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CLASSIFICATION OF POSITIVE SOLUTIONS OF ppp-LAPLACE

EQUATION WITH A GROWTH TERM

MATTEO FRANCA

Abstract. We give a structure result for the positive radial solutions of the
following equation:

∆pu + K(r)u|u|q−1 = 0

with some monotonicity assumptions on the positive function K(r). Here

r = |x|, x ∈ R
n; we consider the case when n > p > 1, and q > p∗ = n(p−1)

n−p
.

We continue the discussion started by Kawano et al. in [11], refining
the estimates on the asymptotic behavior of Ground States with slow decay
and we state the existence of S.G.S., giving also for them estimates on the
asymptotic behavior, both as r → 0 and as r → ∞.

We make use of a Emden-Fowler transform which allow us to give a ge-
ometrical interpretation to the functions used in [11] and related to the Po-
hozaev identity. Moreover we manage to use techniques taken from dynamical
systems theory, in particular the ones developed in [10] for the problems ob-
tained by substituting the ordinary Laplacian ∆ for the p-Laplacian ∆p in
the preceding equations.

1. Introduction

Let ∆pu = div(|Du|p−2Du), p > 1, denote the degenerate p-Laplace operator.
The aim of this paper is to study the existence and the asymptotic behavior of
positive radial solutions of the following quasilinear elliptic equation:

∆pu+K(|x|)u|u|q−1 = 0(1.1)

where K(|x|) is a radial function which we assume to be as regular as needed,
usually C2. In particular we focus our attention on the existence of radial Ground
States (G.S.), Singular Ground States (S.G.S) and crossing solutions in a ball. By
G.S. we mean a positive solution u(x) defined in the whole space R

n such that
lim|x|→∞ u(|x|) = 0, and by a S.G.S. we mean a G.S. which is not defined at the
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origin and satisfies lim|x|→0 u(|x|) = +∞. By crossing solution we mean a solution
u(x) such that u(x) > 0 if |x| < R and u(x) = 0 if |x| = R, therefore such a
solution can also be regarded as a solution of the Dirichlet problem in a ball of
radius R.
We will use the term “singular solution” to refer only to a solution v(x) such that
lim|x|→0 v(|x|) = +∞.
We are only able to deal with radial solutions, so we shall consider the following
O.D.E.

(u′|u′|p−2)′ +
n− 1

r
u′|u′|p−2 +K(r)u|u|q−1 = 0

u(0) = A > 0 u′(0) = 0
(1.2)

where |x| = r, n is the dimension of the space and “ ′ ” denotes derivation with
respect to r. A general assumption in this paper is that n > p and q > p− 1. We

will denote with p∗ = np
n−p

− 1 the Sobolev critical exponent and with p∗ = n(p−1)
n−p

another constant which plays a critical role in this context. We will usually assume
q > p∗.

In recent years this equation has been studied by many authors: the situation for
the autonomous case is almost completely understood, see in particular the survey
given in [6]. The purpose of this paper is to refine the results obtained by Kawano
et al. in [11]. We combine some elements of that approach with others taken
from dynamical systems theory, in particular the techniques developed by Johnson,
Battelli, Pan and Yi in [1] and in [10], for the corresponding problem with the usual
Laplacian. We make use of a new transform of Fowler type, introduced in [5], which
enables us to give a geometrical interpretation, from the point of view of dynamical
systems, to the function J(r) used in [11], closely related to the Pohozaev identity.
Exploiting these techniques we are able to refine the estimates on the asymptotic
behavior of the solutions and to state the existence of S.G.S. Furthermore we give a
non existence result which allows us to classify all the possible S.G.S. In particular
we complete the analysis of the problem of the existence of S.G.S when q > p∗
for the autonomous equation, presented in [6]. We are able to show that, under
rather general assumptions, we can only have two kind of behavior as r → 0 for
positive solutions u(r): the regular, that is 0 < u(0) < ∞, and the singular, that

is u(r) ∼ r
−p

q−p+1 , if for example we assume 0 < K(0) <∞. Moreover we have only
two kinds of behavior as r → ∞ for positive solutions: fast decay, that is always

u(r) ∼ r−
n−p

p−1 , and slow decay, that is u(r) ∼ r
−p

q−p+1 if K(r) is strictly positive
and bounded for r large.

With the notation u(r) ∼ r−α as r → c we mean that both the limits

lim supr→c u(r)r
α and lim infr→c u(r)r

α

are positive and finite.
We recall now some classical definitions which will be useful in the following

sections. Given a system of the form

ẋ = f(x, t)
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and a solution x(t), the α-limit set of x(t) is the set

A =
{

P : ∃tn → −∞ such that lim
n→∞

x(tn) = P
}

,

while the ω-limit set is the set

W =
{

P : ∃tn → +∞ such that lim
n→∞

x(tn) = P
}

.

One can show that, if x(t) is bounded on R, then those sets are compact. Moreover
if the system is autonomous these sets are invariant for the flow generated by the
system. If the system is non-autonomous they are no longer invariant; however we
will see that they are still useful for the present purposes.

2. Autonomous problem

We begin by introducing a transform of Fowler type which establishes a bijective
relationship between the solutions of (1.2) and the ones of a two-dimensional
dynamical system, thus allowing us to reach a geometrical understanding of the
behavior of the solutions. In particular we define

xl = u(r)rαl yl = u′(r)|u′(r)|p−2rβl r = et

δl = αl(l − q) φ(t) = K(et) = K(r) hl(t) = φ(t)eδt
(2.1)

where

αl =
p

l − p+ 1
, βl =

pl

l − p+ 1
− 1, γl = βl − (n− 1), p 6= l − 1

so that equation (1.2) can be written as the following dynamical system
(

ẋl

ẏl

)

=

(

αl 0
0 γl

) (

xl

yl

)

+

(

yl|yl|
2−p
p−1

−hl(t)x|x|
q−1

)

(2.2)

where “ · ” denotes derivation with respect to t. We will often set l = p∗ and in
this case we will leave unsaid the subscript l. Sometimes it will be useful to set
l = q in order to have hq(t) = K(r). We point out that choosing p = 2 and q = p∗

our transformation coincides with the one used in [9].

2.1. Remark (Regularity Hypothesis). It is important to observe that system
(2.2) is C1 if and only if q ≥ 1 and 1 ≤ p ≤ 2.

If this hypothesis is not satisfied the dynamical system is not even Lipschitz
so that local uniqueness of the solutions near the x and y axis is not anymore
ensured, thus our use of the term “dynamical system” is not quite rigorous.

2.2. Remark. Note that

αl + γl < 0 ⇐⇒ l > p∗ and αl + γl > 0 ⇐⇒ l < p∗

and l = p∗ gives αl + γl = 0. Note also that if l > p∗ we have 0 < αl <
n−p
p−1 .

