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LATTICE-THEORETICALLY CHARACTERIZED
CLASSES OF FINITE BANDS

R. THRON AND J. KOPPITZ

ABSTRACT. There are investigated classes of finite bands such that their subsemi-
group lattices satisfy certain lattice-theoretical properties which are related with
the cardinalities of the Green’s classes of the considered bands, too. Mainly, there
are given disjunctions of equations which define the classes of finite bands.

1. INTRODUCTION AND SUMMARY

For a semigroup S let L(S) be the subsemigroup lattice of S with the usual
lattice operations V and A.

In the following let 1 < n € N (where N is the set of the natural numbers) and
SDy (n) be the class of all finite bands (i.e., finite idempotent semigroups) S such
that for T, A, By, ... , B, € L(S) the following implication holds: If

T=AVBy=...=AVB,,

then
T=Av\/{B;ABj: 0<i<j<n}.

Obviously, the class SDy (1) is equal to the class of all finite bands such that
their subsemigroup lattices are V-semidistributive or satisfy the so-called Jénsson
condition (cf. [3, 5, 6]), respectively.

Moreover, let AE(n) be the class of all finite bands S such that for A € L(S)
and g, ... ,i, € S\ A the following implication holds: If

AVig=AVii=...=AVi,,
then
{io, ... sin}t| <n

where AV i denotes AV {i} fori e S.
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The class AE(1) is equal to the class of all finite bands such that their subsemi-
group closure operators have the anti-exchange property (cf. [1]). Therefore, the
class AE(1) concides with the class of all finite so-called filtered bands, i.e., the
class of all finite bands S such that each T € L(S) has the least generating set
with respect to inclusion (cf. [5, 6]). A set U is called to be a generating set of T
if and only if U € T and T = (U) where (U) is the subsemigroup of S generated
by U.

For example, the finite left zero semigroups, right zero semigroups and semilat-
tices are finite filtered bands.

In the following it is proved that the classes SDy(n) and AE(n) coincide.

Moreover, there are given disjunctions of equations which define the classes
SDy(n) and AE(n), respectively.

For this let X := {z} U{x;:7 € N} U{y;:7 € N} be a (countable) set of variables
and X be the free semigroup on X. Let S be a band and A € Xt xXT,i.e., Aisa
set of equations. Then it is said that A holds in S disjunctively, in symbols: ApS,
if and only if for each homomorphism f from X* into .S there exists an equation
(p, q) € A such that the equality f(p) = f(q) is fulfilled (cf. [2]).

Let U be a class of bands. Then U is called to be disjunctively defined if and
only if there exists a system 2 of sets A S X x X* such that U is equal with the
class of all bands S where ApS for each A € 2, in symbols: ¥ = MOD ().

For Y S X and e € N let Y¢ C XT defined as follows:

Yei={y1...%:v1,..., €Y, 1<i<e} fore>1and YO:=90.
Let

Fi(n) :={(xm .. -x0)(xn...x0)z: 0 <m < n},
Fa(n):={zo---yn)@Wo---ym): 0=m =n},
Fz(n) == {(zm ... 20)(@n ... 20)2(Yo - - Yn) (Yo - - - Ym): 0 =m = n}.

Then for natural numbers e and ¢ = 1,2, 3 let

Ai(n) = {(p,q): p,q € Fi(n), p#d},
Bi(n,e) :={(zn...20)z} x {x0,... ,20}°,
Ba(n,e) == {z(yo--.yn)} X {yo, ..., yn}",
Bs(n,e) :={(zn...20)2(Yo---Yn)} X {Zoy- -, Tny Yoy, Yn}s
Ci(n,e) := A;(n) UB;(n,e),
€(n,e) :={Ci(n,e), Ca(n,e), Cs(n,e)}.

Let
W, : = MOD(E(n,e)).

