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SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

E. SAVAS AND R. SAVAS

ABSTRACT. In this paper we introduce a new concept of A-strong conver-
gence with respect to an Orlicz function and examine some properties of the
resulting sequence spaces. It is also shown that if a sequence is A-strongly
convergent with respect to an Orlicz function then it is A-statistically conver-
gent.

1. INTRODUCTION

The concept of paranorm is closely related to linear metric spaces. It is a
generalization of that of absolute value. Let X be a linear space. A function
p: X — R is called paranorm, if

(P.1)  p(0) >0

(P2) p(z)>0forallz e X

(P3) p(—z)=p(x) forall x € X

(P4)  p(x+y) <plx)+p(y) for all z,y € X (triangle inequality)

(P.5) if (A\,) is a sequence of scalars with A\, — A(n — oo) and (z,) is
a sequence of vectors with p(z, —z) — 0 (n — 00), then p(A\yz, — Ax) — 0
(n — o0) (continuity of multiplication by scalars).

A paranorm p for which p(x) = 0 implies = 0 is called total. It is well known
that the metric of any linear metric space is given by some total paranorm (cf.
[14, Theorem 10.4.2, p.183]).

Let A = (\,) be a non decreasing sequence of positive reals tending to infinity
and \; =1 and Ay < Ay + 1.

The generalized de la Vallée-Poussin means is defined by

ty(x) = % Z Tk,

keln

where I, = [n — A, + 1,n]. A sequence x = (z3,) is said to be (V, A)-summable to
a number £ (see [2]) if ¢,(z) — £ as n — oo.
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We write

1
[V, Mo = {x:xk:hrrln)\— > |xk|:0}

" kel,

. 1
[V,/\]:{xzxk:h}ln)\— Z |xg — Le] =0, for some éEC’}

" kel,

and

[V, Noo = {xzxk : Sl’lllp% Z lzg| < oo} :
kel,

For the sets of sequences that are strongly summable to zero, strongly summable
and strongly bounded by the de la Vallée-Poussin method. In the special case
where A\, = n for n =1,2,3,..., the sets [V, \],, [V, A] and [V, ] reduce to the
sets wo, w and wy introduced and studied by Maddox [5].

Following Lindenstrauss and Tzafriri [4], we recall that an Orlicz function M is a
continuous, convex, non-decreasing function defined for « > 0 such that M (0) =0
and M (z) > 0 for x > 0.

If convexity of Orlicz function M is replaced by M (z+y) < M(x)+ M (y) then
this function is called a modulus function, defined and discussed by Nakano [8],
Ruckle [10], Maddox [6] and others.

Lindenstrauss and Tzafriri used the idea of Orlicz function to construct the
sequence space

le{x:(a:k):ZM<@><oo for some p>0}.

k=1 P

The space 3y with the norm

Iz :inf{p>o:iM<%> < 1}

k=1
becomes a Banach space which is called an Orlicz sequence space. For M (z) = P,
1 < p < o0, the space l)s coincide with the classical sequence space [,,.

Recently Parashar and Choudhary [9] have introduced and examined some prop-
erties of four sequence spaces defined by using an Orlicz function M, which gener-
alized the well-known Orlicz sequence space [j; and strongly summable sequence
spaces [C, 1,p], [C,1,p], and [C, 1,p] . It may be noted that the spaces of strongly
summable sequences were discussed by Maddox [5].

Quite recently E. Savag [11] has also used an Orlicz function to construct some
sequence spaces.

In the present paper we introduce a new concept of A-strong convergence with
respect to an Orlicz function and examine some properties of the resulting sequence
spaces. Furthermore it is shown that if a sequence is A-strongly convergent with
respect to an Orlicz function then it is A-statistically convergent.

We now introduce the generalizations of the spaces of A-strongly.
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‘We have

Definition 1. Let M be an Orlicz function and p = (px) be any sequence of
strictly positive real numbers.