Observe that δl increases when l increases and liml→∞ δl = p.
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We will see that for q > p∗ we will obtain G.S. with decay rate ∼ r−αq therefore,
for any given ε, we can choose q large enough in order to have G.S. with decay
rate slower than r−ε.
Moreover it will be possible to control the asymptotic behavior of functions K(r)
that tend to 0 as r → ∞, by choosing the correct value of l. But if we are dealing
with a K(r) = o(rp) we will always obtain hl(t) → 0 as t → ∞. In this case
positive solution cannot tend to 0.

2.3. Remark. The solutions u(r) of equation (1.2) corresponds to the trajectories
(x(t), y(t)) of system (2.2) having the origin as α-limit point. Moreover if u(r) > 0
then x(t) > 0 and u′(r) > 0 implies y(t) > 0.

2.4. Remark. It is well known that u′(r) < 0 for r > 0 small, thus the trajectories
(x(t), y(t)) corresponding to u(r) lie in the 4th quadrant as t→ −∞.

2.5. Remark. Crossing solutions u(r) correspond to trajectories of system (2.2)
departing from the origin and getting into the 4th quadrant, until they cross the
y negative semiaxis.

2.6. Observation. Consider system (2.2), when hl(t) ≡ h > 0 is a constant.
Then we have exactly 3 critical points: the origin O ≡ (0, 0), P ≡ (Px, Py) and
−P where Px > 0 and Py < 0.

Assume that the limit limt→−∞hl(t) is finite and positive, then the same state-
ment holds for system (3.3) with ξ > 0, which will be introduced later on. Analo-
gously we have exactly three critical points also for system (3.3) with ξ < 0, when
the limit limt→∞hl(t) is finite and positive.

From now on we restrict our attention to the halfplane defined by x ≥ 0, since
trajectories corresponding to positive u(r) have to stay there.

We define now two functions which were introduced in [11], which are closely
related to the Pohozaev identity. Let u(r) be a solution of (1.2), then:

Pu(r) =
n− p

p
rn−1u(r)u′(r)|u′(r)|p−2 + rn p− 1

p
|u′(r)|p +

K(r)

p
rn |u(s)|

q+1

q + 1
;

here P is defined in the domain of definition of u, and

J(r) :=

∫ r

0

dK(s)

ds

sα(q+1)

q + 1
ds =

∫ t

−∞

dh(s)

ds

eα(q+1)s

q + 1
ds .

The function J(r) is the one which plays a discriminating role in the analysis
derived in [11], even if we have rewritten it in a form which seems to us to be
simpler. Now we repeat one of the key observation of [11]: observe that for any
given u(r), regular solution of (1.2), we have

Pu(r) = J(r)|u(r)|q+1 −

∫ r

0

J(r)|u(s)|qu′(s) ds .(2.3)

moreover note that, for a singular solution v(r), we have

Pv(r) = J(r)|v(r)|q+1 −

∫ r

0

J(r)|v(s)|qv′(s) ds− lim
r→0

Pv(r) .(2.4)
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In our analysis we will also need the following function similar to J(r)

G(r) :=

∫ ∞

r

dK(s)

ds

sα(q+1)

q + 1
ds =

∫ ∞

t

dh(s)

ds

eα(q+1)s

q + 1
ds

especially to analyze positive solutions with fast decay. In fact we have:

Pv(r) = −

(

G(r)|v(r)|q+1 −

∫ ∞

r

G(s)|v(s)|qv′(s) ds

)

+ lim
r→∞

Pv(r) .(2.5)

2.7. Remark. Note that, if ḣ(t) ≥ 0 for any t and the inequality is strict for

some t, we have that both J(r) and G(r) are positive for any r, while, if ḣ(t) ≤ 0
for any t and the inequality is strict for some t, we have that J(r) and G(r) are
negative.

2.8. Remark. Consider a solution u(r), recalling Remark 2.4 we have that if
J(r) < 0 for any r we have Pu(r) < 0 for any r, while if J(r) > 0 we have
Pu(r) > 0.

We introduce a function which will play a crucial role in the following analysis.
Let us consider system (2.2); we define

Hl(xl(t), yl(t), t) : = Pu(et)e(αl+γl)t

=
n− p

p
xlyl +

p− 1

p
|yl|

p

p−1 + hl(t)
|xl|

q+1

q + 1
.

(2.6)

Observe that if we set l = p∗ we obtain αl + γl = 0 and H(t) becomes an energy
function, in fact differentiating we get:

d

dt
Hp∗(xp∗(t), yp∗(t), t) =

d

dt
hp∗(t)

|xp∗ |q+1

q + 1
,(2.7)

thus the monotonicity of h(t) implies the monotonicity of H(t). Now we give a
lemma that describes the level sets of this function.

2.9. Lemma. Consider any T such that 0 < hl(T ) < ∞. Then the equation
Hl(xl, yl, T ) = 0, restricted to the halfplane x ≥ 0, defines a closed bounded curve
containing the origin and which is contained in the closed 4th quadrant. The
equation Hl(xl, yl, T ) = −b < 0, where Hl(P (T ), T ) = −b∗(T ) < −b < 0, defines
a closed bounded curve in the halfplane x ≥ 0. Finally, the equation H(xl, yl, T ) =
b > 0 defines a closed bounded curve in the whole plane which contains the origin
in its interior.

Now we give some information about the asymptotic behavior of the solutions,
both as r → 0 and as r → ∞.

2.10. Lemma. Consider a solution v(r) of Eq. (1.2) defined and positive in a
right neighborhood of r = 0. Fix l in order to have that limt→−∞hl(t) < ∞.
Suppose that the corresponding trajectory of (2.2) admits the origin as α-limit
point, then we have that v(0) < ∞. Consider a solution u(r) of Eq. (1.2) de-
fined and positive in a right neighborhood of r = ∞. Fix l in order to have that
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limt→−∞hl(t) <∞. Suppose that the corresponding trajectory of (2.2) admits the

origin as ω-limit point, then we have that u(r) ∼ r−
n−p

p−1 as r → ∞.

Proof. The proof of Lemma 2.9 is completely analogous to the one of Lemma 2.6
in [5]. The proof of Lemma 2.10 can be easily obtained reasoning as in the proofs
of Observation 5.4 and Observation 5.5 in [5], for the equation with two growth
term.

We will see that the solutions of Eq. (1.2) can exhibit only two kind of behavior
as r → 0, that is the regular, just described, and the singular. They correspond
respectively to the case in which the trajectory has the origin as α-limit point or
when it is bounded and bounded away from the x axis, as t→ ∞. Analogously we
also have only two kinds of decay as r → ∞: the slow one, which depends on the

asymptotic behavior of K(r) and on q, and the fast one that is always ∼ r−
n−p

p−1 .
Once again they correspond to trajectories bounded and bounded away form the
x axis or converging to the origin.

2.11. Proposition. Consider Eq. (1.2) and assume K(r) ≡ const. > 0 and q =
p∗. Consider the corresponding autonomous system of the form (2.2) with l = q =
p∗. Then the following holds.

