t1) and satisfying limt→t0 [u(t)/(t− t0)] = 0.
(ii) f : R→ R

n , R = {(t, x) ∈ R
n+1 : t0 ≤ t ≤ t0 + a, |x− x0| ≤ b} and

|f(t, x) − f(t, y)| ≤ g(t, |x− y|) for (t, x), (t, y) ∈ R, t �= t0.(4)

Then the initial value problem (1) has at most one solution in [t0, t0 + a].

2. The use of Lyapunov functions

Kamke’s theorem was generalized in several manners. One of the fruitful ways is
the use of Lyapunov functions method. This approach allows to obtain very general
and flexible results. These results contain the most of previous results as special
cases and, by special choices, new interesting criteria for the uniqueness can be
obtained. There exists a lot of variants of criteria utilizing Lyapunov functions.
We can mention here the results of H. Okamura (1934–42), T. Sato (1936), O.
Bor̊uvka (1956), J. Chrastina (1969), S. C. Chu and J. B. Diaz (1970), T. Roger
(1972), F. Brauer and S. Sternberg (1958), R. D. Moyer (1966), S. R. Bernfeld -
R. D. Driver - V. Lakshmikantham (1976), Z. Tesařová - O. Došlý (1980), H. A.
Antosiewicz (1962), V. Lakshmikantham - M. Samimi (1983).

The interesting and powerful uniqueness criteria for the Cauchy problem were
derived by I. Kiguradze (1965). We shall remind a criterion for a singular Cauchy
problem formulated for t0 = a:

Theorem 2 (Kiguradze [6]). Let f be defined for a < t ≤ b, |x − x0| < r and
a function V (t, x) be continuous and positive definite in R0 = {(t, x) ∈ R

n : a <
t ≤ b, |x| ≤ 2r}. Assume that g(t, u) satisfies Carathéodory conditions on any set
{Rc = {(t, u) ∈ R

2 : a ≤ t ≤ b, |u| ≤ c}, c ∈ (0,∞). Suppose that g(t, ·) is
nondecreasing, g(t, 0) ≡ 0 and the problem

du

dt
= g(t, u), u(a) = 0

has only the trivial solution. If the conditions

lim
t→a

V (t, x(t) − y(t)) = 0,(5)

V (t, x(t) − y(t)) ≤
∫ t

a

g(s, V (s, x(s) − y(s))ds(6)

hold for any two solutions x(t), y(t) of (1), then (1) has at most one solution.
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3. Nonuniqueness theorems

In contradistinction with the problem of uniqueness criteria, there are only sev-
eral papers dealing with problem of nonuniqueness. The necessary and sufficient
conditions for the uniqueness in the scalar case was derived by T. Yosie in 1926
(see e. g. [1, pp. 81–91]). His main result is the following:

Theorem 3 (Yosie’s criterion). The scalar initial value problem has at most
one solution in the interval [t0, t0 + a] if and only if for every ε > 0 there exists
a pair of lower- and upper- functions ϕ(t), ψ(t) with respect to the initial value
problem (1) such that 0 < ψ(t) − ϕ(t) < ε in the interval (t0, t0 + a].

The first nonuniqueness criterion appeared in 1922 (see e. g. [1, p. 98]):

Theorem 4 (Tamarkine). Let f(t, x) be a scalar function continuous in R =
{(t, x) ∈ R

2 : |t− t0| ≤ a, |x− x0| ≤ b} with (t0, x0) = (0, 0) and for all (x, y) ∈ R
the condition

|f(t, x) − f(t, x(t))| ≥ g(|x− x(t)|)

holds, where x(t) is a solution of (1), g(u) being an increasing continuous function
for u ≥ 0, such that g(0) = 0 and

∫
0+

du
g(u) < ∞. Then the initial value problem

(1) has at least two solutions in [t0 − a, t0 + a].

The Tamarkine criterion was generalized by V. Lakshmikantham (1964). His
nonuniqueness condition formulated for t0 = 0 has a form

|f(t, x) − f(t, y)| ≥ g(t, |x− y|),(7)

where g ∈ C(R,R+ ), R = {(t, u) ∈ R
2 : 0 < t ≤ a, 0 ≤ u ≤ 2b}, g(t, 0) ≡ 0,

g(t, u) > 0 for u > 0, and, there exists a differentiable function u(t) �≡ 0 for which

u′(t) = g(t, u(t)), u(0) = u′+(0) = 0.

Lakshmikantham’s theorem was generalized by M. Samimi in 1982, however, as it
was noticed by H. Stettner and Chr. Nowak, the condition (7) should be replaced
by a stronger one: f(t, x) − f(t, y) ≥ g(t, x− y) for x > y. Unfortunately, the last
condition cannot be fulfilled (see [9]).

The first mathematician who used Lyapunov functions to obtain nonuniqueness
criterion was H. Stettner (1974). In our paper [2] a general nonuniqueness result
employing Lyapunov functions for the nonsingular Cauchy problem was given.
A modification of this result was presented by M. Samimi [10] in 1982. Samimi
supposes the boundedness of f and uses a function B(t) for the description of
the behaviour of the solutions near the initial point t0 in sense of the following
Theorem 5.

In 1992, Chr. Nowak [8] attempted to remove the condition on the boundedness
of f in Samimi’s theorem. In the paper [3] a general nonuniqueness criterion was



472 JOSEF KALAS

derived, which contains as a consequence a revised form of Nowak’s nonuniqueness
criterion and the most of previous known nonuniqueness criteria. The notation

D+V (t, x) := lim sup
h→0+

V (t+ h, x+ hf(t, x)) − V (t, x)
h

is used and the criterion is given here in a simplified form formulated for t0 = a,
where −∞ ≤ a <∞:

Theorem 5 (Kalas [3]). Let t1 ∈ (a,A). Assume that f ∈ C[R,Rn ], where R =
{(t, x) ∈ R

n+1 : a < t < A, |x− x0| ≤ b}, and
(i) there exists a function g ∈ C[(a, t1] × R

+ ,R] nondecreasing in the second
variable and such that a certain solution ϕ(t), t ∈ (a, t1] of

u′ = g(t, u)

satisfies conditions

ϕ(t1) > 0, lim
t→a+

ϕ(t)
B(t)

= 0,

where B ∈ C[(a, t1],R] is positive;
(ii) V ∈ C[R,R+ ] is such that

V (t1, y0) < ϕ(t1) for some y0 ∈ R
n , |y0 − x0| < b,(8)

V (t, x) > ϕ(t) for a < t < t1, |x− x0| = b,(9)
V (t, x) ≥ Φ(t)Ψ(|x− z(t)|) for a < t ≤ t1, |x− x0| < b,(10)

where Φ ∈ C[(a, t1],R+ ], Ψ ∈ C[[0, 2b),R+ ], z ∈ C[(a, t1],Rn ] satisfy

lim inf
t→a+

Φ(t)
B(t)

> 0, Ψ(0) = 0, Ψ(u) > 0 for u ∈ (0, 2b)(11)

and
lim

t→a+
z(t) = x0, |z(t) − x0| < b for t ∈ (a, t1];

(iii) there exists a positive function ε ∈ C[(a, t1),R+ ] such that V (t, x) satisfies
locally the Lipschitz condition with respect to x for (t, x) ∈ Ωϕ and

D+V (t, x) ≥ g(t, V (t, x)) on Ωϕ

holds, Ωϕ being defined by

Ωϕ={(t, x) ∈ R
n+1 : ϕ(t) < V (t, x) < ϕ(t) + ε(t), a < t < t1, |x− x0| < b}.(12)

Then the problem (1) has at least two different solutions x(t) on (a, t1] such that

lim
t→a+

V (t, x(t))
B(t)

= 0

is valid.
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All the mentioned nonuniqueness criteria have the disadvantage that they can-
not be applied for the n-th order differential equations. In the following result
formulated for t0 = a, where −∞ ≤ a <∞, we use Lyapunov functions that need
not be positive definite in x (in sense of the condition (10)), but only in some
components of x and thus we need the estimations only of several components of
f . Such a result is applicable to the n-order differential equation. In the result we
use the projection Pr defined by Prx = (xi1 , . . . , xil), where ij (j = 1, . . . , l) are
integers such that 1 ≤ i1 < · · · < il ≤ n.

Theorem 6 (Kalas [4]). Let f ∈ C(R,Rn ), where R = {(t, x) ∈ R
n+1 : a < t <

A, |x− x0| ≤ b}. Put µ(t) := max|x−x0|≤b |f(t, x)|. Suppose that∫
a+

µ(t)dt <∞

holds and choose t1 ∈ (a,A) such that∫ t1

a

µ(t)dt ≤ b/2

is valid. Assume that
(i) there exists a function g ∈ C[(a, t1] × R

+ ,R] nondecreasing in the second
variable and such that a certain solution ϕ(t), t ∈ (a, t1] of

u′ = g(t, u)

satisfies conditions

ϕ(t1) > 0, lim
t→a+

ϕ(t)
B(t)

= 0,

where B ∈ C[(a, t1],R+ ] is positive;
(ii) V (t, x) ∈ C[R,R+ ] and there exists y0 ∈ R

l , |y0 − Prx0| < b/2, such that

V (t1, y) < ϕ(t1) for y ∈ R
n , |y − x0| ≤ b, Pr y = y0,

and
V (t, x) ≥ Φ(t)Ψ(|Prx− z(t)|) for a < t ≤ t1, |x− x0| < b,

where Φ ∈ C[(a, t1],R+ ], Ψ ∈ C[[0, 2b),R+ ], z ∈ C[(a, t1],Rl ] satisfy (11) and

lim
t→a+

z(t) = Prx0, |z(t) − Prx0| < b for t ∈ (a, t1];

(iii) there exists a positive function ε ∈ C[(a, t1),R+ ] such that V (t, x) satisfies
locally the Lipschitz condition with respect to x for (t, x) ∈ Ωϕ and

D+V (t, x) ≥ g(t, V (t, x)) on Ωϕ

holds, Ωϕ being defined by (12). Then the problem (1) has at least two different
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solutions x(t) on (a, t1] such that

lim
t→a+

V (t, x(t))
B(t)

= 0

is valid.

Proof. For the proof see [4].

Theorem 6 is formulated for the nonsingular Cauchy problem. Recently a re-
sult which attemps to extend the last result to a singular case was published in
[5]. Moreover a vector Lyapunov function instead of a scalar one is used, which
allows to apply achieved results to a wider class of differential equations. For the
formulation of the result we need the following notation:

| · | Hölder’s 1-norm (sum of the absolute values of components);

l fixed number from the set {1, · · · , n};

i1, i2, · · · , il integers 1 ≤ i1 < i2 < · · · < il ≤ n;

I := {i1, i2, · · · , il};

N := {1, 2, · · · , n};

R̃k
a,A :={(t, x) ∈ R

k+1 : a < t < A, x ∈ R
k};

R̂n
a,A :={(t, x) ∈ R

n+1 : a < t ≤ A, x ∈ R
n};

Rk
α,A;@ :={(t, x) ∈ R

k+1 : α < t < A, |x| ≤ X};

L[R̂n
a,A,R

+k] class of all functions V (t, x) :R̂n
a,A → R

+k with following pro-
perty: V (t, ·) is uniformly continuous and if a < α < β ≤ A,
then V (t, x(t)) is absolutely continuous on [α, β] for any abso-
lutely continuous function x : [α, β] → R

n ;

K[R̃k
a,A,R

n ] class of all mappings R̃k
a,A → R

n which satisfy Caratheodory
conditions on Rk

α,A;@ for any α ∈ (a,A), X ∈ (0,∞);

N0(a,A; τ1, · · · , τn) :={Λ = (λij(t))ni,j=1 : λij ∈ L[[a,A],R+ ]} such that the sys-
tem of differential inequalities |x′i(t)| ≤

∑n
j=1 λij(t)|xj(t)|,

t ∈ [a,A], i∈N possesses no nontrivial solution x(t) = (x1(t),
x2(t), · · · , xn(t)) ∈ AC[[a,A],Rn ] satisfying xi(τi) = 0 (i = 1,
2, · · · , n);

NI(a,A) :=N0(a,A; τ1, · · · , τn), where τi = A for i ∈ I and τi = a for
i ∈ N \ I.

In the theorem, the initial value problem (1) with t0 = a, where −∞ ≤ a <∞,
will be considered. We shall assume, that the vector function f = (f1, · · · , fn) ∈
K[R̃n

a,A,R
n ] is such that there are ci ∈ R (i ∈ I), Λ = (λij)ni,j=1 ∈ NI(a,A),

µi ∈ L[[a,A],R+ ] (i ∈ N) for which

−fi(t, x) sgn(xi − ci) ≤
n∑

j=1

λij(t)|xj | + µi(t) (i ∈ I)
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and

fi(t, x) sgn(xi − x0i) ≤
n∑

j=1

λij(t)|xj − x0j | + µi(t) (i ∈ N \ I)

hold for (t, x) = (t, x1, . . . , xn) ∈ R̃n
a,A.

Theorem 7 (Kalas [5]). Assume that
(i) there exists a function g = (g1, . . . , gk) ∈ K[R̃k

a,A,R
k ] such that any compo-

nent gj(t, u1, . . . , uj−1, ·, uj+1, . . . , uk) is nondecreasing for j = 1, . . . , k and there
is a solution ϕ(t) = (ϕ1(t), . . . , ϕk(t)), t ∈ (a,A) of

u′ = g(t, u)
satisfying

ϕ(t) > 0, lim
t→a+

ϕ(t) = 0, lim inf
t→A−

ϕ(t) > 0;

(ii) V (t, x) = (V1(t, x), . . . , Vk(t, x)) ∈ L[R̂n
a,A,R

+k] and there exists y0 ∈ R
l such

that
sup{Vj(A, y) : y ∈ R

n ,Pr y = y0} < lim inf
t→A−

ϕj(t) (j = 1, . . . , k)
and,

|V (t, x)| ≥ Ψ(|Prx− z(t)|) for a < t < A,

where Ψ ∈ C[R+ ,R+ ], z ∈ C[(a,A),Rl ] are such that

Ψ(0) = 0, Ψ(u) > 0 for u > 0, lim
t→a+

z(t) = Prx0;

(iii) there exist positive functions εj ∈ C[(a,A),R+ ] such that

V ′j (t, x(t)) ≥ gj(t, ϕ1(t), . . . , ϕj−1(t), Vj(t, x(t)), ϕj+1(t), . . . , ϕk(t))

holds for j = 1, 2, . . . , k and for any solution x(t) of (1) a. e. on any interval
(α1, α2) ⊆ (a,A) for which

Vi(t, x(t)) < ϕi(t) + εi(t) on (α1, α2), (i = 1, . . . , k),(13)
Vj(t, x(t)) > ϕj(t) on (α1, α2).(14)

Then the initial value problem (1) possesses at least two different solutions x(t)
on [a,A], either of which satisfies V (t, x(t)) ≤ ϕ(t) for t ∈ (a,A).

As a consequence we easily obtain the result for the nonuniqueness for the n-th
order differential equation (for details see [5]).

Corollary 1. Let f̃ ∈ K[R̃n
a,A,R]. Suppose c ∈ R, λ, µ ∈ L[[a,A],R+ ] are such

that
−f̃(t, x1, . . . , xn) sgn(xn − c) ≤ λ(t)|xn| + µ(t)
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for (t, x) ∈ R̃
n
a,A . Assume that

(i) there exists a function g ∈ K[R̃1
a,A,R] such that g(t, ·) is nondecreasing and

there is a solution ϕ(t), t ∈ (a,A) of u′ = g(t, u) satisfying

ϕ(t) > 0, lim
t→a+

ϕ(t) = 0;

(ii) there are z ∈ C[[a,A],R], ε ∈ C[(a,A),R+ ] such that z is absolutely continu-
ous on [α,A] for any α ∈ (a,A), z(a) = x0n and

(f̃(t, x1, . . . , xn) − z′(t)) sgn(xn − z(t)) ≥ g(t, |xn − z(t)|)
holds on Ω̂ = {(t, x1, . . . , xn) ∈ R

n+1 : ϕ(t) < |xn − z(t)| < ϕ(t) + ε(t), a < t < A}
for almost all t ∈ (a,A). Then the initial value problem

v(n) = f̃(t, v, v′, · · · , v(n−1)),
v(a) = x01, v

′(a) = x02, · · · , v(n−1)(a) = x0n

is nonunique.

Finally, notice that very interesting results for nonuniqueness of a singular
Cauchy-Nicolletti problem were achieved by I. Kiguradze [7]. The sufficient con-
ditions are given in the form of one-sided inequalities for the components of the
right-hand side f . The estimating expression for the j-th component fj of f de-
pends on t and xj and is linear in |xj |. The proofs of Theorem 6 and Theorem 7
are based on the combination of the Lyapunov function method with the modified
method of I. Kiguradze [7]. We mention also the paper [9], where the differences
between the nonsingular and the singular initial value problem are analyzed.
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Abstract. Sometimes so-called cone invariance and squeezing properties
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1. Inertial Manifolds for Semiflows

Let (X, ‖·‖) be a Banach space and let S be a semiflow on X, i.e., let S : R≥0×X→
X, Stx := S(t, x) satisfy

(S1) (St)t∈R≥0 is a strongly continuous semigroup of (nonlinear) continuous op-
erators, i.e.,

S0 = I, StSθ = St+θ for all t, θ ≥ 0,

and S(·, x) and St = S(t, ·) are continuous for all x ∈ X, t ∈ R≥0 .

Our goal is to find a submanifold M of X with the following properties:

(M1) M is a finite-dimensional Lipschitz submanifold of X;
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(M2) M is positively invariant with respect to S, i.e.,

∀u ∈M ∀t ≥ 0: Stu ∈M ;(1)

(M3) M has the exponential tracking property, i.e., there is an η > 0 such that,
for every x ∈ X, there are x′ ∈M , c ≥ 0 with Stx′ ∈M and∥∥Stx− Stx′

∥∥ ≤ ce−ηt for all t ≥ 0.

Obviously, such a manifold is a generalization of inertial manifolds for evolution
equations which were first introduced and studied by P. Constantin, C. Foias,
B. Nicoalenko, G.R. Sell and R. Temam [4,3,1], see also [14], and [6,12] for the
exponential tracking property.

As usual, we look for M as a trivial submanifold of X, i.e., we look for

M = graph(m) := {ξ +m∗(ξ) : ξ ∈ π1X}

as the graph of function m over a finite-dimensional subspace X1 of X, where π1 is
a continuous projector from X onto X1. Moreover, m shall belong to the Banach
space G = Cb(π1X, π2X) of continuous, bounded functions and shall satisfy the
Lipschitz inequality

‖m(ξ1) −m(ξ2)‖ ≤ χ ‖ξ1 − ξ2‖ for all ξ1, ξ2 ∈ π1X

with some fixed χ > 0.
In Sect. 2, we introduce a modification of the cone invariance and squeezing

properties (called modified strong squeezing property) as a natural geometric as-
sumption on a semiflow to have an inertial manifold as graph of a bounded, globally
Lipschitz function over a finite-dimensional subspace. In Sect. 3, we show that this
property together with a coercivity property is actually sufficient for the existence
of an inertial manifold. In the both last sections, we give a short application to
evolution equations and we propose some extensions to more general results.

2. The Strong Squeezing Properties

Cone Invariance Property: If we look for m ∈ G satisfying the Lipschitz con-
dition

‖m(ξ1) −m(ξ2)‖ ≤ χ ‖ξ1 − ξ2‖ for all ξ1, ξ2 ∈ π1X,(2)

and if we don’t have additional boundedness properties, we have to look for m in
M, where M is the set of all m ∈ G with (2). Introducing the cone

Cχ := {x ∈ X : ‖π2x‖ ≤ χ ‖π1x‖},

we have

m ∈M if and only if m ∈ G and ∀x ∈ graph(m) : graph(m) ∈ x+ Cχ.(3)
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The required positive invariance (1) and the equivalence (3) yield

x1, x2 ∈ graph(m), t ≥ 0 imply Stx1 − Stx2 ∈ Cχ.

Since we only know m ∈ M and because of (3), we replace xi ∈ graph(m) by
x1 − x2 ∈ Cχ and get the following relation

x1 − x2 ∈ Cχ implies Stx1 − Stx2 ∈ Cχ for t ≥ 0(CIP)

as a natural assumption for the existence of the manifold.
Since (CIP) means the invariance of the cone Cχ with respect to the difference

of two positive trajectories, (CIP) is called cone invariance property .

Squeezing Properties: In order to motivate the squeezing properties, we
consider the following situation: We assume that S satisfies a cone invariance
property (CIP) with parameter χ > 0, and we assume that we have a positively
invariant manifold M = graph(m), m ∈ M, with exponential tracking property.
Concretely, we assume that for each x1 ∈ X \M there is a x̃1 ∈M with∥∥Stx1 − Stx̃1

∥∥ ≤ c1dist(x1,M)e−ηt for all t ≥ 0,(4)

i.e., we assume that the exponential decays of the difference of the trajectory and
its asymptotic phase is estimated by the initial distance of x1 to the manifold.

We sharpen the assumptions on m by the additional assumption that m actu-
ally has a Lipschitz constant L < χ.

Then there is a constant c2 > 0 such that

∀x, y, z ∈ X with x− z �∈ Cχ, y − z ∈ CL : ‖x− z‖ ≤ c2 ‖x− y‖ .(5)

Let x1 ∈ X \M and x̃1 ∈ M with (4) and x1 − x̃1 �∈ Cχ, and let θ > 0 and
x2 ∈M with Sθx1−Sθx2 �∈ Cχ. Then (CIP) implies Stx1−Stx2 �∈ Cχ for t ∈ [0, θ].
With x = Stx1, y = Stx̃1, z = Stx2 and (5), we obtain∥∥Stx1 − Stx2

∥∥ ≤ c2
∥∥Stx1 − Stx̃1

∥∥ ≤ c1c2dist(x1,M)e−ηt(6)

for all θ > 0, t ∈ [0, θ] and all x2 ∈M with Sθx2−Sθx1 �∈ Cχ. Since dist(x1,M) ≤
‖x1 − x2‖ and ‖x1 − x2‖ ≤

√
1 + χ−2 ‖π2[x1 − x2]‖, we obtain∥∥Stx1 − Stx2

∥∥ ≤ c3 ‖π2[x1 − x2]‖ e−ηt

with some c3 > 0 and for all θ > 0, t ∈ [0, θ] and all x1 ∈ X \M , x2 ∈ M with
Sθx1 − Sθx2 �∈ Cχ.

For unknown M , this leads to the assumption

There are χ2, η > 0 such that θ > 0, Sθx1 − Sθx2 �∈ Cχ imply
‖Stx1 − Stx2‖ ≤ χ2 ‖π2[x1 − x2]‖ e−ηt for all t ∈ [0, θ](SP)

called squeezing property .
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Let us restart with (6). Estimating dist(x1,M) ≤ ‖π2[x1 − x3]‖ with x3 ∈ M
and π1x3 = π1x1, replacing x3 ∈ M by x3 − x2 ∈ Cχ, and replacing Sθx1 −
Sθx2 �∈ Cχ by the sharper assumption π1Sθx1 = π1S

θx2, we find the following
modification of squeezing property:

There are χ21, χ22, η > 0 such that θ > 0, π1Sθx1 = π1S
θx2 imply

‖πi[Stx1 − Stx2]‖ ≤ χ2i ‖π2[x1 − x3]‖ e−ηt for all t ∈ [0, θ] and
all x3 with π1x3 = π1x1 and x3 − x2 ∈ Cχ

(modSP)

called modified squeezing property .

The combination of the cone invariance property (CIP) with the squeezing
property (SP) is called strong squeezing property , see [11]. Analogously, the
combination of the cone invariance property (CIP) with the modified squeezing
property (modSP) is called modified strong squeezing property .

In the next section we will see the usefullness of the modified strong squeezing
property for the existence proof of an inertial manifold. Before this, we compare
the strong squeezing property with the modified strong squeezing property.

Checking the proofs of cone invariance properties found in [2,5,6,10,11,14], one
can see that the number χ usually is a solution of an inequality F (χ) > 0, where
F : ]0,∞[ → R is a smooth function. Obviously, at least in these cases a second
cone invariance property is satisfied. At least in [11, Proposition 3], such a second
cone invariance property is explicitly used.

Lemma 1. Let the cone invariance property (CIP) and the squeezing property
(SP) be satisfied with the parameter χ > 0. Suppose, there exists χ′ > χ such that
we have a second cone invariance property with χ′ instead of χ. Then the modified
squeezing property (modSP) is satisfied with χ21 := χ2χ

′

χ(χ′−χ) , χ22 := χ2χ
′

χ′−χ .

Proof. Let x1, x2 ∈ X with π1Sθx1 = π1S
θx2 and π2Sθx1 �= π2S

θx2. Then Sθx1−
Sθx2 �∈ Cχ and Sθx1 − Sθx2 �∈ Cχ′ . The cone invariance property implies Stx1 −
Stx2 �∈ Cχ and Stx1 − Stx2 �∈ Cχ′ for all t ∈ [0, θ], i.e., we have

χ
∥∥π1[Stx1 − Stx2]

∥∥ ≤ χ′
∥∥π1[Stx1 − Stx2]

∥∥ < ∥∥π2[Stx1 − Stx2]
∥∥(7)

for all t ∈ [0, θ]. Let x3 ∈ X with π1x3 = π1x1 and x3 − x2 ∈ Cχ, i.e.,

‖π2[x2 − x3]‖ ≤ χ ‖π1[x2 − x1]‖ .(8)

Using (7) and (8), we find χ′ ‖π1[x1 − x2]‖ ≤ ‖π2[x1 − x3]‖+χ ‖π1[x1 − x2]‖ and,
hence,

‖π1[x1 − x2]‖ ≤ 1
χ′ − χ ‖π2[x1 − x3]‖ .

By the squeezing property (SP) and (7), we have∥∥π2[Stx1 − Stx2]
∥∥ ≤ χ2eηt (‖π2[x1 − x3]‖ + ‖π2[x3 − x2]‖)
≤ χ2eηt (‖π2[x1 − x3]‖ + χ ‖π1[x1 − x2]‖)

≤ χ2χ
′

χ′ − χeηt ‖π2[x1 − x3]‖ ,
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for all t ∈ [0, θ], i.e., (modSP) holds.

Thus, the strong squeezing property together with a second cone invariance
property implies our modified strong squeezing property, i.e., in general, the mod-
ified strong squeezing property is the weaker assumption.

3. Construction of Inertial Manifolds

Let S be a semiflow on the Banach space X. Let X1 be a finite-dimensional subspace
of X, π1a continuous projector from X onto X1 and let π2 = I − π1. We assume
that S satisfies the cone invariance property (CIP) and the modified squeezing
property (modSP) with fixed χ > 0. As technical assumptions we need

(S2) S satisfies the coercivity property ‖π1Stx‖ → ∞ as ‖π1x‖ → ∞ in X for t ≥
0.

(S3) There is a positively invariant strip
∑

:= {x ∈ X : ‖π2x‖ ≤ σ}.

Theorem 1. Under the above assumptions, there is an inertial manifold M =
graph(m) with bounded m : π1X→ π2X satisfying a global Lipschitz condition with
constant χ. Moreover, for each x1 ∈ X, there is a x2 ∈M with∥∥πi[Stx1 − Stx2]

∥∥ ≤ χ2i ‖π2x1 −m∗(π1x1)‖ e−ηt for all t > 0.

Proof. We devide the proof into the following three steps:

Step 1: The Graph Transformation Mapping. We wish to construct M =
graph(m∗) by an graph transformation mapping, i.e., m∗ shall be the fixed point
of suitable mappings Gθ : M→ G , θ > 0, with

graph(Gθm) = Sθgraph(m) for all m ∈M.

whereM is the set of all m ∈ G with (2) and graph(m) ⊂
∑

. Concretely, we wish
to define Gθ by (Gθm)(ξ) := π2S

θx if π1Sθx = ξ. For it, we have to show that,
for any ξ ∈ π1X, θ > 0, m ∈M, the boundary value problem

x ∈ graph(m), π1S
θx = ξ(9)

has a unique solution x = X(θ, ξ,m).
Let θ > 0, ξ ∈ π1X, m ∈M, and x1, x2 with

π1S
θx1 = π1S

θx2 = ξ and x2 ∈ graph(m).

If we choose x3 := π1x1+m(π1x1), then the modified squeezing property (modSP)
implies ∥∥πi[Stx1 − Stx2]

∥∥ ≤ χ2i ‖π2x1 −m(π1x1)‖ e−ηt for all t ∈ [0, θ].(10)
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In particular, for x1 ∈ graph(m), we have π2x1 = m(π1x1) and (10) implies

∀θ > 0∀x1, x2 ∈ graph(m) : π1Sθx1 = π1S
θx2 =⇒ x1 = x2,(11)

i.e., for each θ > 0, m ∈ M, ξ ∈ π1X there is at most one x ∈ graph(m) with
π1S

θx = ξ.
Let θ > 0, m ∈ M be fixed and let H : π1X → : π1X be defined by H(ζ) :=

π1S
θ(ζ +m(ζ)).
By the continuity of Sθ, H is continuous with inverse H−1 given by H−1(ξ) =

π1X(θ, ξ,m) on Hπ1X. In order to show Hπ1X = π1X, we wish to show the
continuity of H−1. Suppose, there is a ξ ∈ π1X such that H−1 is not continuous
at ξ. Then there are ε > 0 and a sequence (ξk)k∈N in π1X such that ξk → ξ as
k → ∞ and

‖ζ − ζk‖ ≥ ε for all k ∈ N(12)

where ζ := X(θ, ξ,m), ζk := X(θ, ξk,m).
First we suppose that there is a subsequence of (ζk)k∈N, denoted for shortness

again by (ζk)k∈N, with ‖ζk‖ → ∞ as k → ∞. Then the coercivity property (S2)
implies

∥∥π1Sθ(ζk +m(ζk))
∥∥ → ∞ in contradiction to Sθ(ζk + m(ζk)) → Sθ(ζ +

m(ζ)).
Remains the boundedness of (ζk)k∈N. Since π1X is finite-dimensional space π1X,

there is a convergent subsequence, denoted for shortness again by (ζk)k∈N, with a
limit ζ∞ ∈ π1X. By the continuity of Sθ, we have Sθ(ζ∞+m(ζ∞)) = Sθ(ζ+m(ζ)),
and hence ζ = ζ∞ in contrast to (12) and (11).

Therefore, H and H−1 are continuous. Because of (S2), we have ‖H(ξ)‖ → ∞
for ‖ξ‖ → ∞. Thus, H is a homeomorphism from π1X onto π1X and hence we
have Hπ1X = π1X. Therefore, for each θ > 0, m ∈M, ξ ∈ π1X, we have a unique
solution X(θ, ξ,m) of (9), and we can define the graph transformation mappings
Gθ by (

Gθm
)

(ξ) = π2S
θX(θ, ξ,m) for θ > 0,m ∈M, ξ ∈ π1X.

Step 2: Fixed-Points of the Graph Transformation Mapping. Let θ > 0,
m ∈ M, ξ1, ξ2 ∈ π1X be arbitrary. By (S3) we have graph(Gθm) ⊂

∑
. By the

cone invariance property (CIP), we have∥∥(Gθm
)

(ξ1) −
(
Gθm

)
(ξ2)

∥∥ ≤ χ
∥∥π1[SθX(θ, ξ1,m) − SθX(θ, ξ2,m)]

∥∥
= χ ‖ξ1 − ξ2‖ ,

i.e., Gθ maps M into itself for each θ > 0.
Now let θ > 0, ξ ∈ π1X, m1,m2 ∈M, and x1, x2 with

π1S
θx1 = π1S

θx2 = ξ and xi ∈ graph(mi).

If we choose x3 := π1x1 +m2(π1x1), then x3 − x2 ∈ Cχ and (modSP) imply∥∥π2[Sθx1 − Sθx2]
∥∥ ≤ χ22 ‖m1(π1x1) −m2(π1x1)‖ e−ηθ for θ ≥ 0.
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Thus∥∥(Gθm1

)
(ξ)−

(
Gθm2

)
(ξ)

∥∥ ≤ χ22e−ηθ ‖m1(π1X(θ, ξ,m1))−m2(π1X(θ, ξ,m1))‖ ,

i.e., ∥∥Gθm1 −Gθm2

∥∥
G
≤ κ(θ) ‖m1 −m2‖G for all θ > 0 and m1,m2 ∈M,

where κ(θ) := χ22e−ηθ. Since η > 0, there is a θ0 > 0 with κ(θ) < 1 for θ ≥ θ0.
Thus, for θ ≥ θ0, Gθ is a contractive self-mapping on the closed subset M of the
Banach space G . Hence, for each θ ≥ θ0, there is a unique fixed-point m(θ) of Gθ

in M.
Let p ∈ N>0 . Then m(θ) is a fixed-point of Gpθ and hence m(pθ) = m(θ) for

θ ≥ θ0 and p ∈ N>0 . Let q ∈ N>0 . Because of

Gθ
(
G

1
q θm(θ)

)
= G

1
q θ

(
Gθm(θ)

)
= G

1
q θm(θ)

and the uniqueness of the fixed-point m(θ) of Gθ, m(θ) is the unique fixed-point
of G

1
q θ for θ ≥ θ0 and each q ∈ N>0 . Thus, for each θ > 0, there is a unique

fixed-point m(θ) of Gθ and we have m( p
q θ) = m(θ) for θ > 0 and all p, q ∈ N>0 .

Hence,

S
p
q θ0x ∈ graph(m(θ0)) for u ∈ graph(m(θ0)) and m,n ∈ N>0

and the continuity of t '→ Stu yields

Sθx ∈ graph(m(θ0)) for θ > 0 and x ∈ graph(m(θ0)).

Thus, m∗ := m(θ0) = m(θ) for all θ > 0, andM = graph(m∗) is positively invariant
with respect to S.

Step 3: Existence of Asymptotic Phases. Let x1 ∈ X and let (tk)k∈N be
a monotonously increasing sequence of real numbers tk with tk → ∞ for k → ∞.
Further, let ζk := π1X(tk, Stkx1,m

∗). By (10), we have∥∥πi[Stx1 − StX(tk, Stkx1,m
∗)]

∥∥ ≤ χ2i ‖π2x1 −m∗(π1x1)‖ e−ηt for all t ∈ [0, tk].

In particular, we find ‖π1x1 − ζk‖ ≤ χ21 ‖π2x1 −m∗(π1x1)‖. If π1X is finite di-
mensional, then the bounded and closed set

{ζ ∈ π1X : ‖π1x1 − ζ‖ ≤ χ21 ‖π2x1 −m∗(π1x1)‖}

is compact. Thus, there is subsequence of (tk)k∈N, denoted again by (tk)k∈N, such
that (ζk)k∈N is converging to some ζ∗ ∈ π1X. Let x2 := ζ∗ +m∗(ζ∗). Then

‖πi[Stx1 − Stx2]‖
≤ ‖πi[Stx1 − StX(tk, Stkx1,m

∗)]‖ + ‖πi[StX(tk, Stkx1,m
∗) − Stx2]‖

≤ χ2i ‖π2x1 −m∗(π1x1)‖ e−ηt + ‖πi[St(ζk +m∗(ζk) − St(ζ∗ +m∗(ζ∗)]‖
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for all θ > 0, t ∈ [0, θ] and all k ∈ N>0 with tk ≥ θ. By the continuity of m∗ and
S, and because of ζk → ζ∗, the second term can be made arbitrary small on [0, θ]
choosing k large enough. Therefore,∥∥πi[Stx1 − Stx2]

∥∥ ≤ χ2i ‖π2x1 −m∗(π1x1)‖ e−ηt for all θ > 0, t ∈ [0, θ],

i.e., t '→ Stx2 is an asymptotic phase of t '→ Stx1 in M .

4. Application to Evolution Equations

We consider the evolution equation

u̇+Au = f(u)(13)

with selfadjoint, positive definite densly defined linear operator A in the separa-
ble Hilbert space (H , | · |0). Further let f ∈ Cb(D(Aα), H ) satisfy the Lipschitz
inequality

|f(u) − f(u′)|0 ≤ L|u− u′|α for all u, u′ ∈ D(A),

where α ∈ [0, 12 ]. Let π1 be the orthogonal projection from H onto the N -dim-
ensional subspace of H spanned by the N eigenvectors belonging to the first N
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN of A, counted with their multiplicity.

Then (13) generates a semiflow S on X = D(Aα) satisfying (S1), cf. [7,9,8] for
(S1). The coercivity property (S2) follows from the variation of constant formula,
the boundedness of f and |π1e−Atu| ≥ Ce−λN t|π1u|. Studying the quadratic form
Qχ(u) = |π2u|2α − χ2|π1u|2α along the difference of solutions of (13), in [8] was
shown, that there is a χ > 0 with

d

dt
Qχ(Stu1 − Stu2) ≤ Λ(χ)Qχ(Stu1 − Stu2) and Λ(χ) < 0(14)

if the spectral gap condition

λN+1 − λN > cL
(
λαN + λαN+1

)
(15)

holds with c = 1. Romanov showed in [13], that the spectral gap condition (15) is
sharp in the following sense: For each c ∈ [0, 1[, there are two-dimensional evolution
equations (13) in X = R

2 without inertial manifold (i.e., here instable manifolds)
but satisfying (15).

In particular, we may choose χ = χ0 :=
√
λαNλ

−α
N+1. Moreover, in [8] was

shown that (14) implies the modified strong squeezing property (CIP), (modSP)
of S. In particular, for χ = χ0 we may choose η := −λN+1 +LλαN+1, χ21 := 1

χ0−χ ,
χ22 := χ0

χ0−χ , where χ < χ are the positive solutions of

(λN+1 − λN )2 χ2 = L2
(
χ2 + 1

) (
λ2αN + χ2λ2αN+1

)
.
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5. Extensions

Let X be densely imbedded in the Banach space Y. If the cone invariance and
modified squeezing property are required only with respect to the weaker norm
‖·‖

Y
, we need an additional smoothing property of S in the form that there is

a function c0 : ]0,∞[ → ]0,∞[ with ‖Stu‖
X
≤ c0(t) ‖u‖Y for u ∈ X and t > 0.

This approach allows α ∈ [0, 1[ for the evolution equation (13) if Y = D(Aν) with
ν ∈ [0,min{α, 12}], see [8].

Another approach consists in the construction of a manifold M = graph(m)
with bounded domain D(m) ⊂ X1 as an overflowing invariant manifold, see [8].
For it we need some overflowing and inflowing properties of the semiflow on the
boundary of a subset V of X in which the manifold shall be constructed. Then
the technical assumption (S2) can be removed, since the needed bijectivity of
the corresponding mapping H can be shown by the homotopy theorem. For the
evolution equation (13), this allows to replace the global boundedness and Lipschitz
assumptions on f by corresponding assumptions on V .
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Dept. of Math., Faculty of Mechanical Engineering, Slovak Technical University
Námestie Slobody 17, 812 31 Bratislava, Slovak Republic

Email: kovacova v@sjf.stuba.sk

Abstract. The aim of this contribution is to study properties of solutions
of the n+ 1th-order differential equation of the form

�
1

r1(t)

�
x(n)(t) + p(t)x(t)

� �′
= f(t, x(t), · · · , x(n)(t)) .(1)

where n ≥ 2 is a natural number. A new approach using “submersivity” of
a solution of an equation is presented, by means of it a sufficient condition
for the property A is proved. This approach can be also used to prove
necessary condition for the property A.

AMS Subject Classification. 34C10, 34C15

Keywords. Property A, oscillatory solutions.

1. Preliminaries

The main goal of this paper is to study certain properties of solutions of the
differential equations, which are very appropriate for exploring the Property A. In
this paper we consider only the proper solutions of the equations.

A solution u(.) ∈ C
n [T0,∞) is called oscillatory at +∞ if it is proper , and there

exists a sequence of numbers {tk} , k ∈ N such that tk ∈ [T0,∞), u(tk) = 0, k ∈ N
and lim

t→∞
tk = +∞ hold.
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A solution u(.) is called non-oscillatory proper (briefly non-oscillatory) if it is
proper and there exists a number t̄ ∈ R+ such that u(t) �= 0 for t ≥ t̄.
Briefly, we can say that the proper solution is said to be oscillatory, if it has a
sequence of zeros converging to +∞, otherwise is said to be non-oscillatory.