Then for each finite band S it holds S € SDy(n) if and only if there is a natural
number e such that S € 20, ..
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Let D be that Green’s relation on a band S defined as follows: For a,b € S it is
aDb if and only if a = aba and b = bab (cf. [4]). Moreover, let S/D be the system
of the D-classes or Green’s classes (with respect to D) of S, respectively.

Then for each finite band S the following holds: It is |[D| =< n for each D €
S/D if and only if S € W, 0 or S x F € SDy(n) for each finite semilattice F,
respectively.

Consequently, for a finite band S it is S € 20, ¢ if and only if (with respect
to the notations in Petrich’s structural theorem) S is a finite semilattice Y of
rectangular bands S, (which are the Green’s classes of S) such that |S,| < n for
v €Y (cf. Theorem 1, [4]).

2. RESULTS

At first it is proved that for each natural number n = 1 the classes SD\ (n) and
AE(n) coincide.
For this let GEN(T') be the system of all generating sets of some T' € L(S).

Proposition 1. Let S be a finite band and 1 < n € N. Then the following
statements are equivalent:

(i) S € SDy(n).

(ii) S € AE(n).

Proof. (i)=(ii): Let S € SDy(n), A € L(S) and ig, ... ,i, € S\ A. Then for
TZ:AViOZAVil = ...:A\/in
it is T' # A. By the assumption it follows
T:A\/\/{{ik}/\{il}: 0<k<l<n}.
Therefore, |{io,... ,in}| Snand S € AE(n).

(ii) = (i): Let S € AE(n), T € L(S). Obviously, for X € T it holds X €
GEN(T) if and only if for each maximal subsemigroup 77 € T with T'\ T # 0 it
is (T\T"NX #0.

Moreover, |T'\ T’| < n. Otherwise, there exist ig,... ,i, € T \ T’ such that
Hio,.-. ,in}t =n—+1and

T Vig=T'Vii=...T'Vi,,

contradicting S € AE(n).
Let T, A, By, ... , B, € L(S) with

T—AVBy=..—AVB,,
ie, AUBy,... , AUB, € GEN(T) and

(T\T"YN(AUBy) #0,...,(T\T" )N (AU B,) # 0.
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Then (T\T") N (AUU{B; N Bj: 0<i<j<n})#£0: If (T\T)N A0, the
assertion follows, directly. If (T\T")NA = 0, then (T\T")NB; # 0 fori =0,... ,n
by the assumption. Because |T'\ 7| < n it holds (T'\ T") N B; N B; # 0 for some
1,7 with 0 £ ¢ < j7 £ n and the assertion follows.

Consequently,

AU J{BinB;: 02 i< j<n}eGEN(T)

and the statement holds. O

Example. For 1 < n € N let L,, be the semigroup ({0,...,n},0) withaob=a
for a,b € {0,...,n}. Moreover, let F' be the semigroup ({0,1},-) with the usual
multiplication. Then the direct product S, := L, x F is a finite band with
Sp € AE(n+1) and S, ¢ AE(n).

(a) It holds S, € AE(n + 1): Otherwise, there exist some A € L(S,) and
10y - vv 5int1 € Sn\A with |{i0,... ,in+1}| =n+2andi € A\/j for i,5 €
{805+ s fnt1}-

It is {i0, ... ,ing1} & Ly x {0} or {i0,... yint1} € Ly x {1}. Otherwise, there
exist some i € L, x {1}, j € L,, x {0} with ¢, j ¢ A and i € AV j, a contradiction.

Therefore, |{ig,... ,int1}| < n+ 1, contradicting the assumption.

(b) It holds S, ¢ AE(n): For this let A = L, x {1} and io = (0,0),...,
in = (n,0) € S,\A. Then [{io,...,in}| =n+landi e AVjfori,j € {io,...,in}.
From this it follows the assertion. g

From the Example and Proposition 1 it follows

Proposition 2. For each natural number n 2 1 it is

Now it is shown that the class SDy (n) is equal to the class of all finite bands
S such that S € 20,, . for some natural number e.

