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MULTIPLICATION MODULES AND RELATED RESULTS

SHAHABADDIN EBRAHIMI ATANI

ABSTRACT. Let R be a commutative ring with non-zero identity. Various
properties of multiplication modules are considered. We generalize Ohm'’s
properties for submodules of a finitely generated faithful multiplication R-
module (see [8], [12] and [3]).

1. INTRODUCTION

Throughout this paper all rings will be commutative with identity and all mod-
ules will be unitary. If R is a ring and N is a submodule of an R-module M,
the ideal {r € R : rM C N} will be denoted by [N : M]. Then [0 : M]
is the annihilator of M, Ann(M). An R-module M is called a multiplication
module if for each submodule N of M, N = IM for some ideal I of R. In
this case we can take I = [N : M]. Clearly, M is a multiplication module if
and only if for each m € M, Rm = [Rm : M]M (see [6]). For an R-module
M, we define the ideal 0(M) = > ,/[Rm : M]. If M is multiplication then
M =3 cyBm =3 cylBm : MM = (3, cy[Bm : M)M = 0(M)M.
Moreover, if N is a submodule of M, then N = [N : M|M = [N : M|0(M)M =
O(M)[N : M]M = 0(M)N (see [1]).

An R-module M is secondary if 0 = M and, for each r € R, the R-endomorphism
of M produced by multiplication by r is either surjective or nilpotent. This implies
that nilrad(M) = P is a prime ideal of R, and M is said to be P-secondary. A
secondary ideal of R is just a secondary submodule of the R-module R. A sec-
ondary representation for an R-module M is an expression for M as a finite sum
of secondary modules (see [11]). If such a representation exists, we will say that
M is representable. So whenever an R-module M has secondary representation,
then the set of attached primes of M, which is uniquely determined, is denoted by
Attp(M).

A proper submodule N of a module M over a ring R is said to be prime
submodule (primary submodule) if for each » € R the R-endomorphism of M/N
produced by multiplication by r is either injective or zero (either injective or
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nilpotent), so [0 : M/N] = P (nilrad(M/N) = P’) is a prime ideal of R, and N
is said to be P-prime submodule (P’-primary submodule). So N is prime in M if
and only if whenever rm € N, for some r € R, m € M, then m € N or rM C N.
We say that M is a prime module (primary module) if zero submodule of M is
prime (primary) submodule of M. The set of all prime submodule of M is called
the spectrum of M and denoted by Spec(M).

Let M be an R-module and N be a submodule of M such that N = IM for
some ideal I of R. Then we say that I is a presentation ideal of N. It possible
that for a submodule N no such presentation exist. For example, if V' is a vector
space over an arbitrary field with a proper subspace W (# 0 and V), then W
has not any presentation. Clearly, every submodule of M has a presentation ideal
if and only if M is a multiplication module. Let N and K be submodules of a
multiplication R-module M with N = I; M and K = I, M for some ideals I; and
I> of R. The product N and K denoted by NK is defined by NK = I1IoM. Let
N=IiM =M =N and K = JIM = JoM = K’ for some ideals I, Is, J;
and Jo of R. It is easy to show that NK = N’'K’, that is, NK is independent
of presentation ideals of N and K ([4]). Clearly, NK is a submodule of M and
NKCNNK.

2. SECONDARY MODULES

Let R be a domain which is not a field. Then R is a multiplication R-module,
but it is not secondary and also if p is a fixed prime integer then F(Z/pZ), the
injective hull of the Z-module Z/pZ, is not multiplication, but it is representable.
Now, we shall prove the following results:

Lemma 2.1. Let R be a commutative ring, M a multiplication R-module, and N
a P-secondary R-submodule of M. Then there exists r € R such that r ¢ P and
r € O(M). In particular, rM is a finitely generated R-submodule of M.

Proof. Otherwise (M) C P. Assume that a € N. Then
Ra =0(M)Ra C PRa = Pa C Ra,

so a = pa for some p € P. There exists a positive integer m such that p™ N = 0. It
follows that p™a = a = 0, and hence N = 0, a contradiction. Finally, if » € (M),
then rM is finitely generated by [1, Lemma 2.1]. O

Theorem 2.2. Let R be a commutative ring, and let M be a representable multi-
plication R-module. Then M is finitely generated.

