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CLUSTERING OF VAGUELY DEFINED OBJECTS

LIBOR ŽÁK

Abstract. This paper is concerned with the clustering of objects whose
properties cannot be described by exact data. These can only be described
by fuzzy sets or by linguistic values of previously defined linguistic variables.
To cluster these objects we use a generalization of classic clustering methods
in which instead of similarity (dissimilarity) of objects, used fuzzy similarity
(fuzzy dissimilarity) to define the clustering of fuzzy objects.

1. Introduction

The clustering analysis has been used for tens of years. Its aim is the formation
or discovery of suitable or existing groups whose number is either predetermined
or discovered. These groups must be as homogeneous as possible internally while
being as different each from other as possible. Before starting the process of clus-
tering, it is necessary to measure, weight,. . . the objects, i.e. we must choose a
list of features describing satisfactory the object. Mostly we can describe the
object using a list of quantitative and qualitative data. Such a list usually con-
sists of a n-tuple of numbers. Clustering methods and algorithms can work with
such described objects. Recently the clustering methods have been used also in
branches, in which we cannot describe the objects with sufficient accuracy using
only n-tuples of numbers, such objects are described mostly by vague terms. This
expression occurs very often in medicine, biology, sociology, etc.

Classical clustering methods cannot work on this way define objects. To use
them, we must use, instead of a vague expression, the exact one, but such a
substitution leads to loosing information contained in the vague terms. Therefore it
is useful to introduce a suitable description of this object and to define a clustering
process for these objects.

I describe such “vague” objects using fuzzy sets (defined as fuzzy objects). I am
trying to generalize as much as possible not only the objects, but all the clustering

1991 Mathematics Subject Classification. 91C20, 26E50.
Key words and phrases. fuzzy sets, extension principle, clustering methods, fuzzy clustering.
The paper is supported by research design CEZ: J22/98:261100009 “Non-traditional methods

for investigating complex and vague systems”.
Received February 6, 2002.



38 L. ŽÁK

of “vague” objects, and to do it us similar as possible to clustering performed by
man.

2. Base Notions of Classical Clustering

Let us have n objects, each object characterized by m parameters: O =
{O1, . . . , On}, h-th object Oh = (xh1, . . . , xhm), where xhj ∈ R for h ∈ {1, . . . , n}.
It is possible to define the basic matrix of data: X = (xij)n,m, where xij ∈ R and
h-th raw is equal to h-th object Oh. The objects can be displayed as points in
Rm.

Important for clustering is the notion of similarity measure of two objects.
We define a function Π : O×O → R+, that satisfies

Π(Oh, Os) ≥ 0 ,

Π(Oh, Os) = Π(Os, Oh) .

A dissimilarity measure of objects is often used instead of a similarity in
clustering methods. The dissimilarity of objects is denoted by d : O × O → R+

and it must satisfy

d(Oh, Os) = 0 ⇔ Oh = Os ,

d(Oh, Os) ≥ 0 ,

d(Oh, Os) = d(Os, Oh) .

d is often equal to any metric on Rm in real situations.

We try to divide objects into clusters. We call a cluster such a subset A of set
O, that satisfies

max
Oi, Oj ∈A

d(Oi, Oj) < min
Ok ∈A, Ol 6∈A

d(Ok, Ol) .

Let us suppose we want to divide the set of objects O in to c clusters, where
1 < c < n. We denote the set of clusters by S: S = {S1, . . . , Sc} ⊆ P(O),
Si ⊆ O, pi = |Si| where the following conditions have to be met

c
⋃

i=1

Si = O , Si ∩ Sj = ∅ for i 6= j , ∅ ⊂ Si ⊂ O .

This can be written in a dual representation. Let us define a matrix U = (uij)c,n

where uij = 1 if Oj ∈ Si and uij = 0 if Oj 6∈ Si. Then we demand
c

∑

i=1

uij = 1 ∀j = 1, . . . , n and 0 <

n
∑

j=1

uij < n ∀i = 1, . . . , c .

