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ON THE STABILITY OF THE SOLUTIONS OF CERTAIN FIFTH
ORDER NON-AUTONOMOUS DIFFERENTIAL EQUATIONS

A. 1. SADEK

ABSTRACT. Our aim in this paper is to present sufficient conditions under which
all solutions of (1.1) tend to zero as t — co.

1. INTRODUCTION
The equation studied here is of the form
(1.1) 2O 4 f(t, &, &, 7))z + ¢(t, &, ) + (t, &) + g(t, &) + e(t)h(z) =0,

where f,¢,1,g,e and h are continuous functions which depend only on the dis-

played arguments, ¢(t,0,0) = 1(¢,0) = ¢g(¢,0) = h(0) = 0 . The dots indicate

differentiation with respect to ¢ and all solutions considered are assumed real.
Chukwu [3] discussed the stability of the solutions of the differential equation

2 +az® 4 f(0) + ci + fa(@) + fo(z) = 0.
In [1], sufficient conditions for the uniform global asymptotic stability of the zero
solution of the differential equation

2® 4 f1(2)2W + fo(27) + f3(2) + fa(d) + fs(x) =0

were investigated.
Tiryaki & Tunc [6] and Tunc [7] studied the stability of the solutions of the
differential equations

2O 4 ¢z, @, @, 7, D)@ 4 0i + h(E, &) + g(@, &) + f(z) =0,
2O 4 p(x, @, @, 7, )@ 4 (3,2 + h(E) + g(@) + f(z) =0.

We shall present here sufficient conditions, which ensure that all solutions of (1.1)
tend to zero as t — oco. Many results have been obtained on asymptotic properties
of non-autonomous equations of third order in Swich [5], Hara [4] and Yamamoto
[8].
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2. ASSUMPTIONS AND THEOREMS

We shall state the assumptions on the functions f, ¢, g,e and h appeared in
the equation (1.1).
Assumptions:

(1
(2)

h(z) is a continuously differentiable function in R', and e(t) is a continu-
ously differentiable function in R = [0, 00).
The function g(t,y) is continuous in R x R!, and for the function g(¢,y)
there exist non-negative functions d(t), go(y) and ¢1(y) which satisfy the
inequalities

d(t)go(y) < g(t,y) < d(t)g1(y)
for all (¢,y) € R x RL. The function d(t) is continuously differentiable in
RT. Let )
9(y) = 5190(y) + 91(y)},
g(y) and ¢’(y) are continuous in R
The function (¢, 2) is continuous in R x RL. For the function (¢, 2)
there exist non-negative functions c¢(t), 1o(z) and 1 (z) which satisfy the
inequalities

c(t)o(z) < 9(t 2) < c(t)r(2)
for all (¢,2) € R x R!. The function c(t) is continuously differentiable in
RT. Let

3(2) = 3 {o(2) + (=)}

(2) is continuous in R*.

The function ¢(¢, z, w) is continuous in R x R2. For the function ¢(t, 2, w)
there exist non-negative functions b(t), ¢o(z, w) and ¢1(z, w) which satisfy
the inequalities

for all (¢,2,w) € RT x R2. The function b(t) is continuously differentiable
in ®F. Let

3z,w) = 3 {60(z,w) + 61 (= w)}

&(z,w) and 0d(z, w)/dz are continuous in R2.

The function f(t,y, z,w) is continuous in R* x N3, and for the function
f(t,y, z,w) there exist functions a(t), fo(y,z,w) and f1(y,z,w) which
satisfy the inequality

a(t)fo(y, 2 w) < f(t7 Y, z, ’lU) < a(t)fl (yv 2, U})
for all (t,y,z,w) € RT x R3. Further the function a(t) is continuously
differentiable in T, and let

f(y,Z,IU) = %{fo(yvsz) + fl(y,z,w)},

f(y, z,w) is continuous in RN3.
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Theorem 1. Further to the basic assumptions (1)—(5), suppose the following
(e,€1,... €5 are small positive constants):

() A>a(t)>ap>1, B>bt)>by>1,C>c(t)>co> 1,
D>d(t)>dy>1, E>e(t) >e9>1, fort € RT.

