A nonlinear differential equation involving reflection of the argument

T. F. Ma,   E. S. Miranda and M. B. de Souza Cortes

Address.
 T. F. Ma and  E. S. Miranda
 Departamento de Matematica - Universidade Estadual de Maringa
 87020-900 Maringa - PR, Brazil

M. B. de Souza Cortes
Departamento de Estatistica - Universidade Estadual de Maringa
87020-900 Maringa - PR, Brazil

E-mail  matofu@uem.br

Abstract.
We study the nonlinear boundary value problem involving reflection of
the argument
$$
-M\Big(\int_{-1}^1\vert u'(s)\vert^2\,ds\Big)\,u^{\prime\prime}(x)
= f\big(x,u(x),u(-x)\big) \quad \quad x \in [-1,1]\,,
$$
where $M$ and $f$ are continuous functions with $M>0$. Using Galerkin
approximations combined with the Brouwer's fixed point theorem we obtain
existence and uniqueness results. A numerical algorithm is also presented.

AMSclassification. 34B15.

Keywords. Reflection, Brouwer fixed point, Kirchhoff equation.