We call the matrix U a c-analysis of S. Let us denote Mc the set of all c-analysis,
satisfying the following rules

Mc =
{

U ∈ Vcn, uij ∈ {0, 1} ∀i, j;

c
∑

i=1

uij = 1 ∀j; 0 <

n
∑

j=1

uij < n ∀i
}

where Vcn is a vector space of the dimension cn.
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The dissimilarity of clusters D can be defined on the base of dissimilarity
of objects d. Let us have clusters A = {A1, . . . , Ak}, B = {B1, . . . , Bt}, where
Ai ∈ O ∀i = 1, . . . , k and Bj ∈ O ∀j = 1, . . . , t. D must satisfy the following
conditions

D(A, A) = 0 ,

D(A, B) ≥ 0 ,

D(A, B) = D(B, A) .

The most frequently used method to define the dissimilarity of clusters is the
nearest neighbourhood method:

D(A, B) = min
Ai ∈A, Bj ∈B

{d(Ai, Bj)} .

Clustering methods are defined on the basis of dissimilarity of objects and
dissimilarity of clusters. These methods are divided into two basic groups: hi-
erarchical clustering methods and non-hierarchical clustering methods. The
fundamental difference between these methods is that hierarchical methods do not
require the setting of the number of clusters and the resulting clusters form a
hierarchy. More about methods of clustering see in [1-3, 7, 10, 11].

3. The Insufficience of Classical Clustering

Objects clustered by the classical clustering are described by means of signs.
The signs of objects may be of three fundamental types:

quantitative: — the value of the sign represents quantity. Most often the
sign of this type is described by numbers belonging to a numerable or
innumerable set Uj . Often Uj = R for every j = 1, . . . , m and the objects
can be depicted as points in Rm.

qualitative: — the value of the sign is chosen from a finite set of possi-
ble states Xj . The values are regarded under disjoint values or disjoint
intervals.

binary: — the value of the sign is chosen from a two-element set. Most
often this set is defined as {0,1}.

An object may also contain a combination of these types.
In practice, we often meet with objects that cannot be described by the above-

mentioned types of signs. Such an object contains signs with values that cannot
be defined precisely (i.e. there exists a sign of the object that may assume several
values at the same time or, for a given sign, there exists “uncertainty” in repre-
senting the values of this sign). Then, the classical clustering cannot be applied
directly to such types of objects. It is useful to include these objects in the cluster-
ing process, too. We use fuzzy sets to describe the “uncertainty”. Objects defined
in this way are called fuzzy objects.

My aim is to set up a clustering algorithm that approximates human activities
as much as possible. This means the clustering of objects is described by fuzzy sets
- fuzzy objects. In this case, generalized standard clustering methods are used.
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Fuzzy dissimilarity is introduced, rather than dissimilarity, and, using this notion,
the clustering of the fuzzy objects is defined.

4. Fuzzy Objects

In this paragraph the basic definitions and basic theorems are introduced with-
out proofs. The more detailed description, see [15, 16, 18].

Definition 1. Let Uj , j = 1, . . . , m be universal sets being linear spaces and
let fxj = (Uj , µ

x
j ), j = 1, . . . , m be normal and convex fuzzy sets over uni-

versal set Uj . The values of the membership function µx
j are in lattice L=

(〈0, 1〉, min, max, 0, 1). We call m-tuple fO = (fx1, fx2, . . . , fxm) the fuzzy ob-
ject over universal sets U1, . . . , Um(or just a fuzzy object or object if there is no
danger of ambiguity) and we call fxj = (Uj , µ

x
j ), j-th sign of fuzzy object fO.

FO(U1, U2, . . . , Um) is denoted the class of all fuzzy objects over universal sets
U1, U2, . . . , Um.
We denote the set of n fuzzy objects : fO = (fO1, fO2, . . . , fOn) and h-th fuzzy
object is defined: fOh = (fxh1, fxh2, . . . , fxhm) where fxhk = (Uk, µx

hk), h =
1, . . . , n, k = 1, . . . , m are normal and convex fuzzy set.