Proof. Let M = Zle M; be a minimal secondary representation of M with
Attgr(M) = {Py, P, ..., P;}. By Lemma 2.1, for each i, i = 1,..., k, there exists
r; € R such that r; ¢ P; and r; € §(M). Then for each i, i = 1,...,k, we have

riM =riMy+ oMoy + M+ riMigq + - My

It follows that r = Zle r; € 0(M) and rM = M. Now the assertion follows from
Lemma 2.1. ]
The proof of the next result should be compared with [6, Corollary 2.9].
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Corollary 2.3. Let R be a commutative ring. Then every artinian multiplication
R-module is cyclic.

Proof. Since every artinian module is representable by [11, 2.4], we have from
Theorem 2.2 that M is finitely generated and hence M is cyclic by [5, Proposi-
tion 8]. O

Lemma 2.4. Let I be an ideal of a commutative ring R. If M is a representable
R-module, then IM is a representable R-module.

Proof. Let M = " | M; be a minimal secondary representation of M with
Attg(M) = {Pi,...,P,}. Then we have IM = " | IM,. It is enough to show
that for each i, i = 1,...,n, IM; is P;-secondary. Suppose that r € R. If r € F;,
then r™IM; = I(r"™M;) = 0 for some m. If r ¢ P;, then r(IM;) = I(rM;) = IM;,
as required. a

Theorem 2.5. Let R be a commutative ring, and let M be a representable multi-
plication R-module. Then every submodule of M 1is representable.

Proof. This follows from Lemma 2.4. O

Theorem 2.6. Let R be a commutative ring, and let M be a multiplication rep-
resentable R-module with Attg(M) = {P1,...,P,}. Then Spec(M) = {PiM,...,
P,M}.

Proof. Let M = Y | M, be a minimal secondary representation of M with
Attp(M) ={P1,...,P,}. Then by [11, Theorem 2.3], we have

Ann(M) = ﬁ AnnM; C ﬁ P, C P,
i=1

i=1

for all ¥ (1 < k < n). Note that P,M # M for all i. Otherwise, since from
Theorem 2.2 M is a finitely generated R-module, there is an element p; € P; such
that (1 —p;)M =0 and so 1 —p; € Ann(M) C P;. Thus 1 € P;, a contradiction.
It follows from [6, Corollary 2.11] that P;M € spec(M) for alli,i=1,...,n.

Let N be a prime submodule of M with [N : M] = P, where P is a prime
ideal of R. Since from [7, Theorem 2.10] M/N is P;-secondary for some i, we get
P =P,. Thus N =[N : M|M = P,M, as required. O

Corollary 2.7. Let R be a commutative ring, and let M be a multiplication rep-
resentable R-module with Attpr(M) = {P1,...,P,}. Then Spec(R/Ann(M)) =
{Pi/Aun(M),..., P,/Ann(M)}.

Proof. Since from Theorem 2.2 M is finitely generated, we have the mapping
¢ : Spec(M) — Spec(R/Ann(M) by P,M —— P;/Ann(M) is surjective by [9,
Theorem 2]. As M is multiplication, we have ¢ is one to one, as required. o

Theorem 2.8. Let R be a commutative ring, and let M be a primary multiplica-
tion R-module. Then M is a finitely generated R-module.
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Proof. Let 0 # a € M. Then Ra = 6(M)Ra, so there exists an element r € 0(M)
with ra = a, and hence (1 —r)a = 0. Thus (1 — )™M = 0 for some m since M is
primary. Therefore we have (1—7)™ € Ann(M) C §(M). Note that (1—r)™ =1—s
where s € §(M). Thus 1 € (M), so O(M) = R, as required. O

Theorem 2.9. Let R be a commutative ring and M a finitely generated faithful
multiplication R-module. A submodule N of M is secondary if and only if there
exists a secondary ideal J of R such that N = JM.

Proof. Suppose first that N is a P-secondary submodule of M. There exists an
ideal J of R such that N = JM. Let r € R. If r € P then r"N =r"JM = 0 for
some n. It follows that r™J = 0 since M is faithful. If » ¢ P then rN = N, so
JM =rJM, and hence J = rJ since M is cancellation.

Conversely, let J be a P-secondary ideal of R and s € R. If s € P then
smN =s"JM =0. If s ¢ R then sN = sJM = JM = N, as required. |

Proposition 2.10. Let E be an injective module over a commutative noetherian
ring R. If M is a multiplication R-module then Hompg(M, E) is representable.