(ii) a1,...,a5 are some constants satisfying

a1 >0, ajas —az >0, (a2 — az)az — (arag — as)ag >0,
(2.1) 0o : = (a4a3 — a2a5)(a1a2 — Oég) — (a1a4 — a5)2 >0, a5 >0;

(a4a3 — a2a5)(a1a2 — Oég)
10y — Qs

(22) Al L=

—{a1d(t)d' (y) — a5} > 2eaq,

for all y and all t € RT;

(2.3) A, . Q403 — 0205 (1q — ap)yd(t) €
. 2 « — —_— _— —
Q104 — Q5 a4(a1a2 — a3) a1

>0,

for ally and all t € R, where

_ { 9W)/y, y#0
. gl(o)v y=0.

) €0 < fy,z,w) — a1 <€ for all z and w.
) $(0,0)=0,0< d(z,w)/w—as<es (w0), %g(z,w) <0.
(v) 9(0)=0,0<%(z)/z—az<es (z+#0).
) 9(0)=0,3(y)/y > 5+ (y#0), las = (y)| < eq for all y and
7 (y) —9(y)/y < asdo/Daj(araz —az)  (y #0).

(vii) h(0) =0, h(z) sgn x > 0(z # 0), H(z) = foz h(§)d¢ — oo as |x| — oo
and
0<as—h'(z)<e foral =x.

(viii) fooo Bo(t)dt < oo, €'(t) — 0 as t — oo, where

Bo(t) : = b (8) + 4. (1) + 1d' ()] + €' (D],
b (t) : = max{b'(t),0} and (| (t):=max{c(¢),0}.

(ix) |A(f1 = fo) + B(¢1 — ¢o) + C(¢1 — o) + D(g1 — go)|
<A@+ 22 u? )2,

where A is a non-negative constant.
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Then every solution of (1.1) satisfies
x(t) = 0,&(t) =0, #t)—0, T(t)—0, z®Wt)—=0 as t— 0.
Next, considering the equation
(2.5) o) +a(t) f (&, &, 5 )a™ +b(t)p(&, &) + c(t)b(E) + d(t)g(d) + e(t)h(z) =0,

we can take the function g(y) in place of go(y) and g¢1(y); the function ¢(y, 2) in
place of ¢g(y, z) and ¢1(y, z); the function ¢ (z) in place of 1g(z) and ¥;(z), and
the function f(y, z,w) in place of fo(y,z,w) and fi(y,z,w) in the Assumptions
(2)—(5). Thus in this case the functions g(y), g(y, z), J(z), f(y, z,w) coincide with
g(x,y), d(y, 2),¥(2), f(y, z,w) respectively. Thus from Theorem 1, we have

Theorem 2. Suppose that the functions a(t), b(t), c(t), d(t) and e(t) are continu-
ously differentiable in R*, and the functions h(z), g(z,y), ¢(y, 2), ¥(2), f(y, z,w),
g (), h(x), % (y,z) and that these functions satisfy the following conditions:

(i) A>a(t)>ap>1, B>b(t) >by>1,C>c(t) >co>1,
D>d(t)y>dy>1, E>e(t) > e >1 forteRt.

(ii) a1,...,a5 are some constants satisfying

] > 0, a1 — (g > 0, (Ot1042 — 043)043 — (0410é4 — 045)041 > 0,
50 = (a4a3 — 042045)(061042 — Oég) — (Ot1044 — 045)2 >0, a5>0;

A= (@03 — az05)(an 02 — 03) —{a1d(t) ¢'(y) — as} > 2eaq,
104 — Q5

for all y and all t € RT;

Q03 — Qo a0y — as)yd(t €
A, s = 2498 257(14 5)7()7_>0,
a1y — Q5 CY4(041042—043) aq

for ally and all t € R, where

_ { 9W)/y, y#0
- Lg0, y=0.

(iii) € < f(y,z,w) —ay < €1, forall z andw.

(iv) ¢(0,0)=0,0<¢(z,w)/w—as<ex (w#0), F:6(z,w) <0.