We define the following sequence spaces:

_ Pr
[V, M,p] = {x = (zx) : lirn/\i Z[M(M)] =0 for some [ and p > 0}
n n kel, 14
1 Pk
[V, M, plo = {m = (zg) : lim)\— Z [M(Mﬂ =0 for some p > O}
n s P
Pk
V,M,p|, = {x: (xg) : sup)\i Z {M('x—k'>} < oo for some p >0 } .
n n 1Y
keI,

We denote [V, M, p|, [V, M,plo and [V, M,pls as [V, M], [V, M]o and [V, M]
when pr, = 1 for all k. If z € [V, M] we say that z is of A-strongly convergent
with respect to the Orlicz function M. If M(z) = z, pr = 1 for all k, then
[V, M,p| = [V, A], [V, M,plo = [V, o and [V, M,plec = [V, A]eo- If Ay = n then,
[V, M, p|, [V, M, plo and [V, M, p]s reduce the [C, M, p|, [C, M,p]o and [C, M, p]eo
which were studied Parashar and Choudhary [9].

2. MAIN RESULTS

In this section we examine some topological properties of [V, M, p], [V, M, plo
and [V, M, p|o spaces.

Theorem 1. For any Orlicz function M and any sequence p = (pg) of strictly
positive real numbers, [V, M,p], [V, M,pl, and [V,M,p], are linear spaces over
the set of complex numbers.

Proof. We shall prove only for [V, M,p|,. The others can be treated similarly.
Let 2,y € [V,M,p|, and o, € C. In order to prove the result we need to find
some p3 > 0 such that

limi Z {M <M>rk =0.

n An kel 3
n

Since z,y € [V, M, p|,, there exist a positive some p; and pz such that

lim > [M <M>r ~0 and lim— > [M <@>r =0.
no\ P1 n A'n, P2

" keI, kel,
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Define p3 = max (2|a|p1, 2|8|p2). Since M is non-decreasing and convex,

LRl s g e ()

kel, P3 P3 P3

)\1 2; |:M(|xk|) +M<|yk|>:|

" kel, 1 P2

Ly for () +M<|yk|>}
kels P P2

ks S G ek g e (B

as n — oo, where K = max (1,271), H = suppy, so that az + By € [V, M, p],.
This completes the proof. O

IN
|
|

IN
|

Theorem 2. For any Orlicz function M and a bounded sequence p = (px) of
strictly positive real numbers, [V, M, p|, is a total paranormed spaces with

a1 w17
g(z) = inf { pPn/H /\—Z[M<7>] <1, n=1,2,3,...
ke,

where H = max(1, sup pg)-

Proof. Clearly g(x) = g(—z). By using Theorem 1, for a « = 8 = 1, we get
g(x +y) < g(x) + g(y). Since M(0) = 0, we get inf{pPr/H} =0 for z = 0.
Conversely, suppose g(z) = 0, then

) s\ 17 1/H
inf { pPn/H . )\—Z{M(—)} <1,;=0.
" kel p

This implies that for a given € > 0, there exists some p. (0 < pe < €) such that

Lzl
(R E) (g Car)

for each n.
Suppose that x,,, # 0 for some m € I,,. Let ¢ — 0, then (@) — o0. It follows

that
1/ H
1 |xnm| i
Eo =) -
kel,

Thus,
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which is a contradiction. Therefore x,,,, = 0 for each m. Finally, we prove that
scalar multiplication is continuous. Let p be any complex number. By definition

H 1 || P\
g(px) = inf { pPr/H . )\—Z{M(T)} <1, n=123,...