Proof. This follows from [14, Theorem 1] since over R, every multiplication R-
module is noetherian. |

Proposition 2.11. Let R be a commutative ring. Then every multiplication sec-
ondary module is a finitely generated primary R-module.

Proof. This follows from Theorem 2.2 and the fact that, every R-epimorphism
@ : M — M is an isomorphism. |

3. THE OHM TYPE PROPERTIES FOR MULTIPLICATION MODULES

The purpose of this section is to generalize the results of M. M. Ali (see [3]) to
the case of submodules of a finitely generated faithful multiplication module.

Throughout this section we shall assume unless otherwise stated, that M
is a finitely generated faithful multiplication R-module. Our starting point is the
following lemma.

Lemma 3.1. Let N = 1M and K = IoM be submodules of M for some ideals
Iy and Iy of R. Then [N : K]|M = [I : I;]M.

Proof. The proof is completely straightforward. O

Proposition 3.2. Let N; (i € A) be a collection of submodules of M such that
> ica Ni is a multiplication module. Then for each a € ) ..\ N; we have

(Z [Ni : ZNJ)M—}—Ann(a)M:M_

i€EA i€A
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Proof. There exist ideals I; (¢ € A) of R such that N; = ;M (i € A). Since
Yiea Ni = (O ;e i) M, we get from [13, Theorem 10] that ), I; is a multipli-
cation ideal. Therefore, from Lemma 3.1 and [3, Proposition 1.1], we have

(Z [N; : ZNJ)M + Ann(a)M = (Z 12253 IZ-M])M + Ann(a)M

i€EA €A €A

1,31 ) M + Ann(a)M

(; 1€EA
(>

1,:3 1] + Ann(a))M —RM =M.

€A i€EA
|
Proposition 3.3. Let N; (1 < i < n) be a finite collection of submodules of M
such that Y7 | N; is a multiplication module. Then for each a € Y. | N; we have

n n

(Z [ m Ni) : Nz])M-i-Ann(a)M: M

i=1 k=1
where N, denotes the intersection of all N; except N,.

Proof. By a similar argument to that in the proposition 3.2, this follows from
Lemma 3.1, [6, Theorem]| and [3, Proposition 1.2]. |

Lemma 3.4. Let N and K be submodules of M such that N+ K is a multiplication
module. Then for every mazimal ideal P of R we have [Np : Kp|Mp + [Kp :
Np]Mp = Mp.

Proof. Let N = I1 M and K = I, M be submodules of M for some ideals I; and
I of R. Clearly, I + I is multiplication, and it then follows from Lemma 3.1 and
[3, Lemma 1.3] that

[Np : KP]MP+ [KP : NP]MP = [IPMP : JPMP]MP+ [JPMP : IPMP]MP

= ([Ip . JP] —|— [Jp . Ip])Mp = RPMP = Mp.
O
Lemma 3.5. Let N = IM and K = JM be submodules of M such that [N :
KIM+[K:NIM=M. Then [I:J]+[J:I]=R.
Proof. By Lemma 3.1, we have
[N:K|M+[K:N|M=[IM:JMM+[JM : IM|M
=(I:J+[J:I))M=M=RM.
It follows that [ : J] + [J : I] = R since M is a cancellation module. O

Lemma 3.6. Let N and K be submodules of M such that (N : K)M + (K :
N)M = M. Then the following statements are true:

(i) NK=(N+ K)(NNK).

(il) (NNK)T = NTNKT for every submodule T of M.
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Proof. (i) We can write N = IM and K = JM for some ideals I and J of R.
Now, by Lemma 3.5 and [3, Lemma 1.4], we have
NK =IJM = (I+J)(INJ)M = (I + J)MINJ)M
=M+ JM)YIMNJM)=(N+K)(NNK).

(i) This proof is similar to that of case (i) and we omit it. O

Proposition 3.7. Let N and K be submodules of M such that [N : K|M + [K :
N|M = M. Then for each positive integer s we have (N + K)* = N°* 4+ K*. In
particular, the claim holds if N + K is a multiplication module.

Proof. There exist ideals I and J of R such that N = IM and K = JM. By
Lemma 3.5 and [3, Proposition 2.1], we have

(N+K)" = ((I+J)M)* = (I +J)°M = (I° + J*)M = N°* + K°.