A All the trajectories corresponding to positive values H(x, y) = b > 0 represent
periodic trajectories which cross the axis. They correspond to singular solu-
tions u(r) of (1.2) with infinitely many positive maxima and negative min-
ima; moreover there exists a > 0 such that −ar−α ≤ u(r) ≤ ar−α ∀r > 0.

B The trajectory corresponding to H(x, y) = 0 is homoclinic to the origin; this
means that all the solutions u(r) of (1.2) are monotone decreasing G.S., with

decay rate ∼ r−
n−p

p−1 at ∞ (fast decay).
C All the trajectories corresponding to some negative value H(x1, x2) = −b >
H(P ) represent periodic trajectories which belong to the x ≥ 0 halfplane.
They represent monotone decreasing S.G.S. u(r) of Eq. (1.2) with rate of

decay and growth ∼ r−
n−p

p respectively at ∞ and at 0.
D For the value H = H(P ) we have one fixed point P , which corresponds to a

monotone decreasing S.G.S of (1.2) of the form u(r) = Pxr
−n−p

p where we
recall that Px depends only on the value of K.

All the solutions u(r) regular at the origin are G.S with fast decay, therefore no
crossing solutions can exist. Moreover no other S.G.S can exist but the ones de-
scribed.

2.12. Remark. The preceding proposition can be trivially generalized to the case

in which q 6= p∗, but h(t) ≡ const. > 0, that is K(r) = Ar−
n−p

p
(p∗−q) where A > 0

is a constant.

Proof. To prove the claim is enough to observe that the system (2.2) correspond-
ing to Eq. (1.2) is autonomous, with these assumptions, and admits Hp∗ as a first
integral; then using Lemma 2.9 and Lemma 2.10 we get the thesis.
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2.13. Remark. Assume that the regularity hypothesis is satisfied. Then all the
solutions u(r) corresponding to the homoclinic trajectory are such that u(0) > 0
and u′(0) = 0. Therefore no other solutions u(r) positive in a right neighborhood
of r = 0 can exist, but the ones described in the Proposition.

A priori we could find solution u(r) of (1.2), corresponding to trajectories of
(2.2) having the origin as α-limit point. In Observation 3.17 we show that, if
q < p

p−1 , this case can be excluded.

2.14. Observation. Suppose that the regularity hypothesis is satisfied and as-
sume that system (2.2) is autonomous. Then it admits periodic solutions if and
only if l = p∗. Moreover if l 6= p∗ and the regularity hypothesis is not satisfied, the
periodic trajectories if they exist, must have the origin in their interior or cross it.

Proof. This fact easily follows applying the Poincarè-Bendixson criterion that
affirms that a necessary condition for the existence of periodic solutions in an
autonomous system of the form

(

ẋ

ẏ

)

=

(

f1(x, y)
f2(x, y)

)

(2.8)

is that

df1(x, y)

dx
+
df2(x, y)

dy
= αl + γl = 0 .(2.9)

If we remove the regularity hypothesis we can still apply the criterion to each
open quadrant. Observe that the flow is always rotating clockwise on the axes
and remember that on the axes and in the origin we lose local uniqueness of the
solutions and conclude.

2.15. Remark. Observe that the homoclinic and the other trajectories of system
(2.2) where hl(t) ≡ const. > 0, correspond to families of solutions, because the
system is autonomous, so it is invariant for translation in time. To be more precise,

if u(r) is a solution (regular or singular), us(r) = u( r
s
)s−

n−p

p is a solution as well.
Therefore if we call uA(r) the solution such that u(0) = A and u′(0) = 0, then

uA(r) = Au1(A
p

n−p r), where u1(r) is uB(r) where B = 1.
We recall that for the autonomous equation (1.2)) with q = p∗ and K(r) ≡ 1 is

already known the exact expression

uA(r) = A
[

1 +D
[

(A
p

n−p r)
p

p−1

]]−n−p

p

where D = (p− 1)(n− p)n
1

p−1 is a constant, see [6].

3. Non-Autonomous problem

We begin with a lemma concerning the phase portrait of the non autonomous
system (2.2).
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3.1. Lemma. Consider any trajectory of the non autonomous system (2.2) pass-
ing through the 1st quadrant, which has not the origin as α-limit point. Then it
comes from the 2nd quadrant and goes into the 4th quadrant after finite time.

Proof. Set l = p∗ and consider system (2.2). Consider a trajectory (x̆(t), y̆(t))
belonging to the 1st quadrant for a certain t = t̆; assume that it is bounded
away from the origin for t → −∞. We claim that there exists a t1 < t̆ for
which (x̆(t), y̆(t)) crosses the y positive semiaxis. Suppose by contradiction that
x̆(t) > 0 for any t > T where T ≥ −∞ is the inf of the maximal interval of
continuation of (x̆(t), y̆(t)). Suppose that (x̆(t), y̆(t)) is unbounded as t → T−,
then limt→T− H(x̆(t), y̆(t), t) = +∞. We recall that

d

dt
H(x(t), y(t), t) :=

d

dt
h(t)

|x|q+1

q + 1
.

Therefore, recalling that x̆(t) is finite we conclude that d
dt
H(x̆(t), y̆(t), t) < ∞ for

any t finite. Therefore we have T = −∞. Now recalling that d
dt
x̆(t) > ε > 0 we

conclude that (x̆(t), y̆(t)) crosses the y axis after finite time since the distance from
the trajectory and the axis is finite.

Now we follow the trajectory forward in time. Suppose that it does not cross
the x axis, then we have d

dt
x̆(t) > ε > 0 for any t > t̆ and for some ε > 0. Assume

that the sup of the maximal interval of continuation is T̆ . Suppose that T̆ < ∞,
then there exist A such that h(t) > A for any t < T̆ . We define the function
HA(x(t), y(t)) obtained setting h(t) = A in H(t):

HA(x(t), y(t)) :=
n− p

p
xy +

p− 1

p
|y|

p

p−1 +A|x|q+1 .(3.1)

Differentiating we get

d

dt
HA(x(t), y(t)) = [A− h(t)]x|x|q−1 ẋ ,

thus HA(t) is decreasing along (x̆(t), y̆(t)). Since the level sets of HA(t) are
bounded, we have that (x̆(t), y̆(t)) is bounded, so it can be continued also for

t > T̆ . Thus T̆ = ∞; now observing that d
dt
y̆(t) < −ε < 0 for any t we have that

(x̆(t), y̆(t)) must cross the x axis.

