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SINGULAR SOLUTIONS FOR THE DIFFERENTIAL EQUATION
WITH p-LAPLACIAN

MIROSLAV BARTUSEK

ABSTRACT. In the paper a sufficient condition for all solutions of the differ-
ential equation with p-Laplacian to be proper. Examples of super-half-linear
and sub-half-linear equations (|y’[P~1y’)’ +r(t)|y|* sgny = 0, r > 0 are given
for which singular solutions exist (for any p > 0, A > 0, p # \).

Consider the differential equation with p-Laplacian
_ I
(1) (a@®)ly'P~y) +r®)f(y) =0

where p > 0, a € CO(Ry), r € C°(Ry), f € C°(R), Ry = [0,00), R = (—00, 00)
and

(2) a>0,r>0 on Ry, f(x)r>0 on R.

A solution y of (1) is called proper if it is defined on Ry and sup¢(,, o) [y(t)] > 0
for every 7 € (0,00). It is called singular of the first kind if it is defined on R,
there exists 7 € (0, 00) such that y = 0 on [7, 00) and supp<, ., |y(t)| > 0 for every
T € [0,7). Tt is called singular of the second kind if it is defined on [0,7), 7 < oo
and supg<,., |y’ (t)| = oo. A singular solution y is called oscillatory if there exists
a sequence of its zeros {t;}5°, 1, € [0,7) tending to 7.

Eq. (1) and its special case

(3) (a®ly'["'y') + r(®)lyl* seny = 0
where A > 0 is studied by many authors now, see e.g. [5, 6, 8] and the references
therein.

One important problem is the existence of proper and singular solutions, re-
spectively. It is known that all solutions of (3) are defined on Ry if A < p and
there exists no singular solution of the first kind if A > p (see Theorem 1 bellow);
hence in case of half-linear equations, A = p, all solutions are proper. But the set
of Egs. (3) with solutions to be proper is larger, Mirzov [8] proved that all solu-
tions of (3) are proper if the functions a and r > 0 are locally absolute continuous
on R;. In the present paper we generalize these results to (1). Other results for
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the nonexistence of singular solutions of the second order differential equations (1)
with a =1 and p =1 see e.g. in [2], [4] and [9].

Our second goal is to generalize results of [3] and [7] concerning to the second
order equation (p = 1, a = 1). We prove that for A # p, a = 1 there exist equations
of the form (3) with singular solutions.

The following theorem is a special case of Theorems 1.1 and 1.2 in [8]; the
equivalent expression of results is also given in [5].

Theorem 1. Let M € (0,00) and M; € (0,00).

(i) If |f(x)| < My|z|P for |x| < M, then there exists no singular solution of
the 1-st kind of (1).

(i) If |f(x)] < My|z[P for |x| > M, then there exists no singular solution of
the 2-nd kind of (1).

Theorem 2. Let the function avr be locally absolute continuous on Ry and
% € Lioe(R4+). Then every nontrivial solution y of (1) is proper. Moreover, if

ar ()r(t) = ro(t) — r1(t), t € Ry and

pt1 . y(t)
(4) mwavwmymW“+3iiaawmwA £(s) ds

where rq and 1 are nonnegative,nondecreasing and continuous functions, then for
0<s<t<

/

(5)  pls) exp{ — /st ;i& da} < p(t) < p(s)exp { /st ;Lg)) da} .

a? (o)r(o) a? (o)r(o

Proof. As a»r has locally bounded variation, the continuous nondecreasing func-
1
tions rg and rp exist such that arr = ry — r1 and they can be chosen to be
nonnegative on Ri. Moreover, rg € Lioc(R+), ™1 € Lioc(R+). Let y be a solution
of (1) defined on [s,t]. Then
1 y(7)
o(r) = p;— [a%(t)r(t)]ftzf / flo)do, 7€]s,t] ae.
0
Let € > 0 be arbitrary. Then

(1 av (T)r(r) (v ri(t) —ri (T
o) _pLaton) P,

p(T) +¢ p p(t)+e a
n o A0 o)

a%(T)r T

(
and the integration and (4) yield

ri(o) do p(t) " rplo)
exp{f/S %(U ()}< (t)ii<exp{/s mdo}.

)r
As e > 0 is arbitrary, (5) holds and due to r~! € Ljo.(R4), y is proper. O
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Remark 1. The assumption 1 € Lioc(R4) holds e.g. if r > 0 on Ry.
Theorem 3. Let the assumption of Theorem 2 be valid with r > 0 on Ry and let

7@/ il E y(t) s
plt) = SR OP + 2 [T sy as.

Then for 0 < s <t < oo we have

Pl(s)eXP{ /:7’16(07)(&7)} < pi(t) SPl(S)GXP{/:a;LJ)U)dU}-

av (o)r(o

Proof. It is similar to one of Theorem 2 as

: (a®ly O pt1 (v ,
pl(t)z[ R f(s)ds} __

a7 (O)r(1) a(®)ly'(£)P+!
ar (t)r(t) rt)

O

Remark 2. For p=1,a =1 and r > 0 on R; Theorems 1 and 2 are proved
in [9], Th. 17.1 and Cor. 17.2; for Eq. (3), if a and r > 0 are locally absolutely
continuous they are proved in [8], Th. 9.4.

In [1] there is an example of Eq. (3) witha =1, 0 < A < 1 and p = 1 for which
there exists a solution y with infinitely many accumulation points of zeros. The
following corollary gives a sufficient condition under which every solution of (1)
has no accumulation points of zeros in R .

