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CONVERGENCE OF CUBATURE-DIFFERENCES METHOD

FOR MULTIDIMENSIONAL SINGULAR

INTEGRO-DIFFERENTIAL EQUATIONS

A. I. FEDOTOV

Abstract. Here we propose and justify the cubature-differences method for
the multidimensional singular integro-differential equations with Hilbert ker-
nel. The convergence of the method is proved and the error estimate is
obtained.

Introduction

In the papers [1]–[4] the quadrature-differences methods for the various classes
of the 1-dimensional periodic singular integro-differential equations with Hilbert
kernels were justified. The convergence of the methods was proved and the errors
estimates were obtained. Here we propose and justify the cubature-differences
method for the 2-dimensional1 linear periodic singular integro-differential equa-
tions. The convergence of the method is proved and the error estimate is obtained.

It is known (see e.g. [7], [9]) that the theory of the singular integral equations
in multidimensicnal case is less developed than in 1-dimensional case. Thus, for
instance, if for 1-dimensional singular integral equations simple necessary and
sufficient conditions of solvability is known, then for multidimensional equations
there are some, only sufficient, conditions of solvability and corresponding classes of
solvable equations but the situation in general is still unclear. Here we consider the
class of equations which dominant part maps the set of trigonometrical polynomials
to itself.

The same situation is with the theories of approximate methods in 1- and
multidimensional cases. For 1-dimensional singular integral equations polynomial
collocation method is justified in [6] for all solvable equations. It means that we
don’t need any special conditions in addition to solvability of the equation for
invertibility of the operator approximating the dominant part. In mutidimesional
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case the same result doesn’t exist. So we need instead to assume, as it is mentioned
above, that dominant part maps the set of trigonometrical polynomials to itself.

To approximate derivatives in 1-dimentional case any converging differences
(with some easy-to-check restrictions for approximating the highest order deriva-
tive) could be used. It means that for equations with smooth solutions one can
achieve the highest possible rate of convergence using the differences of appropriate
order. In mutidimesional case there aren’t any rules of constructing appropriate
differences, so we use fixed second order differences and can’t obtain the rate of
covergence higher than 2.

1. Statement of the problem

Let’s denote by N,N0,Z,R and ∆ the Cartesian squares of the sets of N-
natural, N0-natural including zero, Z-interger and R-real numbers and the interval
∆ = (−π; π] ⊂ R respectevely. For the elements of this sets (2-components vectors)
beside the usual operations of adding, substracting and multipling the number we
will define the following operations

l · k = l1k1 + l2k2 , l ∗ k = (l1k1, l2k2) , l2 = l21 + l22 , | l |= l1 + l2 , [l] = l1l2 ,

and relations of the partial order

l < k ≡ (l1 < k1)&(l2 < k2) , l ≤ k ≡ (l1 ≤ k1)&(l2 ≤ k2) ,

l = (l1, l2) , k = (k1, k2) .

For the fixed s ∈ R let’s denote by Hs Sobolev space of 2-dimensional 2π-
periodical by each variable complex-valued functions with the norm

‖u‖s = ‖u‖Hs =
( ∑

k∈Z

(1 + k2)s | û(k) |2
)1/2

and inner product

〈u, v〉s =
∑

k∈Z

(1 + k2)sû(k)¯̂v(k) ,

where

û(k) = (2π)−2

∫

∆

u(τ)ēk(τ) dτ

are the Fourier coefficients of the function u(τ) by the system of trigonometric
monomials

ek(τ) = exp(ik · τ) , k ∈ Z , τ ∈ ∆ .

For the following we will asume that s > 1 providing (see e.g. [10]) the embedding
of Hs in the space of continuous functions.

Consider the linear singular integro-differential equation

ABu + Tu = f ,(1)
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where A is 2-dimensional singular integral operator

Au ≡ a00(t)u(t) + a01(t)(J01u)(t) + a10(t)(J10u)(t) + a11(t)(J11u)(t) ,

A : Hs → Hs ,

with singular integrals

(J01u)(t) = (2π)−1

π∫

−π

u(t1, τ2) ctg
τ2 − t2

2
dτ2 ,

(J10u)(t) = (2π)−1

π∫

−π

u(τ1, t2) ctg
τ1 − t1

2
dτ1 ,

(J11u)(t) = (2π)−2

π∫

−π

π∫

−π

u(τ1, τ2) ctg
τ1 − t1

2
ctg

τ2 − t2
2

dτ2 dτ1

which are to be interpreted as the Cauchy-Lebesgues principal value, B is elliptical
differential operator

Bu ≡ (Bu)(t) =
∑

|α|=|β|=m

bαβ(t)(Dα+βu)(t) , B : Hs+2m → Hs , m ∈ N ,

with derivatives

Dαu =
∂|α|u

∂t1
α1∂t2

α2
of order α = (α1, α2) ∈ N0 ,

and T : Hs+2m → Hs is known linear operator. Coefficients akl(t), k, l = 0, 1,
bαβ(t), | α |=| β |= m, and the right-hand side f(t) of the equation (1) we will

consider, for the sake of simplicity, belonging to H∞.