Now we need to introduce a new transform in order to deal with an autonomous
system. Applying to Eq. (1.2) the change of variables (2.1) and setting zl = t we
obtain the following system:





ẋl

ẏl

żl



 =





αl 0 0
0 γl 0
0 0 0









xl

yl

zl



 +





ψp∗(yl)
−hl(zl)ψq(xl)

1



(3.2)

where ψm(s) = s|s|m−2. We will also consider the system obtained setting z = eξt

in order to investigate the behavior as t → −∞, setting ξ > 0, and as t → ∞,
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setting ξ < 0:




ẋl

ẏl

żl



 =





αl 0 0
0 γl 0
0 0 ξ









xl

yl

zl



 +





ψp∗(yl)
−hl(zl)ψq(xl)

0



 .(3.3)

Now we give the definitions of three sets of system (2.2) for a generic value of the
parameter l:

U+ := {(x, y, z) | x ≤ 0, y ≤ 0 and ẋ > 0}

U− := {(x, y, z) | x ≤ 0, y ≤ 0 and ẋ < 0}

c := {(x, y, z) | x ≤ 0, y ≤ 0 and ẋ = 0}

Sl := {(xl, yl, zl) | xl ≤ 0, yl ≤ 0 and Hl(xl, yl, zl) = 0} .

3.2. Remark. We will sometimes focus our attention on the set Sl

⋂

{zl = 0} of
system (3.3). Note that Pu(r) < 0 for any r ≥ 0 implies that, for the corresponding
trajectory, we have Hp∗(xp∗(t), yp∗(t), t) < 0 for any t and also as t → ±∞. Note
also that Pu(r) < 0 implies Hl(xl(t), yl(t), t) < 0 for any t finite, but letting
t→ ±∞ we can only say that Hl(t) ≤ 0.

3.3. Theorem. Assume that J(r) ≤ 0 for any r > 0, but J(r) 6≡ 0 and that

0 < lim inf
t→∞

h(t) ≤ lim sup
t→∞

h(t) <∞ .

Then all the solutions u(r) of Eq. (1.2) are G.S. with decay of order ∼ r−αp∗ .
Moreover assume that h(t) is monotone for t large and that 0 < limt→∞h(t) =
A <∞. Then for each G.S. u(r) there exists a S.G.S. v(r) of the frozen Eq. (1.2)

where K(r) = Ar−αp∗ (p∗−q) such that

limr→∞(u(r) − v(r))rαp∗ = 0 .

Proof. We recall that the S.G.S. v(r) have already been described in Proposition
2.11. Set l = p∗; consider any solution u(r), then for the corresponding trajectory
we have H(x(t), y(t), t) < 0, see Remark 2.8, so it lies inside Sp∗ . Since Sp∗ is a
surface homeomorphic to a cylinder and bounded in the (x, y) variables, we have
that xp∗ is bounded and positive. Thus the corresponding u(r) is a G.S. with slow
decay, that is u(r) ∼ r−α.

Let us consider the trajectory (x(t), y(t), z(t)) of the system (3.3), correspond-
ing to u(r). If we assume that h(t) is monotone for t large, we can conclude that
H(x(t), y(t), z(t)) is monotone. Assume at first that dh

dz
= 0, so that local unique-

ness of the solution is ensured. Observe that the system (3.3) with ξ < 0 admits
a critical point P∞ = (xP , yP , 0) where yP < 0 < xP . Note that the value of
H is negative and bounded below by the value of the function at P∞. Thus the
limit for t → ∞ of H(x(t), y(t), t) exists and is negative. Now observe that the
Ω-limit set of the trajectory has to belong to the z = 0 plane. Note that, if we
restrict our attention to this plane, we obtain a system analogous to (2.2) where
h(t) ≡ limt→∞h(t). Recalling that, from Proposition 2.11, we know that each
negative value of H characterizes a closed trajectory of (2.2), we have the thesis.
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If the hypothesis is not satisfied we have that the system is only continuous in
the plane z = 0. So, in principle, we could lose local uniqueness of the solutions.
Note that H(x(t), y(t), z(t)) is monotone along the solutions, so we can assume,
for example, that it is increasing. Consider a trajectory (x(tn), y(tn), z(tn)) having
(x1, y1, 0) and (x2, y2, 0) in its ω-limit set. Since H is monotone and continuous
we have H(x1, y1, 0) = H(x2, y2, 0), so the thesis is proved.

The existence of the G.S. was already proved in [11], using different arguments;
anyway our approach allow us to refine the estimate on the asymptotic behavior.

3.4. Remark. To satisfy the hypothesis of the theorem it is enough to take h(t)
monotone decreasing and strictly positive. For example, we can set q = p∗ and
choose a function K(r) which is strictly positive and monotone decreasing.

Now we want to show which are the possible asymptotic behaviors of positive
solutions as r → 0 and as r → ∞. We need to introduce the following function:

jl(r) = K(r)r
p

l−p+1
(l−q) = hl(t) where t = log(r).

This function is in fact K(r) multiplied by some power of r.

3.5. Proposition. Consider a solution v(r) of (1.2), defined in a neighborhood
of r = ∞. Assume that jp∗(r) is monotone for r large.

• Assume that there exists l > p∗ such that 0 < limr→∞jl(r) <∞ and suppose

that limr→∞ |djl

dr
(r)r1+δ | = 0, for some δ > 0 small. Then

v(r) ∼ r−
p

l−p+1 or v(r) ∼ r−
n−p

p−1 ,

that is v(r) has slow decay or fast decay, respectively.
• Assume that there exist l2 ≥ l1 > p∗ and δ > 0 such that

lim sup
r→∞

jl1(r) <∞ , lim inf
r→∞

jl2(r) > 0 , and lim
r→∞

djl1
dr

(r)r1+δ = 0 .

Then, for any ε > 0 we have

1

ε
r
−ε− p

l1−p+1 < v(r) ≤ Cr
− p

l2−p+1 (slow decay),

where C > 0 is a given positive constant, or

v(r) ∼ r−
n−p
p−1 (fast decay).

Analogously consider a solution v(r) of (1.2), defined in a right neighborhood of
r = 0, and assume that jp∗(r) is monotone for t → 0. Then v(r) can have only
two kind of behavior as r → 0: the regular behavior, that is 0 < v(0) < ∞, and
the singular behavior.

Assume that there exists l > p∗ and δ > 0 such that

0 < lim
r→0

jl(r) <∞ and lim
r→0

djl

dr
(r)r1−δ = 0 .

Then the singular behavior is v(r) ∼ r−
p

l−p+1 .



p-LAPLACE EQUATION WITH A GROWTH TERM 425

Assume that there exist l2 ≥ l1 > p∗ and δ > 0 such that

lim sup
r→0

jl2(r) <∞ and lim inf
r→0

jl1(r) > 0 , and lim
r→0

∣

∣

∣

∣

djl2
dr

(r)r1−δ

∣

∣

∣

∣

= 0 ;

then the singular behavior is 1
ε
r

ε− p

l2−p+1 < v(r) ≤ Dr
− p

l1−p+1 .

Proof. We begin with the first claim. Consider system (3.3) with ξ < 0. Observe
that, if the system is Lipschitz, the Ω-limit set of any bounded trajectory must
belong to the z = 0 plane. The dynamics in this plane is that of the autonomous
system (2.2) where hl(t) ≡ hl(z)bz=0.