We will say that an equation has the Property A, if each proper solution of this
equation is oscillatory when n is even and is either oscillatory or satisfies the
condition

lim
t→∞

u(i)(t) = 0 , monotonically, i = 0, 1, . . . , n− 1 ,

when n is odd.

2. “Submersivity” of a solution of the equation

y(n)(t) + α1(t) y(n−1)(t) + ...+ αn(t) y(t) + p(t) y(t) = r(t).

One can describe “submersivity” as the ability of the function not to overcome
a certain level ε for a certain time interval [t0, t0 + δ]. The function having these
properties behaves as follows: from a certain t > t0, it dives under a certain level
of ε and keeps being under this level maximally during a time interval δ.

Let us find a criterion of “submersivity” as the simplest possible conditions to
be imposed on the equations, usually to the left-hand side of the equations.

This property is of major importance for exploring the questions about the
oscillating and non-oscillating properties of a solution, and it can be directly used
to prove necessary and sufficient conditions for property A.

Similar problems were posed and solved by I. T. Kiguradze [5] for the equation
of the form u(n) + u(n−2) = f(t, u, u′, . . . , u(n−1)). In his paper for the first time
was considered the case of oscillatory left-hand side operator. The results given in
it fill this gap to some extent.

Consequently the knowledge about situation in the oscillatory cases was studied
in a few papers for the third order diff. equation. The result of this kind was
presented e.g. by Cecchi, Došlá, Marini [1], Greguš, Graef [2], Greguš, Gera, Graef,
[3,4].

Similar properties of solutions were investigated by several authors, namely for
the equation of the form u(n) = f(t, u, u′, . . . , u(n−1)). Many results also have been
obtained for the equation of the type u(n)+

∑
pk(t)u(k) = f(t, u, . . . , u(n−1)), with

a disconjugated left-hand side operator.
Our aim is a little different: We consider here the case on the left-hand side

kernel operator of the equations (1) can be oscillatory. The new what we bring to
this problem was directly the assumption on the oscillatory left-hand side kernel
operator.

“Submersivity” properties can help us to explore the questions of oscillation of
solutions in the case of the oscillatory left-hand side operator. Similar theorem, as
follows, appeared in [5], but only for the case αi(t) ≡ 0 , p(t) ≡ 1.
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Theorem 1. Let n ≥ 2 and let the functions {αi(.)}ni=1, p(.), r(.) ∈ C [T0 ,∞)
satisfy the assumptions

(i) for all i ∈ {1, · · · , n}, lim
t→∞

αi(t) = 0 ,(2)

(ii) there exist constants rmax, rmin > 0 such that
| p(t) |< rmax and rmin ≤ r(t) ≤ rmax for all t ∈ [T0,∞).(3)

Then for each δ0 > 0 and each p0 ∈ (0, 1), there exist T ≥ T0 and ε > 0 with the
following property:

If y(.) ∈ C
n [T0,∞) is a non-negative solution of the differential equation

y(n)(t) + α1(t) y(n−1)(t) + ...+ αn(t) y(t) + p(t) y(t) = r(t) ,(4)

then for all t0 > T and for all δ > δ0

µ
(
[t0, t0 + δ0] ∩ y−1[0, ε]

)
≤ p0 δ ,(5)

where µ denotes the Lebesgue measure of sets.

Proof. Let the functions {αi(.)}ni=1, p(.), r(.) and constants rmax, rmin, δ0, p0 sa-
tisfied the conditions (2) and (3). Let m be the least natural number satisfying
the inequality rmin < 22+n(n+1) (2m − 1) . Let

qmin =
rmin

2m
and qmax = rmax +

rmin

2m
(2m − 1) .

Moreover, put

α0 =
2.2n (n+1)

qmin
, εmax =

(
min{p0 δ0 ,

rmin

2 rmax
}
)n

.(6)

Let p0 ∈ (0, 1) be an arbitrary, but fixed number. Lemma 5.1 from [6] ensures
the existence of a constant P1 > 0 such that: If z(.) ∈ Cn[0, 1] is a solution of the
differential equation

z(n)(t) + p1(t) z(n−1)(t) + · · · + pn(t) z(t) = α · q(t) ,(7)

with the property

0 ≤ z(t) ≤ 1 for all t ∈ [0, 1] ,(8)

where the functions pi(.), q(.) satisfy conditions

0 < qmin ≤ q(t) ≤ qmax , P (t) =
n∑

i=1

| pi(t) |≤ P1 ∀t ∈ [0, 1] ,(9)

then for the constant α from the equation (7) we have α ≤ 2.2n(n+1)

qmin
.
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Theorem 5.2 from [6] guaranties that for arbitrary constants qmin, qmax, αmax,
such that αmax > 0, 0 < qmin ≤ qmax, and p ∈ (0, 1), there exist constants P2 > 0
and ε2 ∈ (0, 1), with the following property:

If z(.) ∈ Cn[0, 1] is a solution of the differential equation (7) such that (8) and
z(0) = 1, where the constant α and functions pi(.), q(.) ∈ C[0, 1] satisfy condition
(9) and

0 < α ≤ αmax , P (t) =
n∑

i=1

| pi(t) |≤ P2 ∀t ∈ [0, 1] ,

then µ(z−1[0, ε2]) ≤ p .
First we will find the required T > T0 and ε > 0. Set ε = ε2

εmax

α0
and choose

T1 sufficiently large such that

n∑
i=1

|αi(t)| ≤ min{P1, P2} , ∀t > T1 .(10)

Then the required T can be defined by T = max{T1, T0}. It is enough to prove
that ε and T chosen in this way ensure the validity of Theorem 1.

Let y ∈ C
n [T,∞) be a solution of the equation (4), such that y(t) ≥ 0 for all t ∈

[T,∞). For t0 > T and δ > δ0 define the setM by M = (t0, t0+δ)∩y−1(−1, εmax

α0
) .

The setM is open, so it can be expressed as at most countable union of the disjoint

open intervals (ti, ti + δi), i. e. , M =
l⋃

i=1

(ti, ti + δi) , 1 ≤ l ≤ ∞ . Note, if M is an

empty set, the assertion of Theorem 1 holds.
Let us take one of these intervals (tj , tj + δj), j ∈ {1, . . . , l} and set s = tj and

δ̃ = min{1, δj}. Applying the transformation

z(t) =
α0
εmax

y(s+ δ̃t) ,(11)

the equation (4) can be changed into the form

z(n)(t) + p1(t) z(n−1)(t) + · · · + pn(t) z(t) = α · q(t) ,

where

z(k)(t) = α0
εmax

δ̃k y(k)(s+ δ̃t) , pk(t) = δ̃k αk(s+ δ̃t) ,

q(t) = r(s+ δ̃t) − p(s+ δ̃t) y(s+ δ̃t) , α =
α0
εmax

δ̃n .(12)

It is easy to verify the fulfilling of the assumptions of Lemma 5.1 from [6] and
Theorem 5.1 from [6] by the functions z(.), pi(.), q(.) and the constant α.

So, summarizing, we have 0 < qmin ≤ q(t) ≤ qmax . Next, it is clear that
0 ≤ z(t) ≤ 1 , for all t ∈ [0, δ̃]. According to (10), and the definitions of δ̃ and
pi(.) we have

∑n
i=1 |pi(t)| ≤ P1 . Hence Lemma 5.1 from [6], whose assumptions
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are fulfilled, ensures that the constant α > 0, given by (12) satisfies the inequality
α ≤ 2.2n(n+1)

qmin
. This inequality implies

α0
εmax

δ̃n ≤ 2.2n(n+1)

qmin

which using (6) gives
δ̃n

εmax
≤ 1 .

Due to (6) we have

δ̃n ≤
(

min{p0 δ0 ,
rmin

2 rmax
}
)n

, or δ̃ ≤
(

min{p0 δ0 ,
rmin

2 rmax
}
)
,

which means that

δ̃ ≤ p0 δ0 and δ̃ ≤ rmin

2 rmax
≤ 1

2
.

Clearly, for all intervals [ti, ti+δi], i ≥ 2, the assumptions of Theorem 5.1 from
[6] are fulfilled. The property y(ti) = εmax

α0
implies z(ti) = 1. Due to Theorem 5.1

from [6] there exists a positive constant ε2 such that µ
(
z−1[0, ε2]

)
≤ p0.

From (11) we can see that

1
δi
µ

(
[ti, ti + δi] ∩ y−1[0, ε2

εmax

α0
]
)

≤ p0 .(13)

This clearly forces

µ
(
[ti, ti + δi] ∩ y−1[0, ε]

)
≤ p0 δi(14)

on all intervals [ti, ti + δi], for i ≥ 2.
It remains to prove the validity of the estimation (14) on the interval [t1, t1+δ1].
If, y(t1) = y(t0) = εmax

α0
, then the estimation (14) is evidently true.

If, y(t1) < εmax

α0
, then using the backward transformation x(t) = y(t1 + δ1 − t)

we obtain x(t1) = y(δ1) = εmax

α0
. Let z(t) = α0

εmax
x(t1 + δ1t). Then by similar

arguments we can obtain the estimation µ
(
z−1[0, ε2]

)
≤ p0 also on the interval

[t1, t1 + δ1]. Thus (compare with (13))

1
δ 1
µ

(
[t1, t1 + δ1] ∩ x−1[0, ε2

εmax

α0
]
)

≤ p0

and further

µ
(
[t1, t1 + δ1] ∩ x−1[0, ε]

)
= µ

(
[t1, t1 + δ1] ∩ y−1[0, ε]

)
≤ p0δ1 .(15)
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Recall that ε = ε2
εmax

α0
, and ε2 ∈ (0, 1). From (14) and (15) we can conclude

that

µ
(
[t0, t0 + δ0] ∩ y−1[0, ε]

)
≤ µ

(
M ∩ y−1[0, ε]

)
=

= µ

(
[

l⋃
i=1

(ti, ti + δi)] ∩ y−1[0, ε]
)

≤
∑

1<i≤l
ti>t0

µ
(
[ti, ti + δi] ∩ y−1[0, ε]

)
+ p0 δ1 ≤

≤ p0 δ1 +
∑

1<i≤l
ti>t0

p0 δi ≤ p0

δ1 +
∑
1<i≤l

µ (ti, ti + δi)

 = p0 µ(M) ≤ p0 δ ,

which is the required conclusion. -.

3. Formulation of the Problem

The aim of this paper is to study properties of solutions of the nonlinear
n+ 1th - order differential equation of the form[

1
r1(t)

(
x(n)(t) + p(t)x(t)

) ]′
= f(t, x(t), · · · , x(n)(t)) .(16)

where n ≥ 2 is a natural number.
Let M1 and M2 be constants such that 0 < M1 ≤M2 .
Let the functions p(.), r1(.) and f = f(t, x0, . . . , xn) satisfy conditions:

– Let the function r1(.) ∈ C
1 [0,∞) and have the property

0 < M1 ≤ r1(t) ≤M2 , ∀t ≥ T̃ > 0 ,(17)

– Let the function p(.) ∈ C
1 [0,∞) have the property

0 < M1 ≤ p(t) ≤M2 , ∀t ≥ T̃ > 0 ,(18)

– Let the function f = f(t, x0, x1, . . . , xn) be continuous on R+ ×Rn+1 and has
the sign property

f(t, x0, x1, . . . , xn)x0 ≤ 0 .(19)

Moreover there exist functions p0(.), and ω(.) ∈ C [0,∞) such that

f(t, x0, x1, . . . , xn) sign (x0) ≤ −p0(t)ω(|x0|) ,(20)
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where the functions p0(.), and ω(.) have the properties

ω : [0,∞) → [0,∞) is non-decreasing function ,(21)
ω(0) = 0 ,(22)
ω(s) > 0 , ∀s > 0 ,(23)

p0 : [0,∞) → [0,∞)(24)
p0(t) �≡ 0 on any subinterval of [0,∞) ,
and the function p0(t) is strongly non-integrable
on the interval [1,∞) .(25)

Definition 1. We call a function f(.) strongly non-integrable, if f(.) is non-
negative and locally integrable function on an interval [T,∞) and if there exist
the constants δ0 > 0 and p0 ∈ (0, 1) with the property:

For each set M ∈ B(R) such that M ⊂ [T,∞) and

µ (M ∩ [t0, t0 + δ]) ≥ (1 − p0) δ ∀t0 ≥ T , ∀δ ≥ δ0(26)

the function f(.) satisfies ∫
M

f dµ = +∞ .(27)

Remark 1. It is easy find a function, which is strongly non-integrable:
e.g. let f(.) ∈ C [T,∞) , f(t) > s > 0 ,∀t ∈ [T,∞), where s be an positive constant.
f(.) is a non-integrable function and in the sense of the Definition 1 is strongly
non-integrable, too.

Remark 2. Non all non-integrable function are strongly non-integrable:
e.g. let f(.) ∈ C [T,∞) , be defined by

f(t) =
{

1/t2 , t ∈ [2n, 2n+ 1]
1 , t ∈ (2n+ 1, 2n+ 2) for all n ∈ N .

If we take M = ∪n∈N [2n, 2n+ 1] then M satisfy (26) e.g. for p0 = 1/4 , δ0 = 2 we
get

∫
M

f dµ < +∞ .

4. “Submersivity ” of a solution of the equation[
1

r1(t)

(
x(n)(t) + p(t)x(t)

) ]′
= f(t, x(t), · · · , x(n)(t)) .

In this section we will examine “submersivity ” of a solution of the equation[
1

r1(t)

(
x(n)(t) + p(t)x(t)

) ]′
= f(t, x(t), · · · , x(n)(t)) .
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We will compare the properties of the solution of (4) with the properties of
solutions of our equation. Our aim was to find conditions of “ submersivity” for the
solution of the equation y(n)(t) +α1(t) y(n−1)(t) + ...+αn(t) y(t) +p(t) y(t) = r(t).

We will see that the similar conditions of “submersivity” can be found for the
solutions of the equation (16). The conclusions obtained in the next theorem, we
will use for proving the main theorem of this contribution.

Let us define on some interval [T̃ ,∞) , for a function x(.) ∈ C
n+1 [T,∞) the

function

α1(t) =
1

r1(t)

[
x(n)(t) + p(t)x(t)

]
,(28)

Theorem 2. Let functions p(.), r1(.) ∈ C
1 [T0,∞) satisfy the assumptions (17)

and (18) on the interval [T0,∞). Let the function f = f(t, x0, x1, . . . , xn) be conti-
nuous on R+×Rn+1 and satisfy properties (19)–(25). Moreover let 0 < lim

t→∞
α1(t).

Then for each δ0 > 0 and each p0 ∈ (0, 1), there exist T > T0 and ε > 0 with
the following property:

If x(.) ∈ C
n+1 [T0,∞) is a non-negative solution of the differential equation

(16), then for all t0 > T and for all δ > δ0 we have

µ

(
[t0, t0 + δ] ∩

[
x

α1

]−1
[0, ε]

)
≤ p0 δ ,(29)

where µ denotes the Lebesgue measure of sets.

Proof. Let the function α1(t) be defined by (28). Due to sign property (19) we get

α1
′(t) = f(t, x(t), x′(t), . . . , x(n)(t)) ≤ 0 .

Since 0 < lim
t→∞

α1(t) and α1 ′(t) ≤ 0, it follows that 0 < lim
t→∞

α1(t) < ∞ . Further

according to (28) we have

x(n)(t) + p(t)x(t) = α1(t) r1(t) .(30)

The equation (30) formally can be written in the form (4), where αi(t) ≡ 0
for all i ∈ {1, . . . , k} and r(.) = α1(.) r1(.). Hence, by Theorem 1 whose assump-
tions are satisfied on some [T ′,∞) , T ′ ≥ T0, for all constants δ0 > 0 and p0 ∈ (0, 1)
there exist T ≥ T ′ ≥ T0 and ε1 > 0 such that for all t0 > T and for all δ > δ0 we
get µ

(
[t0, t0 + δ0] ∩ x−1[0, ε1]

)
≤ p0 δ . If we take ε = ε1/ sup

t≥T
α1(t), then it holds

µ

(
[t0, t0 + δ] ∩

[
x

α1

]−1
[0, ε]

)
≤ p0 δ ,

which proves the claim of our theorem. -.
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5. The Main Theorem

Theorem 3. Let x(.) ∈ C
n+1 [0,∞) be a solution of the differential equation of

the form (16), where n ≥ 2 is natural s number.
Let the functions p(.) and r1(.) satisfy the conditions (18) and (17) respectively.
Let further the right-hand side of (16) satisfy (19) - (25).

Then x(.) is either oscillatory solution of the diff. equation (16), or there exists
some function α(t), with the property

α(t) ≥ 0 , ∀t ∈ [T0,∞), T0 ≥ 0 , and lim
t→∞

α(t) = 0 ,

and x(.) solves the diff. equation

x(n)(t) + p(t) x(t) = α(t) sign x(t) ,

on some neighbourhood of infinity.

Proof. Let x(.) be a proper non-oscillatory solution of the diff. eq. (16).
It is sufficient to study a non-negative non-oscillatory solution x(t) on an in-

terval [T̃ ,∞). Otherwise if x(t) ≤ 0 in [T̃ ,∞), then the function

y(t) = −x(t) , t ∈ [T̃ ,∞) ,

satisfies the differential equation[
1

r1(t)

(
y(n)(t) + p(t)y(t)

) ]′
= f1(t, y(t), y′(t), · · · , y(n)(t)) ,(31)

where the function f1(t, x0, x1, . . . , xn) = −f(t,−x0,−x1, . . . ,−xn) has all proper-
ties of the function f , i.e. f1 is continuous onR+×Rn+k and satisfies the conditions
(19) – (25).

Thus all properties of non-negative solutions of the equation (31) can be tran-
sformed to the similar ones of the non-positive solution of (16).

Hence in this theorem we will consider only non-negative solution and the
statement will be true also for the non-positive solutions.

Let the function α1(t) be define by (28). We conclude from the sign property (19)
of the equation (16) on interval [T̃ ,∞) that

α ′1(t) = f(t, x(t), x′(t), . . . , x(n)(t)) ≤ 0 for x(t) ≥ 0 ,

hence that

α ′1(t) ≤ 0 , ∀t ∈ [T̃ ,∞) .(32)
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By (32), it is obvious that α1(t) is non-increasing function on interval [T̃ ,∞). Thus
there exists T ′, T ′ ≥ T̃ such that the function α1(t) does not change its sign on
interval [T ′,∞).

We can certainly assume the existence of such T0 , T0 ≥ T ′ with the property

sign (α1(t)) = constant , ∀t ∈ [T0,∞) .(33)

The proof will be divided into three cases.

(A) lim
t→∞

α1(t) < 0 ,

(B) lim
t→∞

α1(t) > 0 ,

(C) lim
t→∞

α1(t) = 0 .

5.1. (A) lim
t→∞

α1(t) < 0

If lim
t→∞

α1(t) < 0, then there exists T1 , T1 ≥ T0 such that for all t ≥ T1,

α1(t) ≤ −ε < 0, where ε > 0. By the definition of α1(t) and the constants M1 ,M2

we get x(n)(t) + p(t)x(t) = α1(t) r1(t) ≤ −ε M1 < 0 .

As x(t) ≥ 0, and p(t) > 0 on [T1,∞) we have x(n)(t) ≤ −ε M1 < 0 . Let
T1 ≤ t1 ≤ t and τ ∈ [t1, t]. By integration we come to the inequality

x(n−1)(t) ≤ x(n−1)(t1) − ε M1 (t− t1) .

In the limit case, if t→ ∞ we obtain

lim
t→∞

x(n−1)(t) ≤ x(n−1)(t1) − ε M1 lim
t→∞

(t− t1) = −∞ ,

which contradicts x(t) ≥ 0.

5.2. (B) lim
t→∞

α1(t) > 0

Consider the functions p0(.), and ω(.) ∈ C [0,∞), for which (20) – (25) hold.
By Theorem 2 for all δ0 > 0, p0 ∈ (0, 1), there exist T ≥ T0 and ε > 0 with
the property: If x(.) ∈ C

n+1 [T0,∞) is a non-negative solution of the differential
equation (16), then for all t0 > T and for all δ > δ0 we have

µ

(
[t0, t0 + δ] ∩

[
x

α1

]−1
[0, ε]

)
≤ p0 δ ,(34)

where µ denotes the Lebesgue measure of sets.
Let the constants ε and T be given by Theorem 2. Let us denote by M the set

M = {t : t ≥ T, x(t) ≥ ε α1(t)} .(35)
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The set M has the property (26) from Definition 1, Theorem 2, Definition 1 and
the assumptions (24), (25) yield

∫
M

p0(t) dµ = +∞ .

Due to (33) we have α1(t) ≥ 0 for all t ≥ T ≥ T0. Choose arbitrary t0, t such that
T ≤ t0 ≤ t. We have

0 ≤ α1(t) = α1(t0) +

t∫
t0

α1
′(s) ds = α1(t0) −

t∫
t0

|f(s, x(s), · · · , x(n)(s))| ds .

and hence |α1(t0)| ≥
t∫

t0

|f(s, x(s), · · · , x(n)(s))|ds , which for t → ∞ implies,

|α1(t0)| ≥
∞∫
t0

|f(s, x(s), · · · , x(n)(s))|ds . Putting t = t0 we obtain

|α1(t)| ≥
∞∫
t

|f(s, x(s), · · · , x(n)(s))| ds , ∀t ≥ t0 ≥ T .

If we use the previous result, for all t ≥ T we get

|α1(t)| ≥
∞∫
t

|f(s, x(s), · · · , x(n)(s))| ds
(20)
≥

∞∫
t

p0(s) ω(|x(s)|) ds .

Define the function n : [T,∞) → {0, 1} as follows

n(s) =
{

1 s ∈ M
0 s �∈ M ,

where the set M is given by (35).

Since the functions α1(t) do not change their signs on the interval [T0,∞) and
α ′1(t) ≤ 0, the function α1(t) is non-increasing function on interval [T0,∞) with
the property lim

t→∞
α1(t) = α̃1 > 0 . Put ε1 = α̃1

α1(T0)
. We thus get

α1(τ) ≥ α̃1 = ε1 α1(T0) ≥ ε1 α1(t) , ∀τ ≥ t ≥ T0 .

Hence

α1(τ) ≥ ε1 α1(t) , ∀τ ≥ t ≥ T .(36)

Since the function ω(.) is non-decreasing non-negative function and using the
estimation (36), we obtain on the set M

ω(|x(s)|) = ω(x(s)) ≥ ω(ε α1(s)) .

According to the above definition of the function n(.)

ω(x(s)) ≥ n(s) ω(ε α1(s)) ≥ n(s) ω(ε ε1α1(t)) , ∀s ≥ t ≥ T ,
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be valid. Further, the function ω(.) satisfies (22), (23) and due to (36) we get

α1(t) ≥
∞∫
t

p0(s) n(s) ω(ε ε1 α1(t0)) ds , ∀ t ≥ t0 ≥ T ,

and hence

∞ >
α1(t0)

ω(ε ε1 α1(t0))
≥
∞∫

t0

p0(s) n(s) ds =
∫

M∩[t0,∞)

p0(s) ds = +∞ .

which is impossible.

The cases (A) and (B) led to contradiction. Therefore the case (C), holds.

5.3. (C) lim
t→∞

α1(t) = 0

Due to sign property (32) we get α ′1(t) ≤ 0 for all t ≥ T0 and lim
t→∞

α1(t) = 0 and
hence

α1(t) ≥ 0 , ∀t ≥ T2 ≥ T0 .

If we take α(t) = r1(t) α1(t), then we have lim
t→∞

α(t) = 0 and α(t) ≥ 0, for all
t ≥ T2 ≥ T0.

From the above it follows that, either x(.) is oscillatory solution, or x(.) is
proper non-oscillatory solution on some interval [T0,∞) and then there exists the
function α(t) , α(t) ≥ 0 for all t ∈ [T2,∞), with the property lim

t→∞
α(t) = 0, such

that x(.) will be a solution of equation

x(n)(t) + p(t)x(t) = α(t) sgn x(t) ,

and the proof is complete. -.
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Abstract. In this paper we consider discrete Sturm-Liouville eigenvalue
problems of the form

L(y)k :=
nX

µ=0

(−∆)µ{rµ(k)∆µyk+1−µ} = λρ(k)yk+1

for 0 ≤ k ≤ N − n with y1−n = · · · = y0 = yN+2−n = · · · = yN+1 = 0,

where N and n are integers with 1 ≤ n ≤ N and with the assumptions
that rn(k) �= 0, ρ(k) > 0 for all k. These problems correspond to eigen-
value problems for symmetric, banded matrices A ∈ R

(N+1−n)×(N+1−n)

with band-width 2n + 1. We present the following results: - a formula
for the chracteristic polynomial of A, which yields a recursion for its cal-
culation - an oscillation theorem, which generalizes Sturm’s well-known
theorem on Sturmian chains, and - an inversion formula, which shows that
every symmetric, banded matrix corresponds uniquely to a Sturm-Liouville
eigenvalue problem of the above form.

AMS Subject Classification. 39A10, 39A12, 65F15, 15A18

Keywords. Sturm-Liouville equations, banded matrices, eigenvalue prob-
lems; Sturmian chains.

1. Introduction

We consider discrete Sturm-Liouville eigenvalue problems (with eigenvalue param-
eter λ) of the form
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L(y)k :=
n∑

µ=0

(−∆)µ{rµ(k)∆µyk+1−µ} = λρ(k)yk+1(1)

for 0 ≤ k ≤ N − n, where ∆yk = yk+1 − yk, and with the boundary conditions

y1−n = · · · = y0 = yN+2−n = · · · = yN+1 = 0,(2)

where N and n are fixed integers with 1 ≤ n ≤ N and where we always assume
that

rn(k) �= 0 for all k.(3)

These problems correspond to eigenvalue problems for symmetric, banded ma-
trices A of size (N + 1 − n) × (N + 1 − n) with band-width 2n+ 1. In particular,
A is tridiagonal in the case n = 1.

In this paper we essentially formulate and discuss our results while detailed
proofs will be given in a forthcoming paper. The following theorems will be pre-
sented:

– a formula for the characteristic polynomial of A (Theorem 1). This result yields
also a recursion for its calculation. In the case n = 1 we obtain the well-known
algorithm, which is commonly used in numerical analysis to handle eigenvalue
problems for tridiagonal matrices (cf. [[4], pp. 305; [8], pp. 134; [9], pp. 299]).

– an oscillation theorem (Theorem 2). This result generalizes Sturm’s well-known
theorem on Sturmian chains (cf. e.g. [[4], Theorem 8.5-1 or [8], Sätze 4.8 and
4.9]).

– an inversion formula (Theorem 3). This identity can be used to calculate the
matrix A when the discrete Sturm-Liouville operator from equation (1) is given
and vice versa. Hence, every symmetric, banded matrix with bandwidth 2n+1
corresponds uniquely to such a Sturm-Liouville operator.

Our method and most of our results have continuous counterparts along the
lines of the book [6] (cf. also [7]).

2. Discrete Sturm-Liouville equations and associated

Hamiltonian systems

In this section we give the connection between discrete Sturm-Liouville equations
and Hamiltonian difference systems (cf. [[1], Proposition 5]), and we introduce the
important notions of conjoined bases and focal points of it (cf. [[1], Definitions 1
and 3]). Moreover, the multiplicity of focal points is defined according to [3]. It
will turn out that these multiplicities always equal one for Hamiltonian systems,
which we treat here, i.e. which originate from Sturm-Liouville equations.
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Lemma 1. A vector y = (yk)N+1
1−n ∈ R

N+1−n solves the Sturm-Liouville difference
equation (1) for 0 ≤ k ≤ N − n if and only if (x, u) solves the Hamiltonian
difference system

∆xk = Axk+1 +Bkuk , ∆uk = (Ck − λC̃k)xk+1 −ATuk(4)

for 0 ≤ k ≤ N, where we use the following notation:
A, Bk, Ck, C̃k are n× n-matrices defined by

A =


0 1 · · · 0
...
. . . . . .

...
0 · · · 0 1
0 · · · 0 0

 , Bk =
1

rn(k)
B with B = diag (0, . . . , 0, 1) ,

Ck = diag (r0(k), . . . , rn−1(k)) , C̃k = ρ(k)C̃ with C̃ = diag (1, 0, . . . , 0) ,

for 0 ≤ k ≤ N, and xk = (x(ν)k )n−1ν=0 , uk = (u(ν)k )n−1ν=0 ∈ R
n are defined by

x
(ν)
k = ∆νyk−ν , u

(ν)
k =

n∑
µ=ν+1

(−∆)µ−ν−1{rµ(k)∆µyk+1−µ}

for 0 ≤ ν ≤ n− 1 , 0 ≤ k ≤ N + 1 with suitably chosen yN+2, . . . , yN+n+1 (which
are used for uN+2−n, . . . , uN+1).

Definition 1. Assume that (3) holds.

(i) A pair (X, U) = (Xk, Uk)N+1
k=0 is called a conjoined basis of (4), if the real

n× n-matrices Xk, Uk solve (4) for 0 ≤ k ≤ N, and if

XT
0 U0 = UT

0 X0 and rank (XT
0 , U

T
0 ) = n holds.

(ii) Suppose that (X, U) is a conjoined basis of (4) and let 0 ≤ k ≤ N. We say
that X has no focal point in the interval (k, k + 1] if

KerXk+1 ⊂ KerXk and Dk := XkX
†
k+1ÃBk ≥ 0 holds,

where Ã := (I − A)−1. Moreover, if KerXk+1 ⊂ KerXk and Dk �≥ 0, then
indDk is called the multiplicity of the focal point ofX in the interval (k, k+1).

Remark 1.
(i) For a matrix M we denote by KerM the kernel of M, indM denotes the index

of M, i.e., the number of negative eigenvalues of M, provided M is symmetric
(and real), and M † denotes the Moore-Penrose inverse of M. Moreover,M ≥ 0
means that M is symmetric (and real) and non-negative definite. Observe that
Dk is symmetric, if KerXk+1 ⊂ KerXk (cf. [[1], Proposition 1]).

(ii) For our Sturm-Liouville difference equations the multiplicity of focal points,
which we defined only in case KerXk+1 ⊂ KerXk, always equals 1, because
rankDk ≤ rankB = 1.
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3. Associated quadratic functionals and banded matrices

For y = (yk)N+1−n
k=1 ∈ R

N+1−n we define a quadratic functional F , which corre-
sponds to the Sturm-Liouville operator L(y) from equation (1), by

F(y) :=
N∑

k=0

n∑
µ=0

rµ(k)(∆µyk+1−µ)2 ,

where we assume (2), i.e., y1−n = · · · = y0 = yN+2−n = · · · = yN+1 = 0.

Lemma 2. The following formulas hold.

(i) F(y) = yTAy, where A ∈ R
(N+1−n)×(N+1−n) is a symmetric, banded matrix

with band-width 2n+ 1, which is defined by

ak+1,k+1+t = (−1)t
n∑

µ=t

µ∑
ν=t

(
µ

ν

)(
µ

ν − t

)
rµ(k + ν)

for 0 ≤ t ≤ n and 0 ≤ k ≤ N − n− t.
(ii) (Ay)k+1 = L(y)k for 0 ≤ k ≤ N − n with L(y)k given by (1).

Observe that A is a tridiagonal N ×N -matrix in the case n = 1. In the sequel
we use the notation:

AN+1 = A ∈ R
(N+1−n)×(N+1−n) is the symmetric, banded matrix as defined in

Lemma 2, and Ak ∈ R
(k−n)×(k−n) is defined correspondingly for n+1 ≤ k ≤ N+1.

Moreover, let A(λ) := A− λD with
D := diag (ρ(0), . . . , ρ(N − 1)), and as before, Ak(λ) is defined accordingly.

The following statement follows directly from Lemma 2.

Corollary 1. The discrete Sturm-Liouville eigenvalue problem (1) and (2) from
Section 1 is equivalent with the algebraic eigenvalue problem (matrix pencil)

Ay = λDy or A(λ)y = 0.

4. Results

We assume throughout that (X, U) is the so-called principal solution of (4), i.e.,
X = Xk(λ), Uk = Uk(λ) satisfy (4) with

X0 ≡ 0, U0 ≡ I .(5)

Moreover, as in the previous sections, y = (yk)N+1−n
k=1 ∈ R

N+1−n satisfies (2), i.e.,
y1−n = · · · = y0 = yN+2−n = · · · = yN+1 = 0, and

F(y) =
N∑

k=0

n∑
µ=0

rµ(k)(∆µyk+1−µ)2 , Dk = XkX
†
k+1ÃBk (= Dk(λ)).

First, we cite some auxiliary results mainly from [1].
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4.1. Auxiliary results

Lemma 3. The following assertions hold, provided (3) and (5) are fulfilled.

(i) X0, . . . , Xn are independent of λ.
(ii) detXk = 0 , Dk = 0 , KerXk+1 ⊂ KerXk for k = 0, . . . , n− 1.
(iii) detXn = {rn(0) · · · rn(n− 1)}−1 �= 0 .
(iv) detXk(λ) �= 0 for n ≤ k ≤ N + 1, if λ is sufficiently small, provided ρ(k) > 0

for 0 ≤ k ≤ N − n.
(v) Dk(λ) =

1
rn(k)

detXk(λ)
detXk+1(λ)

B , provided detXk+1(λ) �= 0, for n ≤ k ≤ N.

Proof. The assertions (i) and (iii) are derived in a forthcoming paper. The assertion
(ii) is contained in [[1], Proposition 6], and (iv) follows from [[1], Satz 9], because

F(y) − λ
N−n∑
k=0

ρ(k)y2k+1 > 0 for λ ≤ λ0,

if y �= 0 and ρ(k) > 0 for 0 ≤ k ≤ N −n. Finally, the assertion (v) is shown in [[2],
Lemma 4.1].

Observe that Xk(λ), Uk(λ) are matrix-polynomials in λ, so that Dk(λ) is a
rational function of λ as follows from Lemma 3 (v). Hence, if ρ(k) > 0 for all k,
then detXk(λ) �= 0 for n ≤ k ≤ N + 1 and all λ ∈ R \ N with a finite set N . The
next result follows from [[1], Proposition 1] and Lemma 3.

Lemma 4. (Picone’s identity) Suppose (2), (3), and (5), and assume that
detXk(λ) �= 0 for n ≤ k ≤ N + 1 . Then

F(y) − λ
N−n∑
k=0

ρ(k)y2k+1 =
N∑

k=n

zTkDkzk,

where zk = uk − Uk(λ)X−1k (λ)xk with xk, uk as in Lemma 1.

The next statement with the notation of Section 3 follows immediately from
Lemma 3 and Lemma 4.

Corollary 2. Under the assumptions of Lemma 4

yT (AN+1 − λD)y =
N∑

k=n

rn(k)
detXk+1(λ)
detXk(λ)

w2
k+1−n,

where wν = yν +
∑ν+n

µ=ν+1 αµyµ with suitable coefficients αµ = αµ(ν, λ). Hence,

w = Ty with T =

1 V V
...
. . . V

0 · · · 1

 , so that detT = 1.
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4.2. Main results

First, the Lemmas 3 and 4 with Crollary 2 yield our first result, which states a
formula for the characteristic polynomial of A and its recursive calculation.

Theorem 1. (Recursion) Assume (3), (5), and suppose that

ρ(k) > 0 for 0 ≤ k ≤ N − n(6)

holds. Then, with the notation of Section 3,

det (A− λD) = rn(0) · · · rn(N)detXN+1(λ)(7)

for all λ ∈ R. Moreover, by (4) and (5), XN+1(λ) is given by the recursion

Xk+1 = Ã(Xk +BkUk) , Uk+1 = (Ck − λC̃k)Xk+1 + (I −AT )Uk

for all 0 ≤ k ≤ N with X0 = 0, U0 = I.

Proof. By Lemma 3 and Lemma 4 we have that

detA(λ) = rn(n)
detXn+1(λ)
detXn(λ)

· · · rn(N)
detXN+1(λ)
detXN (λ)

=rn(0) · · · rn(N)detXN+1(λ).

Next, the general oscillation theorem for Hamiltonian systems from reference
[3] implies a corresponding result here.

Theorem 2. (Oscillation) Under the assumptions of Theorem 1 let λ ∈ R with
detXk(λ) �= 0 for n ≤ k ≤ N + 1. Then, the number of eigenvalues (including
multiplicities) of the eigenvalue problem (1), (2) from Section 1, which are less
than λ, equals the number of focal points of X(λ) in the interval (0, N + 1].

Remark 2. Observe first, that the multiplicity of an eigenvalue λ is given by the
rank of the kernel of XN+1(λ). Hence, it is an integer in {1, . . . , n}. Moreover,
by Remark 1, the focal points of X(λ) are all simple, i.e., of multiplicity one, and
their number in (0, N + 1] equals the number of the elements of the set

{k : n ≤ k ≤ N with rn(k)
detXk+1(λ)
detXk(λ)

< 0}.

The next corollary is just another formulation of Theorem 2. It generalizes the
well-known theorem of Sturm on “Sturmian chains”(cf. [[4], Theorem 8.5-1 and
[8], Sätze 4.8 and 4.9). Moreover, it yields the Poincaré separation theorem for
banded matrices (cf. [[5], 4.3.16 Corollary]).

Corollary 3. Under the assumptions of Theorem 2 and the previous notation
define polynomials fk(t) by

fk(t) := detAk(t) for n+ 1 ≤ k ≤ N + 1 and fn(t) ≡ 1.(8)

Then the number of zeros of fN+1(t) (including multiplicities), which are less than
λ, equals the number of sign changes of {fk(λ)} for n ≤ k ≤ N + 1, i.e., {fk(λ)}
is a “Sturmian chain”.
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Proof. The assertion follows from Theorem 1 and Theorem 2, because

fk(λ) = rn(0) · · · rn(k − 1)detXk(λ)

for n ≤ k ≤ N + 1, so that

fk+1(λ)
fk(λ)

= rn(k)
detXk+1(λ)
detXk(λ)

.

Finally, we have the following inversion formula, where the “easy” part is the
assertion (i) of Lemma 2, while the main formula will be proved in detail via gen-
erating functions in a forthcoming paper as already mentioned in the introduction.

Theorem 3. (Inversion) The following inversion formulas hold:

rµ(k + µ) =(9)

(−1)µ
n∑

s=µ

{(
s

µ

)
ak+1,k+1+s +

s−µ∑
l=1

s

l

(
µ+ l − 1
l− 1

)(
s− l− 1
s− µ− l

)
ak+1−l,k+1−l+s

}
,

for 0 ≤ µ ≤ n and all k, if and only if the aµν are given by

ak+1,k+1+t = (−1)t
n∑

µ=t

µ∑
ν=t

(
µ

ν

)(
µ

ν − t

)
rµ(k + ν)(10)

for 0 ≤ t ≤ n and all k.
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1. Introduction

We consider systems of the form

ẋ = f(x) + εg(x, α), x ∈ R2, ε, α ∈ R,(1)

where f , g are Cr, r ≥ 2, and bounded on bounded sets, ε is a small parameter.
Such systems are viewed as planar systems with a small perturbation which de-
pends on a real parameter α. If we assume that unperturbed system (for ε = 0)
possesses a saddle connection, then a natural question arises whether there are val-
ues of a parameter α for which a perturbed system possesses a saddle connection.
There are many results related to similar questions, see for instance [1] for the
problem of existence of periodic orbits in a perturbed system, or [4, §4.4], where
the impact of a small time-dependent periodic perturbation on homoclinic orbit
in Hamiltonian systems is studied. The paper [3] explores existence and number
of periodic and homoclinic orbits, but only for a particular Hamiltonian system
(whirling pendulum equation) with a special perturbation (a friction). None of
the results in mentioned (and other) works has been directly applicable to our
problem. To solve it, we follow a geometrical point of view as it is presented in [2].
� Research supported by grant Vega 1/6179/99
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2. Assumptions and background material

We will assume that for ε = 0 (1) has two saddle points p1 and p2, which are
connected by heteroclinic trajectory Γ . (The reasoning in the case of a saddle
connected to itself by a homoclinic loop is very similar). More precisely, one branch,
say Γu, of the global unstable manifold Wu of p1 coincides with one branch, say
Γ s of the global stable manifold W s of p2, and they form a saddle connection Γ
(see Fig. 1a).

p2p1

Γ

p1 p2

Γu

Γ s

a) b)

Fig. 1. The phase portrait of ẋ = f(x) + εg(x, α) for a) ε = 0, b) ε �= 0.