Hierarchical and non-hierarchical clustering methods are used to compare dis-
similarities (distances) of objects to find the smallest dissimilarity. The dissimilar-
ity of fuzzy objects is defined in terms of fuzzy set on universal R. Then we must
define the comparison of fuzzy sets from F(R) (F(R) is the set of all fuzzy sets
on the universal R). We will define it using the extension principle.

Definition 2. Let (U,≤) be a partial by ordered set and A, B fuzzy sets on the
universal U: A = (U, µA), B = (U, µB). Then we define the partial ordering on
the set of fuzzy sets

A ∨ B = (U, µA∨B), µA∨B(z) = sup
z=max{a,b}

{min{µA(a), µB(b)}}

= 0 otherwise

and we define A ≤ B ⇔ A ∨ B = B and A < B ⇔ A ≤ B and A 6= B. If
A ∨ B 6= B and A ∨ B 6= A, the fuzzy sets A, B are called incomparable.

Definition 3. Let fOh = (fxh1, . . . , fxhm) and fOs = (fxs1, . . . , fxsm) be fuzzy
objects. We call the mapping

fΠ : FO(U1, U2, . . . , Um) ×FO(U1, U2, . . . , Um)) → F(R) ,

such that

fΠ(fOh, fOh) ≥ 0 ,

fΠ(fOh, fOs) = fΠ(fOs, fOh)

where 0 = {(0, 1)} is fuzzy set containing 0 with membership value 1 and ≥ is
a partial ordering on the set of fuzzy sets F(R) a fuzzy similarity of the fuzzy

objects. fΠ(fOh, fOs) = (R, µ
fΠ
h,s) is a fuzzy set over universal set R.
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More we call the mapping fd : FO(U1, U2, . . . , Um)×FO(U1, U2, . . . , Um)) →
F(R), that satisfies

fd(fOh, fOh) ⊇ 0 ,

fd(fOh, fOs) ≥ 0 ,

fd(fOh, fOs) = fd(fOs, fOh)

where 0 = {(0, 1)} is fuzzy set containing 0 with membership value 1 and ≥ is a
partial ordering on the set of fuzzy sets F(R) a fuzzy dissimilarity of the fuzzy

objects. fd(fOh, fOs) = (R, µ
fd
h,s) is a fuzzy set over universal set R.

There are more ways of defining the dissimilarity of fuzzy objects. One of them
uses the extension principle.

Definition 4. Let fOh = (fxh1, . . . , fxhm) and fOs = (fxs1, . . . , fxsm) be fuzzy
objects. Then we define the fuzzy dissimilarity fd : FO(U1, U2, . . . , Um) ×
FO(U1, U2, . . . , Um)) → F(R) of fuzzy objects fOh, fOs by fd(fOh, fOs) =

(R, µ
fd
h,s) where

µ
fd
h,s(z) = sup

z=d(Oh,Os)

{min{µx
h1(xh1), . . . , µ

x
hm(xhm), µx

s1(xs1), . . . , µ
x
sm(xsm)}}

= 0 otherwise

∀h, s = 1, 2, . . . , n and d(Oh, Os), Oh = (xh1, . . . , xhm), Os = (xs1, . . . , xsm) is
the dissimilarity of classical objects.

Theorem 1. Let d be a dissimilarity of classical objects. Then fd (Def. 4)
satisfies the conditions of fuzzy dissimilarity of fuzzy objects.

Theorem 2. Let a dissimilarity d : (U1 × . . . × Um) × (U1 × . . . × Um) → R
be a continuous mapping, fd from Def. 4, α ∈ (0, 1〉, fOh, fOs be fuzzy objects.
Then (fd(fOh, fOs))α = d((fOh)α, (fOs)α) = {z; z = d(x, y), x ∈ (fOh)α, y ∈
(fOs)α} where (A)α is α-cut of fuzzy set A.