(v) 9(0)=0,0<9(z)/z—az<es (2#0).

(vi) g(0) =0, g(y)/y > Z* (y#0), las—g'(y)| <ea for all y and

9'(y) —9W)/y < asdo/Daj(aras —as)  (y#0).
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(vil) h(0) =0, h(z) sgnz >0 (x#0), H(z) = fom h(§)dé — oo as |z| — o
and
0<as—h(z)<es foral =z.

vill) [ Bo(t) dt < oo, €'(t) — 0 as t — oo, where
0

Bo(t) - =V (8) + < (t) + |d'(t)] + [ (1)),
Uy (t) : = max{t'(t),0} and c (t):=max{c(t),0}.

Then every solution of (2.5) satisfies

x(t), &(t), i(t), T (), 2P (t) - 0 as t— oc0.

3. THE LYAPUNOV FUNCTION Vi(t, z,y, z, w, u)
We consider, in place of (1.1), the equivalent system
T=Y, Y=z, F=w, w=u,

The proof of the theorem is based on some fundamental properties of a continu-
ously differentiable function Vy = Vo (¢, , 9, 2, w, u) defined by

20&4(0&10&2 — Oég)

2V = u? + 20quw + uz + 20yu + 2b(t) / bz, w) dw
0

Q104 — Q5
gl — Qi Q104 109 — (3
+{a%—¥w2+2 as + ( )—(5 wz
Q104 — Q5 104 — Q5

+ 2010wy + 2d(t)wg(y) + 2e(t)wh(x) + 2a;c(t) /0 ) V(C)dC

— g — alé}z2 + 28aayz + 201d(t)29(y) — 2asyz

n {a2a4(a1a2 - 043)
104 — Q5

2 - v_
+ 2aqe(t)zh(x) + Zaa(araz — as) d(t)/ g(n) dn + (Sas — ayos)y?
10y — Q5 0

3.2) + we(t)yh(m) + 25e(t) /0 " h(e) de |

104 — Q5
where
(3.3) §:=as(arae — az)/(crog —as) + €.

The properties of the function Vo = Vy (¢, z, y, 2, w, u) are summarized in Lemma 1
and Lemma 2.
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Lemma 1. Subject to the hypotheses (i)—(vii) of the theorem, there are positive
constants D7 and Dg such that

(3.4) Dy{H(x) +y* + 22 +w? +u?} <V < Dg{H(z) +y* + 2> + v’ + u?}.

Proof. We observe that 2V in (3.2) can be rearranged as

— 2
2%:{u+a1w+wz+5y}

104 — Q5

044(061044 - 045) {041042 — Q3
e(t)h(x
(rag — ag)yd(t) Lagay — as (t)h(z)
wvd(t)y + %'yd(t)z
10y — Q5 Oy

+ a%l’yd(t)w}Q 7

ado ( as
10y — 045)2

2
z+ —y) + Ao (w + oy 2)?

Oy
4
403 — 205
3.5 2 (7) Si,
(3.5) +2e( y2+;
where

S1:=20elt) [ h©)de - 220y,

5y : = al0102 — as)d(f) {2 /Oy Gn) dn — () }

Q104 — Q5

a6
+ {5(13 —oas — 5—02 — 52}y2,
a4(a1a4 - as)

S3 = S+ 2b(t)/ Bz, w) dw — ayw?,
0

aq

Syt = 2a1c(t) /Z V() d¢ — arasz?.
0

It can be seen from the estimates arising in the course of the proof of [2; Lemma 1]
that

(3.6) 205 / " hE) de — B2 (x) > 0,
0
S 2 h(€)dE.
1> 660/0 (&) d§

Since

yily) = / "Gy dn + / " () .
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we have