This situation is not resistent to perturbations – in general, any perturbation
will break the saddle connection, although the local phase portraits will not change
under a small perturbation (see Fig. 1b). Particularly, the following facts are well-
known for (1) with ε �= 0 (for details we refer the reader to [2, §4.5] and the
references given there):

F1 For each ε sufficiently small, (1) has two unique saddles pε1 = pε1 + O(ε),
pε2 = pε1 + O(ε). This is a straightforward application of the implicit func-
tion theorem, since Jacobi matrices Df(p1), Df(p2) are invertible (they have
nonzero real eigenvalues).

F2 Perturbed local stable and unstable manifolds of the saddles pε1, p
ε
2‘are Cr-

close to unperturbed local stable and unstable manifolds of the saddles p1, p2.
This fact follows from invariant manifold theory.

F3 If we denote by γ(t) a solution of the unperturbed system lying in Γ , by γu(t)
and γs(t) solutions of the perturbed system lying in Γu

ε and Γ s
ε (branches of

Wu
ε and W s

ε corresponding to Γu and Γ s), the following expressions holds,
with uniform validity in the indicated intervals:

γs(t) = γ(t) + εγs1(t) + O(ε2), t ∈ [0,∞),
γu(t) = γ(t) + εγu1 (t) + O(ε2), t ∈ (−∞, 0].(2)

Here γs1(t) and γu1 (t) are solutions of the first variational equations

γ̇s,u1 (t) = Df(γ(t))γs,u1 (t) + g(γ(t), α).(3)
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This fact represents both local and global dynamics – near a saddle point
(infinite time interval) it is governed by exponential attraction and repulsion,
while away from a saddle (finite time interval) the closeness of solutions may
be derived thanks to Gronwall’s inequality.

In what follows, we will look for values of parameter α for which the saddle
connection persists. The main idea is to measure, in some sense, the distance
between perturbed branches Γu

ε and Γ s
ε of the global manifolds Wu

ε and W s
ε .

3. The distance function

Let p ∈ Γ be a nonsingular point (f(p) �= 0), and pu ∈ Γu
ε , ps ∈ Γ s

ε are lying on
the normal f⊥(p) to Γ at p (Fig. 2). Then we define the oriented distance between
Γu
ε and Γ s

ε at the point p as

d(ε, α) =
f(p) ∧ (pu − ps)

|f(p)| ,

where a ∧ b = a⊥ · b is the wedge product.
We denote γ(t), γs(t) and γu(t) solutions lying in Γ , Γ s

ε and Γu
ε for which

γ(0) = p, γs(0) = ps, γu(0) = pu.(4)

Using (2) and (4), we can write

d(ε, α) = ε
f(γ(0)) ∧ (γu1 (0) − γs1(0))

|f(γ(0))| + O(ε2).

Now we define the time dependent distance function

∆(t) = f(γ(t)) ∧ (γu1 (t) − γs1(t))

which may be written as ∆(t) = ∆u(t) −∆s(t) with ∆s,u(t) = f(γ(t)) ∧ γs,u1 (t).
Note that

d(ε, α) = ε
∆(0)

|f(γ(0))| + O(ε2).

f⊥(p)

ps

p

pu

Γ s

Γu

Fig. 2. Definition of the distance function.
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The derivative of ∆s,u(t) with respect to time is

∆̇s,u(t) = Df(γ(t))γ̇(t) ∧ γs,u1 (t) + f(γ(t)) ∧ γ̇s,u1 (t).

Using (3) and the fact that γ̇(t) = f(γ(t)), we obtain, after some matrix calcula-
tions,

∆̇s,u(t) = Tr (Df(γ(t)))∆s,u(t) + f(γ(t)) ∧ g(γ(t), α).

Integrating the last equation from 0 to ∞ for ∆s and from −∞ to 0 for ∆u yields

∆s(∞) −∆s(0) =

∞∫
0

f(γ(t)) ∧ g(γ(t), α)e
−
∫ t

0

Tr (Df(γ(s))) ds
dt,

∆u(0) −∆u(−∞) =

0∫
−∞

f(γ(t)) ∧ g(γ(t), α)e

∫ 0

t

Tr (Df(γ(s))) ds
dt.

Since
∆s(∞) = lim

t→∞
f(γ(t)) ∧ γs1(t),

where γs1(t) is bounded and limt→∞ f(γ(t)) = f(p2) = 0, we have ∆s(∞) = 0.
Similarly ∆u(−∞) = 0. Then

∆s(0) =

∞∫
0

f(γ(t)) ∧ g(γ(t), α)e
−
∫ t

0

Tr (Df(γ(s))) ds
dt.

In the case when the unperturbed system is Hamiltonian, i.e. f=
(
∂H

∂x2
,− ∂H
∂x1

)
for some differentiable function H(x1, x2), we have Tr (Df) ≡ 0, and

∆(0) =
∫ ∞
−∞

f(γ(t)) ∧ g(γ(t), α)dt,

which is the homoclinic Melnikov function [2, p. 187].
In the next, we will use more suitable notation ∆(0) = M(α), which takes into

account the fact that ∆(0) depends on α. Thus

d(ε, α) = ε
M(α)
|f(p)| + O(ε2).(5)

Now we are ready to state and prove the main result:

Theorem 1. Let there exist α0 such that M(α0) = 0, M ′(α0) �= 0. Then for each
ε sufficiently small there exists α(ε) = α0 + O(ε) such that the perturbed system

ẋ = f(x) + εg(x, α(ε))

possesses a saddle connection, which is Cr-close to the saddle connection of the
unperturbed system.
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Proof. We rewrite (5) in the form d(ε, α) = εd(ε, α), where

d(ε, α) =
M(α)
|f(p)| + O(ε).

Then, for ε �= 0, d vanishes if and only if d vanishes. For α0 with indicated prop-
erties we obtain

d(0, α0) = 0,
∂d

∂α
(0, α0) �= 0.

The implicit function theorem ensures the existence of a smooth curve of points
(ε, α(ε)) passing throw (0, α(0)), α(0) = α0, with a property

d(ε, α(ε)) = 0.

It means that the oriented distance between Γu
ε and Γ s

ε at the point p is zero,
which implies, thanks to the uniqueness theorem, that they coincide, forming a
saddle connection. The Cr-closeness is ensured by F3.

4. Example

We will seek parameter α0 for which there exists a smooth curve of parameters
α(ε) with the property: the planar system

ẋ = y
ẏ = − sinx+ εy(cosx+ α(ε))(6)

has a saddle connection that is Cr-close to the upper saddle connection of the
planar pendulum equation, i.e. the system

ẋ = y
ẏ = − sinx.(7)

To obtain the value of α0, we will compute M(α) for (6). First, we recall that the
planar pendulum equation (7) is a Hamiltonian system with the energy

H(x, y) =
y2

2
− cosx+ 1.

Saddles −π, π are connected by two heteroclinic orbits

y = ±
√

2(cosx+ 1)

(upper and lower saddle connections) corresponding to the energy level h = 2.
Then

M(α) =
∫ ∞
−∞

y2(t)(cosx(t) + α)dt.
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Using the fact that ydt = dx, and trigonometrical identity cosx + 1 = 2 cos2
x

2
,

we obtain that along the upper saddle connection

M(α) =
∫ π

−π
y(cosx+ α)dx = 8(α+

1
3

).

Consequently, if we denote α0 = −1
3

, then

M(α0) = 0, M ′(α0) �= 0.

By Theorem 1, for each ε sufficiently small there exists α(ε) = − 1
3 + O(ε) such

that (6) has an upper saddle connection. Moreover, from the definition of d(ε, α)
we can deduce that for α > α(ε) the unstable manifold of [−π, 0] is lying above
the stable manifold of [π, 0], and reversely for α < α(ε) (see Fig. 3, where the
situation is depicted for two values of ε). The similar result may be obtained for
the lower saddle connection.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

α = −1.5
α = 1
α = −0.333

ε = 0.1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-3 -2 -1 0 1 2 3

α = −0.6
α = −0.1
α = −0.32

ε = 0.9

Fig. 3. Phase portraits of (6).
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1. Introduction

The well–known result from the calculus of variations states, that there is an
equivalence between disconjugacy of second order ordinary differential equation

(r(t)y′)′ + c(t)y = 0

on the interval (a, b) and nonnegativity of quadratic functional∫ b

a

(
r(t)η′2(t) − c(t)η2(t)

)
dt

defined on the class of functions η ∈ W 1,2
0 (a, b). This classical result has been

later extended in various directions. The generalizations include n−dimensional
problem with general boundary conditions [1], singular functional [2], p-degree

� Author supported by the grant No. 201/98/0677 of Czech Grant Agency.



514 ROBERT MAŘÍK

functionals [3,4] and also discrete p-degree functionals [5]. The relationship between
the functional and the corresponding equation is frequently used in the comparison
and oscillation theory of differential equations, see. e.g. [6].

In this paper we will study the second order half–linear difference equation

L[zk] = ∆
(
RkΦ(∆zk)

)
+ CkΦ(zk+1) = 0(E)

for k ∈ [0, n] and the corresponding discrete scalar p-degree functional

J(x) = A|x0|p +
n∑

k=0

(
Rk|∆xk|p − Ck|xk+1|p

)
.(J)

The relationship between Eq. (E) and (J) will be used further in the proof of
comparison theorems, which compare Eq. (E) with another half–linear discrete
differential equation

l[yk] = ∆
(
rkΦ(∆yk)

)
+ ckΦ(yk+1) = 0.(e)

Remark that, unless stated explicitly, under the interval [m,n] we actually
mean the discrete set {m,m + 1, . . . n}. Similarly under the term function we
actually mean the sequence.

The following lemma presents our main tool – Picone-type identity for half–
linear difference equations. It is a simplified version of the Picone identity published
for Eq. (E) in Řehák [5].

Lemma 1 ([5]). If L[zk] = 0 for k ∈ [0, n] and zk �= 0 for k ∈ [0, n+ 1], then for
k ∈ [0, n]

∆

{
−|xk|pRk

Φ(∆zk)
Φ(zk)

}
= Ck|xk+1|p −Rk|∆xk|p +

Rkzk
zk+1

Gk(x, z),(P)

where

Gk(x, z) =
zk+1

zk
|∆xk|p −

zk+1Φ(∆zk)
zkΦ(zk+1)

|xk+1|p +
zk+1Φ(∆zk)
zkΦ(zk)

|xk|p

holds. The function Gk(·, ·) satisfies

Gk(x, z) ≥ 0(1)

with equality if and only if ∆xk = xk
∆zk

zk
, i.e. if and only if xk+1 = xk

zk+1
zk

.

Lemma 2. If xk+1 = xk
zk+1
zk

for k ∈ [0, n], then xk = x0
z0
zk for k ∈ [0, n+ 1].

Proof. By induction.
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2. Main results

In connection with Eq. (E) we will study also the first order Riccati-type difference
equation

∆wk + Ck + wk

(
1 − Rk

Φ(Φ−1(Rk) + Φ−1(wk))

)
= 0,(R)

where Φ−1(·) denotes the inverse function to the function Φ(·).
The relationship between functional (J) and Eqs. (E), (R) has been studied

in [5]. Here it is proved the equivalence between disconjugacy of (E), existence of
solution of (R) and positive definiteness of (J) on the class of functions satisfying
x0 = 0 = xn+1.

The difference between these results and the results from this paper lies in
another type of boundary conditions for the function x. The fact that we use
another types of boundary conditions causes that we obtain information about
solution of Eq. (E) given by another initial condition, than in [5].

First let us recall the definition of generalized zero, which is known to be the
convenient substitution for zeros of the continuous function.

Definition 1. An interval (m,m + 1] is said to contain a generalized zero of a
solution zk of Eq. (E) if zm �= 0 and Rmzmzm+1 ≤ 0.

The following theorem establishes the relationship between the half–linear
equation, Riccati equation and the p−degree functional. Results of this type are
sometimes referred as Reid’s Roundabout–type theorem.

Theorem 1. The following statements are equivalent:

(i) The solution zk of Eq. (E) given by R0Φ
(
∆z0
z0

)
= A satisfies Rkzkzk+1 > 0

for k ∈ [0, n].
(ii) Equation (R) has a solution on [0, n] such that w0 = A and Rk + wk > 0 on

[0, n].
(iii) Functional (J) is positive definite on the class of functions defined on [0, n+1]

satisfying xn+1 = 0.

Proof. ”(i)⇐⇒(ii)” If zk is the solution of (E) satisfying Rkzkzk+1 > 0 for k ∈
[0, n], then the function wk = RkΦ

(
∆zk

zk

)
is well-defined on [0, n+ 1] and satisfies

(R) and Rk + wk > 0 on [0, n], which follows from [5].
Conversely, if wk is a solution of Eq. (R) satisfying Rk + wk > 0, then zk+1 =

zk
(

1+Φ−1
(
wk

rk

))
defines solution of Eq. (E) satisfying Rkzkzk+1 > 0 for k ∈ [0, n].

In addition, R0Φ
(
∆z0
z0

)
= A is equivalent to w0 = A.

”(i)=⇒(iii)” Let x be defined on [0, n+ 1] and xn+1 = 0. Summation of Picone
identity (P) for k ∈ [0, n] gives
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J(x) = A|x0|p +
n∑

k=0

[
∆

(
|xk|pRkΦ

(∆zk
zk

))
+
Rkzkzk+1

z2k+1

Gk(x, z)
]
≥

A|x0|p + |xn+1|pRn+1Φ
(∆zn+1

zn+1

)
− |x0|pR0Φ

(∆z0
z0

)
= 0

and the functional is positive semidefinite.
The equality holds throughout only if Gk(x, z) = 0 for k ∈ [0, n]. From here it

follows xk+1 = xk
zk+1
zk

for k ∈ [0, n], or equivalently xk = zk
x0
z0

for k = [0, n+ 1].
In view of the fact xn+1 = 0 �= zn+1, it holds x0 = 0 and x ≡ 0. Hence J(x) = 0
only if x ≡ 0 and the functional is positive definite.

”(iii)=⇒(i)” Suppose, by contradiction, that the functional is positive definite
and for the solution z of Eq. (E) given (uniquely up to the constant multiple) by
the condition R0Φ

(
∆z0
z0

)
= A there exists N ∈ [0, n] such that

Rkzkzk+1 > 0 for 0 ≤ k < N

RNzNzN+1 ≤ 0.

Denote

xk =

{
zk k ∈ [0, N ]
0 k ∈ [N + 1, n+ 1].

Since z0 �= 0, clearly x �≡ 0. Suppose N ≥ 1. From the definition of the function x
it follows L[xk] = 0 for k ∈ [0, N − 2]. Summation by parts gives

J(x) = A|x0|p +
n∑

k=0

[
Rk|∆xk|p − Ck|xk+1|p

]
= A|x0|p +

[
xkRkΦ(∆xk)

]n+1

k=0
−

n∑
k=0

xk+1L[xk]

= −
N∑
k=0

xk+1L[xk] = −xNL[xN−1]

= −zN
[
∆(RN−1Φ(∆xN−1)) + CN−1Φ(zN )

]
= zN

[
RN−1Φ(∆zN−1) −RNΦ(∆xN ) +∆(RN−1Φ(∆zN−1))

]
= zNRNΦ(∆zN ) + zNRNΦ(zN ),

since ∆xN = −zN and ∆xN−1 = ∆zN−1. Hence J(x) = RN |zN |p
[
Φ
(
∆zN

zN

)
+ 1

]
.

Now zN+1 �= 0. Really, if zN+1 = 0 would hold, then J(x) = 0, a contradiction.
Hence

J(x) =
RNzNzN+1

z2N+1

|zN |p
[zN+1

zN
Φ
(zN+1

zN
− 1

)
+
zN+1

zN

]
.

In view of the fact RNzNzN+1 ≤ 0 and with respect to inequality αΦ(α−1)+α ≥ 0
we obtain J(x) ≤ 0, a contradiction. This contradiction ends the proof.
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Corollary 1 (Leighton type comparison theorem). Let yk be solution of Eq.
(e), such that yn+1 = 0 �= y0. Denote a = r0Φ

(
∆y0
y0

)
. Let A be such that

V (y) := (A− a)|y0|p +
n∑

k=0

[
(Rk − rk)|∆yk|p − (Ck − ck)|yk+1|p

]
≤ 0.

Then the solution of Eq. (E) given by R0Φ
(
∆z0
z0

)
= A has a generalized zero on

[0, n+ 1], i.e., there exists i ∈ [0, n] such that Rizizi+1 ≤ 0 holds.

Proof. Define the functional j(x) = α|x0|p +
∑n

k=0 rk|∆xk|p − ck|xk+1|p. Using
summation by parts we obtain j(y) = 0 and hence J(y) = J(y)−j(y) = V (y) ≤ 0.
Since y �≡ 0, the statement follows from Theorem 1.

An immediate consequence is the following

Corollary 2. Let yk be solution of Eq. (e), such that yn+1 = 0 �= y0. Denote
a = r0Φ

(
∆y0
y0

)
. Let A < a, Rk ≤ rk on [0, n] and ck ≤ Ck on [0, n− 1]. Then the

solution of Eq. (E) given by R0Φ
(
∆z0
z0

)
= A has a generalized zero on [0, n + 1],

i.e., there exists i ∈ [0, n] such that Rizizi+1 ≤ 0 holds.

Corollary 3. Let yk be solution of Eq. (e), such that yn+1 = 0 �= y0. Denote
a = r0Φ

(
∆y0
y0

)
. Let A be such that

V(y) := (A−R0

r0
a)|y0|p−

n∑
k=0

{
∆
(Rk

rk

)
rkΦ(∆yk)yk+1+(Ck−

Rk+1

rk+1
ck+1)|yk+1|p

}
≤ 0.

Then the solution of Eq. (E) given by R0Φ
(
∆z0
z0

)
= A has a generalized zero on

[0, n+ 1], i.e., there exists i ∈ [0, n] such that Rizizi+1 ≤ 0 holds.

Proof. Let yk be solution of (e) on [0, n] satisfying yn+1 = 0 �= y0. Then

L[yk] = ∆
(
RkΦ(∆yk)

)
+ CkΦ

(
yk+1

)
= ∆

(Rk

rk
rkΦ(∆yk)

)
+ CkΦ(yk+1)

= ∆
(Rk

rk

)
rkΦ(∆yk) +

Rk+1

rk+1
∆
(
rkΦ(∆yk)

)
+ CkΦ(yk+1)

= ∆
(Rk

rk

)
rkΦ(∆yk) + Φ(yk+1)

[
Ck − Rk+1

rk+1
ck
]
.(2)

Since the integration by parts shows that

n∑
k=0

∆
(Rk

rk

)
rkΦ(∆yk)yk+1 =

[
RkΦ(∆yk)yk+1

]n+1

n=0
−

n∑
k=0

Rk+1

rk+1
∆
(
rkΦ(∆yk)yk+1

)
= Rn+1yn+2Φ(∆yn+1) −R0y1Φ(∆y0)

−
n∑

k=0

Rk+1

rk+1

[
∆
(
rkΦ(∆yk)

)
yk+1 +∆yk+1rk+1Φ(∆yk+1)

]
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= Rn+1yn+2Φ(∆yn+1) −R0y1Φ(∆y0)

−
n∑

k=0

[
−Rk+1

rk+1
ck|yk+1|p +Rk+1|∆yk+1|p

]
= Rn+1yn+2Φ(∆yn+1) −R0y1Φ(∆y0)

−
n∑

k=0

[
−Rk+1

rk+1
ck|yk+1|p +Rk|∆yk|p

]
−Rn+1|∆yn+1|p +R0|∆y0|p

= Rn+1yn+1Φ(∆yn+1) −R0y0Φ(∆y0)

−
n∑

k=0

[
Rk|∆yk|p −

Rk+1

rk+1
ck|yk+1|p

]
the following relation holds
n∑

k=0

yk+1L[yk] = Rn+1Φ(∆yn+1)yn+1 −R0Φ(∆y0)y0−
m∑

k=0

[
Rk|∆yk|p−Ck|yk+1|p

]
.

Then in view of (2) and yn+1 = 0, clearly

J(y) = |y0|p
[
A−R0Φ

(∆y0
y0

)]
−

n∑
n=0

yk+1L[yk] = V(y)

and the statement follows from Theorem 1.

3. Open problems

In the oscillation theory of discrete differential equations the concept of generalized
zeros is used. This is caused by the fact that the sequence Rk is allowed to attain
also negative values. However in the boundary conditions of the functional (J)
”exact” zeros are used. It could be interesting to remove this disharmonicity and
to find out, whether the concept of generalized zeros in boundary conditions would
produce some fruitful extension of discrete variational technique.

References
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1. Introduction

Consider the nonlinear difference system in R
m

y(n+ 1) = A(n)y(n) + f(n, y(n)), n ∈ Z(1)

where A(n) is a m ×m invertible matrix for every n ∈ Z and f is a continuous
function from Z× R

m into R
m . Our aim is to study the existence of bounded

solutions of (1) having zero limit as n → ±∞, under the assumption that the
solutions of the associated linear (homogeneous) system

x(n+ 1) = A(n)x(n), n ∈ Z(2)

are not all bounded on Z.
In the continuous case the study of the existence on the whole real line of

zero convergent solutions as t→ ±∞ of a linear differential system often has been
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accomplished by introducing suitable assumptions on the asymptotic behavior of a
fundamental matrix. For instance in [15] the notion of S-S trichotomy is introduced
and is employed to study the existence of invariant splittings for linear differential
systems. Later a stronger notion of trichotomy, namely exponential trichotomy,
was introduced in [8], still in the continuous case. These notions were extended
afterwards to the discrete case and during the last years many authors dealt with
exponential or ordinary trichotomy of difference systems, giving necessary and
sufficient conditions for the existence, proving the roughness and applying these
results to nonlinear difference systems, see for instance [2], [9], [11]. We refer the
reader to [7] for the basic theory of dichotomies and to [1] for the extension to
difference equations.

Here, in section 2, lp trichotomy for a linear system (2) will be introduced and
the main asymptotic properties of the solutions of this system will be analyzed.
We point out that lp trichotomy can be considered as an extension to the lp spaces
of exponential trichotomy, as well as lp dichotomy is an extension of exponential
dichotomy [18].

In section 3 the boundary value problemy(n+ 1) = A(n)y(n) + f(n, y(n)), n ∈ Z

y(+∞) = 0, y(−∞) = 0
(3)

will be considered, assuming that the associated linear system has a lp trichotomy
and using a topological approach based on Schauder-Tychonoff fixed point theo-
rem.

The results obtained extend some of the results in [10], [12]–[14], [18] and
improve some of those in [9], [2], [11]. A comparison will be made throughout the
paper.

2. lp trichotomy for linear difference systems

Let X(n) be a fundamental matrix of (2). We recall the definitions of lp, exponen-
tial and ordinary dichotomy for reader’s convenience.

Definition 1 ([18], [10], [12]–[14]). System (2) is said to have a lp dichotomy
on Z

+ = {0, 1, 2, · · · }, 1 ≤ p < ∞, if there exist a projection P+ and a constant
K+ > 0 such that for every n ∈ Z

+

[ n−1∑
s=−1

|X(n)P+X−1(s+ 1)|p
]1/p

< K+

[ ∞∑
s=n−1

|X(n)(I − P+)X−1(s+ 1)|p
]1/p

< K+.

(4)
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Analogously system (2) has a lp dichotomy on Z
− = {0,−1,−2, · · · }, 1 ≤ p <∞,

if there exist a projection P− and a constant K− > 0 such that[ n−1∑
s=−∞

|X(n)P−X−1(s+ 1)|p
]1/p

< K−

[ −1∑
s=n−1

|X(n)(I − P−)X−1(s+ 1)|p
]1/p

< K−.

(5)

System (2) has an exponential dichotomy on Z+ if there exist a projection P0 and
constants M > 0, 0 < β < 1 such that

|X(n)P0X−1(s)| < Mβn−s, 0 ≤ s ≤ n

|X(n)(I − P0)X−1(s)| < Mβs−n, 0 ≤ n ≤ s.

The exponential dichotomy on Z
− is defined in a similar way. If the above two

inequalities hold with β = 1, then system (2) has an ordinary dichotomy on Z
+.

Clearly ordinary dichotomy is equivalent to l∞ dichotomy.

The above mentioned notions of dichotomy can be regarded as kinds of con-
ditional stability in future for the linear system (2). In particular system (2) is
uniformly stable (in future) if and only if it has an ordinary dichotomy on Z

+

with projection the identity operator, it is asymptotically uniformly stable (in fu-
ture) if and only if it has an exponential dichotomy on Z

+ with projection the
identity operator, it is lp stable (in future) if and only if it has a lp dichotomy on
Z
+ with projection the identity operator ([17], see also [4], [5]).

If one is interested in the asymptotic behavior of the solutions of (2) both in
the future and in the past, then it may be useful to generalize the above kinds of
dichotomies. For instance in [9], [11] the exponential trichotomy is considered as
a generalization of exponential dichotomy on Z and it is employed to study the
asymptotic behavior in the future and in the past of the solutions of perturbed
difference systems. Analogously it is possible to generalize the lp dichotomy on Z

in the following way:

Definition 2. System (2) is said to have a lp trichotomy on Z with 1 ≤ p <∞, if
there exist three mutually orthogonal projections P1, P2, P3, with P1+P2+P3 = I,
and a constant K > 0, such that[ n−1∑

s=−∞
|X(n)P1X−1(s+ 1)|p

]1/p
< K

[ ∞∑
s=n−1

|X(n)P2X−1(s+ 1)|p
]1/p

< K

[ n−1∑
s=−1

|X(n)P3X−1(s+ 1)|p
]1/p

< K for n ≥ 0

(6)
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[ −1∑
s=n−1

|X(n)P3X−1(s+ 1)|p
]1/p

< K for n ≤ 0.

It is worth to remark that the lp trichotomy is a property that does not depend
on the fixed fundamental matrix. Indeed, if Y (n) is another fundamental matrix
of (2), then there exists a nonsingular matrix C such that X(n) = Y (n)C and
|X(n)PjX

−1(s+ 1)| = |Y (n)CPjC
−1Y −1(s+ 1)|. Only the projections depend on

the fixed fundamental matrix.
From Definition 2 lp trichotomy on Z implies lp dichotomy on Z

+ and on Z
−,

and lp dichotomy on Z implies a trivial lp trichotomy, with the projection P3 = 0.
In particular the following holds:

Proposition 1. The following statements are equivalent:

i) System (2) has a lp trichotomy on Z, with projections P1, P2, P3.
ii) There exist two projections P, Q, such that PQ = QP , P +Q− PQ = I and

a positive constant N , such that[ n−1∑
s=−1

|X(n)PX−1(s+ 1)|p
]1/p

< N, n ≥ 0

[ ∞∑
s=n−1

|X(n)(I − P )X−1(s+ 1)|p
]1/p

< N

[ −1∑
s=n−1

|X(n)QX−1(s+ 1)|p
]1/p

< N, n ≤ 0

[ n−1∑
s=−∞

|X(n)(I −Q)X−1(s+ 1)|p
]1/p

< N.

(7)

iii) System (2) has a lp dichotomy on Z+ with projection P+ and a lp dichotomy
on Z

− with projection P−, such that P+P− = P−P+ = P−. In addition the
second inequality in (4) and the first one in (5) hold for every n ∈ Z.

Proof. i) =⇒ ii). Let P = I − P2 and Q = I − P1. It is trivial to check that
PQ = P3 = QP and P +Q− PQ = I. The second and the fourth inequalities in
(7) are immediately verified. With regard to the first one in (7) we have for n ≥ 0

n−1∑
s=−1

|X(n)PX−1(s+ 1)|p =
n−1∑
s=−1

|X(n)(P1 + P3)X−1(s+ 1)|p

≤ 2p−1
n−1∑
s=−1

(
|X(n)P1X−1(s+ 1)|p + |X(n)P3X−1(s+ 1)|p

)
< 2pKp.
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Similarly the last one in (7) can be proved
ii) =⇒ iii). Let P+ = P and P− = (I −Q). Then system (2) has a lp dichotomy
on Z+ with projection P+, and a lp dichotomy on Z− with projection P−. Further
P+P− = P (I −Q) = I −Q = P− = P−P+ and both the second inequality in (4)
and the first one in (5) hold for every n ∈ Z.
iii) =⇒ i). Let P1 = P−, P2 = I − P+, P3 = P+ − P− = P+(I − P−) =
(I − P−)P+. Then clearly P1 + P2 + P3 = I and PiPj = 0 if i �= j. The proof of
the inequalities (6) is quite immediate; for the last two inequalities it is sufficient
to observe that P3 = (I −P−)P+ for the first one, and that P3 = P+(I −P−) for
the second one. -.

The equivalence between conditions (i), (iii) in Proposition 1 gives the following:

Corollary 1. System (2) has a lp trichotomy if and only if the following two
conditions are satisfied:

a) system (2) has a lp dichotomy both on Z
+ and on Z

−;
b) every solution is the sum of two solutions, one bounded on Z

+ and the other
bounded on Z

−.

Proposition 1 permits us to give a complete description of the asymptotic behavior
of the solutions of (2), both in the future and in the past. More precisely we have

Theorem 1. If system (2) has a lp trichotomy, 1 ≤ p < ∞, with projections
P1, P2, P3 corresponding to the fundamental matrix X(n) s.t. X(0) = I, then the
m-dimensional space S of all the solutions of (2) can be written as direct sum

S = B+
k ⊕B−r ⊕B±m−k−r

where

B+
k is the k-dimensional subspace of solutions x such that x(0) = η ∈ Range(P1),
where k = Rank(P1). If x ∈ B+

k then x(+∞) = 0 and x is unbounded for
n→ −∞.

B−r is the r-dimensional subspace of solutions x such that x(0) = ν ∈ Range(P2),
where r = Rank(P2). If x ∈ B−r then x(−∞) = 0 and x is unbounded for
n→ +∞.

B±m−k−r is the subspace of solutions x such that x(0) = µ ∈ Range(P3), where
m− k − r = Rank(P3). If x ∈ B±m−k−r then x(±∞) = 0.

In particular a solution of (2) is bounded for all n ∈ Z if and only if it has zero
limit as n→ ±∞.

Proof. If system (2) has a lp trichotomy on Z, with projections P1, P2, P3, from
Proposition 1, (2) has also a lp dichotomy on Z+ with projection P+ = I−P2 and a
lp dichotomy on Z

− with projection P− = P1. In addition P+P− = P−P+ = P−

and also (I − P−)(I − P+) = (I − P+)(I − P−) = I − P+.
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Let x be a solution of (2). Then x(n) = X(n)P1x(0)+X(n)P2x(0)+X(n)P3x(0).
From ([16], [18]) and using the fact that (2) has a lp dichotomy on Z

+ and on Z
−

we obtain

lim
n→+∞

|X(n)P1x(0)| = lim
n→+∞

|X(n)P−x(0)| = lim
n→+∞

|X(n)P+P−x(0)| = 0

lim
n→−∞

|X(n)P1x(0)| = lim
n→−∞

|X(n)P−x(0)| = +∞ if P1x(0) �= 0

lim
n→+∞

|X(n)P2x(0)| = lim
n→+∞

|X(n)(I − P+)x(0)| = +∞ if P2x(0) �= 0

lim
n→−∞

|X(n)P2x(0)| = lim
n→−∞

|X(n)(I − P+)x(0)|

= lim
n→−∞

|X(n)(I − P−)(I − P+)x(0)| = 0

lim
n→+∞

|X(n)P3x(0)| = lim
n→+∞

|X(n)P+(I − P−)x(0)| = 0

lim
n→−∞

|X(n)P3x(0)| = lim
n→−∞

|X(n)(I − P−)P+x(0)| = 0.

This ends the proof of the first part of the proposition. To prove the second as-
sertion it is sufficient to observe that necessarily P1x(0) = P2x(0) = 0 in order to
have a solution of (2) bounded on all Z. -.

As lp trichotomy is more general than exponential trichotomy, the previous results
extend the correspondent ones in [9], [2], [11]. Further the notion of trichotomy
allows to consider the behavior of the solutions of (2) on the whole set Z, therefore
the results in Theorem 1 imply the corresponding ones in [18].

Remark 1. It is also possible to give an estimate of the rate of convergence towards
zero of the various terms, see [18], [16].

3. Applications to nonlinear boundary value problems

Suppose that (2) has a lp trichotomy and consider the associated nonlinear system
(1). The following holds:

Proposition 2. Assume:

i) system (2) has a lp trichotomy, 1 ≤ p <∞, with projections P1, P2, P3 asso-
ciated with the fundamental matrix X(n) s.t. X(0) = I;

ii) there exists a function g : Z×R+ '→ R
+ , continuous with respect to the second

variable ∀n ∈ Z and such that

|f(n, c)| ≤ g(n, |c|), n ∈ Z, c ∈ R
m(8)

max
v∈[0,r]

g(n, v) = gr(n) ∈ lq, r ∈ R
+ , 1/p+ 1/q = 1, (p = 1, q = ∞).(9)
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Then every bounded solution of (1) is solution of

y(n) =X(n)P3y(0) +
n−1∑

s=−∞
X(n)P1X−1(s+ 1)f(s, y(s))

−
+∞∑
s=n

X(n)P2X−1(s+ 1)f(s, y(s)) +
n−1∑
s=0

X(n)P3X−1(s+ 1)f(s, y(s))

−
−1∑
s=n

X(n)P3X−1(s+ 1)f(s, y(s))(10)

(with the convention
∑b

s=a g(s) = 0 if a > b) and vice versa.

Proof. The assertion is an easy consequence of the variation of constants formula.
We only sketch the proof.

Let u be a bounded solution of (1). From i) and ii) we get∣∣∣∣ +∞∑
s=n

X(n)P2X−1(s+ 1)f(s, u(s))
∣∣∣∣ ≤ K‖g‖u‖∞‖q, 1 < q ≤ ∞

where K is the trichotomy constant (see Definition 2). Then for n ≥ 0 we can
write

u(n) =X(n)P1u(0) +X(n)P2u(0) +X(n)P3u(0)

+
n−1∑
s=0

X(n)(P1 + P3)X−1(s+ 1)f(s, u(s))

+
+∞∑
s=0

X(n)P2X−1(s+ 1)f(s, u(s)) −
+∞∑
s=n

X(n)P2X−1(s+ 1)f(s, u(s)).

The sequence {n−1∑
s=0

X(n)(P1 + P3)X−1(s+ 1)f(s, u(s))
}

is bounded by the constant 2K‖g‖u‖∞‖q, 1 < q ≤ ∞. As limn→+∞ |X(n)Pju(0)| =
0, j = 1, 3 (see Theorem 1) and u is bounded, the sequence{

X(n)P2

[
u(0) +

+∞∑
s=0

X−1(s+ 1)f(s, u(s))
]}

is bounded too. From Theorem 1 it follows that

P2

[
u(0) +

+∞∑
s=0

X−1(s+ 1)f(s, u(s))
]

= 0.(11)
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Now to show that u satisfies (10) it is sufficient to prove that

P1

[
u(0) −

−1∑
s=−∞

X−1(s+ 1)f(s, u(s))
]

= 0.(12)

Since u is a solution of (1), for n ≤ −1 we have

u(n) =X(n)P1u(0) +X(n)P2u(0) +X(n)P3u(0)

−
−1∑

s=−∞
X(n)P1X−1(s+ 1)f(s, u(s)) +

n−1∑
s=−∞

X(n)P1X−1(s+ 1)f(s, u(s))

−
−1∑
s=n

X(n)(P2 + P3)X−1(s+ 1)f(s, u(s)).

Following an argument similar to that above given and taking into account that
u is bounded, we obtain (12), and so u satisfies (10) for n ≥ 0. Starting from the
variation of constants formula for n ≤ −1 and taking into account (11) and (12)
we obtain that u satisfies (10) for n ≤ −1 too.

Vice versa let u be a bounded solution of (10). A standard calculation shows
that u satisfies (1). -.

Denote l∞0 = {u ∈ l∞ : limn→±∞ u(n) = 0}. From the above proposition we have

Corollary 2. Assume conditions i) and ii) of Proposition 2 hold, with 1 ≤ p <∞.
Assume also for p = 1 (q = ∞)

iii) g(n, |c|) ≤ γ|c| + λ(n), for every n ∈ Z, c ∈ R
m , where γ > 0, 2Kγ < 1 and

λ ∈ l∞0 .

Then every bounded solution of (1) belongs to l∞0 .

Proof. Let u be a bounded solution of (1). From Proposition 2 u is solution of
(10). Let 1 < p <∞ and n ≥ n1 > 0, n1 fixed; from (11) we get

|u(n)| ≤ |X(n)(P1 + P3)|
{
|u(0)| +

n1−1∑
s=0

|X−1(s+ 1)f(s, u(s))|
}

+
+∞∑
s=n

|X(n)P2X−1(s+ 1)f(s, u(s))| +
n∑

s=n1

|X(n)(P1 + P3)X−1(s+ 1)f(s, u(s))|

≤ |X(n)(P1 + P3)|
{
|u(0)| +

n1−1∑
s=0

|X−1(s+ 1)f(s, u(s))|
}

+ 3K
( +∞∑

s=n1

(g‖u‖∞(s))q
)1/q
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Choosing n1 sufficiently large, in view of Theorem 1 we obtain limn→+∞ u(n) = 0.
The assertion limn→−∞ u(n) = 0 can be proved in a similar way taking into
account (12).

When p = 1 the proof comes using similar arguments to those in [6] (Th. 8 p.
68 and Th. 10 p. 7) with slight modifications; see also [18], Prop. 3.2. -.
Remark 2. When p = 1 conditions i) and ii) in Proposition 2 are not sufficient
to assure that every bounded solution of (1) belongs to l∞0 . It is possible to find
conditions different from iii) in Corollary 2 that, together with conditions i) and
ii), assure the decaying of all the bounded solutions towards zero; for instance this
happens by assuming

iv) gα ∈ l∞0 for every α > 0.

Finally consider the boundary value problem (3). The method here used for
solving (3) is to reduce it to a fixed point problem in the Fréchet space X of all
the sequences from Z into Rm

X := {q : Z '→ R
m}

and then to apply the Schauder-Tychonoff fixed point theorem.

Theorem 2 (Existence). Let ξ ∈ Range(P3) be fixed. If conditions i) and ii)
in Proposition 2 and, for p = 1, also condition iii) in Corollary 2 hold, and if in
addition

v) there exists a constant β > 0 such that

sup
n∈Z

|X(n)ξ| + 3K‖gβ‖q ≤ β,

then the boundary value problem
y(n+ 1) = A(n)y(n) + f(n, y(n)), n ∈ Z

y(+∞) = 0, y(−∞) = 0

y(0) = ξ

(13)

has at least a solution.

Proof. Let Ω := {q ∈ X : q ∈ l∞0 , q(0) = ξ, ‖q‖∞ ≤ β}. Clearly Ω is a nonempty,
closed, convex and bounded subset of X . Consider the operator F : Ω '→ X defined
by (see the right end side of (10))

(Fq)(n) =X(n)ξ +
n−1∑

s=−∞
X(n)P1X−1(s+ 1)f(s, q(s))

−
+∞∑
s=n

X(n)P2X−1(s+ 1)f(s, q(s)) +
n−1∑
s=0

X(n)P3X−1(s+ 1)f(s, q(s))

−
−1∑
s=n

X(n)P3X−1(s+ 1)f(s, q(s))
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(with the convention
∑b

s=a g(s) = 0 if a > b).
Let 1 < p < ∞. Assumptions i) and ii) in Proposition 2 assure that this

operator is well defined, being Ω ⊂ l∞. Let us show that F (Ω) ⊆ Ω. For every
q ∈ Ω, taking into account assumption v), we have

|(Fq)(n)| ≤ sup
n∈Z

|X(n)ξ| + 3K‖gβ‖q ≤ β.

Moreover from Proposition 2 and Corollary 2 it follows (Fq)(n) → 0 as n→ ±∞
and (Fq)(0) = ξ, for every q ∈ Ω. Thus F (Ω) ⊆ Ω. This also implies that F (Ω)
is a relatively compact subset of X , because in such a Fréchet space a subset is
relatively compact if and only if it is bounded. Finally F is a continuous operator
in Ω: let {qk}k∈N a sequence in Ω such that qk → q̄ in X , and consider the sequence
{Fqk}k∈N. We have

|(Fqk)(n) − (F q̄)(n)| ≤ 3K
( +∞∑
s=−∞

|f(s, qk(s)) − f(s, q̄(s))|q
)1/q

.

