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AN ALMOST-PERIODICITY CRITERION FOR SOLUTIONS OF

THE OSCILLATORY DIFFERENTIAL EQUATION y′′ = q(t)y AND

ITS APPLICATIONS

SVATOSLAV STANĚK

Abstract. The linear differential equation (q) : y′′ = q(t)y with the uni-
formly almost-periodic function q is considered. Necessary and sufficient
conditions which guarantee that all bounded (on R) solutions of (q) are uni-
formly almost-periodic functions are presented. The conditions are stated by
a phase of (q). Next, a class of equations of the type (q) whose all non-trivial
solutions are bounded and not uniformly almost-periodic is given. Finally,
uniformly almost-periodic solutions of the non-homogeneous differential equa-
tions y′′ = q(t)y + f(t) are considered. The results are applied to the Appell
and Kummer differential equations.

1. Introduction

In the paper we consider the differential equation

(q) y′′ = q(t)y ,

where q is either a real-valued continuous function on R or a real-valued uniformly
almost-periodic function. At the same time we say that a (generally complex-
valued) function f is uniformly almost-periodic (u.a.p.) or Bohr’s almost-periodic
if f is continuous on R and for each ε > 0 there exists a number l > 0 such that
on every interval [a, a+ l] there is a τ such that |f(t+ τ)− f(t)| < ε for t ∈ R (see
e.g. [6], [8], [13]). Throughout the paper a bounded function (which is defined on
R) means that it is bounded on R.

Let q be a u.a.p. function. Then (q) is either disconjugate (that is (q) has a
positive solution on R) or oscillatory (that is ±∞ are the cluster points of zeros
of a non-trivial solution to (q)) (see e.g. [15]). The properties of solutions to the
disconjugate equation (q) are usually considered by the associated Riccati equation
y′ + y2 = q(t). For the disconjugate equation (q) it is known that (q) can have
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a non-trivial u.a.p. solution y (and then {ky : k ∈ R} are all its u.a.p. solutions)
only if (q) is the special disconjugate equation (that is (q) has the unique (up to
the positive multiplicative constant) positive solution on R) (see e.g. [15], [18]).
Discussing u.a.p. solutions to the oscillatory equation (q) is more complicated since
now the transformation to the associated Riccati equation is impossible on R. But
if q is a periodic function, then any bounded solution of (q) is u.a.p. (see e.g. [7],
[10]).

In [16], the following question was put: If all solutions of (q) with a uniformly
almost-periodic coefficient q are bounded, does it necessarily follow that all solu-
tions are u.a.p. functions? The negative answer to this question is given in [12]
even for n-order differential equations (n ≥ 2)

(1.1) y(n) = p1(t)y + · · · + pn(t)y(n−1)

with u.a.p. coefficients pj (j = 1, . . . , n). The authors of [12] showed that, for
each n ≥ 2, there exists an equation of form (1.1) for which every solution is
bounded but only the trivial solution is uniformly almost-periodic. The analogical
result for the system y′ = A(t)y with the u.a.p. matrix A(t) has been showed by
Lillo [14] who considered the system x′ = f(t)y, y′ = −f(t)x where the function

f is u.a.p. whose mean value is zero and
∫ t

0 f(s) ds is unbounded. The vectors

(sin(
∫ t

0
f(s) ds), cos(

∫ t

0
f(s) ds)) and (cos(

∫ t

0
f(s) ds),− sin(

∫ t

0
f(s) ds)) form a base

of the solution space. Any non-trivial solution is bounded but it is not a u.a.p.
function.

Let q be a u.a.p. function and let all solutions of (q) are bounded (then (q) is
oscillatory by Lemma 2.1). The aim of the paper is to discuss the existence and
non-existence of u.a.p. solutions of (q) in detail. We present necessary and sufficient
conditions which guarantee that all solutions of (q) are u.a.p. (Theorem 3.1). These
conditions are stated by the notion of a (first) phase of (q) (see [3]). Theorem 3.9
gives a class of equations of the type (q) whose all non-trivial solutions are bounded
but not u.a.p. functions. Finally, if f is a u.a.p. function, all solutions of (q) are
u.a.p. and the non-homogeneous differential equation y′′ = q(t)y + f(t) has a
bounded solution, then all its solutions are u.a.p. (Theorem 3.11). Results are
applied to the linear Appell differential equation (Corollary 3.5) and the nonlinear
Kummer differential equation (Corollary 3.6).

