ON QUADRATICALLY INTEGRABLE SOLUTIONS OF THE SECOND ORDER LINEAR EQUATION

T. Chantladze, N. Kandelaki and A. Lomtatidze

Address. T. Chantladze and N. Kandelaki,
                N. Muskhelishvili Institute of Computational Mathematics, Georgian Academy of Sciences, 8, Akuri St., 380093 Tbilisi, GEORGIA

               A. Lomtatidze, Department of Mathematical Analysis, Masaryk University, Janackovo nam. 2a, 662 95 Brno, CZECH REPUBLIC

E-mail: bacho@math.muni.cz

Abstract. Integral criteria are established for $\dim V_i(p)=0$ and $\dim V_i(p)=1, i\in \{0,1\}$, where $V_i(p)$ is the space of solutions $u$ of the equation
                $$ u''+p(t)u=0 $$ satisfying the condition $$ \int^{+\infty}\frac{u^2(s)}{s^i}ds<+\infty\,. $$

AMSclassification. 34C11

Keywords. Second order linear equation, quadratically integrable solutions, vanishing at infinity solutions