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SINGULAR SOLUTIONS FOR THE DIFFERENTIAL EQUATION

WITH ppp-LAPLACIAN

MIROSLAV BARTUŠEK

Abstract. In the paper a sufficient condition for all solutions of the differ-
ential equation with p-Laplacian to be proper. Examples of super-half-linear
and sub-half-linear equations (|y′|p−1y′)′ +r(t)|y|λ sgn y = 0, r > 0 are given
for which singular solutions exist (for any p > 0, λ > 0, p 6= λ).

Consider the differential equation with p-Laplacian
(

a(t)|y′|p−1y′
)′

+ r(t)f(y) = 0(1)

where p > 0, a ∈ C0(R+), r ∈ C0(R+), f ∈ C0(R), R+ = [0,∞), R = (−∞,∞)
and

a > 0, r ≥ 0 on R+, f(x)x ≥ 0 on R .(2)

A solution y of (1) is called proper if it is defined on R+ and supt∈[τ,∞) |y(t)| > 0

for every τ ∈ (0,∞). It is called singular of the first kind if it is defined on R+,
there exists τ ∈ (0,∞) such that y ≡ 0 on [τ,∞) and supT≤t<τ |y(t)| > 0 for every
T ∈ [0, τ). It is called singular of the second kind if it is defined on [0, τ), τ < ∞
and sup0≤t<τ |y

′(t)| = ∞. A singular solution y is called oscillatory if there exists
a sequence of its zeros {tk}

∞
1 , tk ∈ [0, τ) tending to τ .

Eq. (1) and its special case
(

a(t)|y′|p−1y′
)′

+ r(t)|y|λ sgn y = 0(3)

where λ > 0 is studied by many authors now, see e.g. [5, 6, 8] and the references
therein.

One important problem is the existence of proper and singular solutions, re-
spectively. It is known that all solutions of (3) are defined on R+ if λ ≤ p and
there exists no singular solution of the first kind if λ ≥ p (see Theorem 1 bellow);
hence in case of half-linear equations, λ = p, all solutions are proper. But the set
of Eqs. (3) with solutions to be proper is larger, Mirzov [8] proved that all solu-
tions of (3) are proper if the functions a and r > 0 are locally absolute continuous
on R+. In the present paper we generalize these results to (1). Other results for
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the nonexistence of singular solutions of the second order differential equations (1)
with a ≡ 1 and p = 1 see e.g. in [2], [4] and [9].

Our second goal is to generalize results of [3] and [7] concerning to the second
order equation (p ≡ 1, a ≡ 1). We prove that for λ 6= p, a ≡ 1 there exist equations
of the form (3) with singular solutions.

The following theorem is a special case of Theorems 1.1 and 1.2 in [8]; the
equivalent expression of results is also given in [5].

Theorem 1. Let M ∈ (0,∞) and M1 ∈ (0,∞).

(i) If |f(x)| ≤ M1|x|
p for |x| ≤ M , then there exists no singular solution of

the 1-st kind of (1).
(ii) If |f(x)| ≤ M1|x|

p for |x| ≥ M , then there exists no singular solution of

the 2-nd kind of (1).

Theorem 2. Let the function a
1
p r be locally absolute continuous on R+ and

1
r
∈ Lloc(R+). Then every nontrivial solution y of (1) is proper. Moreover, if

a
1
p (t)r(t) = r0(t) − r1(t), t ∈ R+ and

ρ(t) = a
p+1

p (t)|y′(t)|p+1 +
p + 1

p
a

1
p (t)r(t)

∫ y(t)

0

f(s) ds(4)

where r0 and r1 are nonnegative,nondecreasing and continuous functions, then for

0 ≤ s < t < ∞

ρ(s) exp
{

−

∫ t

s

r′1(σ)

a
1
p (σ)r(σ)

dσ
}

≤ ρ(t) ≤ ρ(s) exp
{

∫ t

s

r′0(σ)

a
1
p (σ)r(σ)

dσ
}

.(5)

Proof. As a
1
p r has locally bounded variation, the continuous nondecreasing func-

tions r0 and r1 exist such that a
1
p r = r0 − r1 and they can be chosen to be

nonnegative on R+. Moreover, r0 ∈ Lloc(R+), r1 ∈ Lloc(R+). Let y be a solution
of (1) defined on [s, t]. Then

ρ′(τ) =
p + 1

p
[a

1
p (t)r(t)]′|t=τ

∫ y(τ)

0

f(σ) dσ , τ ∈ [s, t] a.e.