Definition 5. Let us have clusters A = {A1, . . . , Ak}, B = {B1, . . . , Bt}, where
Ai and Bj are fuzzy objects for i = 1, . . . , k and j = 1, . . . , t. Any fuzzy dissim-
ilarity of clusters fD must satisfy these conditions

fD(A, A) ⊇ 0 ,

fD(A, B) ≥ 0 ,

fD(A, B) = fD(B, A)

where 0 = {(0, 1)} and ≥ is a partial ordering on the set of fuzzy sets F(R).

Definition 6. Let fO1, . . . , fOk, fOi = (fxi1, . . . , fxim), fxij = (Uj , µ
x
ij) be

fuzzy objects. The centroid of fuzzy objects fO1, . . . , fOk is the object fT =
(ft1, ft2, . . . , ftm) where

ftj = (Uj , µt
j), µt

j(z) = sup
z=

x1+...+xk
k

{min{µx
1j(x1), µ

x
2j(x2), . . . , µ

x
kj(xk)}} .
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Theorem 3. Let U1, U2, . . . , Um be linear spaces, fOi = (fxi1, . . . , fxim), fxij =

(Uj , µ
x
ij), i = 1, . . . , k be fuzzy objects, α ∈ (0, 1〉 and h(x1, x2, . . . , xk) = 1

k

∑k
i=1(xi).

Then the centroid fT of fuzzy objects fO1, . . . , fOk is the fuzzy object (fT =
(ft1, ft2, . . . , ftm) ∈ FO(U1, U2, . . . , Um) and ftj is normal and convex fuzzy set
∀j = 1, . . . , m) and (ftj)α = h((fO1)α, . . . , (fOk)α).

If, moreover (fxij)α is a closed interval ∀i = 1, . . . , k, then (ftj)α is closed

interval and (ftj)α = 1
k

∑k

i=1(fxij)α where the multiplying by constants and the
summing are arithmetic operations on intervals.

Definition 7. We define a dissimilarity of clusters fA = {fA1, . . . , fAk}, fB =
{fB1, . . . , fBt} using the dissimilarity of fuzzy objects fd:

The nearest neighbourhood method:

fD(fA, fB) = min
fAi∈fA, fBi∈fB

{fd(fAi, fBj)} .

The centroid method:

fD(fA, fB) = fd(fa, fb)

where fa is the centroid of fuzzy objects from cluster fA and fb is the centroid of
fuzzy objects from clusters fB.

Average dissimilarity method:

fD(fA, fB) =
1

kt

k∗t
∑

(i,j)

fd(fAi, fBj) .

5. Clustering of Fuzzy Objects

With the dissimilarity of fuzzy objects and clusters defined, we can now proceed
to methods dividing the set of fuzzy objects fO into clusters. For classical objects,
there is a large number of these methods. For fuzzy objects, we shall focus on two
major types: hierarchical and non-hierarchical methods. These types of meth-
ods are based on the dissimilarity of objects and dissimilarity of clusters. For fuzzy
objects, the algorithm of these methods is the same, we only use fuzzy dissimi-
larity of fuzzy objects instead of dissimilarity of objects, and fuzzy dissimilarity
of clusters instead of dissimilarity of clusters. In addition, in classical clustering
methods, the dissimilarities are compared and, on the basis of this comparison,
the least dissimilarities are chosen. For fuzzy objects, the dissimilarities are fuzzy
sets above the universal set R+

0 and thus we must use the comparison of fuzzy sets
to compare dissimilarities. The form of result of clustering of fuzzy objects will be
similar to the clustering of classical objects where the membership to cluster of a
fuzzy objects is an element of the set {0, 1}.

5.1 Hierarchical Clustering Methods of Fuzzy Objects.

Definition 8. The hierarchy on the set of fuzzy objects fO is a set H ⊂ P(fO)
that satisfies
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1) fO ∈ H,

2) {fOi} ∈ H ∀fOi ∈ fO,

3) if Ai ∩ Aj 6= ∅, then Ai ⊂ Aj or Aj ⊂ Ai ∀Ai, Aj ∈ H.