2. Calculation scheme

Let’s fix n = (n1, n2) ∈ N, denote by

In = In1
× In2

, Inj
= {kj | kj ∈ Z, | kj |≤ nj} , j = 1, 2,

index set and difine the grid

∆n = {tk = (tk1
, tk2

) | k = (k1, k2) ∈ In, tkj
= kjhj , hj = 2π/(2nj + 1), j = 1, 2} .

on ∆. Approximate solution of the equation (1) we will seek as a periodic grid
function (vector of values) un = un(t) defined on ∆n.

Differential operators Dα+β of the equation (1) we will approximate by the
operators

D
α+β
n un =

1

2
(∂α∂̄β + ∂̄α∂β)un ,(2)
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where

∂αun = ∂α1

1 ∂α2

2 un , ∂̄αun = ∂̄α1

1 ∂̄α2

2 un ,

∂jun = h−1
j (un(t + hjδj) − un(t)) , ∂̄jun = h−1

j (un(t) − un(t − hjδj)) ,

δj = (δj1, δj2), j = 1, 2, and δjk is Kronecker symbol.

Singular integrals are to be approximated by the cubatures and quadratures.
To do this we will integrate interpolative Lagrange polynomial

(Pnun)(τ) =
∑

k∈In

un(tk)ξn(τ, tk) ,

ξn(τ, tk) =
∏

j=1,2

sin((2nj + 1)(τj − tkj
)/2)

(2nj + 1) sin((τj − tkj
)/2)

,

τ = (τ1, τ2) ∈ ∆, tk = (tk1
, tk2

) ∈ ∆n .

Then the integrals will take the form

(J01Pnun)(tk) = (2n2 + 1)−1
∑

l2∈In2

γ
(n2)
k2−l2

un(tk1
, tl2) ,

(J10Pnun)(tk) = (2n1 + 1)−1
∑

l1∈In1

γ
(n1)
k1−l1

un(tl1 , tk2
) ,

(J11Pnun)(tk) = [2n + 1]−1
∑

l∈In

γ
(n1)
k1−l1

γ
(n2)
k2−l2

un(tl) ,

(3)

tk ∈ ∆n, 1 = (1, 1), and the coefficients γ
(q)
r are

γ(q)
r =

{
tg

rπ

2(2q + 1)
, r even, − ctg

rπ

2(2q + 1)
, r odd

}
.

Operator T we will approximate by any covergent operator Tn.

Substituting the numerical deffirential formulas (2), cubature and quadrature
sums (3), the values of the coefficients akl(t), k, l = 0, 1, bαβ(t), | α |=| β |= m,

of the operator (Tnun)(t) and the right-hand side f(t) in the nodes of the grid
∆n in the equation (1) we will obtain the system of linear algebraic equations

(4) a00(tk)
∑

|α|=|β|=m

bαβ(tk)(D
α+β
n un)(tk)

+ a01(tk)(2n2 + 1)−1
∑

l2∈In2

γ
(n2)
k2−l2

∑

|α|=|β|=m

bαβ(tk1
, tl2)(D

α+β
n un)(tk1

, tl2)

+ a10(tk)(2n1 + 1)−1
∑

l1∈In1

γ
(n1)
k1−l1

∑

|α|=|β|=m

bαβ(tl1 , tk2
)(D

α+β
n un)(tl1 , tk2

)
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+ a11(tk)[2n + 1]−1
∑

l∈In

γ
(n1)
k1−l1

γ
(n2)
k2−l2

∑

|α|=|β|=m

bαβ(tl1 , tl2)(D
α+β
n un)(tl1 , tl2)

+ (Tnun)(tk) = f(tk) , tk ∈ ∆n ,

of the cubature-differences method.