2. Definitions and auxiliary results

Throughout this section we assume that q is a real-valued continuous function
on R. We say that (u, v) is a base of (q) if u, v are linearly independent solution
of (q).

Lemma 2.1. Let q and all solutions of (q) be bounded. Then (q) is an oscillatory

equation, the first and second derivatives of all its solutions are bounded and

(2.1) inf{u2(t) + v2(t) : t ∈ R} > 0

for any base (u, v) of (q).
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Proof. Let y be a non-trivial solution of (q). Then q and y′′ (= qy) are bounded
and so y′ is bounded which follows from the inequality ‖y′‖2 ≤ 8‖y‖‖y′′‖ where
‖ · ‖ stands for the sup-norm in C0(R) (see e.g. [2], [17]).

Let (u, v) be a phase of (q). Then the Wronskian w = uv′ − u′v of (u, v) is a
non-zero constant function. If (2.1) is false, then there exists a sequence {tn} ⊂
R such that limn→∞ u(tn) = limn→∞ v(tn) = 0. Hence limn→∞(u(tn)v′(tn) −
u′(tn)v(tn)) = 0 since u′, v′ are bounded, contrary to u(tn)v′(tn) − u′(tn)v(tn) =
w 6= 0 for n ∈ N. So (2.1) is true and then

∫ 0

−∞

1

u2(t) + v2(t)
dt =

∫ ∞

0

1

u2(t) + v2(t)
dt = ∞ .

Consequently (q) is oscillatory (see e.g. [11]). �

A function α ∈ C0(R) is said to be a (first) phase of the differential equation

(q) if there is a phase (u, v) of (q) such that

tanα(t) =
u(t)

v(t)
for t ∈ R \ {t : v(t) = 0} .

If α is a phase of (q) then

(i) α ∈ C3(R),
(ii) α′(t) 6= 0 for t ∈ R,

(iii)
sin(α(t))
√

|α′(t)|
,

cos(α(t))
√

|α′(t)|
are linearly independent solutions of (q)

and any solution y of (q) can be written in the form

y(t) = c1
sin(α(t) + c2)

√

|α′(t)|
, t ∈ R ,

where c1, c2 ∈ R.
A function α is a phase of (q) if and only if it is a solution of the nonlinear

Kummer third-order differential equation

(2.2) −1

2

y′′′

y′
+

3

4

(y′′

y′

)2

− (y′)2 = q(t) .

In addition, if (u, v) is a base of (q) and |uv′ − u′v| = 1, then there exists a phase
α of (q) such that

(2.3) u(t) =
sin(α(t))
√

|α′(t)|
, v(t) =

cos(α(t))
√

|α′(t)|
for t ∈ R .

The definition of the phase of (q) and its properties are presented in [3].

Lemma 2.2. Let q be bounded and α be a phase of (q).

(j) If all solutions of (q) are bounded then
1

α′
, α′, α′′ and α′′′ are bounded, too.

(jj) If
1

α′
is bounded then all solutions of (q) are bounded, too.
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Proof. By (iii), the functions u, v defined by (2.3) are linearly independent solu-
tions of (q). Set ε = signα′ and

p(t) =
√

u2(t) + v2(t) , s(t) =
√

(u′(t))2 + (v′(t))2 , t ∈ R .

Then

(2.4) α′ =
ε

p2
, α′′ = −2εp′

p3
, α′′′ = −2ε

( q

p2
− 3s2

p4
+

4

p6

)

(see [3], p. 38). If all solutions of (q) are bounded then u(j), v(j) are bounded for
j = 0, 1, 2 and inf{u2(t) + v2(t) : t ∈ R} > 0 by Lemma 2.1. The boundedness of
1/α′, α′, α′′ and α′′′ now follows from (2.4).