5, = Qalonaz — aa)d(7) {2 /Oy Gn) dn — v () |

104 — Q5
04550 20&5(0&10&2 — Oég) 2
+ |: - E{E + — — a3 Yy
as(raq — as) Qo — o

/0 [ 20500 3 ay(aras — asz)d(t) {g,(n) B @}

044 Q10y — 045) Q104 — Q5

2 _
26{6 + — " a5 (0102 a3) agﬂndn
Q104 — Q5

/Oy [ a0 ; B 26{6 N 205(102 —a3) aandn,

CY4 Q104 — Q5 Q104 — Q5

by (vi) and (i)

04550 2
- 4(14((11(14 — a5)

)

provided that

1) 2 —
(3.7) LZG{HM_%},
40&4(0&10&4 — Oé5) 104 — Q5

which we now assume. From (i), (iv) and (v) we find

ngiw + 2b(t / qﬁzwdw—agw

aq
ZiwerZ/ {(b(z—’w)*az}deZiwzv
aq 0 w aq

Sy = 2a1¢(t) /Z V()¢ — oanasz? > 20 /Z {@ - ag}Cd§ >0.
0 0

On gathering all of these estimates into (3.5) we deduce

_ 2 5 2
2%Z{u+a1w+wz+6gj} +(a470)2(z+%y)
Q4

104 — Q5 104 — Q5
2 ’ 500 2, € 2
+ Ag(w+ a12)” +2eeq [ h(§)dé{+ —————y + —w
0 40&4(0&10&4 — Oé5) a1

Q03 — Qo
i 26( 403 2 5)yz
Q104 — Q5
by (ii) and (vi). It is clear that there exist sufficiently small positive constants
D1, ..., D5 such that
g — OéQOé5)
104 — Q5

2Vp > D1H(x) + 2Dy® + 2D32* + Dyw® + Dsu® + +26(



100 A. I. SADEK

Let

a3 — 205

S5 := Dyy? —|—2e( )yz+D3z2.

Q104 — Q5

By using the inequality |yz| < 1(y* + 2?), we obtain

Q43 — G0y

S5 2 Day? + Dyz? — ¢ )2 +2%) = Dl + =),

a1y — Qs
for some Dg > 0, Dg = 1 min{Dy, D3}, if
(3.8) e < (apay — 045)/(2(044043 — a2a5)) min{ Dy, D3},
which we also assume. Then
2V > D1 H(x) + (D2 + Dg)y* 4 (D3 + Dg)2* + Dyw? + Dsu®.
Consequently there exists a positive constant D7 such that
Vo > Di{H(x) +y* + 22 + w? + u?},

provided e is so small that (3.7) and (3.8) hold. From (i), (iv), (v),(vi) and (3.6)
we can verify that there exists a positive constant Dg satisfying

Vo < De{H(x) + y* + 22 + w? + u?}.

Thus (3.4) follows. O

Lemma 2. Assume that all conditions of the theorem hold. Then there exist
positive constants D; (i = 11,12) such that

(3.9) Vo < —D1a(y® + 22 + w? +u?) + D118V .
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Proof. From (3.2) and (3.1) it follows that (for y, z,w # 0)

Vo < —uHa(0) fly, 5 w) — a1}

w2 [alb(t)ﬂﬁ(zaw) B {as L caa(onaz —as) 5}}

w Q104 — Q5

_ pfaslonon —o)el) 96 s, 4o y) - o]

a1a4 —as z
- {aan L - 2al0e = 0) g )
+ wh(t / —qb z,w) dw—awua(t ){f(y,zw)—al}—uzc(t){@—043}
-l =) 1)y 2 w) )
Q104 — as -
_ —a4(i?;j2—_ajs) wzb(t){@ - a2}

— wzd(t){as —§' ()} — Syua(®){ [y, z,w) — ar} — ywe(t){as — I ()}

_ 5ywb(t){@ - az} —aryze(t){as — h'(z)} — 5yzc(t){@ - ag}
 {atuw + BT e syl (1 o)

042044(041042 — QB)
+{ 00 — o wz+5oz2yUJ}{lfb(t)}+(ozguzjtéagyz){lfc(t)}

—aqwz{l —d(t)} — (asyw + arasyz){1 — e(t)}
+ %{a(f)(fl — fo) + b()(¢1 = ¢o) + c(t) (Y1 — tho) +d(t)(g1 — g0)}