Assume at first that there exists l such that limt→∞hl(t) exists and 0 <

limt→∞hl(t) < ∞. Then system (3.3), with this choice for l, admits exactly
three critical points which are the origin, P = (xP , yP , 0) and −P . Observe that

lim
z→0

dhl(z)

dz
= lim

z→0

djl(r)

dr

dr

dz
= lim

r→∞

1

ξ

dl(r)

dr
r1−ξ = 0 ,

if we choose −ξ < δ. Therefore, in the subset where x > 0 and y < 0, the system
is Lipschitz.

We have already described the case in which l = p∗, in the preceding theorem, so
we assume l 6= p∗. We recall that, for any trajectory defined in a neighborhood of
t = ∞, we have that there exists the limit limt→∞Hp∗(xp∗(t), yp∗(t), t). According
to Observation 2.14 we cannot have periodic trajectories in the x ≥ 0 subset. Thus
bounded trajectories corresponding to positive u(r), can only have the origin or P
as Ω-limit set. Now recalling Lemma 2.10 the corresponding u(r) can only have
fast decay or slow decay, respectively.

We examine now the general case: consider at first a trajectory (x̄(t), ȳ(t), z̄(t))
of system (3.3) with l = p∗, such that limt→∞H(x̄(t), ȳ(t), z̄(t)) ≤ 0. Let us set
now l = l2 and consider system (3.3). Observe that the set Sl2

⋂

{zl2 = 0} is
bounded for any M > 0 and call Dl2 its interior. Note that the ω-limit set of
(x̄l2(t), ȳl2(t), z̄l2(t)) belongs to Dl2 . Therefore for the corresponding v(r) we have

v(r) ≤ Dr
−p

l2−p+1 for some given D > 0. Set now l = l1 − ε = l0: observe that
limt→∞hl0(t) = 0, thus the only critical point of system (3.3) is the origin.

Once more the hypothesis on djl(r)
dr

ensure that dhl(z)
dz

bz=0= 0. Thus system
(3.3) restricted to x > 0 and y < 0 is Lipschitz. If (xl0(t), yl0(t), zl0(t)) converges
to the origin as t → ∞, it must correspond to a solution u(r) with fast decay, see
Lemma 3.5. Otherwise it is unbounded, therefore, if it has slow decay, we have

that, for any ε > 0, u(r) > 1
ε
r
−ε− p

l1−p+1 . Thus we can have solutions with fast
decay, corresponding to trajectory converging to the origin, and with slow decay,
which are the ones described in the thesis. Note that for the trajectory described
we have limt→∞Hl(xl(t), yl(t), t) ≤ 0.

Now we claim that any trajectory (x̄p∗(t), ȳp∗(t), z̄p∗(t)) such that

lim
t→∞

Hp∗(x̄p∗(t), ȳp∗(t), t) > 0 ,

has to get into the set x < 0 in finite time. Note that this limit exists because
of the assumptions regarding the monotonicity of h(t) for t large. We recall that
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we are considering trajectories which can be continued in the future for any t.
Suppose by contradiction that x̄p∗(t) > 0 for any t; first of all note that there
exists T such that Hp∗(x̄p∗(t), ȳp∗(t), t) > 0, for any t > T .

Consider system 2.2: since Hp∗(x̄p∗(t), ȳp∗(t), t) > 0, when the trajectory is in
U+ it is bounded away from the isocline ẏ = 0, while in U− it is bounded away
from the isocline ẋ = 0. If it is in U+ for some t it will reach the isocline ẋ = 0
and get into U− in finite time, since ẏ < −ε < 0 for some ε > 0. Analogously, if it
is in U−, it will reach the y axis in finite time, since ˙̄x < −ε < 0. This proves the
claim.

We have already examined bounded trajectories: consider now a trajectory
(x̂l2(t), ŷl2(t), ẑl2(t)) that is unbounded as t→ ∞. Then we have
limt→∞Hl2(x̂l2(t), ŷl2(t), t) = ∞; thus there exist T such that Hl1(x̂l2(t), ŷl2(t), t),
and hence H(x̂(t), ŷ(t), t), are positive for any t > T . Therefore there exist a T1 >

T such that x̂(T1) < 0, thus it cannot represent a positive solution u(r). Reasoning
in the same way we can conclude that, if limt→−∞Hp∗(xp∗(t), yp∗(t), t) > 0, then
the trajectory of (2.2) must cross the positive y semiaxis, thus it cannot represent
a positive solution u(r).

The proof of the claim regarding the asymptotic behavior of solutions as r → 0
is completely analogous, so it will be skipped.

Now we give a corollary to make clearer which could be the applications of the
theorem. In particular we want to emphasize that, if K(r) is uniformly positive
and bounded, then we can set l̄ = s = q in the theorem.

3.6. Corollary. Assume that K(r) is strictly positive and bounded and that it is
monotone as r → 0 and as r → ∞. Moreover assume that there exists δ > 0
small, so that limr→0K

′(r)r1−δ = 0 = limr→∞K
′(r)r1+δ and consider a solution

u(r) defined and positive for any r > 0. Then as r → 0 we have

u(r) <∞ (regular behavior) u(r) ∼ r
−p

q−p+1 (singular behavior),

while as r → ∞ we have

u(r) ∼ r−
n−p

p−1 (fast decay) u(r) ∼ r
−p

q−p+1 (slow decay).

3.7. Remark. Note that we can drop the technical assumption on K ′(r) (and
on j′l(r)) of Proposition 3.5, here and in Theorems 3.8 and 3.10, but we loose
something on the precision of the estimate on the asymptotic behavior. To be
more precise we would have

cr−
n−p

p < u(r) < cr
−p

s2−p+1 as r → 0 for singular solutions and

cr−
n−p

p < u(r) < cr
−p

l1−p+1 as r → ∞ for slow decaying solutions.

We are ready now to state one of the main theorem of the paper.

3.8. Theorem. Assume that J(r) ≤ 0 for any r > 0, but J(r) 6≡ 0, then all the
solutions u(r) of Eq. (1.2) can be continued for any r > 0 and are always positive.

A1 Moreover assume that there exist l̄ and δ > 0 such that

0 < lim
r→∞

jl̄(r) <∞ and lim
r→∞

∣

∣

∣

∣

djl̄
dr

(r)r1+δ

∣

∣

∣

∣

= 0 .



p-LAPLACE EQUATION WITH A GROWTH TERM 427

Then all the regular solutions u(r) of Eq. (1.2) are G.S. with decay rate

∼ r
−p

l̄−p+1 as r → ∞ (slow decay).
A2 Assume that there exist l1 ≥ l2 ≥ p∗ and δ > 0 such that

lim sup
r→∞

jl1(r) <∞, lim inf
r→∞

jl2(r) > 0 and lim
r→∞

djl1
dr

(r)r1+δ = 0 .