Note that |f(s, qk(s)) − f(s, q̄(s))| ≤ 2gβ(s) ∈ lq, for every k ∈ n. The continuity
of f with respect to the second argument and the fact that the convergence in X
implies the pointwise convergence, allow us to apply the dominated convergence
theorem (see [3] for the formulation in the space X ). Thus Fqk → F q̄ in X being
the convergence of (Fqk)(n)− (F q̄)(n) towards zero uniform with respect to n. By
the Schauder-Tychonoff fixed point theorem the operator F has at least a fixed
point y in Ω and Proposition 2 assures that y is a solution of problem (13).

The case p = 1 can be treated by means of similar arguments. -.

Remark 3. If ξ ∈ Range(P3) then supn∈Z|X(n)ξ| = maxn∈Z|X(n)ξ| <∞. Indeed
limn→±∞ |X(n)ξ| = 0.

Remark 4. Assumption v) in Theorem 2 is trivially satisfied if supα>0 ‖gα‖ <∞.

It is worth to remark that the choice of the Fréchet space X makes the proof of
the compactness of F (Ω) quite immediate, while the proof of the continuity of F
is not more difficult than working in a Banach space like l∞.

The results of this section extend those in [18] and generalize those in [4],
because the nonlinear discrete boundary value problem is completely solved. They
also generalize some of the results in [2], [9], [11] because exponential trichotomy
implies lp trichotomy.
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Abstract. We consider the boundary value problems for the fourth order
nonlinear differential equation uIV = f(x, u) together with three different
boundary conditions (the Dirichlet, the periodic and the Navier boundary
conditions). We discuss the existence results for these boundary value prob-
lems at resonance. Our results contain the Landesman–Lazer type condi-
tions. We also show some numerical results concerning Fuč́ık’s spectrum for
the boundary value problems for the differential equation uIV = µu+−νu−,
where u+ = max{u, 0} and u− = max{−u, 0}, together with our three
boundary conditions.
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1. Introduction

In this paper, we introduce some results concerning the boundary value prob-
lems for a fourth order differential equation. These results are the main results
of the diploma thesis [4] that consists of three parts. The first part deals with
the regularity problem of weak solutions, the second one describes Fuč́ık’s spec-
trum and the third one concerns the existence of at least one weak solution of our
boundary value problems at resonance. This paper covers only the second and the
third parts of the thesis [4].
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2. Fuč́ık’s spectrum

In this section, we investigate Fuč́ık’s spectrum of the boundary value problems
for a fourth order differential equation. Let us consider a differential operator
L : D(L) ⊂ L2(Ω) → L2(Ω), where Ω is a bounded domain with a smooth
boundary. We define its Fuč́ık’s spectrum as the following set

A−1(L) = {(µ, ν) ∈ R
2 | Lu = µu+ − νu− has a nontrivial solution},

where u+ = max{u, 0} and u− = max{−u, 0} are the positive and the negative
parts of the function u. Let us denote the spectrum of L by

σ(L) = {λ ∈ R | Lu = λu has a nontrivial solution}.

Then we have {(λ, λ) ∈ R
2 | λ ∈ σ(L)} ⊆ A−1(L) and therefore we can regard

Fuč́ık’s spectrum A−1(L) as a generalization of the spectrum σ(L).
In our case, the differential operator L is defined by

Lu(x) =
d4u

dx4
for all u ∈ D(L).

So, the main goal of our investigation will be the boundary value problems for
the fourth order differential equation

uIV = µu+ − νu−(1)

together with different type of boundary conditions. The knowledge of Fuč́ık’s
spectrum is essential for studying various mathematical models, especially models
with jumping nonlinearities (see e.g. [5] for some concrete applications).

Fuč́ık’s spectrum of the boundary value problems for the second order differ-
ential equation

u′′ + µu+ − νu− = 0

together with the periodic or the Dirichlet boundary conditions is well known
and can be described analytically by some explicit formulas (see [2]). But in
the case of the boundary value problems for the fourth order differential equa-
tion (1), the situation is absolutely different and much more complicated. First of
all, concerning these boundary value problems, we cannot describe corresponding
Fuč́ık’s spectrum by some analytic explicit formulas, and only some kinds of its
qualitative properties are known (see the papers [3], [1]). Note that in the recent
paper [1], the asymptotic behavior of Fuč́ık’s spectrum is also studied.

2.1. The periodic boundary value problem

Let us consider the periodic boundary value problem of the form{
uIV(x) = λu(x), x ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π).
(2)
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The eigenvalues of this boundary value problem (2) form the sequence

λk = k4, k = 0, 1, 2, 3, . . .(3)

The eigenvalues λk, k = 1, 2, 3, . . . are of multiplicity 2 and two linearly inde-
pendent orthogonal eigenfunctions correspond to each of them. We denote these
orthogonal eigenfunctions by vk,1 and vk,2. They are of the form

v0(x) = 1, vk,1(x) = sin kx, vk,2(x) = cos kx, k = 1, 2, 3, . . .(4)

2.1.1. Fuč́ık’s spectrum Let us consider the periodic boundary value problem{
uIV(x) = a4u+(x) − b4u−(x), x ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π).
(5)

For further considerations, let us consider the direct periodic extension to the whole
real line R of each solution u of this boundary value problem (5). Let us denote
ϕ ∈ ](3/4)π, π[ the smallest positive root of the equation tanx + tanhx = 0.
Further, let us define the auxiliary functions f and g by the formulas

f(x) =
coshx cosx

coshx sinx+ sinhx cosx
, g(x) =

coshx sinx− sinhx cosx
coshx sinx+ sinhx cosx

(6)

for x ∈ ]0, ϕ[. The following theorem, which is proved in the paper [3] (some
corrections of the analytical bounds for the spectrum is given in [4]), provides the
description of the first branch of Fuč́ık’s spectrum.

Theorem 1. The set S1 of all pairs (a, b) ∈ ]0,+∞[2 such that there exists a non-
trivial 2π-periodic solution of the boundary value problem (5), which is composed
of two semi-waves, is a curve (a, b(a)), where b(a) is a decreasing C∞-function
defined in ]ϕ/π,+∞[ with lima→+∞ b(a) = ϕ/π.

The curve S1 is symmetric with respect to the straight line b = a and fulfils
S1 ⊂ G1, where G1 is the set of all pairs (a, b) ∈ ]ϕ/π,+∞[2 such that

for b ≥ a,
[
α(a, b) ≥ π

2
, ξ(a, b) ≥ 0

]
∨
[
α(a, b) <

π

2
, ξ(a, b) ≥ 0 ≥ ψ(a, b)

]
,(7)

for b ≤ a,
[
β(a, b) ≥ π

2
, ψ(a, b) ≥ 0

]
∨
[
β(a, b) <

π

2
, ψ(a, b) ≥ 0 ≥ ξ(a, b)

]
,(8)

where

α(a, b) = bπ

(
1 − 1

2a

)
, β(a, b) = aπ

(
1 − 1

2b

)
,

ξ(a, b) =
(
b

a

)2

− g
(
πa

(
1 − 1

2b

))
, ψ(a, b) =

(
a

b

)2

− g
(
πb

(
1 − 1

2a

))
.
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Fig. 1: The correct bounds (7), (8), (9).
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Fig. 2: Fuč́ık’s spectrum for the BVP (5).

The analytical bounds (7) and (8) are shown in the Figure 1. By virtue of pre-
vious Theorem 1, we can summarize the actual knowledge of Fuč́ık’s spectrum for
the periodic boundary value problem (5) into the following items (see also [3]):

1. The set S of all pairs (a, b) ∈ ]0,+∞[2, for which there exists a nontrivial
2π-periodic solution of the boundary value problem (5), is the countable set
{Sk, k ∈ N} of C∞-curves, where Sk = {(a, b) ∈ ]0,+∞[2, (a/k, b/k) ∈ S1} for
k = 2, 3, . . . , the description of the curve S1 is given by Theorem 1.

2. The inclusion Sk ⊂ Gk holds for all k ∈ N, where

Gk = {(a, b) ∈ ]0,+∞[2, (a/k, b/k) ∈ G1}.(9)

The set G1 is defined in Theorem 1. Thus we obtain

S ⊂
+∞⋃
k=1

Gk.

3. For the pair (a, b) ∈ Sk, the corresponding 2π-periodic nontrivial solutions
of the boundary value problem (5) have exactly 2k semi-waves in an interval
of the length 2π. This solution is unique if the translation in the direction of
the x-axes and positive multiples are not considered.

Then Fuč́ık’s spectrum for the periodic boundary value problem (5) is the set

A−1 = {(a4, b4) ∈ R
2 | (a, b) ∈ S} ∪ {Sx

0 , S
y
0},

where Sx
0 (or Sy

0 , respectively) is just x-axes (y-axes, respectively). The corre-
sponding nontrivial solutions of the boundary value problems (5) for the pairs
(a, b) ∈ Sx

0 (Sy
0 ) are arbitrary constants c < 0 (c > 0).
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2.1.2. The description of the algorithm The algorithm how to generate
the points of Fuč́ık’s spectrum A−1 with some specific accuracy is in details de-
scribed in [4]. It is obvious from the previous considerations that if we are able to
generate the points of the set S1 that determine the first branch of Fuč́ık’s spec-
trum, then we are able to generate automatically the other branches of Fuč́ık’s
spectrum. It can be shown (see [3]) that the set S1 is described by the system of
two nonlinear equations

af(ar) + bf(b(π − r)) = 0,
a2g(ar) − b2g(b(π − r)) = 0.(10)

The principle of the algorithm is such that for the chosen fixed r ∈ (π/2, π)
we compute the parameters a and b of the system (10) numerically with some
accuracy. This provides the approximation of one pair (a, b) ∈ S1. For the complete
description of the algorithm see thesis [4].

2.2. The Navier boundary value problem

Let us consider the boundary value problem of the form{
uIV(x) = λu(x), x ∈ [0, π],

u(0) = u′′(0) = u(π) = u′′(π) = 0.
(11)

The eigenvalues of this boundary value problem (11) and the corresponding eigen-
functions are

λk = k4, vk(x) = sinkx, k = 1, 2, 3, . . . .

2.2.1. Fuč́ık’s spectrum Let us consider the boundary value problem{
uIV(x) = a4u+(x) − b4u−(x), x ∈ [0, π],

u(0) = u′′(0) = u(π) = u′′(π) = 0.
(12)

Fuč́ık’s spectrum of this boundary value problem (12) is the set

A−1 = {(a4, b4) ∈ R
2 | (a, b) ∈ S},

where S is the system of continuous curves S = {S+i , S−i , i ∈ N} with the following
properties (see [3]):

1. Let (a, b) ∈ S+i (S−i ), then the solution u of the boundary value problem (12)
is the solution of the initial value problem{

uIV(x) = a4u+(x) − b4u−(x), x ∈ [0,+∞[,

u(0) = 0, u′(0) = α, u′′(0) = 0, u′′′(0) = t,
(13)

with α > 0 (α < 0) and with some t ∈ R. This solution u is uniquely de-
termined by the choice of the constant α and has exactly (i + 1) zeros in
the interval [0, π].
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Fig. 3. Fuč́ık’s spectrum for the Navier BVP (12).

2. The curves S+i and S−i are mutually symmetric with respect to the straight
line a = b. If i is even, then S+i = S−i .

3. For all i ∈ N, (S+i ∪ S−i ) ∩ (S+i+1 ∪ S−i+1) = ∅ holds.

2.2.2. The description of the algorithm We will try to explain the main idea
of the algorithm for generating Fuč́ık’s spectrum for the easiest case. This means,
we consider the second branch S+2 that merges in the curve S−2 , which follows
from the properties of the spectrum that we mentioned in the previous Section
2.2.1. If we restrict our attention only to the second branch S+2 , then we know
that the corresponding solutions u of the boundary value problem (12) will have
exactly 3 zeros in the interval [0, π]. Further, we know that the curve S+2 is passing
through the point ( 4

√
λ2,

4
√
λ2) = (2, 2) and the corresponding nontrivial solution

of the boundary value problem (12) is then v2(x) = sin 2x. Due to the symmetry
of Fuč́ık’s spectrum with respect to the straight line a = b, we can concentrate
hereafter only on the case a ≥ b.

We will try to find the inspiration in the classical shooting methods, which
are based on a transformation of a boundary value problem into a sequence of
some initial value problems. Our attention will be therefore concentrated on the
initial value problem (13). There are four parameters a, b, α and t in the initial
value problem (13). We will try to determine these parameters in such a way
that the corresponding solution u of the problem (13) will be the solution of the
boundary value problem (12) and in the interval [0, π] will have exactly 3 zeros.
If u is the solution of the boundary value problem (12), then an arbitrary positive
multiple of u is also its solution. This fact can be expressed just by the parameter
α. Let us therefore choose an arbitrary, but fixed value of the parameter α such
that α > 0, because we are studying the curve S+2 . Our goal is now to find
the corresponding values of the parameters b and t (for the chosen parameter



ON THE RESONANCE PROBLEM FOR THE 4th ORDER ODE’S 537

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

11

b

a

Fig. 4. Fuč́ık’s spectrum for the Dirichlet BVP (17).

a) such that the point (a, b) will be the point of the curve S+2 . For more details
see the second part of the thesis [4], where the complete form of the algorithm can
be also found.

2.3. The Dirichlet boundary value problem

Let us consider the eigenvalue problem for the Dirichlet boundary value problem
of the form {

uIV(x) = λu(x), x ∈ [0, π],

u(0) = u′(0) = u(π) = u′(π) = 0.
(14)

The eigenvalues λk of this boundary value problem (14) are given by

λk = ϕ4k, where cosϕkπ coshϕkπ = 1, ϕk �= 0, k = 1, 2, 3, . . .(15)

and the corresponding eigenfunctions are

vk(x) = [coshϕkπ − cosϕkπ][sinhϕkx− sinϕkx] −
−[sinhϕkπ − sinϕkπ][coshϕkx− cosϕkx].(16)

2.3.1. Fuč́ık’s spectrum Let us consider the boundary value problem{
uIV(x) = a4u+(x) − b4u−(x), x ∈ [0, π],

u(0) = u′(0) = u(π) = u′(π) = 0.
(17)

Fuč́ık’s spectrum of the Dirichlet boundary value problem (17) has similar proper-
ties as Fuč́ık’s spectrum of the previous Navier boundary value problem (12). This
can be also observed if we compare the Figures 3 and 4. The algorithm for gener-
ating Fuč́ık’s spectrum of the Dirichlet boundary value problem (17) is analogous
to the algorithm for the previous problem (12) (see [4]).
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2.4. The implementation of the algorithms

The algorithms stated in this paper can be easily modified for the problems with
other boundary conditions. In general, it is possible to say that for realization of
the algorithms for generating Fuč́ık’s spectrum it is necessary to perform the indi-
vidual steps of the computations with relatively high accuracy; the higher accuracy,
the higher number of the branches of Fuč́ık’s spectrum we would like to generate.

The mentioned algorithms for generating Fuč́ık’s spectrum of our three bound-
ary value problems (the periodic boundary value problem (5), the Navier boundary
value problem (12) and the Dirichlet boundary value problem (17)) were imple-
mented in Fortran 77 on the parallel computer cluster Lyra.

Due to the required higher accuracy, for the computations generating the higher
branches of Fuč́ık’s spectrum, the mentioned algorithms were implemented also in
the system Mathematica 3.0. The algorithms were included into the system of
procedures for modelling of bifurcations (MBx). For more results of our numerical
experiments visit the internet site

http://cam.zcu.cz/members/necesal/index.cz.shtml.

3. Existence results

Let us consider the boundary value problems for the fourth order nonlinear differ-
ential equation

uIV = f(x, u)

together with three different boundary conditions (the Dirichlet, the periodic
and the Navier boundary conditions). In this section, we discuss the existence re-
sults for these boundary value problems at resonance. Our results rely on the Lan-
desman–Lazer type conditions.

3.1. The Dirichlet boundary value problem

Let us consider the boundary value problem of the form

{
uIV(x) − λmu(x) + g(x, u(x)) = f(x), x ∈ [0, π],

u(0) = u′(0) = u(π) = u′(π) = 0,
(18)

where g : [0, π] × R → R is the Carathéodory function, the right hand side f ∈
L1(0, π), λm is the eigenvalue of the boundary value problem (14) (see the relation
(15)).

Henceforth we will assume that the function g = g(x, s) satisfies the follow-
ing growth condition. Let us suppose that there exist the function p ∈ L1(0, π)
and the constant C > 0 such that the inequality

|g(x, s)| ≤ p(x) + C|s|(19)
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Fig. 5. The illustration of the conditions (19), (20) and (21) for fixed x0 ∈ [0, π].

holds for all s ∈ R and for a. a. x ∈ [0, π]. Moreover, let us suppose that there
exist the functions k, l ∈ L1(0, π) and the constants K,L ∈ R, K < 0 < L, such
that

g(x, s) ≥ k(x) for all s ≤ K and for a. a. x ∈ [0, π],(20)
g(x, s) ≤ l(x) for all s ≥ L and for a. a. x ∈ [0, π].(21)

Let us denote H = W2,2
0 (0, π) the Sobolev space on the interval ]0, π[ with

the inner product and the norm

(u, v) =
∫ π

0

u′′(x)v′′(x) dx and ‖u‖ =
√

(u, u), respectively.

We say that u is the weak solution of the boundary value problem (18), if u ∈ H
and the integral identity∫ π

0

u′′(x)v′′(x) dx− λm
∫ π

0

u(x)v(x) dx +
∫ π

0

g(x, u(x))v(x) dx =
∫ π

0

f(x)v(x) dx

holds for all v ∈ H.

Theorem 2 (Sublinear growth). Let us suppose that the function g = g(x, s)
satisfies all assumptions stated above and, moreover,

lim
s→±∞

g(x, s)
s

= 0(22)
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uniformly for a. a. x ∈ [0, π]. Denote

g+∞(x) = lim sup
s→+∞

g(x, s), g−∞(x) = lim inf
s→−∞

g(x, s).

Then the boundary value problem (18) has at least one weak solution provided the
Landesman–Lazer type condition∫ π

0

g+∞(x)v+m(x) dx−
∫ π

0

g−∞(x)v−m(x) dx <
∫ π

0

f(x)vm(x) dx <

<

∫ π

0

g−∞(x)v+m(x) dx−
∫ π

0

g+∞(x)v−m(x) dx

holds.

Proof. The proof is based on the Leray-Schauder degree theory (see [4]).

3.2. The Navier boundary value problem

Let us consider the boundary value problem

{
uIV(x) − λmu(x) + g(x, u(x)) = f(x), x ∈ [0, π],

u(0) = u′′(0) = u(π) = u′′(π) = 0,
(23)

where g : [0, π] × R → R is the Carathéodory function satisfying the assumptions
from Section 3.1, the right hand side f ∈ L1(0, π), λm = m4 for m ∈ N is the
eigenvalue of the boundary value problem (11).

Let us denote H = {u ∈ W2,2(0, π); u(0) = u(π) = 0} = W2,2(0, π)∩W1,2
0 (0, π)

the space with the inner product and the norm

(u, v) =
∫ π

0

[u′′(x)v′′(x) + u(x)v(x)] dx, and ‖u‖ =
√

(u, u), respectively.

We say that u is the weak solution of the boundary value problem (23), if u ∈ H
and the integral identity∫ π

0

u′′(x)v′′(x) dx− λm
∫ π

0

u(x)v(x) dx +
∫ π

0

g(x, u(x))v(x) dx =
∫ π

0

f(x)v(x) dx

holds for all v ∈ H.

Theorem 3 (Sublinear growth). Let us suppose that the Carathéodory func-
tion g = g(x, s) satisfies (19) – (22). Then the boundary value problem (23) has
at least one weak solution provided the Landesman–Lazer type condition∫ π

0

g+∞(x)(sinmx)+ dx−
∫ π

0

g−∞(x)(sinmx)− dx <
∫ π

0

f(x) sinmxdx <
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<

∫ π

0

g−∞(x)(sinmx)+ dx−
∫ π

0

g+∞(x)(sinmx)− dx

holds.

Proof. The proof is analogous to the proof of Theorem 2 (see [4]).

3.3. The periodic boundary value problem

In this section, we will consider the periodic boundary value problem{
uIV(x) − λmu(x) + g(x, u(x)) = f(x), x ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π),
(24)

where g : [0, 2π] × R → R is the Carathéodory function, the right hand side
f ∈ L1(0, 2π), λm = m4 for m ∈ N is the eigenvalue of the boundary value
problem (2). Moreover, let us suppose that the function g = g(x, s) satisfies all
assumptions for the function g in the Section 3.1 with [0, π] replaced by [0, 2π].
In particular, this means that the growth condition (19) and the conditions (20),
(21) hold with the replacement of the interval [0, π] by [0, 2π].

Let us denote H = {u ∈ W2,2(0, 2π); u(0) = u(2π), u′(0) = u′(2π)} the space
with the inner product and the norm

(u, v) =
∫ 2π

0

[u′′(x)v′′(x) + u(x)v(x)] dx and ‖u‖ =
√

(u, u), respectively.

We say that u is the weak solution of the boundary value problem (24), if u ∈ H
and the integral identity∫ 2π

0

u′′(x)v′′(x) dx− λm
∫ 2π

0

u(x)v(x) dx +
∫ 2π

0

g(x, u(x))v(x) dx =
∫ 2π

0

f(x)v(x) dx

holds for all v ∈ H.

Theorem 4 (Sublinear growth). Let us suppose that the function g = g(x, s)
satisfies all assumptions stated above and, moreover, the growth condition (22)
holds uniformly for a. a. x ∈ [0, 2π]. Then the boundary value problem (24) has at
least one weak solution provided the Landesman–Lazer type condition∫

v>0

g+∞(x)v(x) dx +
∫
v<0

g−∞(x)v(x) dx <
∫ 2π

0

f(x)v(x) dx

holds for all v ∈ Span{cosmx, sinmx} \ {0}.

Proof. The proof is analogous to the proof of Theorem 2 (see [4]).
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3.4. The reverse growth of the nonlinearity

Let us suppose that in the case of the Dirichlet boundary value problem (18)
the function g = g(x, s) satisfies

g(x, s) ≤ k(x) for all s ≤ K and for a. a. x ∈ [0, π],(25)
g(x, s) ≥ l(x) for all s ≥ L and for a. a. x ∈ [0, π],(26)

instead of the conditions (20) and (21). The meaning of k, K, l and L is the same
as in the Section 3.1. Note that the hypotheses (25), (26) are in a certain sense
dual to the assumptions (20), (21). In this case we can formulate the dual version
of Theorem 2.

Theorem 5 (Sublinear growth). Let us suppose that the function g = g(x, s)
satisfies (19), (22) and the conditions (25), (26). Then the boundary value problem
(18) has at least one weak solution provided the Landesman–Lazer type condition∫ π

0

g−∞(x)v+m(x) dx−
∫ π

0

g+∞(x)v−m(x) dx <
∫ π

0

f(x)vm(x) dx <

<

∫ π

0

g+∞(x)v+m(x) dx−
∫ π

0

g−∞(x)v−m(x) dx

holds, where

g−∞(x) = lim sup
s→−∞

g(x, s), g+∞(x) = lim inf
s→+∞

g(x, s).

Proof. The proof follows the lines of that of Theorem 2 (see [4]).

The main difference between Theorem 2 and its dual version Theorem 5 is
in different form of the Landesman-Lazer type condition. For the dual formulations
in the cases of our two remaining boundary value problems see thesis [4].
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1. Introduction

Consider the neutral differential equation

d

dt
[x(t) + px(t− τ)] + qx(t− σ) = 0, t ≥ t0,(1)

where

(i) p, q, τ, σ are positive real numbers.

Note that a nontrivial solution of an equation we call oscillatory if it has arbi-
trarily large zeros, and call it nonoscillatory otherwise, and next we shall say that
an equation is oscillatory provided all its (nontrivial) solutions are oscillatory, and
call it nonoscillatory otherwise.

A basic result on the oscillation of equation (1) says that every solution of
equation (1) is oscillatory if and only if its characteristic equation

λ+ pλe−λτ + qe−λσ = 0(2)

� Research supported by grant VGA of Slovak Republic No. 1/7466/20
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has no real roots. Such result we can find in the book [1] and for more general
equations in the book [2] and in the paper [3]. But to determine if equation (2)
has a real root is quite a problem itself. Therefore an effort of many authors is
to derive other conditions for oscillation and nonoscillation of considered equation
which can be easily applied than previous one. In a literature we can find several
sufficient conditions for every solution of equation (1) to be oscillatory (see e.g. [1]
and [4]) but less conditions for the existence of nonoscillatory solution of (1).

The aim of this contribution is to present new well-applicable conditions for the
existence of nonoscillatory solution of (1). The method is based on a transformation
of the equation (1) by a transformation of the independent variable.

The straight consideration about the existence of a real root of characteristic
equation (2) enables us to obtain the following result.

Theorem 1. Assume the condition (i) holds true and τ ≥ σ. Then equation (1)
has nonoscillatory solution x(t) = eλt, λ ∈ (− q

p , 0).

Proof. According to assumptions it is clear that if the equation (2) has a real root
so it must be negative. Thus we define

F (λ) = λ+ pλe−λτ + qe−λσ for λ ≤ 0

and put F (λ) = H1(λ)+H2(λ), where H1(λ) = λ+pλe−λτ , H2(λ) = qe−λσ. Then
we have

lim
λ→0−

H1(λ) = 0, lim
λ→−∞

H1(λ) = −∞, H ′1(λ) = 1 + pe−λτ (1 − λτ) > 0

and lim
λ→0−

H2(λ) = q, lim
λ→−∞

H2(λ) = ∞, H ′2(λ) = −qσe−λσ < 0

from which we see that for τ ≥ σ we have F (− q
p) = − q

p + q(e
q
pσ − e

q
p τ ) < 0. Since

F (0) = q > 0 so we know that the equation (2) has the root λ ∈ (− q
p , 0), the

function x(t) = eλt is the solution of (1) and the proof is complete.

Another way how to gain sufficient conditions for the existence of nonoscillatory
solution of equation (1) we present in the following sections.

2. Preliminaries

Consider the equation (1) but instead of condition (i) we suppose that

(ii) p, q, τ, σ are real numbers different from zero.

We transform the equation (1) by the transformation of the independent vari-
able. We put s = at, y(s) = x( 1as) where a > 0. Then the equation (1)
acquires the form

d

ds
[y(s) + py(s− aτ)] +

1
a
qy(s− aσ) = 0, s ≥ s0,(3)

where s0 = at0.
It is clear the following holds true.
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Note 1. A function x(t) is a solution of the equation (1) for t ≥ t0 if and only if
the function y(s) = x( 1as) is a solution of the equation (3) for s ≥ s0 and thus the
equation (1) is oscillatory if and only if equation (3) is oscillatory.

Since equation (3) is of the same form as equation (1) is so it is oscillatory if and
only if its characteristic equation

aη + paηe−aητ + qe−aησ = 0(4)

has no real roots and we can decide about solutions of (1) by the roots of the
equation (4).

Now we analyse this position.

(a) First of all we see that the number λ = 0 is not the root of equation (2).
(b) Suppose that equation (2) has a positive root λ. Then we can take a = λ and

equation (4) will be of the form λη + pληe−λητ + qe−λησ = 0 and we see that
η = 1 is the root of this equation. It means that equation

d

ds
[y(s) + py(s− λτ)] +

q

λ
y(s− λσ) = 0, s ≥ s0,

has nonoscillatory solution y(s) = es.
(c) Now suppose that equation (2) has a negative root λ. So if we take a = −λ,

equation (4) will be of the form −λη − pληeλητ + qeλησ = 0 and we see that
η = −1 is the root of this equation. It means that equation

d

ds
[y(s) + py(s+ λτ)] − q

λ
y(s+ λσ) = 0, s ≥ s0,

has nonoscillatory solution y(s) = e−s.

We conclude this consideration in the following note.

Note 2. To every equation of the form (1), the characteristic equation of which
has a positive (negative) root, we can coordinate an equation of the same form
with the characteristic root 1 (−1). On the other hand, if we take an equation of
the form (1) with the solution y(s) = es (similarly with the solution y(s) = e−s)
and we choose some positive number λ (a negative number λ) so we can write the
equation of the same form with the solution x(t) = eλt (x(t) = eλt).

3. Conditions for nonoscillatory solutions

Theorem 2. Assume that p �= 0, q > 0, τ > 0, σ > 0.

(I) Let there exist numbers q1 > 0, τ1 > 0, σ1 > 0 such that the conditions

1 + pe−τ1 + q1e
−σ1 = 0 and

τ1
τ

=
σ1
σ

=
q

q1
=

1
a

(5)

are satisfied. Then equation (1) has nonoscillatory solution x(t) = e
1
a t.
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(II) Let there exist numbers q2 > 0, τ2 > 0, σ2 > 0 such that the conditions

−1 − peτ2 + q2e
σ2 = 0 and

τ2
τ

=
σ2
σ

=
q

q2
=

1
a
,(6)

are satisfied. Then equation (1) has nonoscillatory solution x(t) = e−
1
a t.

Proof. Consider the equation

d

dz
[u(z) + p1u(z − τ1)] + q1u(z − σ1) = 0, z ≥ z0,(7)

with p1 �= 0, q1 > 0, τ1 > 0, σ1 > 0, which has the solution u(z) = ez, i.e. such that
its characteristic equation µ+p1µe−µτ1 +q1e−µσ1 = 0 has the root µ = 1, i.e. such
that 1 + p1e

−τ1 + q1e
−σ1 = 0. The equation (7) we can transform to the equation

(1) by a suitable a > 0. In other words, there exists a number a > 0 such that the
transformation of (7) by t = az, x(t) = u( 1a t) gives the equation (1) in the formal
form

d

dt
[x(t) + p1x(t− aτ1)] +

1
a
q1x(t− aσ1) = 0.

So we have p = p1, and next

q =
1
a
q1, τ = aτ1, σ = aσ1.(8)

The conditions (8) we can write in the form

τ1
τ

=
σ1
σ

=
q

q1
=

1
a
.

The straight computation shows that the number 1
a is the root of the equation (2).

The similar arguments hold true if we take the equation

d

dz
[u(z) + p2u(z − τ2)] + q2u(z − σ2) = 0, z ≥ z0,(9)

where p2 �= 0, q2 > 0, τ2 > 0, σ2 > 0 with the solution u(z) = e−z. The theorem is
proved.

Now using Theorem 2 we study the problem of the existence of nonoscillatory
solutions of the equation (1) under the condition (i).

The assumption (i) ensures that the equation (2) has not nonnegative root i.e.
the equation (1) has not the solution of the form x(t) = eλt, λ ≥ 0 and thus
there do not exist positive numbers q1, τ1, σ1 satisfying the first condition from
(5). Therefore we devote our attention to the case (II) of Theorem 2.

Let the numbers q2 > 0, τ2 > 0, σ2 > 0 be such that the first condition from
(6) is satisfied (note that such numbers always exist) and for some σ2 > 0 we
choose q2 > 0 and τ2 > 0 such that

q2 =
qσ

σ2
and τ2 =

τσ2
σ
.(10)
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Then the numbers q2, τ2, σ2 satisfy the second condition from (6) and the problem
of the existence of trinity of numbers for which the first condition from (6) is
satisfied is reduced to the problem of the existence of one such number.

Now we define the function G(σ2) = 1
σ2
eσ2 , σ2 > 0. Then

G′(σ2) =
1
σ22
eσ2(σ2 − 1), G′′(σ2) =

1
σ32
eσ2((σ2 − 1)2 + 1),

from which we see that for every σ2 > 0 we have G(σ2) ≥ e.
Now suppose that qσ > 1

e . Then for every σ2 > 0 we have

1
qσ

< e ≤ 1
σ2
eσ2 .

Therefore, according to (10) we have −1 + q2e
σ2 > 0 and the first condition from

(6) will be satisfied if and only if τ
σσ2 = ln q2e

σ2−1
p or

τ

σ
σ2 + ln p = ln

(
qσ

σ2
eσ2 − 1

)
(11)

for some σ2 > 0.
The existence of a positive root of the equation (11) we investigate now by the

auxiliary function

F (σ2) =
ln(qσ 1

σ2
eσ2 − 1)

τ
σσ2 + ln p

,

defined

- for σ2 ∈ (0,∞) if p ≥ 1
- for σ2 ∈ ((0,−σ

τ ln p) ∪ (−σ
τ ln p,∞)) if 0 < p < 1.

Then for p > 0 we have limσ2→∞ F (σ2) = σ
τ , and

lim
σ2→0+

F (σ2) =
{

∞ if p ≥ 1
−∞ if 0 < p < 1.

In the case 0 < p < 1 we compute one-side limits of the function F at the point
−σ

τ ln p and we obtain

lim
σ2→−σ

τ ln p−
F (σ2) =


−∞ if qτ + 2p

σ
τ ln p > 0

∞ if qτ + 2p
σ
τ ln p < 0

c ∈ R if qτ + 2p
σ
τ ln p = 0

and

lim
σ2→−σ

τ ln p+
F (σ2) =


∞ if qτ + 2p

σ
τ ln p > 0

−∞ if qτ + 2p
σ
τ ln p < 0

c ∈ R if qτ + 2p
σ
τ ln p = 0.

This investigation and the continuity of F enables us to formulate the following
results.
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Theorem 3. Let the condition (i) hold true and let

0 < p < 1, qσ >
1
e
, qτ + 2p

σ
τ ln p < 0.

Then there exists σ2 ∈ (0,−σ
τ ln p) such that (11) holds true, i.e. the equation (9)

has the solution x(t) = e−t and the equation (1) has the nonoscillatory solution
x(t) = e−

σ2
σ t.

Theorem 4. Let the condition (i) hold true and let

0 < p < 1, qσ >
1
e
, qτ + 2p

σ
τ ln p < 0 and

σ

τ
> 1.

Then there exists σ2 ∈ (−σ
τ ln p,∞) such that (11) holds true i.e. the equation (9)

has the solution x(t) = e−t and the equation (1) has the nonoscillatory solution
x(t) = e−

σ2
σ t.

Theorem 5. Let the condition (i) hold true and let

0 < p < 1, qσ >
1
e
, qτ + 2p

σ
τ ln p > 0 and

σ

τ
< 1.

Then there exists σ2 ∈ (−σ
τ ln p,∞) such that (11) holds true i.e. the equation

(9) has the solution x(t) = e−t and the equation (1) has nonoscillatory solution
x(t) = e−

σ2
σ t.

Remark 1. One can see that the above presented method can be used in many
other cases not only in the case when the condition (i) is satisfied.
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1. Introduction

In this paper, we study the homogeneous, non-linear difference equation:

f(n+ 2) = λf(n+ 1) + pf(n)e−σf(n), n = 1, 2, ...(1.1)

where 0 < λ < 1, σ > 0, 0 < p < (1−λ)e
2−λ
1−λ , p �= 1−λ and the non-homogeneous,

non-linear difference equations:

f(n+ 1) = − b1(n+ 1)
α1(n+ 1)

+
h1(n+ 1)
α1(n+ 1)

f(n+ 2)f(n+ 1)f(n) +

+
d1(n+ 1)
α1(n+ 1)

f(n+ 2)f(n), n = 1, 2, ...
(1.2)

� Supported by the Greek National Foundation of Scholarships.
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f(n+ 2) =
α2(n+ 1)
h2(n+ 1)

+
b2(n+ 1)
h2(n+ 1)

[f(n+ 1)]2 −

− 1
h2(n+ 1)

f(n+ 2)[f(n)]2, n = 1, 2, ...
(1.3)

f(n+ 1) = h3(n) + [f(n)]2, n = 0, 1, ...(1.4)

f(n+ 1) = h4(n) + µf(n)
[
1 − 1

K
f(n)

]
, n = 1, 2, ...(1.5)

where µ ∈ R\{1}, K > 0 and α1(n+ 1), b1(n+ 1), h1(n+ 1), d1(n+ 1), α2(n+ 1),
b2(n+ 1), h2(n+ 1), h3(n) and h4(n) are suitably defined complex sequences.

Our aim is to prove that the equations (1.1)-(1.5) have a unique solution in
the Banach space:

l1 = {f(n) : N → C /‖f(n)‖l1 =
∞∑
n=1

|f(n)| < +∞},(1.6)

For the motivation of seeking solutions of non-linear difference equations in l1 see
[1, pp. 84-112], [6]. Also it is known, see [11] and the references therein, that, under
various conditions, a positive generated, ordered Banach space is order-isomorphic
to l1. Finally, we would like to point out that, the real space l1|R, i.e.

l1|R = {f(n) : N → R /
∞∑
n=1

|f(n)| < +∞},(1.7)

is suitable for problems of population dynamics, since the condition:
∞∑
n=1

|f(n)| < +∞,

represents the realistic fact that the population f(n) is finite in every time instant
n.

The method we use is a functional analytic method developed by E. K. Ifantis in
[6] and used recently by P. D. Siafarikas and the author in [9], [10] for more general
forms of non-linear difference equations. Using this method, equations (1.1)-(1.5)
are reduced equivalenlty to operator equations on an abstract Banach space H1.
For our approach we also need the following result of Earle and Hamilton [2]:

If f : X → X is holomorphic, i.e. its Fréchet derivative exists, and f(X) lies
strictly inside X, then f has a unique fixed point in X, where X is a bounded,
connected and open subset of a Banach space E.

By saying that a subset X ′ of X lies strictly inside X we mean that there exists
an ε1 > 0 such that ‖x′ − y‖ > ε1 for all x′ ∈ X ′ and y ∈ E −X .

All our results except those concerning equation (1.5) for |µ| > 1, follow from
a general theorem (Theorem 2.1), which was proved in [10] and which we state for
the sake of completeness in Section 2.



ON SOME SPECIFIC NON-LINEAR ORDINARY DIFFERENCE EQUATIONS 551

2. Preliminaries

In the following, H is used to denote an abstract separable Hilbert space with the
orthonormal basis en, n = 1, 2, 3, .... We use the symbols (·, ·) and ‖ · ‖ to denote
scalar product and norm in H respectively. By H1 we mean the Banach space

consisting of those elements f in H which satisfy the condition
∞∑
n=1

|(f, en)| < +∞.

The norm in H1 is denoted by ‖f‖1 =
∞∑
n=1

|(f, en)|. By f(n) we mean an element of

the Banach space l1 and by f =
∞∑
n=1

f(n)en we mean that element in H1 generated

by f(n) ∈ l1. Finaly by V we mean the shift operator on H

V : V en = en+1, n = 1, 2, ...

and by V ∗ its adjoint

V ∗ : V ∗en = en−1, n = 2, 3, ..., V ∗e1 = 0.

It can easily be proved that the function

φ : H1 → l1

which is defined as follows:

φ(f) = (f, en) = f(n)

is an isomorphism from H1 onto l1. We call f the abstract form of f(n).
In general, if G is a mapping in l1 and N is a mapping in H1, we call N(f) the

abstract form of G(f(n)) if

G(f(n) = (N(f), en).

It follows easily that V ∗f is the abstract form of f(n+ 1).
We state now the basic theorem that we use.