044(0410[2 — Oég) %
(3.10) {u+a1w+—a1a4 . z+5y}+ o
By (i) and (iii), a(t)f(y,2z,w) — a1 > €. From (i), (iv) and (3.3) we have (for
w #0)
ar b(t)o(z, w) _ {043 n aag(aron —ag) 5}

w a1y — Q5

> €.

a1a4(a1a2 - CY3)}
104 — Q5

> 041{@ —agt+{vags —as+0—
By using (i), (v), (3.3) and (2.2) we obtain (for z # 0)

04(0210;241025)6@ w(j) —{baz + a1d(t)g' (y) — as}

Q403 — a2a5)(a1a2 - CY3)
104 — Q5

> (

—{a1d(t)g' (y) — a5} — ez > eaz.
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From (i), (vi) and (vii) we find (for y # 0)

5d(t)g(y) _ a(mag —ay)
Y 1oy — Qs

e(t)h'(w)

OA4E(0410Q — Oég)

>easFE + {as — W (x)} > easE.

a1y — Q5

Therefore, the first four terms involving u2, w?, 2% and y? in (3.10) are majorizable
by

—(eou® + ew? + eanz® + ey By?) .
Let R(t,z,y,z,w,u) denote the sum of the remaining terms in (3.10). By using

hypotheses (i), (iii)—(vii) and the inequalities

1 1
Juw] < S +w?), Juzl < S +2%), Juyl < S+,

—_ D =

1 1
el < 5P +22), hoyl < S +97), el < S0P + )
it follows that

|R(t, z,y, z,w,u)| < Dg(€1 + €2 + €5 + €4 + 65)(?/2 + 224w+ u2)

+ %{a(t)(fl — fo) +b(t)(d1— o) +c(t) (1 —10) +d(t) (91— g0) }

oV
ot ’

044(041042 - 063)

{u + ajw +
Q104 — Qp

z+ 5y} +
for some Dg > 0. Thus, after substituting in (3.10), one obtains

Vo < —(eoul+ew?+easz®+easBy?)+ Do(ey + ea+es+eq+es)(y? + 22 +w? +u?)

+ [SHald)(f — fo) +b{1)(én — do) +e(t) W o) + (1) (g1 — 90))

oV
ot

044(061042 - 043)

{u + ajw +
Q104 — Q5

z+ 5y}‘ +
1
< —3 min{eg, €, eaa, cag B} (y? + 2% + w? + u?)

+ [Salt)(fr — fo) +blt) (6 — bo) + elt) (s — ) + (1)1 — g0))

s
ot ’

044(041CY2 - CY3)

(3.11) {u+a1w+
104 — Q5

z+ 6yH +
provided that

1
(3.12) Do(e1+ €2+ €3+ €4+ ¢€5) < 3 min{eg, €, €aa, ey B} .
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Now we assume that Dg and €, ..., €5 are so small that (3.12) holds. The case
Y, z,w = 0 is trivially dealt with. From (3.2) we find
Wy

- = v (t) /Ow b(z,w) dw + ar ¢ (t) /OZ $(Q)d¢

+a0fug) + g + 2422229 [T a)

104 — Q5
From (iv), (v), (vi), (3.6) and (3.4) we can find a positive constant D1y which

satisfies

%%1s1%0%;U)+c;@)+IJ@N+wd@N}U?@)+y2+z2+uP}

(3.13) < D116V,

where D11 = DDl7°. Let

+ e’(t){wh(z) +azh(z) + QL0102 7 A8) Loy o /OZ h(€) dg}.