Then all regular solutions u(r) of Eq. (1.2) are G.S. such that for any given
ε > 0 we have

1

ε
r
−ε− p

l1−p+1 < u(r) ≤ Cr
− p

l2−p+1 (slow decay),

where C > 0 is a given positive constant.

Assume that G(r) ≤ 0 for any r > 0 and that G(r) 6≡ 0.

B1 Assume that there exist s and δ > 0 such that

lim
r→0

js(r) = D > 0 and lim
r→0

djs

dr
(r)r1−δ = 0 .

Then there exists at least one S.G.S. v(r) with slow decay, that is v(r) ∼

r
−p

s−p+1 as r → 0 and has the same rate of decay as the G.S., for r large. If
s > p∗ this is the only S.G.S. admissible, while if s = p∗ we could also have
other S.G.S., with the same behavior as the one described, both as r → 0 and
as r → ∞.

B2 Assume that there exist s2 ≥ s1 > p∗ and δ > 0 such that

0 < lim inf
r→0

js2
(r) ≤ lim sup

r→0
js1

(r) <∞ and lim
r→0

djs2

dr
(r)r1−δ = 0 .

Assume that there exists a S.G.S. v(r); then it must have the same decay

of the G.S. as r → ∞ and for any ε > 0 we have 1
ε
r

ε− p

l2−p+1 < v(r) ≤

Cr
− p

l1−p+1 as r → 0, where C > 0 is a given constant.
C Assume that n > p and K(r) = o(r−p), then all the solutions u(r) of (1.2),

can be continued for any r and are always positive and have positive finite
limit. No S.G.S can exist: if hypothesis B1 is satisfied then there exists

a singular solution which behaves like ∼ r
−p

s−p+1 as r → 0, is monotone
decreasing, is well defined and positive for any r > 0 and has positive finite
limit.

Proof. Set l = p∗ in (2.1); we recall that the trajectory (x(t), y(t)) of (2.2)
corresponding to a regular solution u(r) of (1.2) have the origin as α-limit point.
Observe that, due to the assumption on J(r) we have Hp∗(xp∗(t), yp∗(t), t) < 0 for
any t and also as t → ∞, see (2.8). Thus (xp∗(t), yp∗(t)) cannot converge to the
origin, hence u(r) cannot have fast decay.

Let us assume that l̄ > p∗ since the case l̄ = p∗ has already been described
in Theorem 3.3. Consider system (3.3) with ξ < 0 and l = l̄. Note that the
level sets of (2.2) defined by Hl̄(xl̄, yl̄, t) < 0 are bounded for any t, therefore we
deduce the continuability of the trajectory. Observe that the system admits three
critical points which are the origin, P = (xP , yP , 0) and −P , where yP < 0 < xP .
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From the assumption on djl̄

dr
we know that the system, restricted to xl̄ > 0 and

yl̄ < 0, is Lipschitz. Moreover, if A1 is satisfied, Sl̄

⋂

{z = 0} is bounded, thus the
trajectories considered must have P or the origin as Ω-limit point. But, according
to Lemma 2.10, in the latter case the corresponding u(r) would have fast decay.
But this is impossible, so (xl̄(t), yl̄(t), zl̄(t)) must converge to P and the claim is
proved.

Assume that A2 is satisfied, then the trajectory belongs to Sl2 , thus it is positive
and decaying, but cannot have fast decay. Using Proposition 3.5 we have the thesis.
Note that we are not assuming that h(t) is monotone, but we already know that
H(x(t), y(t), t) < 0, thus the proof still works.

Now assume that hypothesis B1 is satisfied and consider system (3.3) with
ξ > 0 and l = s. Recall that the system admits three critical points: P , −P
and the origin. We recall that the hypothesis guarantees that dhs

dz
(z)bz=0= 0.

Thus P admits a center unstable manifold CU which is transversal to the z = 0
plane. Therefore the matrix of the linearized system has an eigenvector parallel
to the z direction corresponding to the eigenvalue ξ. Note also that if s > p∗,
CU is one-dimensional; in fact it is a trajectory (x̄s(t), ȳs(t), z̄s(t)). Note that
limt→−∞Hs(x̄s(t), ȳs(t), t) < 0, therefore lim supt→−∞Hp∗(x̄p∗(t), ȳp∗(t), t) ≤ 0;
from the assumption on J(r) we have Hp∗(x̄p∗(t), ȳp∗(t), t) < 0 for any t, unless
we have some t for which y(t) > 0. But this case can be excluded since the flow
on the y axis is always going downwards. Thus we can repeat the proof done for
the regular solution and find the same behavior at ∞.

We want to prove that any S.G.S. v(r) corresponds always to a trajectory
belonging to CU . First of all observe that, for the corresponding trajectory,
limt→−∞H(x(t), y(t), t) ≤ 0.
In fact, assume by contradiction that limt→−∞H(x(t), y(t), t) > 0, then there
exists T > 0 such that H(x(t), y(t), t) > 0 for any t < −T . Then following the
trajectory backwards and reasoning as done in the proof of Proposition 3.5, we con-
clude that the trajectories must have y(t) > 0 for some t. Then, recalling Lemma
3.1, we conclude that such a trajectory cannot represent a positive solution. Thus
limt→−∞H(x(t), y(t), t) ≤ 0.

Moreover, from Lemma 3.1, we know that v′(r) ≤ 0 for any r. Thus we have
H(x(t), y(t), t) ≤ 0 for any t, see equation (2.4). Then we can repeat the proof
of Proposition 3.5 and conclude that singular solutions, as r → 0 can only have
the behavior described in the thesis. If B2 is satisfied, the non existence reason-
ing continue to apply, but we cannot use anymore invariant manifold theory to
conclude the existence of CU . Thus we lose the existence result.

Suppose that C is satisfied, then we cannot find any l in order to make
limt→∞hl(t) > 0. In [11], pages 738-739, it is proved that decaying solutions
can only have fast decay. Therefore, if we set l = p∗, we find that decaying so-
lutions v(r) must correspond to trajectories (x̄p∗(t), ȳp∗(t)) of (2.2) converging to
the origin, as t → ∞; therefore we have limt→∞Hp∗(x̄p∗(t), ȳp∗(t), t) = 0. Let us
call u(r) a generic solution, regular or singular, which is defined and positive for
any r > 0. We have seen that u(r) corresponds to a trajectory for which Hp∗(t) is
negative for any t. Moreover it is easy to prove that Hp∗(t) is negative also letting
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t → ∞. Thus u(r) cannot be decaying. The continuability and the positiveness
of a generic u(r), defined in a neighborhood of r = 0, follows from the fact that
the corresponding trajectory is forced to stay in the set defined by H(x, y, t) < 0,
which is bounded for any t finite. Moreover, from this observation, we also deduce
that they are in the 4th quadrant, thus u′(r) ≤ 0. Thus u(r) is monotone de-
creasing and must have positive lower bound, thus the thesis is proved. The same
kind of argument apply also to the trajectory belonging to CU , thus the claim
regarding the singular solution is proved as well.