If 1/α′ is bounded, then u, v are bounded and so all solutions of (q) are bounded,
too. �

Denote by A the set of real-valued u.a.p. functions. For the remainder of this
section we state here for the convenience of the reader some results from the theory
of u.a.p. functions which will be used in our next considerations. A function
h ∈ A if and only if h ∈ C0(R) and for every sequence {kn} ⊂ R there exists a
subsequence {kin} such that the sequence of functions {h(t + kin)} is uniformly
convergent on R. The limit of any sequence {hn} ⊂ A converging uniformly on
R belongs to A. If h ∈ A then h is bounded and equicontinuous on R, |h| ∈ A,
γ(h) ∈ A for every γ being equicontinuous on the range of h, h′ ∈ A provided h′

is equicontinuous on R and
∫ t

0
h(s) ds ∈ A if and only if it is bounded. If g, h ∈ A

then gh ∈ A. Finally, each h ∈ A has the finite mean value

M [h] = lim
T→∞

1

T

∫ T

0

h(s) ds

(see e.g. [6], [8], [13]).

Lemma 2.3 (Bohr theorem, [13] p. 129). Let F be a u.a.p. function and let

inf{|F (t)| : t ∈ R} > 0. Then

argF (t) = at+ ϕ(t) , t ∈ R ,

where a ∈ R and ϕ ∈ A.

Lemma 2.4. Let b ∈ R and χ, ω ∈ A. Then the composite function χ(bt+ ω(t))
belongs to A.

Proof. If b = 0 then χ(ω) ∈ A since χ is equicontinuous on R. Let b 6= 0 and ε
be a positive number. Then there exists δ > 0 such that

(2.5) |χ(t+ ν) − χ(t)| < ε

2
for t, ν ∈ R , |ν| < δ

which follows from χ being equicontinuous on R. Let {kn} ⊂ R be a sequence.
Going if necessary to a subsequence, we can assume that the sequences {χ(bt +
bkn)} and {ω(t+ kn)} are uniformly convergent on R. Let limn→∞ χ(bt+ bkn) =
p(t), limn→∞ ω(t+ kn) = r(t). Then there exists n0 ∈ N such that

(2.6) |χ(bt+ bkn) − p(t)| < ε

2
, |ω(t+ kn) − r(t)| < δ for t ∈ R , n ≥ n0 .
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By (2.5) and (2.6),
∣

∣

∣
χ(bt+ bkn + ω(t+ kn)) − p

(

t+
r(t)

b

)∣

∣

∣

≤ |χ(bt+ bkn + ω(t+ kn)) − χ(bt+ bkn + r(t))|

+
∣

∣

∣
χ(bt+ bkn + r(t)) − p

(

t+
r(t)

b

)∣

∣

∣
<
ε

2
+
ε

2
= ε

for t ∈ R and n ≥ n0, which proves that

lim
n→∞

χ(bt+ bkn + ω(t+ kn)) = p
(

t+
r(t)

b

)

uniformly on R .

Hence χ(bt+ ω(t)) ∈ A. �

3. Main results

Theorem 3.1. Let q ∈ A and α be a phase of (q). Then all solutions of (q) are

u.a.p. functions if and only if

(3.1) α(t) = at+ ϕ(t) for t ∈ R,

where a ∈ R, ϕ(i) ∈ A for i = 0, 1 and

(3.2) inf{|a+ ϕ′(t)| : t ∈ R} > 0 .

Proof. Let u, v be defined by (2.3). Then (u, v) is a base of (q) and all solutions
of (q) belong to A if and only if u, v ∈ A.

First assume that u, v ∈ A. Then all solutions of (q) are bounded and so the
functions 1/α′, α′ and α′′ are bounded by Lemma 2.2. Set

(3.3) F (t) = v(t) + iu(t) for t ∈ R .