Proposition 3. Let S be a finite band and 1 < n € N. Then the following
statements are equivalent:
(i) S € SDy(n).
(il) S € W, ¢ for some e € N.
Proof. (i)=(ii): Let S € SDy(n). Clearly, S € AFE(n) by Proposition 1.
Moreover, C1(n,e)pS and Ca(n,e)pS and Cs(n,e)pS for e = |S|.
Otherwise, for k = 1,2 or 3 it holds: There exists a homomorphism fj from X
into S such that for each (p,q) € Cr(n,e) it is fr(p) # fx(q).
Let fr(x;) =s; €8, fu(y;)) =t; € Sfori e Nand fr(z) =ce€S.
For k =1 let
i0=(8n...80)cC,
im = (Sm—1---50)(Sn .. S0)C

where 1 Em < nand A = (sg,...,8n).
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For k =2 let
10 = C(to. tn),
im = C(t() .. .tn)(t() . ..tmfl)
where 1 Em < nand A = (tg,... ,tn)-
For k =3 let

i0 = (Sn...s0)c(to .. .tn),

Z'm = (S'm.—l . So)(sn e So)C(to . tn)(to .. -tm—l)

where 1 Sm < nand A= (sg,...,Sn, to,.-. ,tn).
Because of (U) = {u1...usiu1,... ,u; €U, 1 Si< e} for U S S and e= |5]
it follows |{ig,... ,in}| =n+1 with ip,... ,i, € S\ 4 and

AVig=AVii=...=AVi,,
contradicting S € AE(n). Consequently,
S € MOD(€(n,e)) =Wp,e

for e = |S|.

(ii)=(i): Let S € 20, with e € N, A € L(S) and ig,... ,i, € S\ A such
that
AVig=AVi1=...=AVi,.

In the following it is proved that |{ig,... ,in}| =< n.
There hold the following implications (I), (II) and (III).

(1) If

10 = Spipnhy with h, € AV i, and s, € A,

im = Sm—1tm—1Am—1 with h,,_1 € AVi,_1 and s,_1 € A
where 1 £ m < n, then (s, ...50)ip = ip and from
(8k---50)(8n-.-50)i0 = (51...50)(Sn - S0)io
for some integer numbers k, ! with —1 < k <! < n —1 it follows that {ig41,4141}

is a right zero semigroup : By successively substitutions of the ig,... i, in the
right hand sides of the above equations one gets

i() = (Sn e So)io(h() .. hn) s
im = (Sm_1 e So)(Sn .. .So)io(ho e hn)(ho . hm—l)

where 1 £ m < n.



Clearly, (s,

i1 = (Sk -
k1 = (Sk -
i1 = (st
= (s ..
Therefore, ig19+1 =
semigroup.
(IT) If

R. THRON, J. KOPPITZ

.S())i() = io and

s0)(s
)(8

S

S

.. 80)i0(ho
.. 80)i0(ho
)(Sn .

i1 and Gj410k41 = Tkt1, 1€

S())i()(h()

50)i0(ho

) (ho ..
)2 (ho ..
T (ho ..
) (ho ...

10 = Gnint, with g, € AVi, and t, € A,

Z.rn - gm—lim—ltm—l

where 1 £ m < n, then ig(tg. .. tn)

io(t() -

to)(to. ..

tk)

with gm—1 € AV Tm—1

= {9 and from

io(to ..

ta)(to .

ha),
hi),
h1)
hi).

{ik+1, %141} 1s a right zero

and t,_1 € A

.tl)

for some integer numbers k, ! with —1 < k <1 < n — 1 it follows that {igt+1,4141}

is a left zero semigroup: By successively substitutions of the ig, ... ,

hand sides of the above equations one gets

ioz(gn...

Im = (gm71~'~

where 1 < m < n.
Clearly, io(to

gk - -

go)io(to - ..

..tn) = io and

-90)(gn - -

-90)(971 .-
- 90 )(gn .-

t")v

. go)io(to .