" kel,
Then
) N 1/H
g(uzx) = inf (|u|s)p"/H: <)\— Z {M <$Tk>} ) <1, n=1223,...
" kel,

where s = p/|u|. Since |p|Pr < max (1, |u|3"PP~), we have

g(pa) < (max (1, [pf*PP))
1/H

3 pn/H- i M " e
x inf < s B Z M <1, n=1,2,3,...
S

" kel,

which converges to zero as & converges to zero in [V, M, p],,.
Now suppose ft,, — 0 and z is fixed in [V, M, p|,. For arbitrary € > 0, let N be
a positive integer such that

1 Pk
— Z [M <M)] <(¢/2)" forsome p>0 andall n>N.
An p

kel,
This implies that

1 Pk
—Z M 2l <¢e/2 forsome p>0 andal n>N.
An kel, P

Let 0 < |u| < 1, using convexity of M, for n > N, we get

Ly ()] e (2] <t

" kel, P " kel,

Since M is continuous everywhere in [0, 00), then for n < N

w2 S ()

is continuous at 0. So there is 1 > & > 0 such that |f(t)| < (¢/2)" for 0 < t < 6.
Let K be such that |pm,| < 6 for m > K then for m > K and n < N

1/H

(Exn()) e

Thus
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for m > K and all n, so that g(uz) — 0 (u — 0). O

Definition 2 ([1]). An Orlicz function M is said to satisfy As-condition for all
values of w, if there exists a constant K > 0 such that M (2u) < KM (u), u > 0.

It is easy to see that always K > 2. The As-condition is equivalent to the
satisfaction of inequality M (lu) < K ()M (u), for all values of u and for [ > 1.

Theorem 3. For any Orlicz function M which satisfies Aq-condition, we have
[V,A] C [V, M].

Proof. Let z € [V, ] so that

1
Tn:xkgmk—a—w) as n— oo for some /.

Let € > 0 and choose ¢ with 0 < § < 1 such that M(t) < e for 0 < ¢t < §. Write
yr = |zx — £| and consider

M =3+ Y,

kel,,

where the first summation is over y; < § and the second summation over y; > 4.
Since, M is continuous
< An€
> <

and for yr > § we use the fact that yr < yix/d < 1+ yg/0. Since M is non
decreasing and convex, it follows that

M(ye) <M (146 y) < %M(2) + %M (26 i)
Since M satisfies As-condition there is a constant K > 2 such that M (25*1yk) <
K6 1y, M(2), therefore
M (yx) < %Kd‘lykM(Z) + %K5_1ykM(2)
= K& 'y M(2).
Hence
Zg M(yr) < K6 *M(2)\, T,

which together with >, < e, yields [V, A] C [V, M]. This completes proof. [

The method of the proof of Theorem 3 shows that for any Orlicz function M
which satisfies Az-condition; we have [V, ], C [V, M], and [V, \]  C [V, M] .

Theorem 4. Let0 < pj, < qi and (g /pi) be bounded. Then [V, M,q] C [V, M, p].

The proof of Theorem 4 used the ideas similar to those used in proving Theo-
rem 7 of Parashar and Choudhary [9].

We now introduce a natural relationship between strong convergence with re-
spect to an Orlicz function and A-statistical convergence. Recently, Mursaleen [7]
introduced the concept of statistical convergence as follows:
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Definition 3. A sequence z = (xj) is said to be A-statistically convergent or
sa-statistically convergent to L if for every € > 0

1
lim—|{kel,:|zx— Ll >e}|=0,
n n
where the vertical bars indicate the number of elements in the enclosed set.

In this case we write sy —limz = L or a, — L(sy) and sy = {z : 3L € R :
sx —limz = L}.

Later on, \-statistical convergence was generalized by Savag [12].

We now establish an inclusion relation between [V, M] and s.

Theorem 5. For any Orlicz function M, [V, M] C sx.
Proof. Let z € [V, M] and € > 0. Then

v, T v

" kel, " kel |z —1]>e
1
> )\—M (e/p) -k € Iy : |wi — €] > €}]

from which it follows that = € sj.

To show that s strictly contains [V, M], we proceed as in [7]. We define z = (zy,)
by zp =k if n — [\/)\n} + 1 <k <nand z =0 otherwise. Then z ¢ ¢, and for
every € (0 <e <1)

[Vn]
An
ie. xp — 0(sy), where [ ] denotes the greatest integer function. On the other

hand,

1
)\—|{keln:|xk—0|25}\: —0 as n— oo

—Z <|mk—0|)_>oo (= o0)

" k€L,
i.e. xp /4 0[V, M]. This completes the proof. O
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