Theorem 2.1. [10] Consider the m − th order non-homogeneous, nonlinear dif-
ference equation:

f(n+m)+
m∑
p=1

(αp + βp(n))f(n+m− p) = g(n) +
∞∑
s=2

cs(n)[f(n+ q)]s +

+
N∑
i=1

∞∑
k=1

dik(n)[f(n+ qi1)f(n+ qi2)]k +

+
Λ∑

t=1

∞∑
k=1

btk(n)[f(n+ qt3)f(n+ qt4)f(n+ qt5)]k +

+
M∑
j=1

∞∑
k=1

ljk(n)[Ajf(n+ qj6) +Bjf(n+ qj7)]kf(n+ qj8)

(2.1)
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where m,N,M , Λ positive integers, q, qi1, qi2, i = 1, ..., N , qt3, tt4, qt5, t =
1, ..., Λ, qj6, qj7, qj8, j = 1, ...,M non-negative integers and αp, p = 1, ...,m in
general complex numbers. Assume that lim

n→∞
βp(n) = 0, ∀p = 1, ...,m, the complex

sequences cs(n), dik(n), btk(n), and ljk(n), s = 2, 3, ..., i = 1, ..., N , t = 1, ..., Λ,
j = 1, ...,M , k = 1, 2, 3, ... satisfy the conditions

sup
n

|cs(n)| ≤ γs, sup
n

|dik(n)| ≤ δik, sup
n

|btk(n)| ≤ βtk, sup
n

|ljk(n)| ≤ λjk

and the functions

G0(w) =
∞∑
s=2

γsw
s, Gi(w) =

∞∑
k=1

δikw
2k,

Tt(w) =
∞∑
k=1

βtkw
3k, Fj(w) =

∞∑
k=1

λjk(|Aj | + |Bj |)kwk+1

are entire functions, or they have a sufficiently large radius of convergence. Assume
also that the roots of the algebraic equation

rm + α1r
m−1 + ...+ αm = 0

satisfy the conditions |rp| < 1, p = 1, 2, ...,m. Then there exist positive numbers
R0 and P0 such that for

|u| + ‖g(n)‖l1 =|u1| + |α1u1 + u2| + ...+
+|αm−1u1 + αm−2u2 + ...+ um| + ‖g(n)‖l1 < P0,

(2.2)

where

f(p) = up, p = 1, ...,m(2.3)

the equation (2.1) together with the initial conditions (2.3) has a unique solution
f(n) in l1. Moreover

∞∑
n=1

|f(n)| < R0.(2.4)

Remark 1. The numbers R0 and P0 predicted by the above theorem are precisely
determined due to the constructive character of Theorem 2.1. In particular R0 is
the point at which the function

P1(R) = L−1R

1 − LR

M0(R) +
N∑
i=1

Mi(R) +R
Λ∑

t=1

∆t(R) +
M∑
j=1

Qj(R)

 ,
(2.5)
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attains a maximum and P0 = P1(R0). In (2.5)

M0(R) =
∞∑
s=2

γsR
s−2,Mi(R) =

∞∑
k=1

δikR
2k−2,(2.6)

∆t(R) =
∞∑
k=1

βtkR
3k−3, Qj(R) =

∞∑
k=1

λjk(|Aj | + |Bj |)kRk−1,(2.7)

1 ≤ i ≤ N , 1 ≤ t ≤ Λ, 1 ≤ j ≤M are positive, continuous and increasing functions
of R in an open interval suitably defined and L is the norm or a bound of the norm
of the operator Γ−1, where

Γ = (I − r1V )(I − r2V )...(I − rmV ) + V m
m∑
p=1

BpV
∗m−p.

Remark 2. From (2.4) it follows that:

|f(n)| < R0.

3. Applications

1) Consider the difference equation:

f(n+ 2) = λf(n+ 1) + pf(n)e−σf(n), n = 1, 2, ...(3.1)

where 0 < λ < 1, σ > 0, 0 < p < (1 − λ)e
2−λ
1−λ , p �= 1 − λ. Equation (3.1) is the

discrete version of a population model described by a differential equation [7].
The equilibrium points of (3.1) are:

X1 = 0, X2 =
1
σ

ln
p

1 − λ > 0.

For the equilibrium point X1 = 0 equation (3.1) can also be written as follows:

f(n+ 2) − λf(n+ 1) − pf(n) =
∞∑
s=2

(−1)s−1pσs−1

(s− 1)!
[f(n)]s.(3.2)

Equation (3.2) results from equation (2.1) for:

m = 2, α1 = −λ, α2 = −p, β1(n) ≡ β2(n) ≡ 0, g(n) ≡ 0,

dik(n) ≡ btk(n) ≡ ljk(n) ≡ 0, cs(n) =
(−1)s−1pσs−1

(s− 1)!
, q = 0.

In this case γs =
pσs−1

(s− 1)!
and G0(s) =

∞∑
s=2

pσs−1

(s− 1)!
ws is an entire function. Also

the roots of the algebraic equation r2 − λr − p = 0 are

r1 =
λ+

√
λ2 + 4p
2

∈ (0, 1), r2 =
λ−

√
λ2 + 4p
2

∈ (−1, 0),
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for 0 < p < 1 − λ. Then

Γ = (I − r1V )(I − r2V ), L =
1

1 + p−
√
λ2 + 4p

,

P1(R) =
R

L
−R2

∞∑
s=2

pσs−1

(s− 1)!
Rs−2.

It follows easily from Theorem 2.1 that for

|f(1)| + |f(2) − λf(1)| < P1(R0),(3.3)

equation (3.2) has a unique solution in l1, where R0 is the point at which P1(R)
attains a maximum. Thus lim

n→∞
f(n) = 0 and X1 = 0 is a locally asymptotically

stable equilibrium point of (3.2) with region of attraction given by (3.3). Also

|f(n)| < R0.

For the equilibrium point X2 =
1
σ

ln
p

1 − λ we set

f(n) = F (n) + X2

and (3.2) becomes:

F (n+ 2)−λF (n+ 1) + p(X2σ − 1)e−σ@2F (n) =

=
∞∑
s=2

(−1)s−1pe−σ@2σs−1(s− σ)
s!

[F (n)]s.
(3.4)

Equation (3.4) results from equation (2.1) for:

m = 2, α1 = −λ, α2 = p(X2σ − 1)e−σ@2 , β1(n) ≡ β2(n) ≡ 0, g(n) ≡ 0,

dik(n) ≡ btk(n) ≡ ljk(n) ≡ 0, cs(n) =
(−1)s−1pe−σ@2σs−1(s− σ)

s!
, q = 0.

In this case

γs =
pe−σ@2σs−1|s− σ|

s!
=

(1 − λ)σs−1|s− σ|
s!

and G0(s) =
∞∑
s=2

(1 − λ)σs−1|s− σ|
s!

ws is an entire function. Also the roots of the

algebraic equation

r2 − λr + p(X2σ − 1)e−σ@2 = 0 ⇔ r2 − λr + (1 − λ)(ln
p

1 − λ − 1) = 0

are
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i)

r1 =
λ+

√
λ2 + 4(1 − λ)(1 − ln p

1−λ)

2
∈ (0, 1),

r2 =
λ−

√
λ2 + 4(1 − λ)(1 − ln p

1−λ)

2
∈ (−1, 0)

for 1 − λ < p < e(1 − λ),
ii)

r1 =
λ+

√
λ2 + 4(1 − λ)(1 − ln p

1−λ)

2
∈ (0, 1),

r2 =
λ−

√
λ2 + 4(1 − λ)(1 − ln p

1−λ)

2
∈ (0, 1)

for e(1 − λ) ≤ p < (1 − λ)e1+
λ2

4(1−λ) ,

iii) r1 = r2 =
λ

2
∈ (0, 1) for p = (1 − λ)e1+

λ2
4(1−λ) and

iv)

r1,2 =
λ± i

√
−λ2 − 4(1 − λ)(1 − ln p

1−λ)

2
and

|r1,2| =
√

(1 − λ)(ln
p

1 − λ − 1) < 1

for (1 − λ)e1+
λ2

4(1−λ) < p < (1 − λ)e
2−λ
1−λ . Then

Γ = (I − r1V )(I − r2V ),

and the corresponding bounds of Γ−1 are

i) L =
1

(1 − λ)(1 − ln p
1−λ )

, ii) L =
1

(1 − λ)(ln p
1−λ − 1)

,

iii) L =
4

(2 − λ)2
, iv) L =

1(
1 −

√
(1 − λ)(ln p

1−λ − 1
)2 , respectively.

Thus

P1(R) =
R

L
−R2

∞∑
s=2

pe−σ@2σs−1|s− σ|
s!

Rs−2.

It follows easily from Theorem 2.1 that for

|F (1)| + |F (2) − λF (1)| < P1(R0),(3.5)

equation (3.4) has a unique solution in l1, where R0 is the point at which P1(R)
attains a maximum. Thus lim

n→∞
F (n) = 0 and 0 is a locally asymptotically stable
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equilibrium point of (3.4) with region of attraction given by (3.5). Thus X2 =
1
σ

ln
p

1 − λ is a locally asymptotically stable equilibrium point of (3.1) with region

of attraction given by:

|f(1) − 1
σ

ln
p

1 − λ | + |f(2) − λf(1) +
λ− 1
σ

ln
p

1 − λ | < P1(R0),(3.6)

Also
|f(n)| ≤ |F (n)| + X2 ⇔ |f(n)| < R0 +

1
σ

ln
p

1 − λ

and equation (3.1) has a unique solution in l1 +
{

1
σ

ln
p

1 − λ

}
.

Remark 3. Equation (3.1) is a particular case (for ν = 1) of the equation:

f(n+ ν + 1) = λf(n+ ν) + pf(n)e−σf(n),(3.7)

which was studied, among other things, in [7]. It was shown there that any solution
of (3.7) converges to its positive equilibrium point X2 as n→ ∞ if p ∈ (1−λ, (1−
λ)e]. Notice that this is a subset of (1 − λ, (1 − λ)e

2−λ
1−λ ].

Remark 4. Relations (3.3) and (3.5) describe the region of attraction for the equi-
librium points X1 and X2 respectively. Note that these inequalities do not give
explicitly the regions of attraction, because we do not know the point R0, but we
can achieve that by truncating the power series, of which P1(R) is consisted.

Remark 5. If the initial conditions f(1), f(2) are positive numbers then every real
solution of (3.1) is positive.

2) Consider the difference equation:

f(n+ 1) = − b1(n+ 1)
α1(n+ 1)

+
h1(n+ 1)
α1(n+ 1)

f(n+ 2)f(n+ 1)f(n) +

+
d1(n+ 1)
α1(n+ 1)

f(n+ 2)f(n), n = 1, 2, ...
(3.8)

where
b1(n+ 1)
α1(n+ 1)

∈ l1, sup
n

|h1(n+ 1)
α1(n+ 1)

| ≤ β and sup
n

| d1(n+ 1)
α1(n+ 1)

| ≤ δ.

Equation (3.2) appears often in various applications. In this case ∆1(R) = β,
M1(R) = δ are entire functions and Γ = I, L = 1. Thus

P1(R) = R− δR2 − βR3.

It follows easily that R0 =

√
δ2 + 3β − δ

2
and P0 =

(2δ2 + 6β)(
√
δ2 + 3β − δ)

27β2
−

δ

9β
. By applying Theorem 2.1 to equation (3.8) we find that for

|f(1)| + ‖ b1(n+ 1)
α1(n+ 1)

‖l1 <
(2δ2 + 6β)(

√
δ2 + 3β − δ)

27β2
− δ

9β
,
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equation (3.8) has a unique bounded solution in l1 with bound:

|f(n)| <
√
δ2 + 3β − δ

2
.

In the special case where d1(n+1) ≡ 1 and h1(n+1) ≡ 0, equation (3.8) becomes:

f(n+ 1) = − b1(n+ 1)
α1(n+ 1)

+
1

α1(n+ 1)
f(n+ 2)f(n),(3.9)

which is the well-known non-autonomous Lyness equation. As before, we find that

Γ = I, L = 1 and P1(R) = R − δR2. Thus R0 =
1
2δ

and P0 =
1
4δ

. By applying

Theorem 2.1 to equation (3.3) we find that for

|f(1)| + ‖ b1(n+ 1)
α1(n+ 1)

‖l1 <
1
4δ
,

equation (3.9) has a unique bounded solution in l1 with bound:

|f(n)| < R0 =
1
2δ
.

Remark 6. In the case when equation (3.8) has positive solutions and α1(n + 1),
b1(n + 1), h1(n + 1), d1(n + 1) are constants, equation (3.8) was studied in [4].
Invariants for equation (3.8) have been found in [3], in the case when α1(n + 1),
b1(n + 1), h1(n + 1), d1(n + 1), are periodic sequences of positive numbers and
the initial conditions are positive numbers. The non-autonomous Lyness equation
(3.9) was studied, among other things, in [5]. In particular it was shown there that
under some different, than those we used, but more complicated conditions on the
sequences α1(n+ 1) and b1(n+ 1), every positive solution of (3.9) is bounded.

3) Consider the difference equation:

f(n+ 2) =
α2(n+ 1)
h2(n+ 1)

+
b2(n+ 1)
h2(n+ 1)

[f(n+ 1)]2 −

− 1
h2(n+ 1)

f(n+ 2)[f(n)]2, n = 1, 2, ...
(3.10)

where
α2(n+ 1)
h2(n+ 1)

∈ l1, sup
n

| b2(n+ 1)
h2(n+ 1)

| ≤ γ and sup
n

| 1
h2(n+ 1)

| ≤ λ.

In this case M0(R) = γ, Q1(R) = λR are entire functions and Γ = I2 = I,
L = 1. Thus

P1(R) = R − γR2 − λR3.

It follows easily that R0 =

√
γ2 + 3λ− γ

2
and P0 =

(2γ2 + 6λ)(
√
γ2 + 3λ− γ)

27λ2
−

γ

9λ
. By applying Theorem 2.1 to equation (3.10) we find that for

|f(1)| + |f(2)| + ‖α2(n+ 1)
h2(n+ 1)

‖l1 <
(2γ2 + 6λ)(

√
γ2 + 3λ− γ)

27λ2
− γ

9λ
,
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equation (3.10) has a unique bounded solution in l1 with bound:

|f(n)| <
√
γ2 + 3λ− γ

2
.

Remark 7. Equation (3.10) has been studied in [8] for α2(n + 1), b2(n + 1) and
h2(n+ 1) constants.

4) Consider the difference equation:

f(n+ 1) = h3(n) + [f(n)]2, n = 1, 2, . . .(3.11)

where h3(n) ∈ l1.
In this case M0(R) = 1 is an entire function and Γ = I, L = 1. Thus

P1(R) = R−R2.

It follows easily that R0 =
1
2

and P0 =
1
4

. By applying Theorem 2.1 to equation

(3.11) we find that for

|f(1)| + ‖h3(n)‖l1 <
1
4
,(3.12)

equation (3.11) has a unique bounded solution in l1 with bound:

|f(n)| < 1
2
.

Also notice that (3.11) can also be written as:

f(n+ 1)
f(n)

=
h3(n)
f(n)

+ f(n).

Thus if K = lim
n→∞

h3(n)
f(n)

exists then lim
n→∞

f(n+ 1)
f(n)

= K and the generating ana-

lytic function f(z) =
∞∑
n=1

f(n)zn−1 converges absolutely for |z| < 1
K

.

Remark 8. In the case where h3(n) ≡ h /∈ l1, equation (3.11) becomes the well-
known equation from which the Mandlebrot and the Julia sets are deduced. More
particularly, the set of all points h for which the solution f(n) of (3.11) with
f(1) = 0 stays bounded as n → ∞ is called the Mandlebrot set (M) and for a
given parameter h = constant, the set of initial values f(0) for which f(n) stays
bounded is the so-called filled-in Julia set (Jc). (The Julia set proper consists of
the boundary points of Jc.)
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Thus for f(1) = 0 we obtain from (3.12):

‖h3(n)‖l1 <
1
4
,

which can be considered as a generalized Mandelbrot set.
Also for h3(n) a given sequence of l1, relation (3.12) can be considered as a

generalized Julia set.
Notice that when h3(n) ≡ h = constant, our method can not be applied,

because h does not belong in l1.

5) Consider the difference equation:

f(n+ 1) = h4(n) + µf(n)
[
1 − 1

K
f(n)

]
, n = 1, 2, ...(3.13)

where µ ∈ R \ {1}, K > 0 and h4(n) ∈ l1.
Equation (3.13) describes the development of a single species population f(n),

where µ is the parameter related to the growth or death rate,K > 0 is the carrying
capacity and h4(n) represents the harvest/stock [12].

We shall distinguish the following two cases:
1) First case: |µ| < 1.

Here M0(R) = |µ|
K is an entire function and Γ = I − µV , L = 1

1−|µ| . Thus

P1(R) = (1 − |µ|)R − |µ|
K
R2.

It follows easily that R0 =
(1 − |µ|)K

2|µ| and P0 =
(1 − |µ|)2K

4|µ| . By applying Theo-

rem 2.1 to equation (3.13) we find that for

|f(1)| + ‖h4(n)‖l1 <
(1 − |µ|)2K

4|µ| , |µ| < 1

equation (3.13) has a unique bounded solution in l1 with bound:

|f(n)| < (1 − |µ|)K
2|µ| , |µ| < 1.

2) Second case: |µ| > 1.
In this case, Theorem 2.1 can not be applied to equation (3.13) because the

unique solution of the algebraic equation

r − µ = 0

is r = µ and |µ| > 1.
Notice that equation (3.13) can also be written as:

f(n) − 1
µ
f(n+ 1) = − 1

µ
h4(n) +

1
K

[f(n)]2, n = 1, 2, ...(3.14)
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According to the representation presented in Section 2, the abstract form of (3.14)
in H1 is: (

I − 1
µ
V ∗

)
f = N(f) − 1

µ
h4,(3.15)

where h4 is the abstract form of h4(n) and N(f) = 1
K (f, en)(f, en)en, is a Fréchet

differentiable operator defined on all H1 with ‖N(f)‖1 ≤ ‖f‖21 ([9] or [10]).

Since |µ| > 1, the operator
(
I − 1

µV
∗
)−1

is uniquely determined on H1 and
bounded, with bound:

‖
(
I − 1

µ
V ∗

)
‖1 <

|µ|
|µ| − 1

.

Thus (3.15) becomes

f =
(
I − 1

µ
V ∗

)−1 [
N(f) − 1

µ
h4

]
.(3.16)

Following a technique similar to the one used in [6], [9], [10] we define the function:

φ(f) =
(
I − 1

µ
V ∗

)−1 [
N(f) − 1

µ
h4

]
.

Let ‖f‖1 ≤ R < R̄ < +∞, where R̄ is as large as we want, but finite. Then from
(3.16) we obtain:

‖φ(f)‖1 ≤
|µ|

|µ| − 1

[
R2

K
+

1
|µ| ‖h4‖1

]
.(3.17)

Since R̄ is sufficienlty large, there exists an R̄1 ∈ [0, R̄] such that

|µ|
|µ| − 1

R̄1

K
> 1.

Thus the value R̄2 =
(|µ| − 1)K

|µ| is a zero of the function

P (R) = 1 − |µ|
|µ| − 1

R̄1

K
.

So the continuous function

P1(R) =
|µ| − 1
|µ| RP (R)

satisfies P1(0) = P1(R̄2) = 0 and therefore attains a maximum at the point

R0 =
(|µ| − 1)K

2|µ| ∈ (0, R̄2).
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Now for every ε > 0, R = R0 and

‖h4‖1 ≤
(|µ| − 1)2K

4|µ| − (|µ| − 1)ε

we find from (3.17)

‖φ(f)‖1 ≤
(|µ| − 1)K

2|µ| − ε = R0 − ε < R0

for ‖f‖1 < R0. This means that for

‖h4‖1 <
(|µ| − 1)2K

4|µ|

φ is a holomorphic map from B
(

0, (|µ|−1)K2|µ|

)
strictly inside B

(
0, (|µ|−1)K2|µ|

)
. Thus

applying the fixed point theorem of Earle and Hamilton [2] we find that equation
φ(f) = f has a unique fixed point in H1. This means equivalently that for

‖h4(n)‖l1 <
(|µ| − 1)2K

4|µ| , |µ| > 1

equation (3.14) has a unique bounded solution in l1 with bound:

|f(n)| < (|µ| − 1)K
2|µ| , |µ| > 1.

Remark 9. In [12] the real periodic solutions of (3.14) have been investigated for
µ ∈ (1, 2) and h4(n) : N → R an ω periodic number sequence with ω ≥ 1 which
satisfies the relation:

‖h4‖ <
(|µ| − 1)2K

4|µ| , µ ∈ (1, 2)

where ‖h4‖ = max
n

|h4(n)|. Moreover it was found in [12] that the predicted peri-
odic solution satisfies:

|f(n)| <
(

1 − 1
µ

)
Kr0, r0 ∈ (0, 1/2), µ ∈ (1, 2).

Remark 10. Our results, concerning all five applications hold also, if we consider
the Banach space l1|R instead of l1.
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Dept. of Automatic Control, Faculty of Autom., Comp. and Electr., Craiova University
A.I. Cuza str. No. 13, RO-1100, Craiova, Romania

Email: vrasvan@automation.ucv.ro

Abstract. The discrete version of the Hamiltonian system

ẋ = λJH(t)x

with H(t) = H∗(t) = H(t + T ) is considered. Following the line of M.G.
Krein the stability zones with respect to the parameter λ are considered:
the side zones have to be estimated from multiplier traffic rules while the
central stability zone from the discrete version of the skew - periodic bound-
ary value problem.
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1. Introduction and motivation

The object of this paper is the stability analysis of the discrete version of the linear
periodic Hamiltonian system:

ẋ = λJH(t)x(1)

whereH(t) = H∗(t) = H(t+T ), T > 0;H(t) has complex entries and is Hermitian.
Also J is defined by

J =
(

0 Im
−Im 0

)
(2)

and λ is, generally speaking, a complex parameter. System (1) is a generalization
encompassing a lot of by now classical systems that go back to Sturm, Liapunov
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and Žukovskii. M.G. Krein [1] give a strong generalization of many classical results
and opening new fields of research issued from the interaction of several apparently
independent mathematical domains. The long line of research opened by Krein
is summarized in the monograph of Yakubovich and Staržinskii [2]. As pointed
out by Krein and Yakubovich [3] various problems in contemporary engineering
and physics (e.g. dynamic stability of structures, parametric resonance in high-
capacity electrical transmission lines, motion of particles in accelerators) lead to
the investigation of Hamiltonian systems with periodic coefficients.

Another field of origin for periodic Hamiltonian systems is calculus of varia-
tions and optimal control. Here a long list of papers may be mentioned but we
mention here only the papers of Yakubovich [4] where linear periodic Hamiltonians
are considered in the context of linear optimal feedback (minimizing a quadratic
integral performance index) and quadratic Liapunov functions.

A crucial difference between these two directions of research exists. The first
one, developed mainly by Krein is concerned with stable Hamiltonian systems
whose multipliers are located on the unit circle. On the contrary linear quadratic
control requires a dichotomic i.e. totally unstable Hamiltonian system whose mul-
tipliers are not on the unit circle. This last property is robust (i.e. it is preserved
against structural perturbations) while the first one is not robust (generally speak-
ing). The search for robustness of stable Hamiltonian systems led Krein to the
introduction of strong stability, to the discovery of ”traffic rules” on the unit circle
for the multipliers, and to new results about the λ zones of stability. Since the
central zone is estimated using the eigenvalues of a certain self adjoint boundary
value problem, the research on stability met the old Sturm-Liouville framework
which also generates problems for Hamiltonian systems. A good reference on these
problems together with variational calculus and optimal control is the book of
Kratz [5].

In the last few years a new field of research emerged - discrete time Hamil-
tonian systems. A basic reference is the book of Ahlbrandt and Peterson [6]. We
shall mention here some papers [7], [8], [9], from the long list belonging to Bohner
and Došlý. Their topics are oscillation, disconjugacy and transformation of Hamil-
tonian systems, both continuous and discrete time. The study of discrete-time
Hamiltonian systems in connection with linear - quadratic optimal control may
be found in the paper of Halanay and Ionescu [10]. Applications of dichotomic
periodic linear Hamiltonian systems (i.e. totally unstable), both continuous and
discrete-time to forced nonlinear oscillations are to be found in [11].

This paper is concerned with strong stability (in the sense of Krein) of discrete-
time Hamiltonian systems. Such systems may arise from sampling (1). Since sta-
bility is, generally speaking, not preserved by sampling (not always) this problem
is of interest. On the other hand, not all results of the continuous time fields
may migrate, mutatis-mutandis, to the discrete-time field even in the conditions
of the new emerging theory on time scales [12], [13],[14]; this will become clear
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throughout the paper. Let us consider system (1) with H(t) as follows

H(t) =
(
A(t) B∗(t)
B(t) D(t)

)
(3)

with A(.) and B(.) Hermitian matrices. We perform the usual Euler discretization
of the derivatives with the step h = T/N but using forward difference in the first
equation and the backward difference in the second one; it is necessary to observe
this rule if we want to obtain a discrete-time Hamiltonian. We deduce

y((k+1)h)−y(kh)
h = λB(kh)y(kh) + λD(kh)z(kh)

z(kh)−z((k−1)h)
h = −λA(kh)y(kh) − λB∗(kh)z(kh)

(4)

where y,z are the m-dimensional sub-vectors of the 2m vector x. Denoting y(kh) =
yk, z(kh) = zk+1, A(kh) = Ak, B(kh) = Bk, D(kh) = Dk and, with an abuse of
notations, λh by λ we obtain the discrete-time linear periodic Hamiltonian system:

yk+1 − yk = λBkyk + λDkzk+1

zk+1 − zk = −λAk − λB∗kzk+1
(5)

with Ak, Bk, Dk being N-periodic. Remark that this system may be also written
as: (

yk+1 − yk
zk+1 − zk

)
= λJHk

(
yk
zk+1

)
(6)

with Hk =
(
Ak B

∗
k

Bk Dk

)
and J as previously. Also system (5) may be given the

Cauchy form

xk+1 = Ck(λ)xk(7)

with

Ck(λ) =
(
I −λDk

0 I + λB∗k

)−1(
I + λBk 0
−λAk I

)
(8)

and this is true for any λ ∈ C except a finite member of eigenvalues of B∗k. If the
eigenvalues of Bk are also excluded, then Ck(λ) is invertible and the solution of
(5) may be constructed for all integers k ∈ Z (i.e. forward and backward); only in
this case stability and strong stability have sense.

Definition 1. A point λ0 is called a λ-point of stability of system (5) if for λ = λ0
all solutions of the system are bounded on Z. If, moreover, for λ = λ0, all solutions
of any system of (6) type having Hk replaced by Ĥk (N-periodic and Hermitian)
sufficiently close to Hk (in some well-defined sense) are also bounded on Z, then
we call λ = λ0 a λ-point of strong stability of (6).
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It will be shown in the paper that, as in the continuous time case [1] the set
of λ-points of strong stability of (6) is an open set and thus if it is nonempty
it decomposes into a finite or infinite system of disjoint intervals that are called
λ-zones of stability.

In the following we shall deal with the theory of the λ-zones of stability for
system (6) following the line of [1], relating the existence and estimation of these
zones to the multiplier problem (as in the pioneering papers of Liapunov).

2. The monodromy matrix and the multipliers

We may compute Ck(λ) from (8) and find that

C∗k(λ)JCk(λ) − J = (λ− λ)Qk(λ)(9)

where Qk(λ) is Hermitian. We deduce that Ck(λ) is J-unitary for real λ and
Hermitian Hk and J - orthogonal (symplectic) if Hk is symmetric. We may also
write

xk(λ) = Ck−1(λ)...C0(λ)x0 = Uk(λ)x0(10)

thus defining the transition matrix( fundamental matrix of solutions) which results
J-unitary or symplectic accordingly. It follows that the monodromy matrix UN (λ)
will be also J-unitary or symplectic. In the terminology of [2] systems with complex
coefficients and J-unitary matrix Ck(λ) are called Hamiltonian while systems with
real coefficients and symplectic matrix Ck(λ) are called canonical.

The eigenvalues of the monodromy matrix i.e. the roots ρi(λ) of the character-
istic equation

det(UN (λ) − ρI) = 0(11)

are called multipliers of (5) (or (6)). The following result of Poincaré-Liapunov
type may be proved following, e.g.,[2].

Theorem 1. a) If Hk is Hermitian the spectrum of UN (λ) is located symmetri-
cally with respect to the unit circle i.e. the multipliers occur in pairs (ρ, ρ−1)
including their multiplicities as roots of (11).

b) If Hk is symmetric the spectrum of UN(λ) is located skew-symmetrically with
respect to the unit circle, i.e., the multipliers occur in pairs (ρ, ρ−1).

c) If Hk and λ are real and Hk is symmetric the multipliers occur in groups of
four, being symmetric with respect to both unit circle and imaginary axis.

From here we may deduce:

Proposition 1. All solutions of (5) are bounded on Z iff all multipliers of the
system are of modulus one (located on the unit circle) and are of simple type (its
root space coincides with its eigenspace) or, equivalently, have simple elementary
divisors.
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Since we are concerned with robust(strong) stability, it is useful to analyze
parameter dependence (on λ) of the multipliers. Unlike in the continuous-time
case UN (λ) is not of entire but of meromorphic type being rational with respect
to λ. For λ sufficiently close to the origin we may consider the McLaurin expansion
of Ck(λ)

Ck(λ) = I2m + λJHk + o(λ)

and of UN (λ)

UN (λ) = I2m + λJ
N−1∑
0

Hk + o(λ)

It follows that in a sufficiently small neighborhood of λ = 0 the holomorphic
matrix-valued logarithm is well defined

Γ (λ) = ln UN (λ) = Γ0 + Γ1λ+ o(λ)

such that UN (λ) = eΓ (λ). We deduce that Γ0 = 0, Γ1 = J
∑N−1

0 Hk. With an
appropriate indexing we shall have ρj(λ) = exp(γj(λ)), j = 1, n, with ρj(λ) being
system’s multipliers and γj(λ) the eigenvalues of Γ (λ). Following the line of [1]
and [15] we may prove.

Theorem 2. Assume that
∑N−1

0 Hk > 0 and has distinct eigenvalues. Then there
exists an interval (−l, l) such that for λ ∈ (−l, l) all solutions of (6) are bounded
on Z.

Remark that this is the first result asserting existence of a central λ-zone of
stability for (6). In the following we shall extend the result to the case of non-
distinct eigenvalues and obtain estimates for l.

3. Self-adjoint boundary value problems for the canonical

system

In this section we shall consider the boundary value problem for (6) defined by
the boundary condition

xN −Gx0 = 0(12)

with G some J-unitary matrix (G∗JG = J). Following [1] and [15] it can be proved.

Theorem 3. Let Hk ≥ 0, k = 0, N − 1,
∑N−1

0 Hk > 0. Then the eigenvalues
(characteristic numbers) of the boundary value problem defined by (6) and (12)
are real.

We point out also the following facts
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1. Any root of the equation

det(UN (λ) −G) = 0(13)

is a characteristic number of the boundary value problem and is real. Therefore
all roots of (13), if any, are real.

2. The number λ = 0 is a characteristic number iff det(I −G) = 0 (iff G has 1 as
eigenvalue).

We may also prove

Theorem 4. The multiplicity kj of any characteristic number of (6), (12) coin-
cides with the number of linearly independent associated solutions of the problem.

The proof of this theorem follows the line of Theorem 3.4 in [1] and Theorem
3.3 in [15] but in this case UN(λ)−G is, generally speaking, rational and we need
the Smith-McMillan form of a rational matrix in order to obtain the result.

In order to obtain strong (i.e. robust) stability using the properties of the
boundary value problem we shall need a result concerning the dependence of the
characteristic numbers λj on the matrix Hk, dependence that is symbolized by
λj(H).

Theorem 5. Let 0 < λ1 ≤ λ2 ≤ . . . be the positive characteristic numbers of the
boundary value problem and let 0 > λ−1 > λ−2 > . . . be the negative ones (it is
assumed that each characteristic number occurs in the corresponding sequence the
number of times equal to its multiplicity as a root of (13)). Let H1

k ,H
2
k be such

that Hi
k ≥ 0,

∑N−1
0 Hi

k > 0, i = 1, 2 and assume that H1
k ≤ H2

k , k = 0, N − 1.
Then λj(H1) ≥ λj(H2), λ−j(H1) ≤ λ−j(H2).

The proof follows the line of [1] and [15].

4. Multipliers of 1st and 2nd kind: analytic properties and

the strong (robust) stability

We shall return to Proposition 1 which states that (6) is stable provided all its
multipliers are located on the unit circle and are of simple type. Generally speaking,
a J-unitary matrix with the eigenvalues on the unit circle and of simple type is
called of stable type. The matrices of stable type have an interesting property: all
J-unitary matrices that belong to a δ-neighborhood of a matrix of stable type are
also of stable type ([1],Theorem 1.2). This property suggests the approach to be
token in the analysis of strong stability for Hamiltonian systems.

Definition 2. A Hamiltonian system is said to be strongly stable if it is stable
and all Hamiltonian systems belonging to a neighborhood of it are also stable.
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In fact we may follow [1] and [15] and use some arguments of [16] to show that
if the Hamiltonian system

xk+1 − xk = JHk

(
yk
zk+1

)
is stable (of stable type) then there exists some δ > 0 such that all Hamiltonian
systems with Hk replaced by H̃k with

∑N−1
0 |Hk−H̃k| < δ are also of stable type.

This robustness result has the following consequences:

A. If we consider (6) we may obtain neighboring Hamiltonian systems by modi-
fying the parameter λ; but λ has to take real values in order that monodromy
matrices be J-unitary.

B. Since stability is expressed through the properties of the multipliers and strong
stability means preservation of this property with respect to parameter λ vari-
ations (among other perturbations that preserve the Hamiltonian character of
the system) it would be of interest to discuss multiplier properties with respect
to λ.

The first remark hints to the λ-zones of stability for real λ. The other one
indicates that multiplier dependence on λ may help in strong stability studies
even for complex λ. Indeed, for complex λ we may state and prove

Theorem 6. Consider (6) with complex λ i.e. with Im λ �= 0. Then half of
system’s multipliers have moduli less than 1 and the other half have them larger
than 1 provided Hk ≥ 0,

∑N−1
0 Hk > 0.

The proof relies on the fact that UN (λ) is nonsingular and also either J-increasing
(for Im λ > 0) or J-decreasing (for Im λ < 0); then Theorem 1.1 of [1] is used.

Definition 3. a) Let ρ0 with |ρ0| = 1 be a simple eigenvalue of a J-unitary ma-
trix and e0 the associated eigenvector. If e0 is a plus-vector (with i(Je0, e0) >
0) the eigenvalue is called of 1st kind and if e0 is a minus-vector
(with i(Je0, e0) < 0) the eigenvalue is called of 2nd kind.

b) Let ρ0 with |ρ0| = 1 be a non-simple eigenvalue of a J-unitary matrix and let
Lρ0 be the corresponding proper subspace. If Lρ0 contains plus-vectors only,
then ρ0 is of 1st kind and if Lρ0 contains minus-vectors only, then ρ0 is of 2nd
kind. If Lρ0 contains at least a null-vector (with i(Je0, e0) = 0) then ρ0 is of
mixed (indefinite type).

c) Let ρ0 with |ρ0| �= 1 be a non simple eigenvalue of a J-unitary matrix: if
|ρ0| > 1 it is called of 1st kind and if |ρ0| < 1 it is called of 2nd kind.

The main feature of this classification is the fact that it relies on the sign of the
associated eigenvectors. This allows the extension of the notions to matrices that
are not J-unitary. Indeed we already known [1], [15] that UN (λ) - the monodromy
matrix - whose eigenvalues, the multipliers, are of interest - is J-increasing for
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Im λ > 0 and J-decreasing for Im λ < 0. It is also known [1], that for J-
increasing matrices an eigenvalue with modulus larger than 1 has its eigenvectors
plus vectors thus being of 1st kind; accordingly, the eigenvalues with modulus lower
than 1 (located inside the unit disk) are of 2nd kind. For J-decreasing matrices,
the eigenvalues inside the unit disk are of 1st kind etc.

The dependence of multipliers’ properties on λ may be followed using argu-
ments from analytic function theory as in [1] and especially in [2]. The multipliers
equation:

∆(ρ;λ) ≡ det(UN (λ) − ρI) = 0

takes the form

ρ2m +A2m−1(λ)ρ2m−1 + · · · +A1(λ)ρ+A0(λ) = 0

where Ak(λ) are rational functions and A0(λ) = det UN (λ). From a basic repre-
sentation lemma of Weierstrass it follows that in a neighborhood of λ0 ∈ R the
multipliers ρj(λ) that coincide for λ→ λ0 with a multiplier ρ0 of definite kind (1st
or 2nd but not mixed) are analytic functions of λ i.e. the expansion of ρj(λ) con-
tains only integer powers of (λ− λ0). Further, we may follow [2] and obtain more
specific information on the expansions of ρj(λ), ρj(λ) being considered branches
of some analytic function coinciding in ρ0 for λ→ λ0.

From this information on expansion’s coefficients we may deduce the so-called
Krein traffic rules for the multipliers on the unit circle. We shall give below an
account on these traffic rules that remain unchanged in the discrete-time case.

1. Let λ0 ∈ R and ρ0 be a multiplier i.e an eigenvalue of UN(λ0) with |ρ0| = 1
and of multiplicity r. Consider a sufficiently small disk γ : {ρ : |ρ − ρ0| < ε}
such that there are no other eigenvalues of UN (λ0) inside it. There will then
exist some δ(ε) > 0 such that for all λ satisfying |λ− λ0| < δ there will exist
exactly r multipliers (eigenvalues of UN (λ) with their multiplicities ) which are
located inside the disk γ considered above. If λ = λ0 + ih, 0 < h < δ, UN(λ) is
J-increasing and, therefore, the multipliers which are in γ and inside the unit
disk are of 2nd kind while those which are in γ and outside the unit disk are
of 1st kind. It was shown [1], [2] that this distribution of multipliers does not
change as long as λ does not cross the real axis of the (λ) plane.
Consequently we may say that in ρ0 coincide for λ = λ0 e.g. r1 of 1st kind and
r − r1 of 2nd kind. The multiplier ρ0 is thus of mixed type.

2. Consider a multiplier of definite type on the unit circle e.g. a multiplier of 1st
kind (with its eigenvectors - plus-vectors) with multiplicity r, corresponding to
λ0. In its neighborhood one may find only multipliers of 1st kind. Let us assume
that λ takes real values on the interval (λ0−δ, λ0+δ). For λ �= λ0 the multipliers
that coincided in ρ0 split off in r multipliers describing r branches of the
corresponding analytic function. Nevertheless the resulting multipliers remain
on the unit circle and move clockwise for increasing λ. Were this not true, if a
multiplier of 1st kind occurs (outside the unit disk) it will be accompanied by
the occurrence of a multiplier of 2nd kind due to multipliers’ symmetry; but
in this case ρ0 would not be of definite kind.
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Obviously for multipliers of 2nd kind the motion for increasing λ is counter-
clockwise when the multiplier splits off.

3. The multipliers of mixed type from the unit circle split off in multipliers of
different kinds and they may, for some real λ to leave the circle in a symmetrical
way: one outside and one inside.

We may now represent the multiplier traffic on the unit circle. The multipliers
of definite kinds split and move clockwise and counter-clockwise, they met and
separate, but do not leave the circle as λ ∈ R increases or decreases. When two
multipliers of different kind met they generate a multiplier of mixed kind which
will split in multipliers of different kind again leaving the circle symmetrically (an
equal number entering the unit disk and leaving it) thus generating instability.

5. The stability zones of the Hamiltonian system with

parameter

In this section we shall consider that the neighboring Hamiltonians of the strong
stability problem are generated by modifying the parameter λ.

Theorem 7. The strong stability points of (6) form an open set which is not
empty when (6) is of positive type, i.e., when Hk ≥ 0,

∑N−1
0 Hk > 0.

The proof goes as in [1] and [15] with λ0Hk and λHk as H̃k: if |λ − λ0| < δ
then we are in the basic case of neighboring Hamiltonians.

If λ0 ∈ R is a point of strong stability, the set of strong stability points is open:
we start with the interval (λ0−δ, λ0+δ) and afterwards we consider neighborhoods
of the points of this interval (”continuations”). The open intervals thus obtained
are the λ-stability zones.

Non emptiness is connected with the central stability zone (around λ = 0)
which is nonempty at least in the case of Theorem 2. The central stability zone
will be again considered in the next section. Now we shall focus on side zones in
the positive type case, when Hk ≥ 0,

∑N−1
0 Hk > 0.

The main tool of the analysis is an inequality that follows from the analytic
properties of the multipliers:

− d

dλ
arg ρj(λ)|λ=λ0 ≥

N−1∑
k=0

σmin
k (λ0)(14)

where ρj(λ) is any branch of the analytic functions defined by multiplier depen-
dence on λ [1] and σmin

k is the lowest eigenvalue of a nonnegative matrix. It has
been shown by a simple example that, unlike in the continuous-time case, a strictly
positive lower bound that is independent of λ0 does not exist. Therefore it is not
possible to obtain, even in the simplest case, an estimate of the width of any side
zone that is independent of its position with respect to the central zone [15].
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We may however choose some interval (−Λ0, Λ0) and compute a lower bound
for the smallest eigenvalue that is independent of λ0 but depends on the chosen
interval i.e. on Λ0. Let χk(Λ0) be this lower bound. Since the system is of positive
type, χk(Λ0) ≥ 0 but

∑N−1
0 χk(Λ0) > 0 and (14) becomes

− d

dλ
arg ρj(λ)|λ=λ0 ≥

N−1∑
0

χk(Λ0)(15)

This inequality is similar to (5.12) of [1]; the dependence on some interval width
Λ0 that may include the central zone and, possibly, some side zones, is not very
restrictive: any numerical results are obtained for finite intervals, finite sums etc.