Corollary 1. If the assumptions of Th. 1 are fulfilled, there every montrivial
solution of (1) has only finite number of zeros on a finite interval and it has no
double zeros.

Proof. Let 7 € Ry be an accumulation point of zeros or a double zero of a
solution y of (1). As y is proper, y(7) = y'(7) = 0 and (1) has a solution § such
that § =y for t <7 and § =0 on (7,00). Hence g is singular of the first kind that
contradicts Th. 1. O

The following theorem shows that singular solutions exist. It enlarges the same
results for the second order differential equation, obtained in [3] and [7], to (3).

Lemma 1. For an arbitrary integer k there exists g € C[0,1] such that
(6) k(0) = qr(1) = 0,

(7) klin;o qr(t) =0  wuniformly on [0,1]

and the equation

(8) (W' P~) + (C + qi(®)) [ul* sgnu = 0

has a solution uy fulfilling

2(p+1)
D

O wO=1 wn)= (") w0 =) =0
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where C' is a suitable positive constant. Moreover, C + qi(t) > 0 on [0,1].

Proof. Consider a solution w of the problem

. d
([ ~") + wl*sgnw =0, w(©0) =1, w'(0)=0, —=="
x
Then | (x)|PT + %m(m)r\“ = p(pA—trll) on the definition interval and it is clear

that w is a periodic function with period T' > 0 with the local maximum at z = T.
Transformation z = tT yields the existence of a solution Z of the problem

10) (|22 + |z} sgnZ =0, Z(0)=2z(1)=1, Z'(0)=2'(1)=0

where C' = TP*! > (. Note that Z’ > 0 in a left neighbourhood of t = 1.
Let ¢y € (0,1) be such that

(11) Z({t)>0 and Z'(t) >0 for to<t<l1
and put

Z(t) for te€[0,%0],
(12)  wilt) = § (k£0) 55 _ 4 70

+ ftl Z'(s) [ar(s — to)® + Br(s — Tp)?] ds for t€ (to,1]

where oy, and [ fulfil the system

2(p+1)
- 3 Y 2 k+1 =
(13) ax | Z'(s)(s—to)°ds+ B | Z'(s)(s—tg) ds=1— % ,
to to
k 1 2((p+1)/\
+ A—p)p
(14) ar(l—to)* + Br(l —to)* =1— (T)

Note that the determinant of the system is negative, as due to Z’ > 0 we have

(1—t0)2/ Z’(s)(s—t0)3ds—(1—t0)3/ Z/(s)(s — to)2ds < 0

to to

and it is clear that

(15) klggo ap =0, klggo Ok =0.
As
(16) up(t) = Z'(O[1 - ar(t —t0)* = fu(t —t0)?],  t€ (to, 1],

(13) yields uy € C1[0,1] and according to (15) there exists ko such that

(17) ug(t) > 0,up(t) >0 on [tg,1] for k> ko.
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Further, from this
(Jui ()P () = (Z'(0)P [1 = an(t = t0)® = Bt = 10)]")’
= —CZMNt)(A — o (t — to)® — Br(t — tg)?)P
—pZ' ()P (1 — a(t — to)* — Br(t — t0)*)" "
x [ (t — to)? + 2Bk (t — to)] -
Hence, (11) and (12) yield

(18) P () € C0,1), (P u(0) <0
on [to, 1] for large k, say, k > k1 > ko.
Define g by
0 for te€0,t0)
19 t) =
a8 o) {C+wﬂmAwﬂmp%ﬂm’hrt€%Jk

Then ¢ € C[0,1] and (14) yields (6) be valid; it is clear that uy, is a solution of (8)
on [0,1] and according to (10), (12), (16), the relation (9) holds. As according to
(12) and (15) limg_ 0o quT(tt)) = 1 uniformly on [tg, 1], then (15) and (19) yield (7).
Note that according to (17), (18) and (19) C'+ ¢x(¢t) >0 on [0,1] for k > k;. O
Theorem 4. Leta =1 andp > X (p < A). Then there exists a positive continuous
function v such that Eq. (3) has a singular solution of the first (second) kind.

Proof. Consider the sequence {t;}2°, such that t; = 0, t;, = S0 &, k =

i=1 727

2,3,... Then limg_. o tx = ”—62. Let r and y be functions defined by

2(p+1)

(20) r(t) = (C+aqu(k*(t —tr)) , y(t) =k >7 ugp(k*(t —tr)
for te€ [tk,ter1), k=1,2,...

where ¢, and uy are given by Lemma 1.

Let k € {1,2,...} be fixed. The transformation

x 2(p+1)

2 L€ [0,1], y(t) =k -7 ug(z)

shows that y is a solution of (3) on [t, tx+1] and

(21) t=ty+

2(p+1) 2(p+1)

(22)  yu(tr) =k 7, y_(tep) = (k+1) 7, o (te) =y (trs1) =0,

r4(tk) = r—(tr41) = C; here hy(t) (h—_(¥)) denote the right-hand side (left-hand
side) limit of a function h. Hence function r is continuous on [0, %2) and (7) yields
1imtﬁ% r(t) = C. Similarly the function y, defined by (20) fulfils y € C*[0, %2)

and it is a solution of (3) on [0, %2) Moreover, according to (12), (16), (21) and
(22)

lim y(t) = lim y'(t) =0 it A<p
té% t—»%
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and

lim sup |y(t)| = oo it A>p.

2
t— 75

If we put r(t) = C for t > %2 then y is the singular solution of the second kind if
A > p and

2(p+1)

A up (B2 (=), e <t <tpgr, k=1,2,...
0, 1>

is the singular solution of the first kind if A < p. It is clear that r >0 on Ry. O
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