Then F is u.a.p. and |F (t)| = 1/
√

|α′(t)| ≥ l > 0 for t ∈ R. Since

argF (t) = arg
eiα(t)

√

|α′(t)|
= α(t) + 2kπ , t ∈ R ,

where k is an integer, Lemma 2.3 shows that α(t) = at + ϕ(t) where a ∈ R and
ϕ ∈ A. From the properties of the phase α we see that ϕ ∈ C3(R) and ϕ(i) is
bounded for i = 1, 2. Hence ϕ′ is equicontinuous on R, and so ϕ′ ∈ A. In addition,
the inequality inf{|α′(t)| : t ∈ R} > 0 implies (3.2).

Let α(t) = at + ϕ(t) for t ∈ R where a ∈ R, ϕ(i) ∈ A for i = 0, 1 and (3.2)

be satisfied. Then sin(at + ϕ(t)), cos(at + ϕ(t)) and 1/
√

α′(t) are u.a.p., and
consequently u, v ∈ A. �

Remark 3.2. Let q ∈ A and α be a phase of (q). If all solutions of (q) belong to
A and (3.1) is satisfied with an a ∈ R and ϕ ∈ A then ϕ(i) ∈ A even for i = 2, 3.
To prove this fact we note that from the boundedness of α′′′ by Lemma 2.2 we
deduce that ϕ′′ is equicontinuous on R and so ϕ′′ ∈ A. Now from the equalities

q = −1

2

α′′′

α′
+

3

4

(α′′

α′

)2

− (α′)2 = −1

2

ϕ′′′

a+ ϕ′
+

3

4

( ϕ′′

a+ ϕ′

)2

− (a+ ϕ′)2
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we have

ϕ′′′ = 2
[3

4

(ϕ′′)2

a+ ϕ′
− q(a+ ϕ′) − (a+ ϕ′)3

]

and so ϕ′′′ ∈ A since inf{|a+ ϕ′(t)| : t ∈ R} > 0.

Remark 3.3. If q ∈ A and all solutions of (q) belong to A then the derivatives of
all solutions of (q) are equicontinuous functions on R, and therefore they belong
to A.

Corollary 3.4. Let q ∈ A and α be a phase of (q). If all solutions of (q) are

u.a.p. then all solutions of the differential equation

(3.4) y′′ = [q(t) − λ(α′(t))2]y

are u.a.p. for each λ ∈ (−1,∞).

Proof. Let all solutions of (q) belong to A and fix λ ∈ (−1,∞). By Theorem 3.1,
α(t) = at + ϕ(t) for t ∈ R, where a ∈ R, ϕ, ϕ′ ∈ A and (3.2) is satisfied. Hence
(α′)2 = (a+ ϕ′)2 ∈ A. Set β =

√
1 + λα. Now from the equalities

−1

2

β′′′

β′
+

3

4

(β′′

β′

)2

− (β′)2 = −1

2

α′′′

α′
+

3

4

(α′′

α′

)2

− (1 + λ)(α′)2 = q − λ(α′)2

we see that β is a phase of (3.4) and since β(t) =
√

1 + λat +
√

1 + λϕ(t), all
solutions of (3.4) belong to A by Theorem 3.1. �

Corollary 3.5. Let q, q′ ∈ A and α be a phase of (q). Then all solutions of the

Appell equation

(3.5) y′′′ = 4q(t)y′ + 2q′(t)y

belong to A if and only if (3.1) is satisfied with some a ∈ R and ϕ ∈ A such that

ϕ′ ∈ A and inf{|a+ ϕ′(t)| : t ∈ R} > 0.

Proof. Let u, v be defined by (2.3). Then (u, v) is a base of (q) and therefore
u2, uv, v2 are linearly independent solutions of (3.5) (see e.g. [1], [9]).

If (3.1) is satisfied with some a ∈ R and ϕ ∈ A such that ϕ′ ∈ A and inf{|a+
ϕ′(t)| : t ∈ R} > 0, then u, v ∈ A by Theorem 3.1 and so u2, uv, v2 ∈ A which
implies that all solutions of (3.5) belong to A.