Once again we restrict to a simple situation in order to make clearer which
could be the applications of the theorem.

3.9. Corollary. Set q > p∗. Assume J(r) ≤ 0 and that the function K(r)
is strictly positive and bounded and that the limit limr→∞K(r) = A > 0 ex-
ists. Moreover assume that there exists δ > 0 such that there exist the limits
limr→0K

′(r)r1−δ = 0 and limr→∞K
′(r)r1+δ . Then any solution u(r) of (1.2) is

a monotone decreasing G.S. such that u(r) ∼ r
−p

q−p+1 , as r → ∞. Moreover there

exist a S.G.S. v(r) with slow decay, that is u(r) ∼ r
−p

q−p+1 both as r → 0 and as
r → ∞. No other S.G.S. can exist. Moreover if 1 < q < p

p−1 and 1 < p ≤ 2, these

are the only positive solutions of the problem.

We recall that, if q > p∗ and K(r) is monotone decreasing, then J(r) < 0.
The corollary is an immediate consequence of the preceding theorem. We only

have to remark that, if 1 ≤ q < p
p−1 and 1 < p ≤ 2, the center stable manifold

departing from the origin is made up only of trajectories corresponding to regular
solutions u(r). In fact, with these hypothesis we can apply the Observation 3.17.
Otherwise we could have also solutions w(r) such that w(0) = A > 0 and w′(0) < 0.

3.10. Theorem. Assume that G(r) ≥ 0 for any r > 0, but G(r) 6≡ 0, and that
there exist s2 ≥ s1 > p∗, l̄ ≥ p∗ such that

lim inf
r→0

js2
(r) > 0 , lim

r→0
js1

(r) <∞ , 0 ≤ lim
r→∞

jl̄(r) = L <∞ ,

lim
r→0

djs2

dr
(r)r1−δ = 0 , lim

r→∞

djl̄
dr

(r)r1+δ = 0

for some δ > 0 small.

A Assume that L > 0, then there exist a S.G.S v(r) with slow decay, that is

cr
− p

s2−p+1 ≤ v(r) ≤ Cr
− p

s1−p+1 as r → 0 and v(r) ∼ r
− p

l̄−p+1 as r → ∞.
Moreover, if l̄ 6= p∗, this is the only S.G.S. with this behavior.

B Assume that the regularity hypothesis is satisfied. Then there exist infinitely
many S.G.S. w(r) with fast decay. To be more explicit any solution w(r) has

the same behavior as v(r) as r → 0, but we have w(r) ∼ r−
n−p

p−1 as r → ∞.
C Assume that A holds, then any S.G.S. must belong to one of the families of

solutions described at the points A and B.
D Assume that J(r) ≥ 0 for any r > 0, but J(r) 6≡ 0, then all solutions u(r) of

Eq. (1.2) are crossing solutions.
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Proof. We begin by proving D, recalling that Kawanida et al in [11] have already
given a proof of this result. Consider system (2.2) where l = p∗ and a trajectory
(x(t), y(t)) corresponding to a solution u(r) of (1.2). First of all from the assump-
tions on J(r) we have that H(x(t), y(t), t) > 0. Therefore, reasoning as in the
proof of Proposition 3.5, we conclude that the trajectory starts from the origin,
gets into U+ and then crosses c and gets into U− in finite time. Then it crosses
the y negative semiaxis: thus u(r) is a crossing solution.

Now assume that A is satisfied and consider system (3.3) where ξ < 0 and l = l̄.
Observe that it admits only three critical points O, P and −P , belonging to the
z = 0 plane. Moreover P admits a center stable manifold CS, transversal to the

z = 0 plane. We recall that the hypothesis guarantees that dhl̄

dz
(z)bz=0= 0. Note

also that the ω-limit set of any bounded trajectory has to belong to this plane.
Furthermore, if l̄ 6= p∗, in this plane there are no periodic trajectories and CS is
one-dimensional.
Let us call (x̀(t), ỳ(t), z̀(t)) a trajectory belonging to CS and v(r) the corresponding
solution of (1.2). Then

lim
t→∞

Hl̄(x̀l̄(t), ỳl̄(t), t) < 0 therefore lim
t→∞

Hp∗(x̀p∗(t), ỳp∗(t), t) = −M ≤ 0 .

Then it follows that

Pv(r) = −M −

(

G(r)
|v(r)|q+1

q + 1
−

∫ ∞

r

G(s)|v(s)|qv′(s)ds

)

< 0 .

Hence Hp∗(x̀p∗(t), ỳp∗(t), t) < 0 for any t; thus using Proposition 3.5 we can con-
clude.

Now assume that the regularity hypothesis is satisfied, and consider again sys-
tem (3.3) where ξ < 0 and l = l̄. Note that the origin admits a center stable
manifold CS0, which has at least dimension 2 and is transversal to the z = 0
plane. Consider a generic trajectory (x̃l̄(t), ỹl̄(t), z̃l̄(t)) belonging to CS0 and the
corresponding solution w(r) of (1.2). Recalling Lemma 2.10 we can conclude that
w(r) has fast decay.

Moreover

lim
t→∞

Hl̄(x̃l̄(t), ỹl̄(t), t) = 0 hence Hp∗(x̃p∗(t), ỹp∗(t), t) = 0 .

Repeating the reasoning done for v(r) we find that w(r) is a S.G.S. with fast decay.
Now assume by contradiction that there exists a S.G.S. a(r) different from

the ones described. Consider again system (3.3) where ξ < 0 and l = l̄. Ob-
serve that any trajectory, bounded in the future and belonging to the x ≥ 0
subset, must have the origin or P as ω-limit set, if l̄ 6= p∗. Therefore their
behavior has already been described. If l̄ = p∗ the ω-limit set could also be
made up of union of periodic trajectories; anyway the corresponding value of
H would be negative, therefore we could repeat the analysis just done and find
S.G.S. with slow decay. Then a(r) must correspond to an unbounded trajectory
(x̆l̄(t), y̆l̄(t), z̆l̄(t)). Thus limt→∞Hl̄(x̆l̄(t), y̆l̄(t), t) = ∞; therefore there exist T > 0
such that Hl̄(x̆l̄(t), y̆l̄(t), t) > 0 for any t > T . Hence Hp∗(x̆p∗(t), y̆p∗(t), t) > 0 for
any t > T ; therefore, following the proof of Proposition 3.5 we deduce that there
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exists T1 > T such that y̆p∗(T1) > 0. Thus we have found a contradiction and the
thesis is proved.

3.11. Corollary. Set p∗ < q < p∗. Assume that K(r) is strictly positive and
bounded and that J(r) and G(r) are nonnegative for any r, and limr→∞K(r) =
A > 0. Moreover assume that there exists δ > 0 small so that

lim
r→0

K ′(r)r1−δ = 0 = lim
r→∞

K ′(r)r1+δ .