CY4(041042 - 043) (5}

1 .
D13 = - min{eg, €, ean, ey E}, and Dj3 = max {1, ai,
4 104 — Q5

then from (3.11), (3.13) and (ix) we obtain the estimate
Vo < —2D15(y* 4 22 + w? + u?) + 2D13A(y? + 22 + w? +u?) + D11 oV -

Let A be fixed, in what follows, to satisfy A = 2%%. With this limitation on A
we find

(3.14) Vo < —Dia(y® + 22 + w? + u?) + D11 oV -
Now (3.9) is verified and the lemma is proved.
4. COMPLETION OF THE PROOF OF THEOREM 1

Define the function V (¢, x,y, z,w, u) as follows

(4.1) V(t,z,y, z,w,u) = e~ Io D“ﬁo(T)dTVo(t,x,y, Z,w,u) .
Then one can verify that there exist two functions U; and U, satisfying
(4.2) Ur(llzl)) < V(t, 2.y, z,w,u) < Us(]|Z]]),

for all z = (z,y,2,w,u) € R° and t € RT; where U; is a continuous increasing
positive definite function, Uy (r) — oo as r — oo and Us is a continuous increasing
function.

Along any solution (x,y,z,w,u) of (3.1) we have

V= e PRI, — 5(n)vo}
< —Dige” I Duﬁg(‘r)dr(y2 +22 40?4 u2) '
Thus we can find a positive constant D14 such that
(4.3) V < —Du(y? + 22+ w? +4?).

From the inequalities (4.2) and (4.3), we obtain the uniform boundedness of all
solutions (z,y, z, w,u) of (3.1) [9; Theorem 10.2].
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AUXILIARY LEMMA

Consider a system of differential equations
(4.4) r=F(tz),

where F(t,Z) is continuous on RT x R", F(¢,0) = 0.
The following lemma is well-known [9].

Lemma 3. Suppose that there exists a non-negative continuously differentiabla
scalar function V(t,z) on RT x R™ such that ‘7(4_4) < =U(||z|)), where U(||Z]))
is positive definite with respect to a closed set Q of R™. Moreover, suppose that
F(t,%) of system (4.4) is bounded for all t when T belongs to an arbitrary compact
set in R™ and that F(t,Z) satisfies the following two conditions with respect to §):

(1) F(t,Z) tends to a function H(Z) for T € Q ast — oo, and on any compact
set in § this convergence is uniform.

(2) corresponding to each € > 0 and each § € 2, there exist a §,0 = §(¢,y) and
T,T =T(e,y) such that ift > T and ||Z —g|| < I, we have |F(t,z) — F(t,7)| <e.

Then every bounded solution of (4.4) approaches the largest semi-invariant set
of the system T = H(Z) contained in 2 ast — oo.

From the system (3.1) we set

Y
F(t,z) = w
_f(t7 Y,z w)u - ¢(t7 Z, w) - w(tﬂz) - g(ta y) - e(t)h(x)

It is clear that F satisfies the conditions of Lemma 3. Let U(||Z||) = D1a(y*+ 2%+
w? + u?), then

(4.5) Vt,z,y,z,w,u) < =U(||Z]])

and U(||Z]|) is positive definite with respect to the closed set 2 := {(z,y, z,w, u) |
x€e€R, y=0,2=0, w=0,u=0}. It follows that in

0
0
(4.6) F(t,z) = 0
0
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According to condition (viii) of the theorem and the boundedness of e, we have
e(t) — eoo as t — 00, where 1 < eg < eoo < E. If we set

o O O O

—exoh(x)

then the conditions on H(Z) of Lemma 3 are satisfied. Since all solutions of (3.1)
are bounded, it follows from Lemma 3 that every solution of (3.1) approaches the
largest semi-invariant set of the system z = H(Z) contained in  as t — co. From
(4.7); £ = H(Z) is the system

t=0,y=0, 2=0, w=0 and &= —exh(z),
which has the solutions
x=ky, y=ka, z=ks, w=ky, and u=ks—exh(k)(t—1o).
In order to remain in €2, the above solutions must satisfy
ka=0, k3 =0, ky =0 and ks —exch(k1)(t —to) =0 forallt > ¢,

which implies k5 = 0, (k1) = 0, and thus k; = k5 = 0.

Therefore the only solution of # = H(Z) remaining in  is Z = 0, that is, the
largest semi-invariant set of Z = H(Z) contained in Q is the point (0,0,0,0,0).
Consequently we obtain

x(t), & (t), #(t), @' (t), 2D () - 0 as t— 0.
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