Let ε > 0 be arbitrary. Then

ρ′(τ)

ρ(τ) + ε
=

p + 1

p

a
1
p (τ)r(τ)

ρ(τ) + ε

∫ y(τ)

0

f(σ) dσ
r′0(τ) − r′1(τ)

a
1
p (τ)r(τ)

,

−
r′1(τ)

a
1
p (τ)r(τ)

≤
ρ′(τ)

ρ(τ) + ε
≤

r′0(τ)

a
1
p (τ)r(τ)

, a.e. on [s, t]

and the integration and (4) yield

exp
{

−

∫ t

s

r′1(σ) dσ

a
1
p (σ)r(σ)

}

≤
ρ(t) + ε

ρ(s) + ε
≤ exp

{

∫ t

s

r′0(σ)

a
1
p (σ)r(σ)

dσ
}

.

As ε > 0 is arbitrary, (5) holds and due to r−1 ∈ Lloc(R+), y is proper.
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Remark 1. The assumption 1
r
∈ Lloc(R+) holds e.g. if r > 0 on R+.

Theorem 3. Let the assumption of Theorem 2 be valid with r > 0 on R+ and let

ρ1(t) =
a(t)

r(t)
|y′(t)|p+1 +

p + 1

p

∫ y(t)

0

f(s) ds .

Then for 0 ≤ s < t < ∞ we have

ρ1(s) exp
{

−

∫ t

s

r′0(σ) dσ

a
1
p (σ)r(σ)

}

≤ ρ1(t) ≤ ρ1(s) exp
{

∫ t

s

r′1(σ)

a
1
p (σ)r(σ)

dσ
}

.

Proof. It is similar to one of Theorem 2 as

ρ′1(t) =
[ (a(t)|y′(t)|p)

p+1
p

a
1
p (t)r(t)

+
p + 1

p

∫ y(t)

0

f(s) ds
]′

= −
[a

1
p (t)r(t)]′

a
1
p (t)r(t)

a(t)|y′(t)|p+1

r(t)
.

Remark 2. For p = 1, a ≡ 1 and r > 0 on R+ Theorems 1 and 2 are proved
in [9], Th. 17.1 and Cor. 17.2; for Eq. (3), if a and r > 0 are locally absolutely
continuous they are proved in [8], Th. 9.4.

In [1] there is an example of Eq. (3) with a ≡ 1, 0 < λ < 1 and p = 1 for which
there exists a solution y with infinitely many accumulation points of zeros. The
following corollary gives a sufficient condition under which every solution of (1)
has no accumulation points of zeros in R+.

Corollary 1. If the assumptions of Th. 1 are fulfilled, there every nontrivial

solution of (1) has only finite number of zeros on a finite interval and it has no

double zeros.

Proof. Let τ ∈ R+ be an accumulation point of zeros or a double zero of a
solution y of (1). As y is proper, y(τ) = y′(τ) = 0 and (1) has a solution ȳ such
that ȳ = y for t ≤ τ and ȳ ≡ 0 on (τ,∞). Hence ȳ is singular of the first kind that
contradicts Th. 1.

The following theorem shows that singular solutions exist. It enlarges the same
results for the second order differential equation, obtained in [3] and [7], to (3).

Lemma 1. For an arbitrary integer k there exists qk ∈ C[0, 1] such that

qk(0) = qk(1) = 0 ,(6)

lim
k→∞

qk(t) = 0 uniformly on [0, 1](7)

and the equation
(

|u′|p−1u′
)′

+ (C + qk(t)) |u|λ sgn u = 0(8)

has a solution uk fulfilling

uk(0) = 1 , uk(1) =
(k + 1

k

)

2(p+1)
λ−p

, u′
k(0) = u′

k(1) = 0(9)
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where C is a suitable positive constant. Moreover, C + qk(t) > 0 on [0, 1].

Proof. Consider a solution w of the problem

(

|ẇ|p−1ẇ
)·

+ |w|λ sgnw = 0 , w(0) = 1 , w′(0) = 0 ,
d

dx
= · .

Then |ẇ(x)|p+1+ p+1
p(λ+1) |w(x)|λ+1 ≡ p+1

p(λ+1) on the definition interval and it is clear

that w is a periodic function with period T > 0 with the local maximum at x = T .
Transformation x = tT yields the existence of a solution Z of the problem

(

|Z ′|p−1Z ′
)′

+ C|Z|λ sgnZ = 0 , Z(0) = Z(1) = 1 , Z ′(0) = Z ′(1) = 0(10)

where C = T p+1 > 0. Note that Z ′ > 0 in a left neighbourhood of t = 1.
Let t0 ∈ (0, 1) be such that

Z(t) > 0 and Z ′(t) > 0 for t0 ≤ t < 1(11)

and put

uk(t) =















Z(t) for t ∈ [0, t0] ,

(

k+1
k

)

2(p+1)
λ−p − 1 + Z(t)

+
∫ 1

t
Z ′(s)

[

αk(s − t0)
3 + βk(s − T0)