3. Preliminaries

Let’s denote by Hs
n

the set of grid functions (vectors of values) on ∆n with the
norm

‖un‖s,n = ‖un‖Hs
n

=
( ∑

k∈In

(1 + k2)s|ûn(k)(n)|2
)1/2

and inner product

〈un, vn〉s,n =
∑

k∈In

(1 + k2)sûn(k)(n) ¯̂vn(k)(n) ,

where

ûn(k)(n) = [2n + 1]−1
∑

l∈In

un(tl)ēk(tl) , k ∈ In ,

are Fourier-Lagrange coefficients of the function un(t) by the grid ∆n.
The sets Hs and Hs

n
we will bind by the operators

pnu = (u(tk))k∈In , pn : Hs → Hs
n

,

(Pnun)(τ) =
∑

k∈In

un(tk)ξn(τ, tk) , Pn : Hs
n
→ Hs ,

and denote by En(u)s the best approximation of the function u ∈ Hs by the
trigonometrical polynomials of order not higher than n. It is known that in Hilbert
space the polynomial of the best approximation of the function is its partial sum
of the Fourier series

(Snu)(t) =
∑

k∈In

û(k)ek(t) , En(u)s = ‖u − Snu‖s .

Lemma 1. For any u ∈ Hs, s ∈ R, s > 1 and n ∈ N the following estimations

are valid

‖Pn‖Hs
n
→Hs = 1 , ‖pn‖Hs→Hs

n

≤ 2M(n, s)
√

ζ(2s − 1) ,

‖Pnpnu − u‖s ≤ (1 + 2M(n, s)
√

ζ(2s − 1))En(u)s ,

where M(n, s) = (

√
n2

1
+n2

2

min(n1,n2)
)s, n = (n1, n2), and ζ(t) is the Riemann’s ζ-function

bounded and decreasing for t > 1.
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Proof. The equation ‖Pnun‖s = ‖un‖s,n for any un ∈ Hs
n

follows directly from
the definitions of the norms in the spaces Hs and Hs

n. So ‖Pn‖Hs
n
→Hs = 1 is valid

trivially.
To obtain the norm of the operator pn let’s take the arbitrary function u ∈ Hs

and write according to the difinition of the norm in Hs
n

‖pnu‖2
s,n =

∑

k∈In

(1 + k2)s|û(k)(n)|2 ,

where

û(k)(n) = [2n + 1]−1
∑

l∈In

u(tl)ēk(tl) , k ∈ In

are Fourier-Lagrange coefficients of the function u(t) with respect to the grid ∆n.
Substituting the values of the function u(t) in the nodes of the grid ∆n by the
values of its Fourier series we will obtain

û(k)(n) = [2n + 1]−1
∑

l∈In

( ∑

m∈Z

û(m)em(tl)
)
ēk(tl)

= [2n + 1]−1
∑

m∈Z

∑

l∈In

û(m)em(tl)ēk(tl) =
∑

m∈Z

û
(
k + m ∗ (2n + 1)

)
.

Then, following [5], we will write

‖pnu‖2
s,n =

∑

k∈In

(1 + k2)s
∣∣ ∑

m∈Z

û
(
k + m ∗ (2n + 1)

)∣∣2

=
∑

k∈In

∣∣∣
∑

m∈Z

(1 + k2)
s
2

(
1 + (k + m ∗ (2n + 1))2

)− s
2

× û
(
k + m ∗ (2n + 1)

)(
1 + (k + m ∗ (2n + 1))2

) s
2

∣∣∣
2

≤
∑

k∈In

( ∑

m∈Z

|û
(
k + m ∗ (2n + 1)

)
|2

(
1 + (k + m ∗ (2n + 1))2

)s

×
∑

m∈Z

(
(1 + k2)/(1 + (k + m ∗ (2n + 1))2)

)s
)

≤ max
k∈In

( ∑

m∈Z

(
(1 + k2)/

(
1 + (k + m ∗ (2n + 1))2

))s
)
‖u‖2

s .

The chains of the inequalities

max
k∈In

( ∑

m∈Z

(
(1 + k2)/

(
1 + (k + m ∗ (2n + 1))2

))s
)

≤
∑

m∈Z

(
(1 + n2)/

(
1 + (n + m ∗ (2n + 1))2

))s

≤ 2s+2
(
n2

1 + n2
2)

s
∑

m∈N

(n2
1(2m1 − 1)2 + n2

2(2m2 − 1)2
)−s
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≤ 4M2(n, s)
∑

m∈N

(m1 + m2 − 1)−2s = 4M2(n, s)
∑

m∈N

m1−2s

= 4M2(n, s)ζ(2s − 1) ,

‖Pnpnu − u‖s ≤ ‖Pnpnu − PnpnSnu‖s + ‖Snu − u‖s

≤
(
1 + 2M(n, s)

√
ζ(2s − 1)

)
En(u)s

finish the proof of the Lemma 1.