For every set of fuzzy objects fO the hierarchical clustering method finds a
sequence of its analyses Ω0, Ω1, . . . , Ωn−1 into clusters and assigns each element A
of the analysis Ωi a fuzzy set h(A) = (R+

0 , µA).

Algorithm 1.
1. In the first step of the algorithm we choose a fuzzy dissimilarity of clusters
fD and create the analysis Ω0 = {A0,1, A0,2, . . . , A0,n} where each cluster contains

only one object A0,j = {fOj}. To each cluster A0,j fuzzy set h(A0,j) = (R+
0 , µA

0 ) =
{(0, 1)} = 0 is assigned.
2. Suppose that in the i-th step of the algorithm (0 < i ≤ n − 2) we have the
analysis Ωi = {Ai,1, Ai,2, . . . , Ai,n−i}. We choose one couple of clusters (Ai,u, Ai,v)
satisfying

fD(Ai,u, Ai,v) = min
Ai,k∈Ωi, Ai,s∈Ωi

{fD(Ai,k , Ai,s)} .

Let fD(Ai,u, Ai,v) = (R+
0 , µA

i+1). The analysis Ωi+1 = {Ai+1,1, . . . , Ai+1,n−i−1}
can be obtained from Ωi this way: let us merge those clusters Ai,u, Ai,v whose
dissimilarity fD is the smallest to one cluster Ai,u ∪ Ai,v = Ai+1,l and assign a

fuzzy set to cluster Ai+1,l in the form h(Ai+1,l) = (R+
0 , µA

i+1). The other clusters
in analysis Ωi+1 are taken from analysis Ωi.
3. The process is stopped by analysis Ωn−1, which includes one cluster containing
all the objects Ωn−1 = {An−1,1} = fO where h(An−1,1) = (R+

0 , µA
n−1). Fuzzy sets

(R+
0 , µA

0 ), (R+
0 , µA

1 ), . . . , (R+
0 , µA

n−1) define clustering levels belonging to analyses
Ω0, Ω1, . . . , Ωn−1.

The result of a hierarchical clustering of classical objects (non-fuzzy objects)
is often depicted in the form of a similarity tree. The similarity tree is a hier-
archical clustering whose function h : P(O) → R+ satisfies: A ⊆ B ⇒ h(A) ≤
h(B) for A, B ∈ P(O).

We define h(A0,j)= defuzz(h(A0,j))= µ0, . . . ,h(An−1,1)= defuzz(h(An−1,1))=
µn−1, where defuzz is any defuzzification method. If µ0, µ1, . . . , µn−1 satisfy
µi ≤ µi+1 ∀i ∈ {0, 1, . . . , n − 2}, then the analyses Ω0, Ω1, . . . , Ωn−1 can be
depicted as similarity tree, too.

Example 1. Example of the hierarchical clustering method for fuzzy objects. Let
us choose n = 10, m = 2, U1 = R, U2 = R. Let the elements of fuzzy objects be
in the form : fO = (fx1, fx2), fx1 = (R, µx

1), fx2 = (R, µx
2). Each element of

object have membership function in the form of two-sided Gaussian curve

µx
1(x) = e

−(x−Cx)2

2S1
x for x ≤ Cx and µx

1(x) = e
−(x−Cx)2

2S2
x for x > Cx ,

µx
2(y) = e

−(y−Cy )2

2S1
y for y ≤ Cy and µx

2(y) = e

−(y−Cy )2

2S2
y for y > Cy .
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To simplify this expression we used 6-tuple of parameters for fuzzy object: fO =
(Cx, Cy, S1

x, S2
x, S1

y , S2
y). Then

fO1 = (12, 3, 0.5, 1.5, 1.0, 1.0) , fO2 = (16, 19, 2.3, 0.2, 0.9, 1.9) ,

fO3 = (21, 13, 0.7, 1.9, 1.9, 3.0) , fO4 = (20, 23, 2.7, 0.3, 1.7, 0.4) ,

fO5 = (8, 20, 0.4, 3.1, 2.4, 0.5) , fO6 = (16, 9, 0.9, 1.7, 1.7, 0.7) ,

fO7 = (1, 23, 1.0, 1.3, 1.8, 2.3) , fO8 = (25, 20, 0.3, 1.1, 3.3, 0.4) ,

fO9 = (18, 6, 0.6, 0.6, 0.7, 1.7) , fO10 = (5, 28, 1.0, 1.0, 0.5, 0.5) .