Theorem 8. If Hk ≥ 0,
∑N−1

0 Hk > 0 then the width of any λ-zone of stability
included in some interval (−Λ0, Λ0) does not exceed π(

∑N−1
0 χk(Λ0))−1 where

χk(Λ0) = inf|λ|≤Λ0σ
min
k (λ).

The proof follows at once by applying the ”traffic rules” [1],[15]. Note that the
width of any of two parts of the central zone also does not exceed the above
estimate.

6. The central zone of stability for a Hamiltonian system of

positive type

We shall consider here the boundary value problem for (6) defined by (12) with
G = −I. Its characteristic numbers are real: their existence follows from the fun-
damental theorem of Algebra provided det(UN (λ)+ I) �= const. and their number
is finite. Let Λ+ be the smallest (first) positive characteristic number and Λ− the
largest (first) negative one. We shall have

Theorem 9. Assume that Hk ≥ 0,
∑N−1

0 Hk > 0. The open interval (Λ−, Λ+)
belongs to the central zone of stability of (6); moreover, if Hk are real, this interval
and the central zone of stability coincide.

The proof of this result goes as in [1], [15] and relies on Theorem 2.3; the restriction
on distinct eigenvalues is removed by a perturbation argument.

The only remaining point of the entire construction is existence of the charac-
teristic numbers of opposite sign for the skew-symmetric (with G = −I) boundary
value problem. The complex function argument of [1] was valid in the case of [15]
but it can not be used in general since UN (λ) is not, generally speaking, of entire
type and the contradiction obtained in [1] which proved existence of characteristic
numbers of opposite signs fails. Krein himself was aware of the fact that complex
function arguments were perhaps too strong [1] and suggested to apply the the-
ory of weighted integral equations [17]; later this theory was incorporated in the
theory of Volterra operators on Hilbert spaces [18]. In the discrete-time case this
may reduce to some (possibly less) known results on determinants. Application of
the theory on time scales [12], [13], [14] may be of great interest.
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11. A. Halanay and Vl. Răsvan, Oscillations in Systems with Periodic Coefficients and
Sector-restricted Nonlinearities, in Operator Theory: Advances and Applications vol.
117, pp. 141-154, Birkhauser Verlag, Basel, 2000.

12. B. Aulbach, S. Hilger, A Unified Approach to Continuous and Discrete Dynamics,
Colloquia Mathematica Societatis Janos Bolyai, 53. Qualitative theory of differential
equations, Szeged, Hungary, 1988.

13. L. Erbe, S. Hilger, Sturmian theory on measure chains, Diff. Equations Dynam. Syst.
1,3, pp. 223-244, 1993.

14. S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete
calculus, Results Math. 18, pp. 18-56, 1990.
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Let 〈X, ‖·‖〉 be a Banach space, ]∞(X) be the Banach space of bounded se-
quences x = (xk)+∞k=0 ⊂ X with the norm ‖x‖∞ := supk≥0 ‖xk‖, and ]1(X)
be the Banach space of summable sequences x = (xk)+∞k=0 ⊂ X with the norm
‖x‖1 :=

∑
k≥0 ‖xk‖.

Consider the linear difference equation

x(n+ 1) − x(n) = (Lx) (n) + f(n), n = 0, 1, 2, . . .(1)

together with the N -periodic (N ≥ 1) condition

x(n+N) = x(n), n = 0, 1, 2, . . . .(2)

In (1), f ∈ ]1(X), and L : ]∞(X) → ]1(X) is a linear continuous operator.
Here and below, L is assumed to leave invariant the subspace of sequences having
property (2), and f is supposed to satisfy (2).

Remark 1. The use of special sequence spaces when posing problem (1), (2), in
fact, can be avoided by restricting the consideration to problem (3), (4) or equation
(6); see below. We have began with such a problem setting in order to note at this
point that results similar to those to follow can be obtained for problems other
than the periodic one.
� Research supported in part by OMFB, Grant UK-3/99
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The invariance condition above implies that there is a one-to-one correspon-
dence between solutions of (1), (2) and those of the problem

x(n+ 1) − x(n) =
N−1∑
ν=0

Ln,νx(ν) + f(n), 0 ≤ n ≤ N − 1,(3)

x(N) = x(0),(4)

where (Ln,ν)Nn,ν=0 ⊂ B(X) are certain linear operators such that

LN,ν = L0,ν for all ν ∈ {0, 1, . . . , N − 1}.(5)

Here and below, the symbol B(X) stands for the algebra of all bounded linear
operators in X .

Due to property (5), knowing solutions of problem (3), (4), one can reconstruct
those of (1), (2) by extending them periodically to all the non-negative integers.
Furthermore, the periodic nature of problem (3), (4) allows one to consider it
as a single linear equation with operator “matrices” acting in the space XN of
“vectors” (x(0), x(1), . . . , x(N − 1)):

(∆x)(n) =
N−1∑
ν=0

Ln,νx(ν) + f(n), 0 ≤ n ≤ N − 1,(6)

where

(∆x) (n) :=

{
x(n+ 1) − x(n) for 0 ≤ n < N − 1,
x(0) − x(n) for n = N − 1.

(7)

The latter circumstance will be essentially used below; we shall even identify
L with the appropriate mapping XN → XN :

(Lx)(n) =
N−1∑
ν=0

Ln,νx(ν), 0 ≤ n < N.

Lemma 1. Assume that the operator ΛL,N : X → X defined with the formula

ΛL,N :=
N−1∑
n=0

N−1∑
ν=0

Ln,ν(8)

is invertible. Then x = (x(0), x(1), . . . , x(N − 1)) is a solution of equation (6) if,
and only if there exists some a ∈ X such that the equalities

x(n) = (HL,N,lLx) (n) + fL,N,l(n) + a, 0 ≤ n ≤ N − 1,(9)
N−1∑
n=0

[
N−1∑
ν=0

Ln,νx(ν) + f(n)

]
= 0(10)
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hold with some l ∈ {0, 1, . . . , N−1}, where the linear mapping HL,N,l : XN → XN

is defined with the formula

(HL,N,lx) (n) :=



N−1∑
k=l

[
x(k) −

N−1∑
ν=0

Lk,νΛ
−1
L,N

N−1∑
j=0

x(j)
]

for n = 0,

n−1∑
k=l

[
x(k) −

N−1∑
ν=0

Lk,νΛ
−1
L,N

N−1∑
j=0

x(j)
]

for 0 < n < N,

(11)

and

fL,N,l := HL,N,lf.(12)

Proof. Assume that x = (x(0), x(1), . . . , x(N − 1)) satisfies (9) and (10). Then, for
1 ≤ n < N − 1, we have

x(n) = a+ fL,N,l(n) +
n−1∑
k=l

N−1∑
ν=0

Lk,νx(ν)

−
n−1∑
k=l

N−1∑
ν=0

Lk,νΛ
−1
L,N

N−1∑
k=0

N−1∑
ν=0

Lk,νx(ν)(13)

= a+ fL,N,l(n) +
n−1∑
k=l

N−1∑
ν=0

Lk,νx(ν) +
n−1∑
k=l

N−1∑
ν=0

Lk,νΛ
−1
L,N

N−1∑
k=0

f(k),(14)

whence

(15) x(n+ 1) − x(n) =
N−1∑
ν=0

Ln,νx(ν) +
N−1∑
ν=0

Ln,νΛ
−1
L,N

N−1∑
k=0

f(k)

+ fL,N,l(n+ 1) − fL,N,l(n).

It is easy to see from definition (11) that, when 1 ≤ n ≤ N−1, (12) is equivalent
to the relation

fL,N,l(n) =
n−1∑
k=l

[
f(k) −

N−1∑
ν=0

Lk,νΛ
−1
L,N

N−1∑
j=0

f(j)
]
,(16)

whence

fL,N,l(n+ 1) − fL,N,l(n) = f(n) −
N−1∑
ν=0

Ln,νΛ
−1
L,N

N−1∑
k=0

f(k)(17)

for 0 < n < N . Combining (15) and (17), we show that (6) holds for 1 ≤ n < N−1.
The case n = 0 is considered analogously.
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Let us now suppose that equality (6) holds. Then, we have

N−2∑
n=0

(N−1∑
ν=0

Ln,νx(ν) + f(n)
)

=
N−2∑
n=0

[x(n+ 1) − x(n)] = x(N − 1) − x(0).(18)

According to definition (7), equation (6) for n = N − 1 means that

N−1∑
ν=0

LN−1,νx(ν) + f(N − 1) = x(0) − x(N − 1),

which, combined with (18), implies (10).
Furthermore, in view of (11) and (10), for n ∈ {1, 2, . . . , N − 1}, we have

(HL,N,lLx) (n) =
n−1∑
k=l

[N−1∑
ν=0

Lk,νx(ν) −
N−1∑
µ=0

Lk,µΛ
−1
L,N

N−1∑
j=0

N−1∑
ν=0

Lj,νx(ν)
]

=
n−1∑
k=l

[N−1∑
ν=0

Lk,νx(ν) +
N−1∑
µ=0

Lk,µΛ
−1
L,N

N−1∑
j=0

f(j)
]
.(19)

Carrying out the manipulations marked as (13), (14), and (15) in the reverse
order and taking into account (19), we find that equality (9) holds for 0 < n ≤
N − 1. When n = 0, in view of (11), identity (19) is replaced by the relation

(HL,N,lLx) (0) =
N−1∑
k=l

[N−1∑
ν=0

Lk,νx(ν) +
N−1∑
µ=0

Lk,µΛ
−1
L,N

N−1∑
j=0

f(j)
]
,

and a similar argument leads one to (9) in this case as well. -.

Remark 2. Lemma 1 is similar to some statements from [3], [4], and [5].

Lemma 2. The identity

(HL,N,lLx) (n) = ΩL,N,l


x(0)
x(1)
...

x(N − 1)

(20)
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holds for 0 ≤ n < N , where ΩL,N,l : XN → XN is given by the matrix

ΩL,N,l =



N−1∑
k=l

(
Lk,0 − L#

k

N−1∑
j=0

Lj,0

)
. . .

N−1∑
k=l

(
Lk,N−1 − L#

k

N−1∑
j=0

Lj,N−1

)
0∑

k=l

(
Lk,0 − L#

k

N−1∑
j=0

Lj,0

)
. . .

0∑
k=l

(
Lk,N−1 − L#

k

N−1∑
j=0

Lj,N−1

)
1∑

k=l

(
Lk,0 − L#

k

N−1∑
j=0

Lj,0

)
. . .

1∑
k=l

(
Lk,N−1 − L#

k

N−1∑
j=0

Lj,N−1

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−2∑
k=l

(
Lk,0 − L#

k

N−1∑
j=0

Lj,0

)
. . .

N−2∑
k=l

(
Lk,N−1 − L#

k

N−1∑
j=0

Lj,N−1

)



(21)

and

L#
k :=

N−1∑
ν=0

Lk,νΛ
−1
L,N , 0 ≤ k ≤ N − 1.(22)

Proof. Considering (11), it is not difficult to verify by computation that, for 1 ≤
n ≤ N − 1,

(HL,N,lLx) (n) =
N−1∑
ν=0

[n−1∑
k=l

Lk,ν −
N−1∑
j=0

n−1∑
k=l

L#
k Lj,ν

]
x(ν),(23)

where L#
k (0 ≤ k ≤ N − 1) are the linear operators given by (22) and (8). This,

together with a similar observation for n = 0, leads one to formula (21) for the
operator “matrix” ΩL,N,l in equality (20). -.

Introduce the notation

diagXN :=
{

(a, a, . . . , a︸ ︷︷ ︸
N

) : a ∈ X
}
.(24)

Lemma 3. diagXN ⊂ kerHL,N,lL.

Proof. According to equality (23) established in the proof of Lemma 2, we have

(HL,N,lLa) (n) =
N−1∑
ν=0

[n−1∑
k=l

Lk,ν −
N−1∑
j=0

n−1∑
k=l

L#
k Lj,ν

]
a

=
n−1∑
k=l

[N−1∑
ν=0

Lk,ν − L#
k

N−1∑
j=0

N−1∑
ν=0

Lj,ν

]
a,
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whence, by definitions (8) and (22),

(HL,N,lLa) (n) =
n−1∑
k=l

[N−1∑
ν=0

Lk,ν − L#
k ΛL,N

]
a = 0

for all a ∈ X and n ∈ {1, 2, . . . , N − 1}.
The remaining case when n = 0 is considered in a similar way. -.

Let us now put ρL(N) := r (ΩL,N,l), the spectral radius of the linear operator
ΩL,N,l : XN → XN defined with formula (21). The notation is justified by the
following

Lemma 4. ρL(N) is independent of l.

Proof. Let us first prove the following claim: IfA : XN → XN andB : XN → XN

are bounded linear mappings such that σ(B) ⊂ σ(A) and imB ⊂ kerA, then
σ(A+B) = σ(A).

Indeed, let λ �∈ σ(A) be a regular point for A. Then the equation

Ax− λx = y − φ

has the unique solution x(y − φ, λ) := −λ−1[y − φ+ λ−1A(y − φ) + . . . ] for all y
and φ. Consider the equation

φ = Bx(y − φ, λ),(25)

or, which is the same,

φ = λ−1B
+∞∑
ν=0

λ−νAν(φ− y).

Since, obviously, we are seeking for a φ in imB, the assumption that imB ⊂
kerA yields

∑+∞
ν=0 λ

−νAνφ = φ and, therefore, equation (25) rewrites as

Bφ− λφ = B
+∞∑
ν=0

λ−νAνy.(26)

Since λ �$ σ(A) ⊃ σ(B), we see that (26), and hence (25), has a unique solution,
say φ(y, λ). Thus, for every y, the equation

Ax− λx = y − φ(y, λ)(27)

has a unique solution and, moreover, by virtue of the form of equation (25), the
solution Ξ(y, λ) := x (y − φ(y, λ), λ) of (27) also satisfies the equation

Ax− λx = y −Bx.(28)
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Let us prove that (28) cannot have any other solutions. Indeed, in the contrary
case, when (28) has another solution, say z, the difference δ := Ξ(y, λ)−z satisfies
the equality

Aδ − λδ = −Bδ.(29)

Since, by assumption, imB is contained in kerA, relation (29) implies that A2δ =
λAδ. Therefore, Aδ = 0, because otherwise Aδ would be an eigen-vector of A
with the eigen-value λ, which has been assumed to be regular for A. The same
equality (29) then yields Bδ = λδ, which can be the case only when δ = 0, because
λ �∈ σ(B). Hence, z and Ξ(y, λ) coincide.

The argument above shows that, for λ �∈ σ(A) and arbitrary y, equation (28)
has a unique solution, whose continuous dependence upon y is obvious. Therefore,
σ(A) ⊃ σ(A+B).

Conversely, if λ �∈ σ(A + B), then there exists a bounded inverse operator
(A + B − λI)−1, where I stands for the unity in B(X). Since, by assumption,
AB = 0, we have

(A− λI)(B − λI) = −λ[A+B − λI],(30)

an invertible operator. Assume that B − λI is non-invertible. Then, according to
a well-known criterion (see, e. g., Theorem 2 in [1, p. 209]), there is some sequence
(uk)+∞k=1 such that ‖uk‖ = 1 and ‖Buk − λuk‖ ≤ 1

k for all k ≥ 1. On the other
hand, since operator (30) is invertible, the same reasoning shows the existence of a
constant c ∈ (0,+∞) such that ‖(A− λI)(B − λI)x‖ ≥ c‖x‖ for all x. Combining
these two statements, we obtain that, for all k ≥ 1,

c ≤ ‖(A− λI)(B − λI)uk‖ ≤ ‖A− λI‖ · ‖Buk − λuk‖ ≤ ‖A− λI‖
k

,

which is impossible. Therefore, B − λI is invertible and, by (30), so does A− λI,
i. e., λ �∈ σ(A). Hence, σ(A +B) ⊃ σ(A), and the proof of the claim is complete.

Returning to our lemma, one can readily check that matrix (21) corresponding
to operator (11) has the property

[ΩL,N,l1x−ΩL,N,l2x](n) =
l2∑

k=l1

N−1∑
ν=0

[
Lk,ν − L#

k

N−1∑
j=0

Lj,ν

]
x(ν)

for all n ∈ {0, 1, . . . , N − 1}. It is then easy to verify that σ (ΩL,N,l1 −ΩL,N,l2) =
σ(β), where β :=

∑l2
k=l1

∑N−1
ν=0 [Lk,ν −L#

k

∑N−1
j=0 Lj,ν ]. Recalling notations (8) and

(22), we see that, in fact, β = 0.
Finally, putting A := ΩL,N,l1 and B := ΩL,N,l2 −ΩL,N,l1 in the claim above,

we obtain that σ(ΩL,N,l1) = σ(ΩL,N,l2) for all l1 and l2 in {0, 1, . . . , N − 1}. -.

Lemma 5. ρL(N) = r(QL,N ), where QL,N : XN−1 → XN−1 is given by

(QL,Nx) (n) :=
n−1∑
k=0

N−1∑
ν=0

(
Lk,ν − L#

k

N−1∑
j=0

Lj,ν

)
x(ν), 1 ≤ n ≤ N − 1.(31)
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Proof. By virtue of Lemma 4, we can put l = 0 in (11), in which case, as is easy
to see, the first row of matrix (21) is filled with zeroes. Thus, ΩL,N,0 =

[
0 0
M QL,N

]
with a certain M and, obviously, r(ΩL,N,0) = r(QL,N ). -.

Now we can apply the above lemmata to obtain the following theorem.

Theorem 1. Assume that operator (8) is invertible and, moreover, ρL(N) < 1.
Then equation (6) has a unique solution for every f : {0, 1, . . . , N − 1} → X.

Proof. By Lemma 1, every solution of (6), if there are any, satisfies relations (9) and
(10) for some a ∈ X and, conversely, a solution of (9) is also that of (6) whenever
a is such that (10) holds. Let us fix some a ∈ X and consider the corresponding
equation (9).

Introduce the sequence

ym+1(n) = a+ fL,N,l(n) + (HL,N,lLym) (n), 0 ≤ n < N, m ≥ 0,

where fL,N,l : {0, 1, . . . , N − 1} → X is defined by (12) and the starting member
is arbitrary. We have:

ym+1 = a+ fL,N,l +HL,N,lLym

= a+ fL,N,l +HL,N,lL [a+ fL,N,l +HL,N,lLym−1] ,

which, by Lemma 3, yields

ym+1 = a+ fL,N,l +HL,N,lLfL,N,l + (HL,N,lL)2 ym−1.

Proceeding similarly, we arrive at the equality

ym+1 = a+
m∑

ν=0

(HL,N,lL)ν fL,N,l + (HL,N,lL)m+1 y0.

It follows immediately from Lemma 2 that r (HL,N,lL) = ρL(N) and, therefore,
our assumption implies the convergence of the series

∑+∞
ν=0 (HL,N,lL)ν fL,N,l, which

means that equation (9) has a unique solution for every a ∈ X .
Furthermore, according to Lemma 1, a certain x : {0, 1, . . . , N − 1} → X is a

solution of equation (6) if, and only if

x = a+
+∞∑
ν=0

(HL,N,lL)ν fL,N,l(32)

with some a ∈ X such that (10) holds. However, it is easy to see that, for x given
by (32), relation (10) is equivalent to the equality

a = −Λ−1L,N

N−1∑
n=0

(
f(n) +

[
L

+∞∑
ν=0

(HL,N,lL)ν fL,N,l

]
(n)

)
.(33)
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Inserting (33) into (32) and expanding notation (12), we obtain the unique solution
of equation (6) in the form of the series

(34) x =
+∞∑
ν=0

[
(HL,N,lL)ν HL,N,lf − Λ−1L,N

N−1∑
k=0

[L (HL,N,lL)ν HL,N,lf ] (k)
]

− Λ−1L,N

N−1∑
k=0

f(k),

and the proof of the theorem is thus complete. -.
Remark 3. Theorem 1 is in the spirit of Corollary 5.2 from [2] and Corollary 4.2.1
from [6] established for linear systems of ordinary differential equations.

Let us say that some problem does not possess uniqueness property if it either
has no solutions or has more than one solution.

Corollary 1. Assume that {Lk,ν}N−1k,ν=0 ⊂ B(X) are some linear operators such
that the corresponding mapping (8) is invertible. Then, for the boundary value
problem

x(n+ 1) − x(n) = λ
N−1∑
ν=0

Ln,νx(ν) + f(n), 0 ≤ n ≤ N − 1,(35)

x(N) = x(0)(36)

not to possess the uniqueness property for some f : {0, 1, 2, . . . , N − 1} → X, it is
necessary that the parameter λ ∈ (−∞,+∞) satisfy the inequality

|λ| ≥ 1/ρL(N).

Proof. It suffices to replace system (35), (36) by an equation of type (6) and apply
Theorem 1. -.
Corollary 2. Assume that the operators {Lk,ν}N−1k,ν=0 ⊂ B(X) satisfy the condition

N−1∑
ν=0

Ln,ν = A for all n ∈ {0, 1, . . . , N − 1}(37)

with some invertible A ∈ B(X) and, moreover, the spectral radius of the operator

L1,1 −
1
N

N−1∑
j=0

Lj,1 . . . L1,N−1 −
1
N

N−1∑
j=0

Lj,N−1

1∑
k=0

Lk,1 −
2
N

N−1∑
j=0

Lj,1 . . .
1∑

k=0

Lk,N−1 −
2
N

N−1∑
j=0

Lj,N−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−2∑
k=0

Lk,1 −
N − 1
N

N−1∑
j=0

Lj,1 . . .
N−2∑
k=0

Lk,N−1 −
N − 1
N

N−1∑
j=0

Lj,N−1


(38)
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is less than one. Then, for every f ∈ diagXN+1, problem (3), (4) has a unique
solution, and this solution belongs to diagXN+1:

x(n) = −A−1f for all n ∈ {0, 1, 2, . . . , N}.

Proof. As before, instead of (3), (4), we consider equation (6).
Taking into account notations (22) and (8), it is not difficult to verify that,

under assumption (37), ΛL,N = N · A and L#
k = 1

N I (0 ≤ k ≤ N − 1), whence
we see that the operator defined by matrix (38) is nothing but QL,N given by
(31). Theorem 1, together with Lemma 5, then guarantees the unique solvability
of equation (6), whose solution can be represented as series (34).

By Lemma 3, the relation f ∈ diagXN yieldsHL,N,lf = 0, whence, considering
(34), we conclude that the solution of (6) is equal identically to −Λ−1L,N

∑N−1
k=0 f(k).

Returning to problem (3), (4), we obtain the conclusion desired. -.

Remark 4. The condition imposed on ρL(N) in Theorem 1, generally speaking,
cannot be weakened. Indeed, consider the simplest scalar difference equation

x(n+ 1) = −x(n) (n ≥ 0).(39)

The 2-periodic boundary value problem for equation (39) can be interpreted as (6)
with N = 2, f(0) = f(1) = 0, L0,1 = L1,0 = 0, and L0,0 = L1,1 = −2. It is obvious
that, in this case, ΩL,N,0 =

[
0 0
−1 1

]
and, thus, ρL(2) = 1. On the ther hand, every

non-trivial solution of (39) is periodic with period 2. Hence, the corresponding
inhomogeneous problem does not have uniqueness property and, therefore, the
inequality ρL(2) < 1 in Theorem 1 [resp., |λ| ≥ ρL(2) in Corollary 1] cannot be
replaced by ρL(2) ≤ 1 [resp., |λ| > ρL(2)].

One can also construct similar examples for an arbitrary period N ≥ 2 (this is
not done here).

Acknowledgement. The author wishes to express his sincere gratitude to
all the organising staff of CDDE 2000 for their kind care and attention.
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Abstract. We consider a boundary value problem containing two pa-
rameters both in the non-linear ordinary differential equation and in the
non-linear boundary conditions. By using a suitable change of variables, we
bring the given problem to a family of those with linear boundary condi-
tions (plus some non-linear determining equations), and apply an iterative
method to approximately find its solution.
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1. Introduction

An analysis of the publications concerning the iterative methods in the theory
of boundary value problems shows that various numerical-analytic methods, in
particular, those based upon successive approximations, are now widely used and
developed (see, e. g., [5] for a review).

According to the basic idea of the latter group of methods, the given boundary
value problem is replaced by a problem for a “perturbed” differential equation con-
taining some artificially introduced parameter, whose value should be determined
later. The solution of the “perturbed” problem is sought for in the analytic form
by iteration with all the iterations depending upon the parameter mentioned.

As to the way how the auxiliary problem is constructed, it is essential that
the form of the “perturbation term” yields a certain system of (algebraic or tran-
scendental) “determining equations,” which give the numerical values of the pa-
rameter corresponding to the solutions sought-for. By studying these determining
equations, it is possible to establish existence results for the original problem.
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It is worth mentioning that, earlier, the parametrised boundary value problems
were studied mostly in the case of the linear boundary conditions [4], or even in
the case when the parameters are contained only in the differential equation [1,2].

It has been an open problem to find out how one can construct a numerical-
analytic scheme suitable for problems with parameters both in the equation and in
non-linear boundary conditions. Here, we give a possible approach to this question
following the method from [3].

2. Problem setting

We consider the non-linear two-point parameterized boundary value problem

y′(t) = f(t, y(t), λ1, λ2), t ∈ [0, T ],(1)
g(y(0), y(T ), λ1, λ2) = 0,(2)
y1(0) = y10, y2(0) = y20,(3)

containing the parameters λ1 and λ2 both in Eq. (1) and in condition (2).
Here, we suppose that the functions f : [0, T ] × G × [a1, b1] × [a2, b2] → R

n

(n ≥ 3) and g : G × G × I1 × I2 → R
n are continuous, G ⊂ R

n is a closed,
connected, and bounded domain, and λk ∈ Ik := [ak, bk] (k = 1, 2) are unknown
scalar parameters.

Assume that, for t ∈ [0, T ], λ1 ∈ I1, and λ2 ∈ I2 fixed, the function f satisfies
the Lipschitz condition

|f(t, u, λ1, λ2) − f(t, v, λ1, λ2)| ≤ K|u− v|(4)

for all {u, v} ⊂ G and some non-negative matrix K = (Kkl)nk,l=1. In (4), as well
as in similar relations below, the signs |·| and ≤ are understood component-wise.

The problem is to find the values of the parameters λ1 and λ2 such that problem
(1), (2) has a classical solution satisfying the additional conditions (3). Thus, a
solution is the triple {y, λ1, λ2} and, therefore, (1)–(3) is similar, in a sense, to an
eigen-value problem.

3. A reduction to the parametrised boundary

value problem with linear conditions

Let us introduce the substitution

y(t) = x(t) + w,(5)

where w = col(w1, w2, . . . , wn) ∈ Ω ⊂ R
n is an unknown parameter. The domain

Ω is chosen so that

D +Ω ⊂ G,
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whereas the new variable, x, is supposed to have range in D, the closure of a
bounded subdomain of G.

Substitution (5) allows one to rewrite problem (1)–(3) as

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(6)
g(x(0) + w, x(T ) + w, λ1, λ2) = 0,(7)

x1(0) = y10 − w1, x2(0) = x20 − w2.(8)

Let us bring the boundary condition (7) to the form

Ax(0) +Bx(T ) = Φ(x(0) + w, x(T ) + w, λ1, λ2) = [A+B]w,

where Φ(u, v, λ1, λ2) := Au + Bv + g(u, v, λ1, λ2) and A, B are fixed square n-
dimensional matrices such that detB �= 0.

The parameter w is natural to be determined from the determining equation

Φ(x(0) + w, x(T ) + w, λ1, λ2) = [A+B]w

or, equivalently,

Ax(0) +Bx(T ) + g(x(0) + w, x(T ) + w, λ1, λ2) = 0.

Thus, the essentially non-linear problem (1)–(3) turns out to be equivalent to

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(9)
Ax(0) +Bx(T ) + g(x(0) + w, x(T ) + w, λ1, λ2) = 0,(10)

x1(0) = y10 − w1, x2(0) = x20 − w2.(11)

On the other hand, system (9), (10), (11) can be regarded as a collection of
problems

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(12)
Ax(0) +Bx(T ) = 0,(13)

x1(0) = y10 − w1, x2(0) = x20 − w2.(14)

parametrised by the unknown vector w and considered together with the deter-
mining equation (10).

The essential advantage obtained thereby is that the boundary condition (13)
is linear.

It follows from the consideration above that family (12)–(14) can be studied
by using the numerical-analytic method developed in [5].

Assume that

Dβ := {x ∈ R
n : B(x, β(x)) ⊂ D} �= ∅,(15)

where

β(x) :=
T

2
δG(f) + |(B−1A+En)x|
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and

(16) δG(f) :=
1
2

[
max

(t,x,λ1,λ2)∈[0,T ]×Ω×I1×I2
f(t, x, λ1, λ2)

− min
(t,x,λ1,λ2)∈[0,T ]×Ω×I1×I2

f(t, x, λ1, λ2)
]
.

Moreover, we suppose that K in (4) satisfies

r(K) <
10
3T
.(17)

Set

D1 :=
{
u ∈ R

n−2 : z ≡ col (y10 − w1, y20 − w2, u1, u2, . . . , un−2) ∈ Dβ

}
and introduce the sequence of functions

xm+1(t, w, u, λ1, λ2) := z +
∫ t

0

f (s, xm(s, w, u, λ1, λ2) + w, λ1, λ2) ds

− t

T

∫ T

0

f (s, xm(s, w, u, λ1, λ2) + w, λ1, λ2) ds

− t

T
[B−1A+En]z,(18)

where m ≥ 0 and x0(t, w, u, λ1, λ2) ≡ z.
Note that xm(0, w, u, λ1, λ2) = z for all m.
It can be verified that all the members of sequence (18) satisfy conditions (13)

and (14) for arbitrary u ∈ D1, w ∈ Ω, and λk ∈ Ik (k = 1, 2).
By virtue of (13), every solution, x, of (12)–(14) satisfies

x(T ) = −B−1Ax(0).

Therefore, Eq. (10) can be rewritten as

g(x(0) + w,−B−1Ax(0) + w, λ1, λ2) = 0.(19)

So, we conclude that problem (9)–(14) is equivalent to the following family of
boundary value problems with linear conditions:

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(20)
Ax(0) +Bx(T ) = 0,(21)

x1(0) = y10 − w1, x2(0) = x20 − w2(22)

considered together with the determining equation (19).
We suggest to solve the latter system sequentially: first solve (20)–(22), and

then try to find out whether (19) can simultaneously be fulfilled.
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Theorem 1. Assume conditions (4), (15), and (17). Then:

1. Sequence (18) converges to the function x∗ = x∗(·, w, u, λ1, λ2) as m → +∞
uniformly in (w, u, λ1, λ2) ∈ Ω ×D1 × I1 × I2.

2. The limit function x∗(·, w, u, λ1, λ2) is the unique solution of the “perturbed”
parametrised boundary value problem

x′(t) = f(t, x(t) + w, λ1, λ2) +∆(w, u, λ1, λ2), t ∈ [0, T ],
Ax(0) +Bx(T ) = 0,

x1(0) = y10 − w1, x2(0) = x20 − w2

(23)

having the initial value x∗(0, w, u, λ1, λ2) = z, where

∆(w, u, λ1, λ2) := − 1
T

[B−1A+En]z

− 1
T

∫ T

0

f (s, x∗(s, w, u, λ1, λ2) + w, λ1, λ2)ds.

3. The following error estimate holds:

|xm(t, w, u, λ1, λ2) − x∗(t, w, u, λ1, λ2)| ≤ h(t, w, u, λ1, λ2),(24)

where

h(t, w, u, λ1, λ2) :=
20t
9

(
1 − t

T

)
Qm−1 (En −Q)−1

[
QδG(f)

+ K
∣∣(B−1A+En

)
z
∣∣],

the vector δG(f) is given by (16), and Q := 3T
10K.

Proof. It can be carried out similarly to that of Theorem 2.1 from [5, p. 34].

The following statement shows the relation of the function x∗(·, w, u, λ1, λ2) to
the solution of problem (20)–(22).

Theorem 2. Under the assumptions of Theorem 1, the function

x∗(·, w∗, u∗, λ∗1, λ∗2)

is a solution of the parametrised boundary value problem (20)–(22) if, and only if
the triplet {u∗, λ∗1, λ∗2} satisfies the system of determining equations

[B−1A+En]z +
∫ T

0

f (s, x∗(s, w, u, λ1, λ2) + w, λ1, λ2)ds = 0,

where w is considered as a parameter.
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Proof. Analogous to that of Theorem 2.3 from [5, p. 40].

Theorem 3. Assume conditions (4), (15), and (17). Then, for the function

y∗ := x∗(·, w∗, u∗, λ∗1, λ∗2) + w∗(25)

to be a solution of the given parametrised problem (1)–(3), it is necessary and
sufficient that {w∗, u∗, λ∗1, λ∗2} satisfy the system of determining equations

z +
∫ T

0

f (s, x∗(s, w, u, λ1, λ2) + w, λ1, λ2)ds = 0,

g
(
z + w,−B−1Az + w, λ1, λ2

)
= 0.

(26)

Proof. It is easily seen from the form substitution (5) that Eqns. (26) hold when-
ever the transformed boundary value problem (23) is equivalent to the original
problem (1)–(3).

Remark 1. Considering function (25), one can set

ym := xm(·, wm, um, λ1,m, λ2,m) + wm(27)

and regard (27) as the mth approximation to function (25), which solves the
boundary value problem (1)–(3).

In Eq. (27), xm is given by (18), whereas wm, um, λ1,m, and λ2,m are solutions
of

z +
∫ T

0

f (s, xm(s, w, u, λ1, λ2) + w, λ1, λ2)ds = 0,

g
(
z + w,−B−1Az + w, λ1, λ2

)
= 0.

(28)

We do not consider the strict substantiation of the above idea, referring to [5]
where similar techniques are described.

Example 1. Let us consider the third order parametrised differential equation

y′′′(t) +
1
2

(y′′(t))2 + λ1y(t) =
(
λ2 +

3
4

)
t2

16
, t ∈ [0, 1](29)

with the following non-linear boundary conditions containing parameters:

y′(1)y′(0) + λ1y(1) =
1
32
,

y(1)y′(0) + λ2y
′(0) + λ2y

′′(1) =
1
16
,

1
2
y′(0) +

(
1
2
− λ1

)
y′(1) = 0,

y(0) = − 1
16
, y′(0) = 0.

(30)
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Equivalently, equation (29) can be rewritten as

y′1(t) = y2(t),
y′2(t) = y3(t),

y′3(t) =
t2

16
− 1

2
y23(t) − λ1y1(t)

(31)

together with the boundary conditions

y2(1)y2(0) + λ1y1(1) =
1
32
,

y1(1)y2(0) + λ2y2(0) + λ2y3(1) =
1
16
,

1
2
y2(0) +

(
1
2
− λ1

)
y2(1) = 0,

y1(0) = − 1
16
, y2(0) = 0.

(32)

One can verify that, for problem (31), (32), conditions (4), (15), and (17) are
fulfilled with (t, y2, y2, λ1, λ2) ∈ [0, 1]×G×I1×I2, λ1 ∈ I1 := [0, 1], λ2 ∈ I2 := [0, 1],

A := B := E3 := diag(1, 1, 1), K :=
[
0 1 0
0 0 1
1 0 1

3

]
, and

G :=
{

(y1, y2, y3) : |y1| ≤
1
2
, |y2| ≤

1
2
, |y3| ≤

1
3
,

}
,

because, in this case, r(K) = 0.9,

δG(f) ≤


1
2
1
3
53
144

 ,

and

β(x) =
T

2
δG(f) +

∣∣(B−1A+E3)x
∣∣ ≤


1
4
1
6
53
288

 + 2|x|.

Substitution (5) brings (31) to the form

x′1(t) = x2(t) + w2,

x′2(t) = x3(t) + w3,

x′3(t) =
t2

16
− 1

2
(x3 + w3)2(t) − λ1 (x1(t) + w1) ,

x1(0) = − 1
16

− w1, x2(0) = −w2.
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The computation performed according to (18) shows that the components of
the first iteration have the form

x1, 1(t, w1, w2, w3, u, λ1, λ2) = − 1
16

− w1 +
1
8
t+ 2 t w1,

x1, 2(t, w1, w2, w3, u, λ1, λ2) = −w2 + 2 t w2,

and

x1, 3(t, w1, w2, w3, u, λ1, λ2) = u+
1
48
t3λ2 −

1
48
tλ2 +

1
64
t3 − 1

64
t− 2 u t,

where xm = col (xm,1, xm,2, xm,3).
Similarly, for the second iteration, we have the first

x2, 1(t, w1, w2, w3, u, λ1, λ2) = − 1
16

− w1 + w2 t
2 − t w2 +

1
8
t+ 2 t w1,

the second

x2, 2(t, w1, w2, w3, u, λ1, λ2) = −w2 +
1

192
t4 λ2 +

1
256

t4 − t2 u− 1
96
t2 λ2

− 1
128

t2 + u t+ 2 t w2,

and the third

x2, 3(t, w1, w2, w3, u, λ1, λ2) := − 1
256

w3 t−
1679

107520
t+ u+ t λ1 w1

− 1
192

t w3 λ2 +
1

2880
t u λ2 − t w3 u+

1
96
t2w3 λ2 + t2w3 u

+
1
96
t2 uλ2 − t2 λ1 w1 −

1
72
t3 uλ2 −

1
192

t4w3 λ2

− 1
192

t4 uλ2 +
1

60480
t λ2

2 +
1

120
t5 uλ2 −

1
32256

t7 λ2
2

− 1
21504

t7 λ2 −
1

256
t4 u− 1

256
t4w3 + t2 u2 +

1
128

t2w3

− 1
3
t u2 +

1
16
λ1 t−

7679
3840

u t− 839
40320

t λ2 +
191
9216

t3 λ2

+
383

24576
t3 +

1
128

t2 u+
1

20480
t5 − 1

57344
t7 +

1
160

t5 u

+
1

11520
t5 λ2

2 +
1

7680
t5 λ2 −

1
13824

t3 λ2
2 − 2

3
t3 u2 − 1

96
t3 u

− 1
16
t2 λ1

components of the function x2.
Solving the approximate determining equations (28) gives us the approximate

values of the unknown parameters. More precisely, we have

w1 = 0, w2 ≈ .1250000000, w3 ≈ .2552083572

λ1 =
1
2
, λ2 ≈ .2500045836, u =

−1 + 16w3 λ2
16λ2

≈ .005212940674
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for m = 1 and

w1 = 0, w2 ≈ .127331555, w3 ≈ .2547074002

λ1 =
1
2
, λ2 ≈ .2458952578, u =

−1 + 16w3 λ2
16λ2

≈ .2458952578

for m = 2.
Therefore, in the first approximation, the solution of parametrised problem

(29), (30) is

y1,1(t) = − 1
16

+
1
8
t, t ∈ [0, 1],

λ1 =
1
2
, λ2 ≈ .2500045836

(33)

and, in the second approximation,

y2,1(t) ≈ − 1
16

+ .1273315558 t2− .0023315558 t, t ∈ [0, 1],

λ1 =
1
2
, λ2 ≈ .2458952578.

(34)

Note that

y(t) =
t2

8
− 1

16
, t ∈ [0, 1],

λ1 =
1
2
, λ2 =

1
4

(35)

is an exact solution of problem (29), (30). Computation by using Maple shows that
(33) and (34) provide good enough approximations to (35).
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The method of lower and upper solutions is, in connection with the topological
degree theory, widely used to prove the existence or multiplicity results for various
types of boundary value problems. See [1] – [8].

The aim of this paper is to extend the method of lower and upper solutions to
the case of boundary conditions given by the continuous linear functionals. Such
conditions are given by Riemann-Stjeltjes integrals.

We consider the second order differential equation

x′′ = f(t, x, x′)(1)

with the generalized boundary conditions

x(a) =
∫ b

a

x(t) dg1(t) + k1x
′(a)

x(b) =
∫ b

a

x(t) dg2(t) − k2x′(b),
(2)
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where f : I = [a, b] × R2 → R is a continuous function, gi(t) are nondecreasing
functions with bounded variation, 1 ≥ gi(b) − gi(a) and ki ≥ 0.