.go)io(t() ..

.90)%io(to .. .
-go)io(to -
go)io(t() ..

Therefore, 4410541 = 4141 and ig41841 = Igt1, i€,

i1 = (gr -
lt1 = (
Zl+1 = (gl ..
= (g1 -
semigroup.
(III) If
Z.0 = SninQnintn

im

where 1 £ m < n, then (s,

(sk---50)(sn - --

Smflimfl%’nflimfltmfl

So)io(to .o

with ¢, € AVi,

. S())i()(t() ..

to)(to ...

and

tn)

Sn,tn € A,
with ¢n_1 € AVim_1

..80)(8p ... 8

in in the right

) (to 1)
ta)(to .. tr),
to)(to .. tr),
) (to .. 1)
t)(to - ).

{ik+1, 141} 1s a left zero

and S;,_1,tm_1 €A

= {9 and from
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for some integer numbers k, ! with —1 < k <1 < n —1 it follows that {ig41,4141}
is a left zero semigroup as well as a right zero semigroup, i.e., {511 = 4;41:

By successively substitutions of the ig,... ,%, in the right hand sides of the
above equations one gets

io = (sn---s0)io(ho - - hn),
im = ( )( SQ)Z()(h() hn)(h() . hmfl)

io = (gn . .go)io(fo “ee tn) 5

im = (gm—l e gO)(gn e go)io(fo e tn)(to e tm—l)
where ¢g; = s54;¢;, 0 j<n, 1 <m < n.
Obviously,

io = (Sn e S())i(), io = io(to .. .tn) and i() = (Sn . S())i()(t() .. .tn).
Therefore,

ik+1 = Sk...SO)(Sn...SQ)iQ( hn)(ho...hk),
ik+1 = Sk...SO)(Sn...SQ)iQ( hn)z(ho...h )
il+1 =(Sr... So)(Sn e So)io( hn)( )

Vel

Sl...S())(Sn... ())i()(t . tn)(t() )( tn)(hohn)(hohl)
SkSo)(SnSO Zo( tn)(to )( tn)(hohn)(hohl)
Sk...S())(Sn...S() io( hn)(h() )

Consequently, ix+19+1 = 941 and 4j410g+1 = Gkt1, .., {ix41,%+1} is a right zero
semigroup.
Analogously, it follows

k41 = (gr---90)(gn - - go)io(to ... tn)(to .. . tr),
i1 = (gk ---90)(Gn - - - 90)%i0(to - - - tn)(to .- . i),
il+1 = (gl . -90)(971 .o .go)io(to . tn)(to eee tk) .

Hence, ij419k+1 = 441 and ig1941 = 41, 1€, {igt1,%41} is a left zero semi-
group. Finally, ig11 = 441-
Furtherly, it hold the following statements:
(a) If thereexist i, € {io,... ,in} such that i = jpj, j = s(iqi) with p € AVj,
g€ AVviand s € A, then i = s(iqi)pj = s(jpiqjpj).
(b) If there exist ¢, 5 € {ig, ... ,in} such that i = jpj, j = (igi)t withp € AV,
g€ AVviandt e A, then i = jp(igi)t = (jpjiqipj)t.
(c) If there exist 4,j € {io,...,in} such that i = s(jpj), j = (igi)t with
peEAV), q€ AViand s,t € A, then
i = sjp(iqi)t = sjp(sjpj)a(sipi)t = s(jpjqsipi)t,
J = s(jpj)qit = s(iqit)p(iqit)qit = s(iqitpiqi)t.
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Therefore, the following four cases are possible, exactly.

Case 1. There hold the following equations:

10 = inQnin With ¢, € AV iy,
Z.rn = Z.rn—ltbn—lirn—l with dm-1 € AV Z.rn—l
where 1 £ m < n.

Obviously, it is {ig,... ,in} a right zero semigroup and a left zero semigroup,
too. Therefore ioil = il and ioil = io, i.e., io = il and |{i0, . ,Zn}| é n.