Assume that all solutions of (3.5) are u.a.p. functions. Then u2, uv, v2 ∈ A and
so

2uv =
sin(2α)

|α′| , v2 − u2 =
cos(2α)

|α′|
are u.a.p. functions. Set

F (t) =
cos(2α(t))

|α′(t)| + i
sin(2α(t)

|α′(t)| , t ∈ R .

Then F is a u.a.p. function and |F (t)| = 1/|α′(t)| ≥ l > 0 for t ∈ R. By
Lemma 2.3, argF (t) = 2α(t) + 2kπ = a1 + ϕ1(t) for t ∈ R, where k is an integer,
a1 ∈ R and ϕ1 ∈ A. Arguing as in the proof of Theorem 3.1 we have ϕ′

1 ∈ A and
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inf{|a1 +ϕ′
1(t)| : t ∈ R} > 0. Hence (3.1) is satisfied with a = a1/2 and ϕ = ϕ1/2.

�

Corollary 3.6. Let q,Q ∈ A and let all solutions of (q) and (Q) belong to A.

Then the derivative of all regular solutions (that is solutions in C3(R) with non-

vanishing derivative on R) to the Kummer differential equation

(3.6) −1

2

y′′′

y′
+

3

4

(y′′

y′

)2

+Q(y)(y′)2 = q(t)

are u.a.p. functions.

Proof. Denote by G the set of the phases of y′′ + y = 0 and let α and Λ be a
phase of (q) and (Q), respectively. Then Λ−1Gα = {Λ−1(γ(α)) : γ ∈ G} is the set
of all regular solutions to (3.6) (see [3]). Here Λ−1 stands for the inverse function
to Λ.

Let γ ∈ G and set X = Λ−1(γ(α)). To prove the statement of our corollary we
have to show that X ′ ∈ A. We know, by Theorem 3.1,

(3.7) Λ(t) = At+ Ψ(t), α(t) = at+ ψ(t) , t ∈ R ,

where A, a ∈ R, Ψ(i), ψ(i) ∈ A for i = 0, 1 and

inf{|A+ Ψ′(t)| : t ∈ R} > 0 , inf{|a+ ψ′(t)| : t ∈ R} > 0 .

Since (Q) and (q) are oscillatory by Lemma 2.1, we have

lim
|t|→∞

|Λ(t)| = ∞ , lim
|t|→∞

|α(t)| = ∞

and then (3.7) and the boundedness of Ψ and ψ imply A 6= 0, a 6= 0. From
γ(t+ π) = γ(t) + µπ for t ∈ R, where µ = sign γ ′ (see [3]), we deduce that

(3.8) γ(t) = µt+ η(t) , t ∈ R ,

where η is a π-periodic function. Of course, η ∈ A and inf{|µ+η′(t)| : t ∈ R} > 0.
We claim that

(3.9) Λ−1(t) =
t

A
+ Ψ∗(t) for t ∈ R ,

where Ψ∗,Ψ
′
∗ ∈ A and inf{|1/A+ Ψ′

∗(t)| : t ∈ R} > 0. We first have

t = Λ−1(Λ(t)) = t+
Ψ(t)

A
+ Ψ∗(At+ Ψ(t)) ,

and so

(3.10) Ψ(t) = −AΨ∗(At+ Ψ(t)) for t ∈ R .

Let {kn} ⊂ R be a sequence. Since Ψ ∈ A, we can assume without restriction of
generality that

(3.11) lim
n→∞

Ψ(t+ kn) = r(t) uniformly on R .

Obviously, r ∈ A. Let ε be a positive number. By (3.10) and (3.11), there exists
n0 ∈ N such that |Ψ∗(At+Akn + Ψ(t+ kn)) + r(t)/A| < ε/2 and then

(3.12)
∣

∣

∣
Ψ∗(At+Akn) +

1

A
r
(

t− Ψ(t+ kn)

A

)∣

∣

∣
<
ε

2
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for t ∈ R and n ≥ n0. From r being equicontinuous on R and (3.11), it follows
that there is an n1 ∈ N such that

(3.13)
∣

∣

∣
r
(

t− Ψ(t+ kn)

A

)

− r
(

t− r(t)

A

)
∣

∣

∣
<
ε|A|
2

for t ∈ R and n ≥ n1 .