To prove the convergence of the method we need the function M(n, s) to be
bounded. So we’ll restrict the set of indices to one where M(n, s) is bounded.
Let’s for some c, s ∈ R define the set

N(c, s) = {n | n ∈ N, M(n, s) ≤ c} .

Obviously, N(c, s) = ∅ for c < 2s/2 and N(c, s) = {n | n = (j, j, . . . , j), j ∈ N} for
c = 2s/2. For the following we’ll mean that all indices n, n0, n1 mentioned below
belong to N(c, s), and n → ∞ means that n gets the values of some sequence

(nj)j∈N , nj ∈ N(c, s), nj < nj+1, j = 1, 2, . . .

Lemma 2. For any s ≤ p and u ∈ Hp

En(u)s ≤ (1 + n2)(s−p)/2En(u)p.

Proof.

En(u)s = ‖u − Snu‖s =
( ∑

k6∈In

(1 + k2)s|û(k)|2
)1/2

=
( ∑

k6∈In

(1 + k2)p(1 + k2)s−p|û(k)|2
)1/2

≤ (1 + n2)(s−p)/2En(u)p .

4. Justification

Theorem. Let for some c, s ∈ R, s > 1, c ≥ 2s/2 the equation (1) and calculation

scheme (2) – (4) of the method satisfy the following conditions:

1) for any n operator A maps the set of all trigonometric polynomials of order

not higher than n to itself,

2) B is elliptic operator i.e. for any point t ∈ ∆ and real numbers τα, τβ the

following inequality is valid 2

∑

|α|=|β|=m

bαβ(t)τατβ ≥ C
∑

|α|=m

τ2
α ,

3) operator T : Hs+2m → Hs+ε is bounded for some ε ∈ R, ε > 0,

2Here and further C denotes generic real positive constants, independent from n.
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4) operator Tn approximates operator T with respect to pn, i.e. for any function

u ∈ Hs

‖Tnpnu − pnTu‖s,n = ηn → 0 for n → ∞ ,

5) the equation (1) has a unique solution u∗ ∈ Hs+2m for any right-hand side

f ∈ Hs.

Then for all n, beginning from some n0, the system of equations (4) is uniquely

solvable and approximate solutions u∗
n

converge to the exact solution u∗ of the

equation (1)

‖u∗
n
− pnu∗‖s+2m → 0, n → ∞ .

If, in addition, u∗ ∈ Hs+2m+2, then the error estimate

‖u∗
n − pnu∗‖s+2m ≤ C(h2 + ηn) , h = (h1, h2) , hj = 2π/(2nj + 1) , j = 1, 2,

is valid.

Proof. Let us take an arbitrary constant r ∈ R which is not an eigenvalue of the
problem Bu + ru = 0, u ∈ Hs+2m and make in the equation (1) a substitution

v = Bu + ru , v ∈ Hs .(5)

The existence of such constant follows from the properties of the spectrum of the
elliptical operators (see e.g. [8]). Then

u = Gv , Bu = v − rGv ,(6)

where G is the inverse to Bu + ru and the equation (1) will take the form

Kv ≡ Av − rAGv + TGv = f , K : Hs → Hs ,(7)

being still equivalent to the original one. The equivalence here means, that solv-
ability of one of the equation yields solvability of another and their solutions are
joined by the relationships (5), (6). Now let us rewrite the system of equations (4)
as an operator equation

AnBnun + Tnun = fn ,(8)

An = pnAPn , fn = pnf ,

(Bnun)(tk) =
∑

|α|=|β|=m

bαβ(tk)(D
α+β
n un)(tk) , tk ∈ ∆n ,

and make a substitution

vn = Bnun + run , vn ∈ Hs
n .(9)

As it is shown in [12] equation (9) is uniquely solvable for all n, beginning from
some n1, and for vn = pnv solutions un = Gnvn = Gnpnv converge to the solution
u = Gv of the equation (5). Here Gn is inverse to the operator Bnun + run and

un = Gnvn , Bnun = vn − rGnvn .(10)

By the substitution (9) we will get an equation

Knvn ≡ Anvn − rAnGnvn + TnGnvn = fn , Kn : Hs
n → Hs

n ,(11)
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which is equivalent to the equation (8). As above the equivalence here means, that
solvability of one of the equations yields solvability of another and their solutions
are joined by the relationships (9), (10).