The following theorem is a generalization of Proposition 3.7.

Theorem 3.8. Let N; (i € A) be a collection of submodules of M such that
> ica Ni is a multiplication module. Then for each positive integer n we have

(Xiea Vi)™ =D ien NI
Proof. There exist ideals I; (i € A) of R such that N; = LM (i € A). Clearly,
> ica Li is a multiplication ideal. By [3, Theorem 2.2], we have (D ;.\ Ni)" =
(Zz‘eA LM)™ = ((ZiEA Il)M)n = (ZiEA L)"M = (Zie/\ IM = Zz‘eA N O
Proposition 3.9. Let N and K be submodules of M such that [N : K|M + [K :
N]M = M. Then the following statements are true:

(i) [N®: K°|M + [K?® : N°*]M = M for each positive integer s.

(i) (NNK)®* = N*NK* for each positive integer s.
Proof. There exist ideals I and J of R such that N =IM and K = JM.

(i) From Lemma 3.5, Lemma 3.1 and [3, Lemma 3.5], we have

[N® : KS|M + [K* : N*]M = [I°M : J* MM + [J*M : I* M]M
=([I*: J*) + [J* : I'|)M = RM = M.

(ii) From Lemma 3.5, [6, Theorem 1.6] and [3, Proposition 3.1], we have (N N
K)*=(IMnJM)* = (INJ)M)* = (INJ)*M = I*M N J*M = N*nK*. O
Theorem 3.10. Let N; (1 < i < n) be a finite collection of submodules of M such
that 31, N; is a multiplication module. Then for each positive integer s we have
(Mi=y Ni)* = ML Ny
Proof. There exist ideals I; (1 < ¢ < n) of R such that N; = LM (1 < i <
n). Clearly, > | I; is a multiplication ideal. Therefore, from [6, Theorem 1.6]
and [3, Theorem 3.6], we get that (NI, N;)* = (N7_, [ M)* = (N, L,)M)° =
(M, 1) M = M, IEM = (G, NG 0

Lemma 3.11. Let I be an ideal of R. Then Aun(IM) = Annl.
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Proof. The proof is completely straightforward. O

Lemma 3.12. Let P be a maximal ideal of R. If N = IM is a multiplication
submodule of M, and if I contains no non-zero nilpotent element, then the follow-
ing statements are true:

(i) AnnN = AnnN* for each positive integer k.

(ii) Ann(NE) C Ann(a)p for each a € I and each positive integer k.

Proof. (i) The ideal I is multiplication by [13, Theorem 10], and by Lemma 3.11,
AnnN = Annl. Now, from [3, Corollary 2.4] and Lemma 3.11 we have

AnnN = AnnJ = Ann/* = Ann(I*M) = AnnN*

(ii) By [3, Lemma 4.2], Ann(I%) C Ann(a)p for each a € I. It follows from (i)
and [5, Lemma 2] that

AnnNE = Ann((IM)p)* = Ann(IpMp)* = Ann(I%Mp) = AnnIf C Ann(a)p
a

Proposition 3.13. Let N = IM and K = JM be submodules of M such that
N+ K is a multiplication module. If I + J contains no non-zero nilpotent element
and N™ = K™ for some positive integer m, then the following statements are
true:

(i) N+ Ann(a)M = K + Ann(a)M for each a € I + J.

(ii) AnnN = AnnkK.

Proof. (i) As N™ = K™, we get I"™ = J™ since M is cancellation. Suppose that
a € I+ J. Then by [3, Proposition 4.3], we have

N+AmM = IM+Ann(a)M = (I+Ann(a))M = (J+Ann(a))M = K+Ann(a)M .
(ii) This follows from 3.11 and [3, Proposition 4.3]. O

Proposition 3.14. Let N = IM and K = JM be submodules of M such that
K and N + K are multiplication modules. Then for each positive integer m and
each a € J™ we have (N : K)"M + Ann(a)M = (K : N)™M + Ann(a)M.
Moreover, if J has no non-zero nilpotent elements, then for each a € J we have
(N:K)"M + Ann(a)M = (K : N)™M + Ann(a)M.

Proof. This follows from Lemma 3.1 and [3, Proposition 4.4]. O
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