We assume that gi, ki, are such that the boundary conditions are linearly
independent. Our purpose is to extend some existence results of [6] to the case of
the problem (1), (2).

Definition 1. The function α(t) is called a lower solution for the problem (1), (2)
if

α′′(t) ≥ f(t, α(t), α′(t)),

α(a) ≤
∫ b

a

α(t) dg1(t) + k1α
′(a)

α(b) ≤
∫ b

a

α(t) dg2(t) − k2α′(b),

(3)

Similarly the function β(t) is called an upper solution for the problem (1), (2) if

β′′(t) ≤ f(t, β(t), β′(t)),

β(a) ≥
∫ b

a

β(t) dg1(t) + k1β
′(a)

β(b) ≥
∫ b

a

β(t) dg2(t) − k2β′(b),

(4)

If the strict inequalities for α′′, β′′ hold α, β are called strict lower and upper
solutions.

Remark 1. In the case of Dirichlet conditions x(a) = x(b) = 0, continuity of the
function f implies that for ε > 0 sufficiently small α(t)−ε, β(t)+ε are strict lower
and upper solutions satisfying the strict inequalities (3), (4).

Therefore below we assume that in the case of Dirichlet conditions the strict
lower and upper solutions satisfy also the strict inequalities (3), (4).

Lemma 1. [8, p. 214] Let h(s) be a positive continuous function such that∫ ∞ s

h(s)
ds = ∞,(5)

f be a continuous function satisfying

|f(t, x, y)| ≤ h(|y|) for each |x| ≤ r, t ∈ I,

and let x(t) be a solution of the problem (1), (2) such that ‖x‖ ≤ r. Then there is
a constant ρ0 > 0 such that ‖x′‖ < ρ0.

Lemma 2. Let α, β be a strict lower and upper solutions and u(t) be a solution
of the problem (1), (2).

Then α(t) ≤ u(t) implies α(t) < u(t) and β(t) ≥ u(t) implies β(t) > u(t).
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Proof. Let 0 = u(t0) − β(t0) at t0 ∈ (a, b). Then

0 ≥ u(t0)′′−β(t0)′′ = f(t0, u(t0), u′(t0))−β(t0)′′ ≥ f(t0, β(t0), β′(t0))−β(t0)′′ > 0,

a contradiction.
Let 0 = u(a) − β(a), u(t) < β(t) for t ∈ (a, b). If u′(a) = β′(a) we obtain the

same contradiction as above. Suppose u′(a) < β′(a).
We consider several cases.
Let k1 > 0. Then

u(a) − β(a) <
∫ b

a

u(t) − β(t) dg1(t) ≤ (g1(b) − g1(a)) max
t∈I

(u(t) − β(t)) ≤ 0,

a contradiction.
Let k1 = 0. If g1 is nonconstant on a subinterval [c, d] ⊂ (a, b) then

u(a) − β(a) ≤
∫ b

a

u(t) − β(t) dg1(t) < (g1(b) − g1(a)) max
t∈I

(u(t) − β(t)) ≤ 0,

a contradiction.
If g1 is constant on (a, b] then the first condition of (2) is reduced to Dirichlet

condition. With respect to Remark 1 we assume β(a) > 0. Then u(a) − β(a) < 0,
a contradiction.

If g1 is constant on [a, b) then u(a)− β(a) ≤ c(u(b)− β(b)), c ≤ 1. That means
u(a) = β(a) implies u(b) = β(b). Using the boundary condition at point b and
considering the same cases as above we obtain a contradiction with the equality
u(b) − β(b) = 0. The last case g2 is constant on (a, b] leads either to the Dirichlet
conditions case, or to the linear dependance of boundary conditions.

Let X = C1(I), domL = {x(t) ∈ C2(I), x satisfies (2)}, Z = C(I). We denote

L : domL ⊂ X → Z, Lx = x′′,

N : X → Z, Nx(t) = f(t, x(t), x′(t)).

The problem (1), (2) is equivalent to the operator equation

Lx = Nx,

where the operator N is L-compact [2].
We denote

Ωr,ρ = {x(t) ∈ C1(I), ‖x‖ < r, ‖x′‖ < ρ}.

Lemma 3. Let
(i) there is a constant r > 0 such that f(t, r, 0) > 0 and f(t,−r, 0) < 0,
(ii) |f(t, x, y)| ≤ h(|y|), h ≥ ε > 0 satisfies (5), for each t ∈ I, |x| < r.
Then there is ρ0 > 0 such that the topological degree

D(L,N,Ωr,ρ) = 1 (mod 2)

for each ρ > ρ0 i.e. there is a solution x(t) of (1), (2) such that |x(t)| < r,
|x′(t)| < ρ.
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Proof. We consider the homotopy

Lx = Ñ(x, λ)

defined by the parametric system of equations

x′′ = λf(t, x, y) + (1 − λ)x, (2).(6)

Now −r, r are a strict lower and upper solutions of the problem (6).
As |λf(t, x, y)+(1−λ)x| ≤ h(|y|)+r, the assumptions of Lemma 1 are satisfied

for the function λf(t, x, y) + (1 − λ)x. Then the a priori bound of derivative and
Lemma 2 imply that no solution of (6) lies on the boundary of ∂Ωr,ρ, ρ ≥ ρ0.

By the generalized Borsuk theorem [3]

D(L, Ñ(., 1), Ωr,ρ) = D(L, Ñ(., 0), Ωr,ρ) = 1 (mod 2)

and Lemma 3 is proved.

Theorem 1. Let
(i) α(t) < β(t) be a lower and upper solutions of the problem (1), (2).
(ii) |f(t, x, y)| ≤ h(|y|), for each (t, x, y), t ∈ I, α(t) ≤ x ≤ β(t), y ∈ R, where

h ≥ ε > 0 satisfies (5),
Then there is a constant ρ0 such that for each Ω = {x(t) ∈ C1(I), α(t) <

x(t) < β(t), ‖x′‖ < ρ}, ρ > ρ0 there is a solution x ∈ Ω̄ of (1), (2).
Moreover if α(t), β(t) are strict lower and upper solutions then

D(L,N,Ω) = 1 (mod 2).

Proof. Let r = max{‖α‖, ‖β‖}, M > max |f(t, x, 0)| for t ∈ I, |x| ≤ r.
We define a perturbation

f∗(t, x, y) =



f(t, β(t), y) +M(r − β(t)) +M x > r + 1,
f(t, β(t), y) +M(x− β(t)) β(t) < x ≤ r + 1,
f(t, x, y) α(t) ≤ x ≤ β(t),
f(t, α(t), y) −M(α(t) − x) −r − 1 ≤ x < α(t),
f(t, α(t), y) −M −M(α(t) + r) x < −r − 1.

The function f∗ satisfies the Nagumo condition as well as the assumptions of
Lemma 3 for Ωr+1,ρ, ρ > ρ0 where ρ0 is a constant from Lemma 1 for the function
f∗.

Suppose u(t) ∈ Ωr+1,ρ is a solution of the problem

x′′ = f∗(t, x, x′), (2).(7)

We show that α ≤ u ≤ β.
Let v(t) = u(t) − β(t) attains its maximum vmax > 0. Then β(t) + vmax is a

strict upper solution of (7). Lemma 2 implies u(t) < β(t) + vmax a contradiction.
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That means u(t) is a solution of (1), (2).
If α(t), β(t) are a strict lower and upper solutions then moreover

D(L,N∗, Ωr,ρ) = D(L,N∗, Ω) = D(L,N,Ω) = 1 (mod 2).

Theorem 2. Let
(i) |f(t, x, y)| < M,
(ii) α, β, β(t) < α(t), be a strict lower and upper solutions for the problem (1),

(2).
Then there are constants r, ρ > 0 such that

D(L,N,Ω) = 1 (mod 2)

where Ω = {x(t) ∈ C1(I), ∃tx ∈ I, β(tx) < x(tx) < α(tx), ‖x‖ < r, ‖x′‖ < ρ}.

Proof. Let ρ = (b− a)2M and r = max (‖α‖, ‖β‖) + (b− a)ρ.
We define a perturbation f∗ by

f∗(t, x, y) =



f(t, x, y) +M x > r + 1,
f(t, x, y) +M(x− r) r < x ≤ r + 1,
f(t, x, y) −r ≤ x ≤ r,

f(t, x, y) +M(x+ r) −r − 1 ≤ x < −r,
f(t, x, y) −M x < −r − 1.

Clearly r + 1, −r− 1 are a strict lower and upper solutions of the problem

x′′ = f∗(t, x, x′), (2).(8)

As |f∗| < 2M then for each solution of (8) the boundary conditions (2) imply
that there is a constant ρ such that |x′(t)| < ρ.

Therefore
D(L,N∗, Ωr+1,ρ) = 1 (mod 2)

Let now

Ωl = {x(t) ∈ Ωr+1,ρ, −r − 1 < x < β},
Ωu = {x(t) ∈ Ωr+1,ρ, α < x < r + 1}.

Then
D(L,N∗, Ωl) = D(L,N∗, Ωu) = 1 (mod 2)

Set Ωm = Ωr+1,ρ \
(
Ωl ∪Ωu

)
.

As −r − 1, α, r + 1, β are strict lower and upper solutions, Lemma 2 implies
there is no solution u ∈ ∂Ωm.

The addition property of the degree means

D(L,N∗, Ωm) = 1 (mod 2)

on the set Ωm = Ωr+1 \
(
Ωl ∪Ωu

)
, and finally the excision property implies

D(L,N∗, Ωm) = D(L,N∗, Ω) = D(L,N,Ω) = 1 (mod 2).
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The Nagumo condition in Theorem 1 and the a priori bound of f in Theorem
2 are in the following theorems replaced by the one sided growth condition.

Theorem 3. Let
(i) k1 > 0, k2 > 0,
(ii) there is M > 0 such that f(t, x, y) ≤M for each t ∈ I, and each x, y ∈ R.
(iii) α, β, α(t) < β(t), be a strict lower and upper solutions of the problem (1),

(2).
Then there is ρ0 > 0 such that for each ρ > ρ0 and Ω = {x(t) ∈ C1(I), α(t) <

x(t) < β(t), ‖x′‖ < ρ} there is

D(L,N,Ω) = 1 (mod 2).

Proof. Let r = max{‖α‖, ‖β‖}.
Let x(t) be a solution of (1), (2) such that ‖x‖ < r. Then the boundary

conditions (2) imply x′(a) ≤ 2r
k1

and x′(b) ≥ −2r
k2
. Therefore ‖x′‖ ≤ 2r

k
+(b−a)M,

where k = min{k1, k2}.
Let ρ1 =

2r
k

+ (b− a)M + max{‖α′‖, ‖β′‖}.
We define

χ(s, t) =


1 s ≤ t
2t−s
t t < s ≤ 2t

0 s > 2t

and

f∗ = χ(‖x‖, r)χ(‖y‖, ρ1)f(t, x, y).(9)

Now f∗ is a bounded function and α, β, are strict lower and upper solutions of
the problem

x′′ = f∗(t, x, x′), (2).(10)

Theorem 1 implies that there is ρ2 such that for each ρ > ρ2

D(L,N∗, Ω) = 1 (mod 2).

We choose ρ > max{ρ1, ρ2} = ρ0. For each solution x of (10) such that ‖x‖ < r
there is ‖x′‖ < ρ1. Then f(t, x(t), x′(t)) = f∗(t, x(t), x′(t)) and

D(L,N,Ω) = D(L,N∗, Ω) = 1 (mod 2).

Theorem 4. Let
(i) k1, k2 > 0,
(ii) there is M > 0 such that f(t, x, y) ≤M for each t ∈ I, and each x, y ∈ R.
(iii) α, β, β(t) < α(t), be a strict lower and upper solutions of the problem (1),

(2).
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Then there is r, ρ > 0 such that

D(L,N,Ω) = 1 (mod 2)

where

Ω = {x(t) ∈ C1(I), ∃tx ∈ I β(tx) < x(tx) < α(tx), ‖x‖ < r, ‖x′‖ < ρ}.

Proof. Let m = max{‖α‖, ‖β‖}, x(t) be a solution and let ∃tx ∈ I β(tx) < x(tx) <
α(tx). Then |x(tx)| ≤ m.

Let t1 be such that min x(t) = x(t1), and suppose that x(t1) < −m.
Let t1 < tx. Then either x′(t1) = 0 or t1 = a.

In the case x′(t1) = 0 there is x′(t) =
∫ t

t1
x′′(s) ds ≤ (b− t1)M, for t ≥ t1. Then

x(t1) = x(tx) −
∫ tx

t1

x′(s) ds ≥ −m− (tx − t1)(b− t1)M.

If t1 = a then the boundary condition implies x(a) > x(a) (g1(b) − g1(a)) +
k1x
′(a). Hence k1x′(a) < (1 − (g1(b) − g1(a))) x(a) which implies x′(a) < 0, a

contradiction.
Let t1 > tx. Then either x′(t1) = 0 or t1 = b.

Again x′(t1) = 0 implies that x′(t) = −
∫ t1
t x′′(s) ds ≥ −(t1 − a)M, for t ≤ t1.

Then

x(t1) = x(tx) +
∫ t1

tx

x′(s) ds ≥ −m− (t1 − a)(b− tx)M.

If t1 = b then x(b) > x(b) (g2(b) − g2(a))− k2x′(b) i.e. k2x′(b) > −(1− (g2(b)−
g2(a)))x(b) which implies x′(b) > 0, a contradiction.

That means x(t) > −m− (b− a)2M.

Suppose that there is t2 such that maxx(t) = x(t2) > m.
Case t2 > t1.
There is x′(t) = x′(t1) +

∫ t

t1
x′′(s) ds ≤ (t2 − t1)M, for t ∈ [t1, t2], and

x(t2) = x(t1) +
∫ t2

t1

x′(s) ds ≤ m+ (t2 − t1)2M.

Case t2 < t1.
There is x′(t) = x′(t1) −

∫ t1
t
x′′(s) ds ≥ −(t1 − t2)M, for t ∈ [t2, t1], and

x(t2) = x(t1) −
∫ t1

t2

x′(s) ds ≤ m+ (t2 − t1)2M.

The above estimations give a priori bound of a solution

|x(t)| < r = m+ (b− a)2M.
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Arguing as in the proof of the preceeding theorem we obtain that

|x′(t)| ≤ 2r
k

+ (b− a)M,

where again k = min{k1, k2} and we put ρ1 =
2r
k

+ (b− a)M + max{‖α′‖, ‖β′‖}.
Using again the perturbation (9) and Theorem 2 we obtain that there is ρ2

such that for each ρ > ρ2

D(L,N∗, Ω) = 1 (mod 2),

where

Ω = {x(t) ∈ C1(I), ∃tx ∈ I β(tx) < x(tx) < α(tx), ‖x‖ < r, ‖x′‖ < ρ}.

We choose ρ > max(ρ1, ρ2) = ρ0. A priori bounds of solutions imply

D(L,N,Ω) = D(L,N∗, Ω) = 1 (mod 2).

Remark 2. It is possible to replace the inequality in the condition (ii) of Theorem
3 and 4 by f(t, x, y) ≥ −M for each t ∈ I, x, y ∈ R.
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4. Rach̊unková I. Multiplicity results for four-point boundary value problems, Nonlinear
Analysis TMA 18 (1992), 497–505.
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Email: simonl@ludens.elte.hu

Abstract. We shall consider weak solutions of initial–boundary value
problems for nonlinear parabolic functional differential equations contain-
ing discontinuous terms in the unknown function. There will be proved the
existence of solutions and formulated some properties of the solutions.

AMS Subject Classification. 35R10

Keywords. partial functional differential equations, differential equations
with dicontinuous terms.

1. Introduction

We shall consider initial-boundary value problems for the equation

Dtu(t, x) −
n∑

j=1

Dj [fj(t, x, u(t, x),∇u(t, x))] + f0(t, x, u(t, x),∇u(t, x)) +

+g(t, x, u(t, x)) + h(t, x, [H(u)](t, x)) = F (t, x),

(t, x) ∈ QT = (0, T ) ×Ω

(1)

where Ω ⊂ Rn is a (possibly unbounded) domain with sufficiently smooth bound-
ary, H is a linear continuous operator in Lp(QT ), the functions fj are measurable
in (t, x), continuous with respect to u(t, x), ∇u(t, x) but the functions g, h are
assumed to be only measurable in all variables. Further, fj , g, h have certain poly-
nomial growth in u(t, x), ∇u(t, x). The case when Ω is bounded, was considered,
e.g., in [11] where certain terms were rapidly increasing in u(t, x). In [13] there were
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considered equations of more general form where all the terms were continuous in
u(t, x) and ∇u(t, x).

The problem was motivated by the climate model considered by J.I. D́ıaz and
G. Hetzer in [8] where a particular case of the equation (1) (also with discontin-
uous terms in u) was investigated on the unit sphere in R3 (instead of Ω). Some
qualitative properties of the solutions of the climate model (without delay terms)
were proved in [1] and [7]. Functional partial differential equations arise also in
population dynamics, plasticity, hysteresis (see, e.g., [2], [4], [10], [15]).

The aim of this work is to formulate and prove new results in the case of
unbounded Ω. We shall formulate conditions which imply the existence of weak
solutions of initial-boundary value problems for (1) and to show that in the case
of unbounded Ω, the limit of solutions of problems in large bounded domains is
a solution of the problem in Ω. There will also be proved the boundedness of the
solutions under some conditions and a theorem on the stabilization of the solutions
as t→ ∞. Our results can be easily extended to equations, containing higher order
derivatives with respect to x.

2. Existence theorems

Let Ω ⊂ Rn be a (possibly unbounded) domain with sufficiently smooth boundary,
p ≥ 2. Denote by W 1,p(Ω) the usual Sobolev space with the norm

‖ u ‖=

∫
Ω

(
n∑

j=1

|Dju|p + |u|p)

1/p

.

Let V be a closed linear subspace of W 1,p(Ω) and denote by XT = Lp(0, T ;V ) the
Banach space of the set of measurable functions u : (0, T ) → V such that ‖ u ‖p is
integrable. The dual space of Lp(0, T ;V ) is X�

T = Lq(0, T ;V �) where 1/p+1/q = 1
and V � is the dual space of V (see, e.g., [14]).

On functions fj we assume that
A (i) fj : QT × Rn+1 → R are measurable in (t, x) ∈ QT and continuous in

η ∈ R, ζ ∈ Rn;
(ii) |fj(t, x, η, ζ)| ≤ c1(|η|p−1 + |ζ|p−1) + k1(x) with some constant c1 and a

function k1 ∈ Lq(Ω) (j = 0, 1, ..., n) ;
(iii)

∑n
j=1[fj(t, x, η, ζ) − fj(t, x, η, ζ̃)](ζj − ζ̃j) > 0 if ζ �= ζ̃;

(iv)
∑n

j=1 fj(t, x, η, ζ)ζj + f0(t, x, η, ζ)η ≥ c2[|ζ|p + |η|p] − k2(x) with some
constant c2 > 0 and k2 ∈ L1(Ω).

Remark 1. A simple example for fj , satisfying A (i) - (iv) is

fj(t, x, η, ζ) = aj(t, x)ζj |ζj |p−2, j = 1, ..., n,

f0(t, x, η, ζ) = a0(t, x)η|η|p−2,
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where aj are measurable functions, satisfying 0 < c0 ≤ aj(t, x) ≤ c′0 with some
constants c0, c′0.

On functions g, h we assume that
B (i) g = g1 + g2, gj : QT × R → R and h : QT × R → R are measurable

functions;
(ii) |g1(t, x, η)| ≤ k3(x)|η|p−1 and g1(t, x, η)η ≥ 0 with some function k3 ∈

L1(Ω) ∪ |L∞(Ω);
(iii)

|g2(t, x, η)| ≤ k3(x)k4(|η|)|η|p−1 + k5(x), |h(t, x, θ)| ≤ k3(x)k4(|θ|)|θ|p−1 + k5(x)

where k5 ∈ Lq(Ω) and k4 is a continuous function, satisfying lim∞ k4 = 0.
Further,
C H : Lp(QT ) → Lp(QT ) is a linear and continuous operator such that for

any compact K ⊂ Ω there is a compact K̃ ⊂ Ω with the following property: the
restriction of H(u) to (0, t) ×K depends only on the restriction of u to (0, t) × K̃
for all t ∈ (0, T ].

Remark 2. The operator H may have e.g. one of the following forms:

[H(u)](t, x) =
∫ t

0

β0(s, t, x)u(s, x)ds or [H(u)](t, x) = u(τ(t), x)

with some β0 ∈ L∞((0, T ) × QT ) and a continuously differentiable function τ
satisfying τ ′ > 0, 0 < τ(t) ≤ t.

Since g1 is locally bounded, for any ε > 0 we may define (with fixed (t, x) ∈ QT )

ḡε1(t, x, η) = ess sup|η−η̃|<εg1(t, x, η̃),

gε
1
(t, x, η) = ess inf|η−η̃|<εg1(t, x, η̃)

For fixed t, x, η ḡε1(t, x, η) is nonincreasing and gε
1
(t, x, η) is nondecreasing as ε is

decreasing thus

ḡ1(t, x, η) = lim
ε→0

ḡε1(t, x, η), g
1
(t, x, η) = lim

ε→0
gε
1
(t, x, η)

exist. Similarly may be defined ḡ2, g2, h̄, h (by functions g2, h, respectively).

Theorem 1. Assume A (i) - (iv) and B (i) - (iii) and C. Then for each F ∈
X�

T , u0 ∈ V there exists u ∈ XT with Dtu ∈ X�
T and ϕ1, ϕ2, ψ ∈ Lq(QT ) such that

u(0, ·) = u0,(2)

for arbitrary v ∈ V we have

〈Dtu(t, ·), v〉 +
n∑

j=1

∫
Ω

fj(t, x, u(t, x),∇u(t, x))Djv(x)dx+∫
Ω

f0(t, x, u(t, x),∇u(t, x))v(x)dx +
∫
Ω

[ϕ1(t, x) + ϕ2(t, x) + ψ(t, x)]v(x)dx =

〈F (t, ·), v〉 for a.e. t ∈ [0, T ]

(3)
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and for a.e. (t, x) ∈ QT

g
l
(t, x, u(t, x)) ≤ ϕl(t, x) ≤ ḡl(t, x, u(t, x)), l = 1, 2(4)

h(t, x, [H(u)](t, x)) ≤ ψ(t, x) ≤ h̄(t, x, [H(u)](t, x)).

Proof. Consider the function j ∈ C∞0 (R) supported by [−1, 1] with the properties
j ≥ 0,

∫
R
j = 1 and for any positive integer k define the functions jk by jk(η) =

kj(kη). Then the convolutions (with fixed t, x) gl,k = gl V jk (l = 1, 2), hk =
h V jk are smooth functions (of η, θ, respectively). Further, define functions

g̃l,k(t, x, η) = gl,k(t, x, η) if |x| ≤ k, g̃l,k(t, x, η) = 0 if |x| > k

h̃k(t, x, θ) = hk(t, x, θ) if |x| ≤ k, h̃k(t, x, θ) = 0 if |x| > k.

Then we may define operators A,Bk, Ck : XT → X�
T by

[A(u), v] =
∫ T

0

〈A(u)(t), v(t)〉dt,

〈A(u)(t), v(t)〉 =
n∑

j=1

∫
Ω

fj(t, x, u,∇u)Djvdx+
∫
Ω

f0(t, x, u,∇u)vdx,

[Bl
k(u), v] =

∫ T

0

〈Bl
k(u)(t), v(t)〉dt =

∫
QT

g̃l,k(t, x, u)vdtdx, l = 1, 2,

[Bk(u), v] = [B1
k(u), v] + [B2

k(u), v],

[Ck(u), v] =
∫ T

0

〈Ck(u)(t), v(t)〉dt =
∫
QT

h̃k(t, x,H(u))vdtdx, u, v ∈ XT .

By using the assumptions of our theorem, Hölder’s inequality and Vitali’s theo-
rem it is not difficult to show that the operator A+Bk+Ck : XT → X�

T is bounded
(i.e. it maps bounded sets of XT into bounded sets of X�

T ) and demicontinuous,
i.e.

(ul) → u in XT implies (A+Bk + Ck)(ul) → (A+Bk + Ck)(u) weakly in X�
T .

Further, by using compact imbedding theorems we obtain (as in [12]) that
A+Bk + Ck is pseudomonotone with respect to

D(L) = {u ∈ XT : Dtu ∈ X�
T , u(0) = 0},

i.e. if ul, u ∈ D(L),

(ul) → u weakly in XT , (Dtul) → Dtu weakly in X�
T and

lim sup
l→∞

[(A+Bk + Ck)(ul), ul − u] ≤ 0
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then

(A+Bk + Ck)(ul) → (A+Bk + Ck)(u) weakly in X�
T and

lim
l→∞

[(A+ Bk + Ck)(ul), ul − u] = 0.

Finally, we show that A+Bk + Ck is coercive, i.e.

lim
‖u‖→∞

[(A+Bk + Ck)(u), u]
‖ u ‖XT

= +∞.(5)

Assumption A (iv) implies∫ t

0

〈A(u)(τ), u(τ)〉dτ ≥ c2 ‖ u ‖pXt
−t

∫
Ω

k2.(6)

By B (ii)

g̃1,k(t, x, η)η ≥ 0 if |η| > 1, g̃1,k(t, x, η)η ≥ −k3(x) if |η| ≤ 1

thus ∫ t

0

〈B1
k(u)(τ), u(τ)〉dτ ≥ −t

∫
Ω

k3.(7)

Let a > 0 be an arbitrary number. Since lim∞ k4 = 0, there exists b > 0 such
that |η| ≥ b implies k4(|η|) ≤ a. Hence, by using the notation Qb

t = {(τ, x) ∈ Qt :
|u(τ, x)| ≤ b} we obtain from B (iii)

|
∫ t

0

〈B2
k(u)(τ), u(τ)〉dτ | ≤(8)

|
∫
Qb

t

g̃2,k(τ, x, u)udτdx| + |
∫
Qt\Qb

t

g̃2,k(τ, x, u)udτdx| ≤

C(a) + a ‖ k3 ‖L∞(Ω)‖ u ‖pXt
+
[
t

∫
Ω

|k5|q
]1/q

‖ u ‖Xt

with a constant C(a) (not depending on u).
One gets similarly

|
∫ t

0

〈Ck(u)(τ), u(τ)〉dτ | ≤(9)

C(a) + a ‖ k3 ‖L∞(Ω)‖ u ‖pXt
+
[
t

∫
Ω

|k5|q
]1/q

‖ u ‖Xt .

Choosing sufficiently small a > 0, from (6) - (9) we obtain for all t ∈ [0, T ]∫ t

0

〈(A+Bk + Ck)(u)(τ), u(τ)〉dτ ≥ c2/2 ‖ u ‖pXt
−c′2 ‖ u ‖Xt −c′3(10)
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(with some constants c′2, c
′
3, not depending on u) which implies (5) since p ≥ 2.

Thus, by Theorem 4 of [3], for any F ∈ X�
T , u0 ∈ V there exists uk ∈ XT such

that Dtuk ∈ X�
T and

Dtuk + (A+Bk + Ck)(uk) = F,(11)

uk(0) = u0.(12)

Since

〈Dtuk(t), uk(t)〉 =
1
2
d

dt
〈uk(t), uk(t)〉 =

1
2
d

dt
(uk(t), uk(t))L2(Ω)

(see, e.g., [14]), applying both sides of (11) to uk , we find by (10), (12)

1/2 ‖ uk(t) ‖2L2(Ω) −1/2 ‖ u0 ‖2L2(Ω) +c2/2 ‖ uk ‖pXt
≤(13)

[‖ F ‖X�
T

+c′2] ‖ uk ‖Xt +c′3, t ∈ [0, T ].

This inequality implies that

‖ uk ‖XT , ‖ uk ‖L∞(0,T ;L2(Ω)) are bounded.(14)

Hence the sequence (A+Bk +Ck)(uk) is bounded in X�
T and so (Dtuk) is bounded

in X�
T , too.

Consequently, there exist u ∈ XT , w ∈ X�
T , ϕl, ψ ∈ Lq(QT ) and a subsequence

of (uk), again denoted by (uk) such that

(uk) → u weakly in XT ,(15)

(uk) → u in Lp((0, T ) ×Ω0) for each fixed bounded Ω0 ⊂ Ω and a.e. in QT ;
(16)

thus by C

(H(uk)) → H(u) a.e. in QT ;(17)
(A+Bk + Ck)(uk) → w weakly in X�

T ,(18)

g̃l,k(t, x, uk) → ϕl and h̃k(t, x, uk) → ψ weakly in Lq(QT ).(19)

From (11), (12), (14), (15), (18), (19) it follows (see, e.g., [14]) u(0) = u0,

Dtu+ w + ϕ1 + ϕ2 + ψ = F.(20)

Now we prove w = A(u). Apply (11) to (uk − u)ζ with arbitrary fixed ζ ∈
C∞0 (Ω) having the properties : ζ ≥ 0, ζ(x) = 1 in a compact subset K of Ω. So
we obtain

[Dtuk −Dtu, (uk − u)ζ]+[Dtu, (uk − u)ζ] + [A(uk), (uk − u)ζ] +
[(Bk + Ck)(uk), (uk − u)ζ] = [F, (uk − u)ζ].

(21)
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For the first term we have

[Dtuk −Dtu, (uk − u)ζ] =1/2
∫ T

0

[
d

dt

∫
Ω

(uk(t) − u(t))2ζdx
]
dt =

1/2
∫
Ω

(uk(T ) − u(T ))2ζdx ≥ 0,
(22)

further, by (15), (16), (19)

lim
k→∞

[Dtu, (uk−u)ζ] = 0, lim
k→∞

[(Bk + Ck)(uk), (uk − u)ζ] = 0,

lim
k→∞

[F, (uk − u)ζ] = 0.
(23)

Thus (21) - (23) imply

lim sup
k→∞

[Ak(uk), (uk − u)ζ] ≤ 0.(24)

Since by A (ii) and (16)

lim
k→∞

∫
QT

f0(t, x, uk,∇uk)(uk − u)ζdtdx = 0,

from (24) we obtain

lim sup
k→∞

n∑
j=1

∫
QT

fj(t, x, uk,∇uk)(uk − u)ζdtdx ≤ 0.(25)

By using arguments of [5], we obtain from (25)

∇uk → ∇u a.e. in (0, T ) ×K

(see [13]). Since K can be chosen as any compact subset of Ω, we find

∇uk → ∇u a.e. in QT .(26)

Thus Vitali’s theorem and Hölder’s inequality imply

A(uk) → A(u) weakly in X�
T

(see, e.g., [5]), i.e. w = A(u).
In order to show the inequalities (4), one applies arguments of [9], by using

(16), (17). (16) implies that for each positive a there exists a subset ω ⊂ QT with
Lebesgue measure λ(ω) < a such that

(uk) → u uniformly on QT \ ω and u ∈ L∞(QT \ ω).

Thus for any ε > 0 there is k0 such that k0 > 2/ε and k > k0 implies

|uk(t, x) − u(t, x)| < ε/2 if (t, x) ∈ QT \ ω.(27)
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Let k > k0, (t, x) ∈ QT \ω. From 1/k < ε/2, (27) and the definition of g1,k, gε
1
, ḡε1

it easily follows

gε
1
(t, x, u(t, x)) ≤ g1,k(t, x, uk(t, x)) ≤ ḡε1(t, x, u(t, x)),

hence for sufficiently large k

gε
1
(t, x, u(t, x)) ≤ g̃1,k(t, x, uk(t, x)) ≤ ḡε1(t, x, u(t, x)).

Consequently, for any ϕ ∈ C∞0 (QT ) with ϕ ≥ 0 we have∫
QT \ω

gε
1
(t, x, u)ϕ ≤

∫
QT \ω

g̃1,k(t, x, uk)ϕ ≤
∫
QT \ω

ḡε1(t, x, u)ϕ

which implies by (19)∫
QT \ω

gε
1
(t, x, u)ϕ ≤

∫
QT \ω

ϕ1ϕ ≤
∫
QT \ω

ḡε1(t, x, u)ϕ.

Since u ∈ L∞(QT \ ω), Lebesgue’s dominated convergence theorem implies as
ε→ 0 ∫

QT \ω
g
1
(t, x, u)ϕ ≤

∫
QT \ω

ϕ1ϕ ≤
∫
QT \ω

ḡ1(t, x, u)ϕ.(28)

(28) holds for arbitrary nonnegative ϕ ∈ C∞0 (QT ), thus we find

g
1
(t, x, u(t, x)) ≤ ϕ1(t, x) ≤ ḡ1(t, x, u(t, x))(29)

for a.e. (t, x) ∈ QT \ ω. Inequality (29) holds true for any a > 0 and ω ⊂ QT with
λ(ω) < a, thus we obtain that (29) is valid a.e. in QT .

Remark 3. In certain particular cases (if some Lipschitz conditions are satisfied)
one can prove uniqueness of the solution (see also [11]).

It is not difficult to prove an existence theorem for the interval (0,∞). De-
note by X∞ and X�

∞ the set of functions u : [0,∞) → V, w : [0,∞) → V �,
respectively, such that for any finite T u ∈ Lp(0, T ;V ), w ∈ Lq(0, T ;V �), respec-
tively. Further, define Q∞ = (0,∞) ×Ω and let Lp

loc(Q∞) be the set of functions
v : Q∞ → R such that v ∈ Lp(QT ) for arbitrary finite T .

Theorem 2. Assume that functions

fj : Q∞ ×Rn+1 → R, g, h : Q∞ ×R→ R

satisfy A (i) - (iv), B (i) - (iii) and C for any finite T > 0.
Then for arbitrary F ∈ X�

∞ there exists u ∈ X∞ such that for any finite T the
assertion of Theorem 1 holds with some functions ϕl, ψ ∈ Lq

loc(Q∞).
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Theorem 2 is a consequence of Theorem 1, the proof is based on simple and
standard arguments. (Similar arguments can be found e.g. in [12].)

By using arguments of the proof of Theorem 1 we obtain that in the case when
Ω is unbounded, the limit (as k → ∞) of certain problems in ”large” bounded
Ωk ⊂ Ω is a solution in Ω. Now we give the exact formulation of this statement.

Let Ωk ⊂ Ω be bounded domains with sufficiently smooth boundary such that
Bk ∩Ω ⊂ Ωk (Bk = {x ∈ Rn : |x| < k}) and introduce the notations

Vk = W 1,p
0 (Ωk), Xk

T = Lp(0, T ;Vk), (Xk
T )� = Lq(0, T ;V �

k )

where W 1,p
0 (Ωk) is the completion of C∞0 (Ωk) with respect to the norm of

W 1,p(Ωk). Further, let Mk : Xk
T → XT be the following (extension) operator:

Mkvk(t, x) = vk(t, x) for x ∈ Ωk, Mkvk(t, x) = 0 for x ∈ Ω \Ωk

Define the restriction Fk of F ∈ X�
T (to Ωk) by∫ T

0

〈Fk(t), vk(t)〉dt =
∫ T

0

〈F (t), (Mkvk)(t)〉dt, vk ∈ Xk
T .

Finally, let ϕ ∈ C∞0 (Rn) be a function with the properties

ϕ(x) = 1 if |x| ≤ 1/2, ϕ(x) = 0 if |x| ≥ 1

and define ϕk by ϕk(x) = ϕ(x/k).

Theorem 3. Assume that the conditions of Theorem 1 are satisfied and the func-
tions uk ∈ Xk

T are solutions of the following problems in Ωk:

uk(0, ·) = ϕku0 (∈ Vk);

Dtuk ∈ (Xk
T )� and for any vk ∈ Vk

〈Dtuk(t, ·), vk〉+
n∑

j=1

∫
Ωk

fj(t, x, uk(t, x),∇uk(t, x))Djvk(x)dx+∫
Ωk

f0(t, x, uk(t, x),∇uk(t, x))vk(x)dx+∫
Ωk

[ϕ1,k(t, x) + ϕ2,k(t, x) + ψk(t, x)]vk(x)dx =

〈Fk(t, ·), vk〉 for a.e. t ∈ [0, T ]

with some functions ϕ1,k, ϕ2,k, ψk ∈ Lq((0, T ) × Ωk) such that for a.e. (t, x) ∈
(0, T ) ×Ωk

g
l
(t, x, uk(t, x)) ≤ ϕl,k(t, x) ≤ ḡl(t, x, uk(t, x)), l = 1, 2

h(t, x, [H(Mkuk)](t, x)) ≤ ψk(t, x) ≤ h̄(t, x, [H(Mkuk)](t, x)).

Then the sequence (Mkuk) is bounded in XT and it has a subsequence which is
weakly convergent in XT to a function u ∈ XT satisfying (2) – (4).
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3. Boundedness and stabilization

Theorem 4. Assume that the conditions of Theorem 2 are satisfied such that c2
and k2 in A (iv) are independent of T , p > 2, ‖ F (t) ‖V � is bounded,

|g(t, x, η)|q ≤ c�4|η|2 + k�4(x), |h(t, x, θ)|q ≤ c�4|θ|2 + k�4(x)(30)

with some constant c�4 and a function k�4 ∈ L1(Ω). Further, for any u ∈ Lp
loc(Q∞)∫

Ω

|H(u)|2(t, x)dx ≤ const sup
τ∈[0,t]

∫
Ω

|u(τ, x)|2dx.(31)

Then for the solution u the function

y(t) =
∫
Ω

|u(t, x)|2dx

is bounded in (0,∞) and there exist constants c′, c” such that for sufficiently large
T1, T2 ∫ T2

T1

‖ u(t) ‖pV dt ≤ c′(T2 − T1) + c”.

Idea of the proof. Apply (3) to v = u(t, ·) and integrate over (T1, T2). Then one
obtains the inequality

y(T2) − y(T1) + c�
∫ T2

T1

[y(t)]p/2dt ≤ const
∫ T2

T1

[sup
[0,t]

|y| + 1]dt

with some constant c� > 0 which implies the assertion of Theorem 4. (See, e.g.,
the proof of Theorem 2 in [12].)

Now we formulate a theorem on the stabilization of the solution as t → ∞.
Assume that the conditions of Theorem 4 are satisfied. Consider a sequence (tl) →
+∞ and define for a solution u

Ul(s, x) = u(tl + s, x), s ∈ (−a, b), x ∈ Ω

with some fixed numbers a, b > 0. By Theorem 4 (Ul) is bounded in Lp(−a, b;V ).

Theorem 5. Let the assumptions of Theorem 4 be satisfied; assume that fj , g, h
are not depending on t, there exists a (finite) ρ such that for sufficiently large
t > 0, [H(u)](t, x) depends only on the restriction of u to (t − ρ, t) × Ω and it is
not depending on t if u is not depending on t. Further, there exists F∞ ∈ V � such
that

lim
T→∞

∫ T+1

T−1
‖ F (t) − F∞ ‖V � dt = 0.

Finally,

∃u∞ ∈ Lp(Ω) and (tl) → +∞ such that (Ul) → u∞ weakly
in Lp((−1 − ρ, 1) ×Ω).

(32)
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(u∞ is not depending on t!)
Then there is a subsequence of (tl) (again denoted by (tl)) such that for the

sequence (Ul) (defined by the subsequence (tl))

(Ul) → u∞ weakly in Lp(−1, 1;V ),(33)
(Ul) → u∞ in Lp((−1, 1) ×Ω0)(34)

for each bounded Ω0 ⊂ Ω and a.e. in (−1, 1) ×Ω.
Moreover, u∞ is a solution of the stationary problem

n∑
j=1

∫
Ω

fj(x, u∞(x),∇u∞(x))Djw(x)dx +
∫
Ω

f0(x, u∞(x),∇u∞(x))w(x)dx +

(35)

∫
Ω

[ϕ̃1(x) + ϕ̃2(x) + ψ̃(x)]w(x)dx = 〈F∞, w〉, w ∈ V

with some functions ϕ̃l, ψ̃ ∈ Lq(Ω) satisfying for a.e. x ∈ Ω

g
l
(x, u∞(x)) ≤ ϕ̃l(x) ≤ ḡl(x, u∞(x)), l = 1, 2(36)

h(x, [H(u∞)](x)) ≤ ψ̃(x) ≤ h̄(x, [H(u∞)](x)).

Remark 4. In (36) u∞ means the constant function in t, defined in an interval
(t− ρ, t). By the assumption of our theorem, H(u∞) does not depend on t.