Then any solution u(r) of (1.2) is a crossing solution. Moreover there exists

exactly one S.G.S. v(r) with slow decay, that is u(r) ∼ r
−p

q−p+1 both as r → 0 and
as r → ∞. Furthermore assume that the regularity hypothesis is satisfied, then

there exist infinitely many S.G.S. with fast decay w(r), that is w(r) ∼ r
−p

q−p+1 as

r → 0 and w(r) ∼ r−
n−p

p−1 as r → ∞ No other S.G.S. can exist. Moreover if
1 < q < p

p−1 and 1 < p ≤ 2, these are the only positive solutions of the problem.

This corollary is a straightforward consequence of the preceding Theorem.
Moreover, exploiting Observation 3.17 we can get also the following corollary.

3.12. Corollary. Assume that the hypothesis of the Corollary 3.11 are satisfied.
Moreover assume 1 < q < p

p−1 and 1 < p ≤ 2, then there are no solutions positive

in a right neighborhood of r = 0, different from the ones described in Corollary
3.11. If q ≥ p

p−1 , we cannot exclude the existence of positive solutions u(r) such

that u(0) = A > 0 and u′(0) 6= 0

3.13. Corollary. Consider the autonomous equation (1.1) where K(r) ≡ K > 0
and p∗ < q < p∗. Then for any given ball of radius R there exists one and only
one Dirichlet radial solution.

Proof. Set l = q in (2.1): the system obtained is autonomous; we recall that the
trajectory of system (2.2) containing the regular solutions of (1.2) is invariant for
translation in t. So if u(r) is such that u(R) = 0 there exists a family of solutions

us(r) = u(sr)s
q−p+1

p such that us(
R
s
) = 0, where s > 0 can be chosen arbitrarily.

Note also that if system (2.2) is autonomous we have exactly one S.G.S. with
slow decay corresponding to the critical point P . Thus it can be explicitly com-
puted. Using the t invariance property of the trajectories we also deduce the
following result.

3.14. Corollary. Consider the autonomous equation (1.1) where K(r) ≡ K > 0.

Assume q > p∗, then there exist exactly one S.G.S with slow decay v(r) = xP r
−p

q−p+1

Assume p∗ < q < p∗ and that the regularity hypothesis is satisfied, then there exist

a family of S.G.S with fast decay vs(r), with the property vs(r) = v(sr)s
q−p+1

p ,
where v(r) is a member of the family.
Assume q > p∗, then all the regular solutions are G.S. with slow decay; let us

denote uA(r) the solution such that uA(0) = A > 0, then uA(r) = u1(Ar)A
q−p+1

p .
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Therefore, knowing a member of the family of G.S. or of S.G.S. we know all of
them.

Now we give some examples of application of the Theorems.

3.15. Remark. If q > p∗ and K(r) = rdlogc(r) where d > −p, using Theorem
3.8, it is possible to solve completely the problem of the existence and of the
asymptotic behavior of G.S. and of S.G.S.

We recall the definition of j(r) = K(r)r
n−p

p
(p∗−q)

3.16. Remark. If j(r) = r−c1 logd1(r) + r−c2 logd2(r), where c < d < p are real
numbers, each regular solution u(r) is a G.S. and its asymptotic behavior is ruled
by the term r−c2 logd2(r).

This approach is also useful to classify the S.G.S. and to refine the estimate on
the asymptotic behavior of G.S., given in [11], of some Matukuma-type equations
and of Batt- Faltenbacher-Horst equation.

We state now and proof an observation regarding the correspondence between
the solutions of (1.2) and the trajectories of (3.2) belonging to the center-stable
manifold.
The claim is already been used, but we give it at the end, since it can be regarded
as an appendix

3.17. Observation. Assume that hl(t) is bounded as t→ −∞. Assume 1 < p ≤
2 and 1 < l < p

p−1 . Then trajectories (xl(t), yl(t)) of (2.2) having the origin as

α-limit point correspond to regular solutions u(r) of (1.2) and viceversa.

Proof. To simplify the proof we will consider l = q fixed, so we will leave unsaid
the subscript. We already know that solutions u(r) of (1.2) correspond to trajec-
tories (x(t), y(t)) of (2.2) having the origin as α-limit point. Viceversa we know by
Lemma 2.10 that solutions u(r) corresponding to trajectories (x(t), y(t)) are such
that u(0) is well defined positive and bounded. With this assumption the claim
could even be proved simpler, using invariant manifold theory and exponential
dichotomy, as done in Theorem 4.1 of [9] for the scalar curvature equation. We
only need to prove that u′(0) = 0. Exploiting invariant manifold theory, it can be
proved that limt→−∞(x(t), y(t))e−αt. Therefore if α > β that is q < 1

p−1 we are

done. The idea is to try to weaken this bound by observing that y(t) → 0 faster
than x(t) as t→ −∞. We begin by making the following change of variables.

W (t) =
y(t)

x(t)
z(t) = |x|S where S =

2 − p

p− 1

1

m
(3.4)

and m > 0 will be fixed opportunely later. Applying (3.4) on (2.2) we obtain the
following dynamical system:

Ẇ = (γ − α)W + φ(t)Z
q−1

S −W 2+SmZq

Ż = SαZ + SW |W |SmZ1+m
(3.5)

We observe now that (W (t), Z(t)) → (0, 0) as t→ −∞ which is a critical point of
(3.5). We impose l − 1 ≥ S and m ≥ 1 in order to linearize near the origin. We
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can rewrite the first condition in this way: there exist a constant C such that

0 ≤ C = l− 1 − S = q − 1 −
2 − p

m(p− 1)
.

Now observe that, linearizing system (3.5) near the origin, we obtain the following
matrix:

A :=

(

Sα 0
0 γ − α

)

Recalling that (W (t), Z(t)) belongs to the unstable manifold and using again in-
variant manifold theory we can say that for any given ε > 0 we have W (t) =
O(e(Sα−ε)t) as t→ −∞. Therefore we have:

|u′|p−1 = |y|r−β = W (t)x(t)e−βt = O(eα−β+Sα−ε) .

Observe that (S + 1)α − β = 1 − C. Therefore if we assume 0 ≤ C < 1 we can
conclude that u′(0) = 0. So if the two conditions 0 < C < 1 and m > 1 are
compatible, we have the thesis. These conditions can be rewrite in the following
way:

(q − 2)(p− 1)

2 − p
<

1

m
<

(q − 1)(p− 1)

2 − p
and

1

m
< 1

Thus we can choose m satisfying the conditions if and only if

(l − 2)(p− 1)

2 − p
< 1 or equivalently l <

p

p− 1

3.18. Remark. Observe that p∗ < p
p−1 , so for the critical case the hypothesis of

Observation 3.17 are always satisfied.

3.19. Remark. If we have l > p
p−1 , we cannot exclude the existence of solutions

u(r) such that u(0) = 0, but u′(0) 6= 0, which would be singular in the origin, but
in a different way from the one analyzed in this paper.
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