If we think fuzzy objects in the form fO = (R × R, min{µx
1(x), µx

2 (y)}), then
the fuzzy objects can be depicted in R3 as shown Fig. 1.

Figure 1.

Let us choose the extension of Euclidean metric fdE(fOh, fOs), the nearest
neighbourhood method for fD(Si, Sj) and defuzz is equal to centroid defuzzication
method. Then we obtain the result in the form of a similarity tree (Fig. 2.). Fuzzy
objects are represented by numbers 1-10, numbers at nodes are clustering levels
belonging to analyses Ω0, Ω1, . . . , Ω9.

If we transform fuzzy objects into classical objects, for example, by taking
only the points in which the membership function is equal to 1 (for example fO3

is transformed to O3 = (21, 13)) and use the hierarchical clustering of classical
objects with the same parameters, then we get the tree shown at Fig. 3.
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Figure 2.

Figure 3.

5.2 Non-Hierarchical Clustering Methods of Fuzzy Objects

Non-hierarchical methods for classical objects try to find such an analysis
of set O to clusters S = {S1, ..., Sc}, for which a previously chosen functional
of quality of the analysis assumes extreme values. The objective functional
method is one of the most frequent methods used in non-hierarchical clustering.
Let us denote the functional Jw : Mc → R+ :

Jw(U) =

n
∑

j=1

c
∑

i=1

uij(Dij)
2
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where U = (uij) ∈ Mc and Dij = D({Oj}, Si) is the dissimilarity of clusters {Oj}
and Si. For D(Oj , Si) is often used the centroid method. Then Jw : Mc ×Rcm →
R+ is defined as

Jw(U, v) =

n
∑

j=1

c
∑

i=1

uij(dij)
2

where U = (uij) ∈ Mc, dij = d(Oj , vi) and v = (v1, . . . , vc), vi is the centroid of
cluster Si.

For fuzzy objects, we define the non-hierarchical method the same way. We try
to find such an analysis of the set fO to clusters S = {S1, . . . , Sc}, for which a
previously chosen functional of quality of analysis assumes extreme values.

Definition 9. Let fO be fuzzy objects. We define functional fJw : Mc → F(R)
as

fJw(U) =

n
∑

j=1

c
∑

i=1

uij(fDij)
2

where U = (uij) ∈ Mc and fDij = fD({fOj}, Si) is the fuzzy dissimilarity of
clusters {fOj} and Si. If we choose the centroid method for the dissimilarity of
clusters, then fJw : Mc × (FO(U1, . . . , Um))c → F(R),

fJw(U, fv) =

n
∑

j=1

c
∑

i=1

uij(fdij)
2

where U = (uij) ∈ Mc , fdij = fd(fOj , fvi) and fv = (fv1, . . . , fvc), fvi is the
centroid of fuzzy objects from cluster Si.

In these definitions we define the sum and square of fuzzy set using the exten-
sion principle.

Remark 1. We define the function fJw using the extension principle: Let fDij =

fD({fOj}, Si) = (R, µ
fD
ij ). Then fJw(U) = (R, µfJ) ,

µfJ(z) = sup
z=J(D)

min{µfD
ij (Dij), j = 1, . . . , n, i = 1, . . . , c} ,

J(D) =
n

∑

j=1

c
∑

i=1

uij(Dij)
2, D = (Dij) ∈ Rcn.