Case 2. There hold the following equations:

10 = SpinQnin With ¢, € AVi, and s, € A,
Im = Sm—1tm-1¢m—1tm—1 With ¢p—1 € AVi,_1 and s;_1 € A
where 1 S m < n.
By (I) it is (sy, . .. S0)i0 = i9. Because S € MOD({A1(n)UB1i(n,e)}) andip ¢ A
it follows
($k---50)(Sn---80)i0 = (S1-.-80)(Sn ---S0)i0

for some integer numbers k,l with —1 < k <1 < n —1. Then {ix41,04+1} is a

right zero semigroup by (I). Clearly, it is {ig, ... , i, } a left zero semigroup. Conse-
quently, ip 19141 = G141 and igq 1941 = igy1 5 i€, ipg1 = i1 and [{io, ... ,in}] =
n.

Case 3. There hold the following equations:

10 = inQninty, With ¢, € AV i, and t,, € A,

Im = tm—1Gm—1tm—1tm—_1 With ¢,,_1 € AVig_1 and t,,_1 € A

where 1 <m < n.
Because S € MOD({Az(n)UBs(n,e)}) and ig ¢ A it follows [{ig,... ,in}t| =n
by (II), analogously to Case 2.

Case 4. There hold the following equations:

10 = SninQnint, with ¢, € AVi, and s,,t, € A,

Z.m = Sm—lim—l(Im—lim—ltm—l with qm—1 € AV Z.rn—l and Sm—1, tm—1 € A

where 1 £ m < n. By (I) it is (s, ... S0)i0(to - - . tn) = d0-
Because S € MOD({As3(n) U Bs(n,e)}) and ig ¢ A it follows

(Sk SN SQ)(Sn SN So)io(to SN tn)(to SN tk) = (Sl NN SQ)(Sn SN So)io(to SN tn)(to SN tl)

for some integer numbers &, with —1 < k <1 < n — 1. Consequently, 1511 = 4141
by (III). Therefore, |{ig,... ,in}| =<n.
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From the Cases 1, 2, 3 and 4 it follows that S € AE(n) and S € SDy(n) by
Proposition 1.
O

Finally, it is shown that a finite band S belongs to 20,, ¢ if and only if |[D| < n
for each Green’s class D with respect to the relation D on S.
For this let J be the ideal closure operator on S, i.e., for each U € S it is

JU):=UUS-UUU-SUS-U-S.

Let a,b € S. Then it follows easily that aDb if and only if J({a}) = J({b}).

Proposition 4. Let S be a finite band and 1 £ n € N. Then the following
statements are equivalent:
(i) S € Wyo.
(ii) S x F € SDy(n) for each finite semilattice F.
(iii) |D| < n for each D € S/D.

Proof. It is easy to check that (i) if and only if (ii) by Proposition 3.

(if) = (iii): Let {0,1} be that semilattice with respect to multiplication. Then
S x {0,1} € SDy(n) by (ii) and S x {0,1} € AE(n) by Proposition 1. Now let
D e S/D and ig,... ,in, € D. Then J({io}) = ... = J({in}). Therefore

S x {1}V (ig,0) = S x {1} V (41,0) = ... = S x {1} V (ip,0)
and
(10,0),...,(in,0) € S x {0,1}\ S x {1}.

Because of S x {0,1} € AE(n) it follows |D| =< n.
(i) = (ii): Clearly, if |[D| < n for each D € S/D, then |D’| < n for each D' €

(S x F)/D and each finite semilattice F, too. Hence, if J({i}) = ... = J({i,,})
for ip,... i, € S X F, then |{ig,...,i,} < n.
Consequently, S x F' € AE(n) and S x F € SD\/(n) by Proposition 1. O

From Proposition 4 it follows that each finite band S € 20,, ¢ is characterized
by Petrich’s structural theorem restricted to a finite semilattice Y of rectangular
bands S, under the condition |S,| < nforyeY.
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