2
]

ds for t ∈ (t0, 1]

(12)

where αk and βk fulfil the system

αk

∫ 1

t0

Z ′(s)(s − t0)
3 ds + βk

∫ 1

t0

Z ′(s)(s − t0)
2 ds = 1 −

(

k + 1

k

)

2(p+1)
λ−p

,(13)

αk(1 − t0)
3 + βk(1 − t0)

2 = 1 −

(

k + 1

k

)

2(p+1)λ
(λ−p)p

.(14)

Note that the determinant of the system is negative, as due to Z ′ > 0 we have

(1 − t0)
2

∫ 1

t0

Z ′(s)(s − t0)
3 ds − (1 − t0)

3

∫ 1

t0

Z ′(s)(s − t0)
2 ds < 0

and it is clear that

lim
k→∞

αk = 0 , lim
k→∞

βk = 0 .(15)

As

u′
k(t) = Z ′(t)[1 − αk(t − t0)

3 − βk(t − t0)
2] , t ∈ (t0, 1] ,(16)

(13) yields uk ∈ C1[0, 1] and according to (15) there exists k0 such that

uk(t) > 0, u′
k(t) ≥ 0 on [t0, 1] for k ≥ k0 .(17)
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Further, from this
(

|u′
k(t)|p−1u′

k(t)
)′

=
(

Z ′(t)p
[

1 − αk(t − t0)
3 − βk(t − t0)

2
]p)′

= −CZλ(t)(1 − αk(t − t0)
3 − βk(t − t0)

2)p

− pZ ′(t)p(1 − αk(t − t0)
3 − βk(t − t0)

2)p−1

× [3αk(t − t0)
2 + 2βk(t − t0)] .

Hence, (11) and (12) yield

|u′
k(t)|p−1u′

k(t) ∈ C1[0, 1] ,
(

|u′
k(t)|p−1u′

k(t)
)′

< 0(18)

on [t0, 1] for large k, say, k ≥ k1 ≥ k0.

Define qk by

qk(t) =

{

0 for t ∈ [0, t0]

C + [uk(t)]−λ(|u′
k(t)|p−1u′

k(t))′ for t ∈ (t0, 1] .
(19)

Then q ∈ C[0, 1] and (14) yields (6) be valid; it is clear that uk is a solution of (8)
on [0, 1] and according to (10), (12), (16), the relation (9) holds. As according to

(12) and (15) limk→∞
uk(t)
Z(t) = 1 uniformly on [t0, 1], then (15) and (19) yield (7).

Note that according to (17), (18) and (19) C + qk(t) > 0 on [0, 1] for k ≥ k1.

Theorem 4. Let a ≡ 1 and p > λ (p < λ). Then there exists a positive continuous

function r such that Eq. (3) has a singular solution of the first (second ) kind.

Proof. Consider the sequence {tk}
∞
k=1 such that t1 = 0, tk =

∑k−1
i=1

1
i2

, k =

2, 3, . . . Then limk→∞ tk = π2

6 . Let r and y be functions defined by

(20) r(t) =
(

C + qk(k2(t − tk))
)

, y(t) = k
2(p+1)

λ−p uk(k2(t − tk)

for t ∈ [tk, tk+1) , k = 1, 2, . . .

where qk and uk are given by Lemma 1.

Let k ∈ {1, 2, . . .} be fixed. The transformation

t = tk +
x

k2
, x ∈ [0, 1] , y(t) = k

2(p+1)
λ−p uk(x)(21)

shows that y is a solution of (3) on [tk, tk+1] and

y+(tk) = k
2(p+1)

λ−p , y−(tk+1) = (k + 1)
2(p+1)

λ−p , y′
+(tk) = y′

−(tk+1) = 0 ,(22)

r+(tk) = r−(tk+1) = C; here h+(t̄) (h−(t̄)) denote the right-hand side (left-hand

side) limit of a function h. Hence function r is continuous on [0, π2

6 ) and (7) yields

lim
t→π2

6

r(t) = C. Similarly the function y, defined by (20) fulfils y ∈ C1[0, π2

6 )

and it is a solution of (3) on [0, π2

6 ). Moreover, according to (12), (16), (21) and
(22)

lim
t→ π2

6

y(t) = lim
t→π2

6

y′(t) = 0 if λ < p
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and

lim sup
t→π2

6

|y(t)| = ∞ if λ > p .

If we put r(t) = C for t ≥ π2

6 then y is the singular solution of the second kind if
λ > p and

y(t) =

{

k
2(p+1)

λ−p uk(k2(t − tk)) , tk ≤ t < tk+1 , k = 1, 2, . . .

0 , t ≥ π2

6

is the singular solution of the first kind if λ < p. It is clear that r > 0 on R+.
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