Similarly we define centroid method: Let fdij = fd(fOj , fvi) = (R, µ
fd
ij ). Then

fJw(U, fv) = (R, µfJ ),

µfJ(z) = sup
z=J(d)

min{µfd
ij (dij), j = 1, . . . , n, i = 1, . . . , c} ,

J(d) =

n
∑

j=1

c
∑

i=1

uij(dij)
2, d = (dij) ∈ Rcn.
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A local minimum of an objective functional is defined as the optimal analy-
sis of fuzzy objects fO to clusters. We find a minimum fJw(U, fv) on Mc ×
(FO(U1, U2, . . . , Um))c by an iterative method.

Algorithm 2.
1. In the first step, we choose a number of clusters c, the initial clusters Ω0 =
{S0,1, . . . , S0,c} and calculate their centroids fv0 = (fv0

1 , . . . , fv0
c ).

2. Let us have in the k-th step analysis fO to c clusters: Ωk = {Sk,1, . . . , Sk,c}
and their centroids fvk = (fvk

1 , . . . , fvk
c ). Then for the following analysis of the

set of fuzzy objects fO to c clusters Ωk+1 = {Sk+1,1, . . . , Sk+1,c} holds: for each
fuzzy object fOi ∈ fO, we have

fOi ∈ Sk+1,h ⇔ fd(fOi, fvk
h) = min

j=1,2,...,c
{fd(fOi, fvk

j )} ∀i = 1, 2, . . . , n.

Then for each cluster Sk+1,j we calculate its centroid fvk+1
j .

3. We compare analyses Ωk and Ωk+1. Then:
a) There exists Sk,h of analysis Ωk satisfying: Sk,h 6= Sk+1,j for j = 1, . . . , c. Then
we go to step 2.
b) No Sk,h of analysis Ωk satisfying: Sk,h 6= Sk+1,j for j = 1, . . . , c exists. Then
the analyses Ωk and Ωk+1 are made up of the same subsets and we stop the algo-
rithm. The analysis Ωk = {Sk,1, . . . , Sk,c} is the resulting analysis and its subset
Sk,1, . . . , Sk,c are the resulting clusters.

Remark 2.
a) Step 2 can be changed: Let us have in the k-th step, analysis of the set of objects
to c clusters Ωk = {Sk,1, . . . , Sk,c} and their centroids fvk = (fvk

1 , . . . , fvk
c ). Then

we create the following analysis of the set of objects fO to c clusters Ωk+1 =
{Sk+1,1, . . . , Sk+1,c} in this way: we choose one object fOr ∈ Sk,q so, that

fd(fOr, fvk
h) = min

i=1,...,n
j=1,...,c

{fd(fOi, fvk
j )} and h 6= q.

Then Sk+1,h = Sk,h ∪ {fOr}, Sk+1,q = Sk,q − {fOr}, Sk+1,j = Sk,j for j ∈
{1, . . . , c} − {h, q} and we recalculate the centroids of clusters that have been
changed. If we cannot choose such objects, we define Ωk+1 = Ωk.
b) If there exists no minimum (i.e. fuzzy sets are incomparable) we get it using
some defuzzification method.
c) We can choose some parameters for fuzzy objects that have effect upon the
clustering algorithm.
Splitting parameter is the fuzzy set P = (R, µP ): if “diameter” of cluster A is
greater then P (for example maxfOi,fOj∈A{fd(fOi, fOj)} > P), then the cluster
A is split into two clusters A1, A2 : A1 ∩ A2 = ∅, A1 ∪ A2 = A and “diameters” of
clusters A1, A2 are less then P.
Merging parameter is the fuzzy set L = (R, µL): if distance of centroids of
clusters A1, A2 is less than L (for example fd(fv1, fv2) < L), then clusters are
merged into one cluster: A1 ∪ A2 = A.
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We can also define other parameters: the maximum of the number of
clusters, the minimum of the number of clusters, the minimum of the
number of objects in cluster,... These parameters have an influence the clus-
tering algorithm and we must choose them conveniently.