Remark 5. The operators H, defined in Remark 2 satisfy the assumptions of The-
orem 5 if

β0(s, t, x) = β(s− t, x) for max{t− ρ, 0} ≤ s ≤ t,

β0(s, t, x) = 0 for 0 ≤ s ≤ max{t− ρ, 0}

with a function β ∈ L∞((−ρ, 0) ×Ω); t− ρ ≤ τ(t), respectively.

Remark 6. By Theorem 4 (Ul) is bounded in Lp((−1 − ρ) ×Ω) for any sequence
(tl) → +∞, hence a subsequence of (Ul) is weakly convergent to a function U ∈
Lp((−1 − ρ) ×Ω). In (32) we assume that there exists U , not depending on t.

A sufficient condition for (32) is

Dtu ∈ L2(0,∞;L2(Ω)).(37)

For the proof see [11]. In [11] there are given simple sufficient conditions for (37)
which imply a stabilization result in the case when g, h are depending on t and Ω
is bounded. The formulation and proof of this result for unbounded Ω is similar
to the case of bounded Ω.
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The sketch of the proof of Theorem 5. By Theorem 4 (Ul) is bounded in Lp(−2ρ−
1, 1;V ) thus DtUl is bounded in Lq(−ρ−1, 1;V �) which implies by (32) that there
is a subsequence of (Ul) (again denoted by (Ul)) such that

(Ul) → u∞ weakly in Lp(−ρ− 1, 1;V ) and strongly in Lp((−ρ− 1, 1) ×Ω0)
(38)

for any bounded Ω0 ⊂ Ω;

(Ul) → u∞ a.e. in (−1, 1) ×Ω.(39)

Define the functions ϕ1,l, ϕ2,l, ψl by

ϕ1,l(s, x) = ϕ1(tl + s, x), ϕ2,l(s, x) = ϕ2(tl + s, x), ψl(s, x) = ψ(tl + s, x).

Since (ϕ1,l), (ϕ2,l), (ψl) are bounded in Lq((−1, 1) ×Ω), we may assume that

(ϕ1,l) → ϕ�
1, (ϕ2,l) → ϕ�

2, (ψl) → ψ� weakly in Lq((−1, 1) ×Ω).(40)

Finally, we may assume that

Â(Ul(t)) → Y weakly in Lq(−1, 1;V �)(41)

with some Y ∈ Lq(−1, 1;V �) where the operator Â : V → V � is defined by

〈Â(v), w〉 =
n∑

j=1

∫
Ω

fj(x, v,∇v)Djw +
∫
Ω

f0(x, v,∇v)w, v, w ∈ V.

Now we apply arguments of [7]. Let

ϕ ∈ C∞0 (−1, 1), 1 ≥ ϕ ≥ 0,
∫ 1

−1
ϕ = 1, w ∈ V.(42)

Since u is a solution of (3), we have (for sufficiently large l)∫ 1

−1

∫
Ω

Ulwϕ
′dtdx+

∫ 1

−1
〈Â(Ul(t)), w〉ϕdt +(43)

∫ 1

−1

∫
Ω

(ϕ1,l + ϕ2,l + ψl)wϕdtdx =
∫ 1

−1
〈F (tl + t), w〉ϕdt.

By (38), (40) - (42) we obtain from (43) as l→ ∞∫ 1

−1
〈Y (t), w〉ϕdt +

∫ 1

−1

∫
Ω

(ϕ�
1 + ϕ�

2 + ψ�)wϕdtdx = 〈F∞, w〉.(44)

It is not difficult to costruct fuctions ϕ = ϕj satisfying (42) such that

lim
j→∞

(ϕj) = 1/2 in (−1, 1).
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Applying (44) to ϕ = ϕj , we obtain as j → ∞

1
2

∫ 1

−1
〈Y (t), w〉dt +

∫
Ω

(ϕ̃1 + ϕ̃2 + ψ̃)wdx = 〈F∞, w〉(45)

where

ϕ̃k =
1
2

∫ 1

−1
ϕ�
kdt, ψ̃ =

1
2

∫ 1

−1
ψ�dt.(46)

Now we show Y = Â(u∞). LetΩ0 ⊂ Ω be any bounded domain and ζ ∈ C∞0 (Ω)
with the properties: ζ ≥ 0, ζ(x) = 1 for x ∈ Ω0 and denote by K the support of
ζ. By (38) (for a suitable subsequence)

(Ul(t)) → u∞ in L2(K) for a.e. t ∈ (−1, 1),

hence there exist δl, εl > 0 such that (for a suitable subsequence of (Ul))

lim
l→∞

(δl) = 0, lim
l→∞

(εl) = 0, and Ul(−1 + δl) → u∞,

Ul(1 − εl) → u∞ in L2(K).
(47)

By (3) we find

1
2

∫
Ω

|Ul(1 − εl)|2ζdx−
1
2

∫
Ω

|Ul(−1 + δl)|2ζdx+
∫ 1−εl

−1+δl

〈Â(Ul(t)), Ul(t)ζ〉dt +

(48)

∫ 1−εl

−1+δl

∫
Ω

(ϕ1,l + ϕ2,l + ψl)Ulζdtdx =
∫ 1−εl

−1+δl

〈F (tl + t), Ul(t)ζ〉dt,

hence by (38), (40), (45) - (47)

lim
l→∞

∫ 1−εl

−1+δl

〈Â(Ul(t)), Ul(t)ζ〉dt =(49)

2〈F∞, u∞ζ〉 −
∫ 1

−1

∫
Ω

(ϕ�
1 + ϕ�

2 + ψ�)u∞ζdtdx =
∫ 1

−1
〈Y (t), u∞ζ〉dt.

By using arguments of [5] we obtain from (49)

∇Ul → u∞ a.e. in (−1, 1) ×Ω0

which implies by (39)

(Â(Ul)) → Â(u∞) weakly in Lq(−1, 1;V �),

i.e. Y = Â(u∞).
Finally, by (39), (40) we get (similarly to the proof of (4))

g
l
(x, u∞(x)) ≤ ϕ�

l (t, x) ≤ ḡl(x, u∞(x)), l = 1, 2

h(x, [H(u∞)](x)) ≤ ψ�(t, x) ≤ h̄(x, [H(u∞)](x))

Integrating these inequalities over (−1, 1), we obtain (36).
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The aim of the paper is to investigate the relation between a linear homoge-
neous differential equation and its nonhomogeneous variant concerning the nonos-
cillatory property. More precisely, we formulate the problem as follows.

Problem. If the homogeneous linear differential equation is nonoscillatory and
f(x) is a continuous one-signed function (i. e. f(x) ≥ 0 or f(x) ≤ 0) which is not
identically zero for large x, we ask which other properties has the homogeneous
differential equation to have so that also the nonhomogeneous differential equation
will have the nonoscillatory property.

For the simplicity we will consider the selfadjoint differential equation

y(4) + p(x)y = 0(1)

and

z(4) + p(x)y = f(x)(2)
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We assume that p(x) ∈ C([a,∞)) is nonnegative function defined on J = [a,∞)
and f(x) ∈ C([a,∞)) is a one-signed function on J not identically zero for large
x.

It follows from the assumptions about p(x) that either all solutions of (1) are
oscillatory or all are nonoscillatory [1].

Definition 1. A solution of (1) or (2) is oscillatory if it has an upper unbounded
set of zeros. A solution is nonoscillatory if it is not oscillatory.

Definition 2. Equation (1) or (2) is oscillatory if it has at least one oscillatory
solution. Otherwise the equation is nonoscillatory.

Definition 3. Equation (1) is said to be disconjugate (on an interval I) if no
nontrivial solution of (1) has more than 3 zeros (on I).

The above problem was solved for the linear differential equations of the second
order in paper [2].

Theorem 1. ([2]). Let the equation

y′′ + p(x)y = 0

be a nonoscillatory equation and let f(x) be a one-signed function not identically
zero for large x. Then the equation

z′′ + p(x)z = f(x)

is also nonoscillatory.

For the equation of higher order our problem was solved in the paper [3], where
the condition for the nonoscillatory behaviour of the homogeneous differential
equation was substituted by the condition of disconjugacy of the homogeneous
differential equation. It has to be mentioned that the disconjugacy doesn’t follow
from the nonoscillatory property.

Our problem was discussed in the paper [4] for the linear differential equations
of the n-th order, where the condition of disconjugacy is assumed for the so-called
reduced operator L̂n−1 associated to the operator Ln.

Definition 4. Equation

Lny = y(n) + a1y
n−1 + ...+ any = 0,(3)

where ai ∈ C([a,∞)), i = 1, 2, ..., n, is said to be disconjugate (on an interval I),
if no nontrivial solution of (3) has more than n− 1 zeros (on I).

Assume that the equation (3) is nonoscillatory and that Φ(x) is a nonoscillatory
solution of (3). If we set y = Φz, then for sufficiently large x we get

Lny = zLnΦ+ Φ

[
z(n) +

n−1∑
i=1

âi(x)z(n−i)
]

= zLnΦ+ ΦL̂n−1z
′,



SOME REMARKS ABOUT THE NONOSCILLATORY SOLUTIONS 619

where âi(x) depend on Φ(x). Operator L̂n−1 is called the reduced operator for Ln

associated with Φ.
Our problem is partially solved in the paper [4].

Lemma 1. ([4]). Let the equation (3) be nonoscillatory and let for solution Φ of
(3) be L̂n−1z = 0 disconjugate for large x. Let f(x) be a one-signed continuous
function on [a,∞) not identically zero for large x. Then the equation

Lny = f(x)(4)

is also nonscillatory.

In the following we will consider our problem for the equations (1) and (2).
Instead of the disconjugacy we will use the condition of selfadjointness of (1) and
the property that each solution y(x) of (1) can have at most one double zero.

We know that all solutions of (1) are of the same oscillatory character. We will
assume that all solutions of (1) are nonoscillatory.

Let be y1(x), y2(x), y3(x), y4(x) nonoscillatory solutions of (1) on J given by
the initial conditions in x0 ∈ [a,∞)

y
(j)
i (x0) =

{
1 , for j = i− 1
0 , for j �= i− 1 , i = 1, 2, 3, 4; j = 0, 1, 2, 3.(5)

These solutions form a fundamental system. Their wronskian is

W (y1, y2, y3, y4)(x) = 1.(6)

From the fact that (1) is selfadjoint it follows ([5], Chap. II,5) that the wronskians

W1 = W (y2, y3, y4)(x), W2 = W (y1, y3, y4)(x)
W3 = W (y1, y2, y4)(x), W4 = W (y1, y2, y3)(x)(7)

are solutions of (1) on J . It is easy to see that

W
(j)
k (x0) = 0,

W k−1
k (x0) = 1.

}
k = 1, 2, 3, 4, j �= k − 1,(8)

Thus

W1 = y4(x),W2 = y3(x),W3 = y2(x),W4 = y1(x).(9)

Using the method of variation of constants we get for the general solution z(x) of
(2) the expression

z(x) = c1y1(x) + c2y2(x) + c3y3(x) + c4y(x) +
∫ x

x0

A(t, x)f(t)dt,(10)
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where

A(t, x) =

∣∣∣∣∣∣∣∣
y1(t) , y2(t) , y3(t) , y4(t)
y′1(t) , y′2(t) , y′3(t) , y′4(t)
y′′1 (t), y′′2 (t), y′′3 (t), y′′4 (t)
y1(x), y2(x), y3(x), y4(x)

∣∣∣∣∣∣∣∣ , x0 ≤ t ≤ x.(11)

Respecting (7) and (8) we get

A(t, x) = −y1(x)y4(t) + y2(x)y3(t) − y3(x)y2(t) + y4(x)y1(t), x0 ≤ t ≤ x.(12)

It is evident that A(t, x) as the function of t is a solution of (1). It is easy to see
that t = x is a triple zero of the solution A(t, x). Using the expression (12) we get
from (10)

z(x) =
4∑

i=1

yi(x)
[
ci + (−1)i

∫ x

x0

y5−i(t)f(t)dt
]
.(13)

We remark that evidently
∫ x

x0
y5−i(t)f(t)dt, i = 1, 2, 3, 4, is a monotone function

in a neighbourhood of +∞.

Lemma 2. Let p(x) be continuous and nonnegative on [a,∞). Let all solutions of
the equation (1) be nonoscillatory. Then not all solutions of the equation (1) are
bounded.

Proof. Let be all solutions of the equation (1) nonoscillatory and bounded. Thus,
the solutions y1(x), y2(x), y3(x), y4(x) satisfying (5) are nonoscillatory and boun-
ded on [x0,∞). From this it folows that limx→∞ y

(j)
i = 0, i = 1, 2, 3, 4, j = 1, 2, 3

and limx→∞ yi(x) is finite. Therefore, limx→∞W (y1, y2, y3, y4)(x) = 0, which con-
tradicts the fact that W (y1, y2, y3, y4)(x) = 1 for all x ∈ [a,∞).

Lemma 3. Let be p(x) ∈ C([a,∞)) nonnegative and not identically zero on some
subinterval of [a,∞). Then every nontrivial solution y(x) of (1) has at most one
double (triple) zero point on [a,∞).

Proof. Multiplying (1) by y(x) we get y(4)y + p(x)y2 = 0 or after modification
(y′′′y − y′y′′)′ = −y′′2 − p(x)y2 ≤ 0. It means that the function F (y(x)) =
y′′′(x)y(x) − y′(x)y′′(x) is a nonincreasing one. From this the assertion of Lemma
3 follows.

Lemma 4. Let yi(x), i = 1, 2, 3, 4 be the nonoscillatory solutions of (1) satisfying
(5). Then there exists x̄ ∈ [a,∞) such that for x ≥ x̄ yi(x) �= 0, i = 1, 2, 3, 4,

W (y4, y3, y2, y1)(x) �= 0, W (y4, y3, y2)(x) �= 0,
W (y4, y3)(x) �= 0, W (y4)(x) = y4 �= 0.(14)
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Proof. It follows from the assumption of nonoscillatority of yi(x), i = 1, 2, 3, 4
that there exists x̄ > x0 such that yi(x) �= 0 for x ≥ x̄ and i = 1, 2, 3, 4.
Moreover, we know that W (y4, y3, y2, y1)(x) = const �= 0 for all x ∈ [a,∞)
and W (y4, y3, y2)(x) = −y4(x) �= 0 for x ≥ x̄. Consider the solution u(x) =
c1y4(x) + c2y3(x). Evidently, u(x0) = u′(x0) = 0, u′′(x0) = c2. Thus u(x) has no
double zero for x > x0 and therefore there doesn’t exist t > x0 such that

u(t) = c1y4(t) + c2y3(t) = 0

u′(t) = c1y
′
4(t) + c2y

′
3(t) = 0.

From this we have that W (y4, y3)(t) �= 0 for all t > x0 and therefore also for
t = x ≥ x̄. Evidently, W (y4)(x) = y4(x) �= 0 for x ≥ x̄. This ends the proof of
Lemma 4.

Lemma 5. Let be p(x), f(x) ∈ C([a,∞)), p(x) nonnegative and not identically
zero on some subinterval of [a,∞) and f(x) a one-signed function not identically
zero for large x. Then the equation (2) allows the Frobenius factorization ([6],
Chap. IV, §8, IX.)

a4(a3(a2(a1(a0z)′)′)′)′ = f(x), x ≥ x̄,(15)

where

aj(x) =
W 2

j (x)
Wj−1(x)Wj+1(x)

, j = 0, 1, 2, 3, 4,(16)

W0(x) = W−1(x) = W5(x) = 1,

Wj(x) = W (y4, ..., y5−j)(x), j = 1, 2, 3, 4.(17)

Proof. From Lemma 4 we have that for x ≥ x̄

W1(x) = W (y4)(x) = y4(x) �= 0, W2(x) = W (y4, y3)(x) �= 0,

W3(x) = W (y4, y3, y2)(x) = −y4(x) �= 0, W (y4, y3, y2, y1)(x) = 1.

Thus

a0(x) =
1

y4(x)
�= 0, a1(x) =

y24(x)
W (y4, y3)(x)

�= 0, a2(x) =
W 2(y4, y3)(x)

y24(x)
�= 0,

a3(x) =
y24(x)

W (y4, y3)(x)
�= 0, a4(x) =

1
y4(x)

�= 0,
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and (2) or (15) will have the form

1
y4(x)

 y24(x)
W (y4, y3)(x)

[
W 2(y4, y3)(x)

y24(x)

[
y24(x)

W (y4, y3)(x)

[
z(x)
y4(x)

]′]′]′′ = f(x).

(18)

Theorem 2. Let p(x), f(x) ∈ C([a,∞)), p(x) nonnegative and not identically
zero on some subinterval of [a,∞) and f(x) a one-signed function in a neighbour-
hood of +∞ not identically zero for large x. Let be equation (1) nonoscillatory.
Then the equation (2) is also nonoscilatory.

Proof. Under the given conditions on p(x) and f(x) the equation (2) can be
transformed to the equivalent equation (15) and also (18), where the functions
ai(x) �= 0, i = 0, 1, 2, 3, 4 on some neighbourhood of +∞. The nonoscillatory
character of solutions of (15) and (18) is evident.
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Abstract. Sufficient conditions are established for the existence of pos-
itive solutions and oscillation of bounded solutions of p-th order neutral
difference equations of the form

∆p[xn + anxτ(n)] + δ qnf(xσ(n)) = hn, n ∈ N(n0 ),

where δ = ±1, N(n0 ) = {n0, n0 + 1, . . . }, n0 is fixed in N = {1, 2, . . . },
a, q, h : N(n0 ) → R, τ, σ ∈ N(n0 ) → N with τ (n) < n and lim

n→∞
τ (n) =

lim
n→∞

σ(n) = ∞. Combining the sufficient conditions we are able to give

necessary and sufficient conditions for every bounded solution of the above
equation to be oscillatory or almost oscillatory. Our results improve and
generalize several oscillation criteria obtained previously.

AMS Subject Classification. 39A10, 34A11, 34A99

Keywords. Higher order neutral equations, positive solution, oscillation

1. Introduction

In this paper we consider p-th order neutral difference equations of the form

∆p[xn + anxτ(n)] + δ qnf(xσ(n)) = hn, n ∈ N(n0 ),(1)
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where δ = ±1, N(n0 ) = {n0, n0 + 1, . . . }, n0 is fixed in N = {1, 2, . . .}, a, q, h :
N(n0 ) → R, τ, σ ∈ N(n0 ) → N with τ(n) < n and lim

n→∞
τ(n) = lim

n→∞
σ(n) = ∞.

Throughout this paper it is assumed that f ∈ C(R,R).
In what follows n(s) denotes the factorial function; that is, n(0) = 1 and n(s) =

n(n− 1) · · · (n− s+ 1) for any integer s ≥ 1.
As usual a solution {xn} of equation (1) is called oscillatory if for a given

M ≥ 0, there exists n ≥ M such that xnxn+1 ≤ 0, and it is said to be almost
oscillatory if {xn} is either oscillatory or satisfies lim

n→∞
xn = 0.

The oscillatory behavior of solutions of first and second order difference equa-
tions has been extensively studied by many authors However, much less has been
done for higher order equations. For some results regarding the oscillation and
asymptotic behavior of higher order difference equation, we refer in particular to
[2]-[10] and the references cited therein. In [8], the first author of the present article
considered a special case of (1), namely, the difference equation

∆p[xn + c xn−l] + δ qnf(xn−k) = hn, n ∈ N(n0 ),(2)

where l and k are integers with l > 0, and proved that if

(C1) c �= ±1,
(C2) f satisfies Lipschitz conditions on an interval [a, b], where a and b depend

upon the range of c �= 0,

(C3)
∞∑
n(p−1)|qn| <∞,

(C4)
∞∑
n(p−1)|hn| <∞,

then (2) has a positive solution, and if

(H1) xf(x) > 0 for all x �= 0,
(H2) qn ≥ 0 with infinitely many positive terms,
(H3) there exists an oscillatory function ρ on N such that ∆pρn = hn and

lim
n→∞

∆jρn = 0 for j = 0, 1, . . . , p− 1,

(H4)
∞∑
n(p−1)qn = ∞,

then every bounded solution {xn} of (2) is oscillatory when (−1)pδ = 1, and almost
oscillatory when (−1)pδ = − 1.

Later the same author [9] gave a necessary and sufficient condition for the
oscillation of bounded solutions of (1) when τ(n) = n − l, σ(n) = n − k, and
−b0 ≤ cn ≤ −b1 < −1, where b0 and b1 are fixed real numbers. The dependence
mentioned in (C2) was obtained as a/b < (b1 − 1)/b0.

A similar result was also established in [7] for equation (1) when p is even,
τ(n) = n − l, σ(n) = n − k, hn ≡ 0, and 0 ≤ cn < b2 < 1. Instead of (H4), they
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had imposed the condition that

∞∑
qnf

((n− k
2p−1

)p−1)
= ∞.

Our purpose here in this paper is to find sufficient conditions for the existence of
positive solutions and oscillation of bounded solutions of equation (1), and thereby
establish necessary and sufficient conditions for oscillation or almost oscillation of
bounded solutions of equation (1).

For simplicity we first consider the difference equation

∆p[xn + c xτ(n)] + δ qnf(xσ(n)) = 0, n ∈ N(n0 )(3)

in sections 2 and 3, and next extend the results obtained to equation (1) in section
4.

2. Existence of positive solutions

In this section we are concerned with the existence of positive solutions of neutral
type difference equations of the form (3). It will be proved that (3) has a positive
solution when |c| �= 1 provided that the function f satisfies a Lipschitz condition
on an interval [a, b], where a and b are arbitrary positive real numbers.

Theorem 1. If (C1) and (C3) hold and

(C̄2) for some positive numbers a and b, the function f satisfies the Lipschitz
condition with a constant L on the interval [a, b],

then equation (3) has a positive solution.

Proof. Let K = max {|f(x)|/|x| : a ≤ x ≤ b} and M = max {K,L}.

We first consider the case |c| < 1. Because of (C3), there exists a sufficiently
large integer n1 ≥ n0 such that

∞∑
s=n1

s(p−1)|qs| <
(p− 1)!
Mb

β, β =
(b− a)(1 − |c|)

2
,(4)

and such that τ(n) ≥ n0 and σ(n) ≥ n0 for all n ∈ N(n1 ).

We introduce the Banach Space

Y =
{
x : sup

n≥N0

|xn| <∞
}

with the norm
||x|| = sup

n≥N0

|xn|,
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where N0 = infn≥n1 {τ(n), σ(n)}.

Set X = {x ∈ Y : a ≤ x ≤ b}. It is clear that X is a bounded, convex and
closed subset of Y . Define an operator S : X → Y by

Sxn = α− c xτ(n) +
(−1)p

(p− 1)!

∞∑
s=n

(s+ p− 1 − n)(p−1)qsf(xσ(s)), n ≥ n1

= Sxn1 , N0 ≤ n ≤ n1,

where

α =
(b+ a)(1 + c)

2
.

We shall show that S is a contraction mapping on X . We prove this when
0 ≤ c < 1, the case −1 < c < 0 is similar. It is easy to see that S maps X into
itself. In fact, for x ∈ X , n ≥ n1, using (4) it follows that

Sxn ≥ α− c b− β = a

and

Sxn ≤ α− c a+ β = b,

and hence Sx ∈ X . To show that S is a contraction, let x, y ∈ X . It is easy to see
that

|Sxn − Syn| ≤ c |xτ(n) − yτ(n)|

+
M

(p− 1)!

∞∑
s=n

(s+ p− 1 − n)(p−1)|qs||xσ(s) − yσ(s)|

≤ c||x− y|| +
β

b
||x− y||,

and so
||Sx− Sy|| ≤ (c+

β

b
)||x− y||.

Since c + β/b < 1, S is a contraction on X . It follows that S has a fixed point
x ∈ X , that is, Sx = x. It is easy to check that x is a positive solution of equation
(3).

Suppose that |c| > 1. In this case we fix

β =
(b− a)(|c| − 1)

2|c|

and let n1 be so large that

∞∑
s=τ−1(n1)

s(p−1)|qs| <
(p− 1)!
Mb

|c|β.(5)
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Define an operator S : X → Y as follows:

Sxn =
1
c

[α− xτ−1(n) +
(−1)p

(p− 1)!

∞∑
s=τ−1(n)

(s+ p− 1 − τ−1(n))(p−1)qsf(xσ(s))],

n ≥ n1

= Sxn1 , N0 ≤ n ≤ n1

where

α =
(b+ a)(1 + c)

2
.

We may claim that S is contraction onX . We shall prove our claim when c > 1,
the case c < −1 is similar. In view of (5) we see that

Sxn ≥ α

c
− b

c
− β = a

and

Sxn ≤ α

c
− a

c
+ β = b.

Thus we have Sx ∈ X . It is not also difficult to see that if x, y ∈ X then

|Sxn − Syn| ≤
1
c
|xτ−1(n) − yτ−1(n)|

+
1
c

M

(p− 1)!

∞∑
s=τ−1(n)

(s+ p− 1 − τ−1(n))(p−1)|qs||xσ(s) − yσ(s)|

≤ (
1
c

+
β

b
)||x− y||.

Since 1/c+ β/b < 1, S is a contraction on X . This completes the proof.

3. Oscillation of bounded solutions

In this section we investigate the oscillation behavior of bounded solutions of (3)
and establish necessary and sufficient conditions under which every solution {xn}
of (3) is either oscillatory or almost oscillatory.

The following lemmas will be needed in the proof of our theorems. The first
three of them can be found in [1]. The last one is essentially new and may be of
interest for other studies as well.

Lemma 1. Let {yn} and {∆pyn} be sequences defined on N(n0 ) with yn∆pyn < 0
on N(n0 ). Then there exists an integer l, 0 ≤ l ≤ p − 1, with p − l odd such that
for n ∈ N(n0 ),

yn∆
jyn > 0, j = 0, 1, . . . , l,

(−1)j−lyn∆jyn > 0, j = l + 1, . . . , p− 1.
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Lemma 2. Let {yn} and {∆pyn} be sequences defined on N(n0 ) with yn∆pyn > 0
on N(n0 ). Then for n ∈ N(n0 ), either

yn∆
jyn > 0, j = 1, . . . , p

or there exists an integer l, 0 ≤ l ≤ p− 2, with p− l even such that for n ∈ N(n0 ),

yn∆
jyn > 0, j = 0, 1, . . . , l,

(−1)j−lyn∆jyn > 0, j = l + 1, . . . , p− 1.

Lemma 3. If {yn} is a sequence defined on N(n0 ), then

n−1∑
s=n1

s(p−1)∆pys =
p∑

k=1

(−1)k+1∆k−1s(p−1)∆p−kys+k−1|ns=n1
.

Lemma 4. Let g be a continuous monotone function such that lim
n→∞

g(n) = ∞.
Set

zn = xn + anxg(n).(6)

If xn is eventually positive, lim inf
n→∞

xn = 0 and lim
n→∞

zn = ] ∈ R exists, then ] = 0

provided that for some real numbers b1, b2, b3 and b4 the sequence {an} satisfies
one of the following:

(a) b1 ≤ an ≤ 0, (b) 0 ≤ an ≤ b2 < 1, (c) 1 < b3 ≤ an ≤ b4.

Proof. We see from (6) that

zg−1(n) − zn = xg−1(n) + ag−1(n)xn − xn − anxg(n)

and so

lim
n→∞

{
xg−1(n) + ag−1(n)xn − xn − anxg(n)

}
= 0.(7)

Let {nk} be a sequence of real numbers such that

lim
k→∞

xnk
= 0.(8)

Assume that (a) holds. It follows from (7) and (8) that

lim
k→∞

{
xg−1(nk) − ank

xg(nk)

}
= 0.

As xg−1(nk) > 0 and −ank
xg(nk) ≥ 0, we see that

lim
k→∞

xg−1(nk) = 0
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and so from (6) we get

] = lim
k→∞

zg−1(nk) = lim
k→∞

{
xg−1(nk) + ag−1(nk)xnk

}
= 0.

Assume that (b) holds. By replacing n by g(n) in (7) and using (8) we have

lim
n→∞

{
xn + anxg(n) − xg(n) − ag(n)xg(g(n))

}
= 0.(9)

It is clear from (8) and (9) that

lim
k→∞

{
[ank

− 1]xg(nk) − ag(nk)xg(g(nk))

}
= 0

and so
lim
k→∞

xg(nk) = 0.

Thus,
] = lim

k→∞
zg(nk) = lim

k→∞

{
xg(nk) + ag(nk)xg(g(nk))

}
= 0.

Finally, let (c) be satisfied. Replacing n by g−1(n) in (7) and using (8) leads to

lim
k→∞

{
xg−1(g−1(nk)) + [ag−1(g−1(nk)) − 1]xg−1(nk)

}
= 0

and hence

lim
k→∞

xg−1(nk) = 0.(10)

In view of (6) and (10), it follows that

] = lim
k→∞

zg−1(nk) = 0.

This completes the proof.

Theorem 2. Suppose that (H1), (H2) and (H4) hold.

(i) If c ≥ 0 and c �= 1, then every bounded solution {xn} of (3) is oscillatory when
(−1)pδ = 1, and is almost oscillatory when (−1)pδ = −1.

and

(ii) If c < −1 and inf
n≥0

[n − τ(n)] > 0, then every bounded solution {xn} of (3) is

oscillatory when (−1)pδ = −1, and is almost oscillatory when (−1)pδ = 1.

Proof. Suppose on the contrary that {xn} is a nonoscillatory bounded solution of
(3). Without loss of generality we may assume that {xn} is eventually positive.
Set

zn = xn + c xτ(n).
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Clearly, {zn} is bounded and

δ∆pzn = −qnf(xσ(n)) < 0.(11)

Let c ≥ 0 and c �= 1. It is obvious that {zn} is eventually positive and
δzn∆

pzn < 0. Applying Lemma 1 and Lemma 2 we see that there exist n1 and
integer l ∈ {0, 1} with (−1)p−lδ = −1 such that

∆kzn > 0, k = 0, 1, . . . , l
(−1)k−l∆kzn > 0, k = l, l+ 1, . . . , p− 1(12)

for all n ≥ n1. Multiplying (3) by s(p−1) and summing from n1 to n− 1 we obtain

n−1∑
s=n1

s(p−1)δ∆pzs +
n−1∑
s=n1

s(p−1)qsf(xσ(s)) = 0.(13)

Applying Lemma 3 to the first term in the left side of (13) we have

n−1∑
s=n1

s(p−1)δ∆pzs =
p−1∑
k=1

(−1)k+1δ∆k−1s(p−1)∆p−kzs+k−1|ns=n1

+ (−1)p+1δ∆p−1s(p−1)δ∆p−pzs+p−1|ns=n1

=
p−1∑
k=1

(−1)k+1δ∆k−1n(p−1)∆p−kzn+k−1

+ (−1)p+1δ(p− 1)![zn+p−1 − zn1+p−1] −K(14)

where in view of (12)

K =
p−1∑
k=1

(−1)k+1δ∆k−1n
(p−1)
1 ∆p−kzn1+k−1 ≥ 0.

Using (14) in (13) leads to

n−1∑
s=n1

s(p−1)qsf(xσ(s)) ≤ K + (−1)pδ(p− 1)![zn+p−1 − zn1+p−1].(15)

Since {zn} is bounded and (H4) holds, we obtain from (15) that

lim inf
n→∞

f(xn) = 0

or
lim inf
n→∞

xn = 0.

It follows from Lemma 4 that ] = lim
n→∞

zn = 0. But ] = 0 is possible only when

l = 0, since in the case l = 1, {zn} being positive and increasing cannot approach
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zero. This means that bounded solutions of (3) must be oscillatory when (−1)pδ =
1. It is clear that if ] = 0, then in view of 0 < xn ≤ zn we have

lim
n→∞

xn = 0.

Suppose that c < −1. We claim that {zn} is eventually negative. Otherwise,
for sufficiently large values of n, xn > −c xτ(n). Replacing n by τ−1(n), using
mathematical induction one can see that

xrm(n) > (−c)mxn,(16)

where
r1(n) = τ−1(n) and rm(n) = τ−1(rm−1(n)) for m ≥ 2.

We shall show that lim
m→∞

rm = ∞. In that case since {xn} is bounded we get

a contradiction. We first notice that τ(n) < n and so r1(n) > n. In view of
inf
n≥0

[n − τ(n)] > 0 there exists ε > 0 such that r1(n) > n + ε. By mathematical

induction we obtain

rm(n) > n+mε

and hence lim
m→∞

rm = ∞. Therefore {zn} is eventually negative. Since

δ∆pzn = −qnf(xσ(s)) < 0

we have δzn∆pzn > 0. Applying Lemma 1 and Lemma 2 it follows that there are
n1 and l ∈ {0, 1} with (−1)p−lδ = 1 such that

∆jzn < 0, j = 0, 1, ....l,
(−1)j−l∆jzn < 0, j = l + 1, . . . , p− 1.

Using the arguments of the previous case we see that

lim inf
n→∞

xn = 0

and hence by Lemma 4, ] = lim
n→∞

zn = 0. Moreover, we observe as in the previous
case that ] = 0 is possible only when l = 0. In this case since zn < 0 it follows
that for a given ε > 0 there exists an n2 so large that

zn > −ε for n ≥ n2.

This means that

xn > −ε− c xτ(n) for n ≥ n2.(17)

If we define c̃ = −1/c, then we see from (17) that

xn < c̃ ε+ xr1(n).
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It follows that

xn < (c̃+ c̃2 + · · · c̃m)ε+ c̃m xrm(n)

and therefore

xn <
c̃

1 − c̃ ε+ c̃m xrm(n).(18)

In view of 0 < c̃ < 1 we easily deduce from (18) that lim
n→∞

xn = 0. This completes
the proof.

In view of Theorem 1 and Theorem 2, we obtain a necessary and sufficient
condition for oscillation of bounded solutions of (3), which gives an improvement
of the theorem given in Section 1.

Theorem 3. Let (H1), (H2) and (C̄2) be satisfied. Then the conclusion of Theo-
rem 2 holds if and only if (H4) is satisfied.

4. Some generalizations

In this section we extend the results obtained for equation (3) to equation (1).
Since the proofs are similar, we will omit the details.

Theorem 4. Suppose that (C3) and (C4) are satisfied, and (C2) holds with posi-
tive real numbers a and b satisfying the following:

(A) a/b < (b2 + 1)/(b1 + 1), when b1 ≤ an ≤ b2 < −1,
(B) a/b < (b1 + 1)/(b2 + 1), when −1 < b1 ≤ an ≤ b2 ≤ 0,
(C) a/b < (1 − b2)/(1 − b1), when 0 ≤ b1 ≤ an ≤ b2 < 1,
(D) a/b < (b1 − 1)/(b2 − 1), when 1 < b1 ≤ an ≤ b2,

where b1 and b2 are real numbers.
Then equation (1) has a positive solution.

Proof. Let K = max {|f(x)|/|x| : a ≤ x ≤ b} and M = max {K,L}.
We first consider case (A). Let

β =
b(b2 + 1) − a(b1 + 1)

2b2
.

In view of (C3) and (C4) we can find sufficiently large n1 ≥ n0 such that if n ≥ n1
then

∞∑
s=τ−1(n1)

s(p−1)|qs| <
(p− 1)!β

2Mb
(−b2)(19)
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and

∞∑
s=τ−1(n1)

s(p−1)|hs| <
(p− 1)!β

2
(−b2).(20)

We may assume that τ(n) ≥ n0 and σ(n) ≥ n0 for all n ≥ n1.

We introduce the Banach Space

Y =
{
x : sup

n≥N0

|xn| <∞
}

with the supremum norm
||x|| = sup

n≥N0

|xn|,

where N0 = infn≥n1 {τ(n), σ(n)}. Let

X = {x ∈ Y : a ≤ x ≤ b} .

It is clear that X is a bounded, convex and closed subset of Y .

Define an operator S : X → Y by

Sxn =
1

aτ−1(n)
[α− xτ−1(n) +

(−1)p

(p− 1)!

∞∑
s=τ−1(n)

(s+ p− 1 − τ−1(n))(p−1)qsf(xσ(s))

+
(−1)p−1

(p− 1)!

∞∑
s=τ−1(n)

(s+ p− 1 − τ−1(n))(p−1)hs], n ≥ n1

= Sxn1 , N0 ≤ n ≤ n1,

where

α =
b(b2 + 1) + a(b1 + 1)

2
.

We shall show that S is a contraction mapping on X . It is easy to show that S
maps X into itself. In fact if x ∈ X then, because of (19) and (20), it follows that

Sxn ≤ −1
b2

[−α+ b− b2β] = b

and

Sxn ≥ −1
b1

[−α+ a+ b2β] = a.

Therefore SX ⊆ X .
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To show that S is a contraction, we take x, y ∈ X . Obviously,

|Sxn − Syn| ≤
−1
b2

|xτ−1(n) − yτ−1(n)|

+
M

(−b2)(p− 1)!

∞∑
s=τ−1(n)

s(p−1)|qs||xσ(s) − yσ(s)|

≤ (
−1
b2

+
β

2b
)||x− y||.(21)

Since
−1
b2

+
β

2b
< 1, S is a contraction on X , and therefore there exists a fixed

point x ∈ X such that Sx = x. It can easily be verified that x is a positive solution
of equation (1). This completes the proof in the case when (A) is satisfied.

To prove the theorem for the cases (B), (C), and (D) we need only to make
the following modifications on β, α and S in each case:

Case (B) :

β =
b(b1 + 1) − a(b2 + 1)

2
, α =

b(b1 + 1) + a(b2 + 1)
2

,

Sxn = α− anxτ(n) +
(−1)p

(p− 1)!

∞∑
s=n

(s+ p− 1 − n)(p−1)qsf(xσ(s))

+
(−1)p−1

(p− 1)!

∞∑
s=n

(s+ p− 1 − n)(p−1)hs, n ≥ n1

= Sxn1 , N0 ≤ n ≤ n1,

where n1 is chosen so large that
∞∑

s=n1

s(p−1)|qs| <
(p− 1)!

2Mb
β,(22)

∞∑
s=n1

s(p−1)|hs| <
(p− 1)!

2
β(23)

for all n ≥ n1.
Case(C) :

β =
b(1 − b2) − a(1 − b1)

2
, α =

b(b2 + 1) + a(b1 + 1)
2

,

S is defined as in the case (B), and (22) and (23) are satisfied for all n ≥ n1.

Case(D):

β =
b(b1 − 1) − a(b2 − 1)

2b1
, α =

b(b1 + 1) + a(b2 + 1)
2

,
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S is defined as in the case (i), and

∞∑
s=τ−1(n1)

s(p−1)|qs| <
(p− 1)!

2Mb
βb1

∞∑
s=τ−1(n1)

s(p−1)|hs| <
(p− 1)!

2
βb1

for all n ≥ n1.

The next theorem is a generalization of the results given in Theorem 2 to
equation (1). For a similar result and especially the technique about handling the
difficulty of having a forcing term, we refer the reader to [8,9].

Theorem 5. Suppose that (H1) - (H4) hold.

(i) If 0 ≤ an ≤ b2 < 1 or 1 < b1 ≤ an ≤ b2, then every bounded solution
{xn} of (1) is oscillatory when (−1)pδ = 1, and is almost oscillatory when
(−1)pδ = −1.

(ii) If b1 ≤ an ≤ b2 < −1 and inf
n≥0

[n − τ(n)] > 0, then every bounded solution

{xn} of (1) is oscillatory when (−1)pδ = −1, and is almost oscillatory when
(−1)pδ = 1.

Finally, by combining Theorem 4 and Theorem 5 we obtain the following nec-
essary and sufficient condition for oscillation of bounded solutions of (1).

Theorem 6. Suppose that (C4), (H1) - (H3) hold, and that (C2) is fulfilled on
[a, b], where a and b are as in (A), (C), and (D). Then the conclusion of Theorem
5 holds if and only if (H4) is satisfied.

Remark 1. In this paper we have assumed that {an} is bounded away from ±1. It
is not difficult to provide specific examples showing that this assumption cannot
be dropped. Therefore, finding similar results concerning (1) when {an} is not
bounded away from ±1 seems to be very interesting.
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Michal Greguš, Jr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Third Order BVP on Infinite Interval

Josef Kalas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Lyapunov functions in uniqueness and nonuniqueness theorems

Norbert Koksch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
A Modified Strong Squeezing Property
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Vladimir Răsvan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
Stability Zones for Discrete Hamiltonians

Andrei Ronto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
A Note on the Periodicity in Difference Equations
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