The invertibility of the operators Kn : Hs
n
→ Hs

n
we’ll prove following [11]. To

do this we have to establish the following:
a) ‖Pnfn − f‖s → 0 for n → ∞;
b) the sequence of operators (Kn) approximates operator K compactly;
c) K is invertible.
The validity of a) follows immediately from the definition of fn and the Lemma 1.

‖Pnfn − f‖s = ‖Pnpnf − f‖s ≤ CEn(f)s.

To check b) we will show first that the sequence (Kn) approximates the operator
K with respect to Pn. For arbitrary vn ∈ Hs

n we will write

‖PnKnvn − KPnvn‖s ≤ ‖PnAnvn − APnvn‖s

+ |r| ‖PnAnGnvn − AGPnvn‖s + ‖PnTnGnvn − TGPnvn‖s

(12)

and estimate each summand of the right-hand side independently. From the def-
inition of the operator An and condition 1) of the Theorem it follows that the
first summand is equal to zero. For the second summand, using once more the
definition of the operator An, condition 1) of the Theorem and boundness of the
operators A and Pn, we will have

|r| ‖PnAnGnvn − AGPnvn‖s ≤ C‖PnpnAPnGnvn − AGPnvn‖s

≤ C‖PnGnvn − GPnvn‖s

≤ C(‖Gnvn − pnGPnvn‖s,n + En(GPnvn)s) .

For the third summand, using Lemma 1 and boundness of the operators Tn, we
will obtain

‖PnTnGnvn − TGPnvn‖s ≤ C
(
‖Gnvn − pnGPnvn‖s,n

+ ‖TnpnGPnvn − pnTGPnvn‖s,n + En(TGPnvn)s

)
.

Finally, the estimation (12) will take the form

‖PnKnvn − KPnvn‖s ≤ C
(
‖Gnvn − pnGPnvn‖s,n

+ ‖TnpnGPnvn − pnTGPnvn‖s,n

+ En(GPnvn)s + En(TGPnvn)s

)
,

which, taking into account the condition 4) of the Theorem, convergence of the
operators (Gn) and convergence to zero of the best approximations of the functions
GPnvn and TGPnvn, means the approximation of the operator K by the sequence
of the operators (Kn) with respect to Pn.

Let us assume now, that the sequence (vn), vn ∈ Hs
n

is bounded ‖vn‖s,n ≤ 1,
and prove that the sequence (PnKnvn −KPnvn) is compact in Hs

n. We will write

PnKnvn − KPnvn = rAGPnvn − TGPnvn − rAPnGnvn + PnTnGnvn ,
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and prove the compactness of each summand of the right-hand side. The operators
G : Hs → Hs+2m, T : Hs+2m → Hs+ε A : Hs+2m → Hs+2m are bounded, so the
sequences (rAGPnvn) and (TGPnvn) are bounded in Hs+γ , γ = min(2m, ε) and
thus compact in Hs. The operators Gn : Hs

n
→ Hs+2m

n
and TnGn : Hs

n
→ Hs+ε

n

are also bounded so the polynomials PnGnvn and PnTnGnvn are bounded in Hs+γ

and thus sequences (rAPnGnvn) and (PnTnGnvn) are also compact in Hs, which
gives the compactness of the sequence (PnKnvn − KPnvn).

The validity of c) follows from the condition 5) of the Theorem and equivalence
of the equations (1) and (7).

Therefore, according to the Theorem 6.1 [11], for all n, beginning from some
n0, n0 ≥ n1, the equations (11), (8), and thus the system of the equations (4) are
uniquely solvable and the approximate solutions (u∗

n
) of the system of equations

(4) converge to the exact solution u∗ of the equation (1) with a rate

‖u∗
n
− pnu∗‖s+2m,n ≤ C‖pn(ABu∗ + Tu∗) − (AnBnpnu∗ + Tnpnu∗)‖s,n

≤ C
(
En(Bu∗)s + ‖pnBu∗ − Bnpnu∗‖s,n + ‖pnTu∗ − Tnpnu∗‖s,n

)
.

If, moreover, u∗ ∈ Hs+2m+2, then Bu∗ ∈ Hs+2 and as it is shown in [11],

‖pnBu∗ − Bnpnu∗‖s,n ≤ Ch2 .

On the other hand, according to the Lemma 2, and using obvious inequality (1 +
n2)−q ≤ C(h2)q , q ∈ R, q > 0, we will have

En(Bu∗)s ≤ (1 + n2)−1En(Bu∗)s+2 ≤ C(h2) ,

which, together with the condition 4) of the Theorem gives the requested estima-
tion

‖u∗
n
− pnu∗‖s+2m,n ≤ C(h2 + ηn) .

The Theorem is proved.
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