Example 2. An example of the non-hierarchical clustering method for fuzzy
objects. Let us choose n = 10, m = 2, U1 = R, U2 = R. Similar Example 1,
every fuzzy object is defined by two fuzzy set (two-sided Gaussian curve) in form
fO = (fx1, fx2), fx1 = (R, µx

1), fx2 = (R, µx
2), where

µx
1(x) = e

−(x−Cx)2

2S1
x for x ≤ Cx and µx

1(x) = e
−(x−Cx)2

2S2
x for x > Cx ,

µx
2(y) = e

−(y−Cy )2

2S1
y for y ≤ Cy and µx

2(y) = e

−(y−Cy )2

2S2
y for y > Cy .

To simplify the expression we write it as 6-tuple fO = (Cx, Cy, S1
x, S2

x, S1
y , S2

y),
too. Then

fO1 = (10, 19, 1.7, 0.9, 2.9, 0.3) , fO2 = (20, 23, 1.3, 1.7, 2.1, 1.8) ,

fO3 = (22, 16, 1.4, 0.9, 0.2, 2.7) , fO4 = (10, 12, 2.5, 0.3, 1.1, 2.1) ,

fO5 = (20, 11, 1.9, 0.9, 2.4, 0.4) , fO6 = (16, 25, 0.7, 1.8, 2.4, 0.3) ,

fO7 = (14, 10, 0.1, 2.7, 1.3, 1.7) , fO8 = (7, 9, 0.7, 1.2, 0.4, 2.5) ,

fO9 = (15, 20, 0.5, 2.8, 0.3, 2.1) , fO10 = (23, 8, 2.9, 0.3, 2.3, 0.5) .

The fuzzy objects can be depicted at R3 as shown in Fig. 4.

Figure 4.
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We will cluster these objects using the non-hierarchical clustering method with
the functional fJw(U, fv) =

∑n

j=1

∑c

i=1 uij(fdij)
2 where fdij = fdE(fOj , fvi),

fvi is the centroid of cluster Si. Let us choose c = 3 and the initial clusters
S1 = {fO1, fO2, fO3, fO4, fO5}, S2 = {fO6, fO7, fO8}, S3 = {fO9, fO10}.
We will get the clusters S1 = {fO2, fO3, fO6, fO9}, S2 = {fO5, fO7, fO10},
S3 = {fO1, fO4, fO8} after 6 iterations. If we transform the fuzzy objects into the
classical objects (in the same way as in Example 1.) and use the non-hierarchical
clustering of classical objects with the same parameters, then we get the clusters
S1 = {O1, O2, O6, O9}, S2 = {O3, O5, O10}, S3 = {O4, O7, O8} after 5 iterations.
After comparing results of both the examples (for example fuzzy object fO7, in
this example, belongs to the same cluster with objects fO5, fO10 and does not
belong to cluster with fuzzy objects fO4, fO8) we can say, that the clustering
using fuzzy objects correspond better to the idea of the clusters of vaguely defined
objects.

6. CONCLUSION

Since computers are more employed nowadays, they are also used for decisions
previously made by man. The use of fuzzy sets enables them to solve problems
on which the prior mathematical methods failed. This approach also includes the
clustering of objects by their properties. The clustering of fuzzy objects can be
broadly used instead of human decisions in case where classical methods fail or
cause difficulties. This is mainly in areas dealing with objects that cannot be
easily described by qualitative or quantitative values. Such a typical area can be
medicine with the object “patient”. The description of such an object contains
a great deal of non-precisely defined data - for example his condition, quality of
sleep, intensity of pain, etc. On the basis of these “vague” terms the physician
has to determine the correct right diagnosis, which means that he must put the
patient in some cluster. In engineering we usually work with exactly described
objects, but the inherent difficulty of such a description can be so great, that it
is practically unusable. For example a description of the structure of material
may include the number of grains, their size, shape, distance, etc. In such a case,
it would be better to describe the structure by less exact but more convenient
means. This way, we transform the classical objects into fuzzy ones and can use
the methods for clustering fuzzy objects.

This paper is a continuation of [12, 13, 17] dealing with other various definition
of the similarity (dissimilarity) of fuzzy objects are dealt with.
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praxi, Luhačovice (2000), 59–68, ISBN 80-238-6140-9 (in Czech).
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