Then (3.12) and (3.13) give
∣

∣

∣
Ψ∗(At+Akn) +

1

A
r
(

t− r(t)

A

)∣

∣

∣

≤
∣

∣

∣
Ψ∗(At+Akn) +

1

A
r
(

t− Ψ(t+ kn)

A

)∣

∣

∣

+
1

|A|
∣

∣

∣
r
(

t− Ψ(t+ kn)

A

)

− r
(

t− r(t)

A

)
∣

∣

∣

<
ε

2
+
ε

2
= ε

for t ∈ R and n ≥ max{n0, n1}. We have proved that {Ψ∗(At+Akn)} is uniformly
convergent on R. Hence Ψ∗(At) ∈ A and then Ψ∗ ∈ A. Since Λ′, 1/Λ′ and Λ′′

are bounded, we see that Λ−1′

, 1/Λ−1′

and Λ−1′′

are also bounded which implies
the boundedness of Ψ′

∗,Ψ
′′
∗ and inf{|1/A+ Ψ′

∗(t)| : t ∈ R} > 0. Clearly, Ψ′
∗ ∈ A.

Now, applying Lemma 2.4, we see that η(at+ψ(t)) and η′(at+ψ(t)) belong to A.
Hence f(t) = µψ(t) + η(at+ ψ(t)) ∈ A and repeated the above lemma we deduce
that

Ψ∗(µat+ f(t)), Ψ′
(µa

A
t+

f(t)

A
+ Ψ∗(µat+ f(t))

)

are u.a.p. functions. From the equalities (see (3.7)–(3.9)),

Λ−1′

(γ(α(t))) =
1

Λ′(Λ−1(γ(α(t))))
=

1

A+ Ψ′
(

µa
A t+ f(t)

A + Ψ∗(µat+ f(t))
) ,

γ′(α(t)) = µ+ η′(at+ ψ(t)), α′(t) = a+ ψ′(t)

and the inequality inf{|A + Ψ′(t)| : t ∈ R} > 0, we deduce that X ′(t) =

Λ−1′

(γ(α(t)))γ′(α(t))α′(t) belongs to A. This completes the proof. �

Remark 3.7. Let q and all solutions of (q) belong to A. If α is a phase of
(q) then, by Theorem 3.1, α(t) = at + ϕ(t) for t ∈ R where a ∈ R, ϕ, ϕ′ ∈ A
and inf{|a + ϕ′(t)| : t ∈ R} > 0. As in the proof of Corollary 3.6 we may
verify that a 6= 0 and α−1(t) = t/a + ϕ∗(t) for t ∈ R, where ϕ∗, ϕ

′
∗ ∈ A and

inf{|1/a + ϕ′
∗(t)| : t ∈ R} > 0. Let the inverse function α−1 to α be a phase of

(q∗). It is a simple calculation to show that

q∗(t) = −1−
( d

dt
α−1(t)

)2

(1 + q(α−1(t)), t ∈ R .

Then q∗ ∈ A and Theorem 3.1 shows that all solutions of (q∗) belong to A. Hence
for each phase α of (q), all solutions of the differential equation

y′′ = −
[

1 +
( d

dt
α−1(t)

)2

(1 + q(α−1(t))
]

y

are u.a.p. functions.
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Remark 3.8. If q is a π-periodic continuous function then all solutions of (q) are
bounded if and only if there is a phase α of (q) such that α(t + π) = α(t) + a
for t ∈ R, where a ∈ R (see [4], [5]). In this case α(t) = (a/π)t + ψ(t) where
ψ is a π-periodic function and consequently all solutions of (q) belong to A by
Theorem 3.1.

Theorem 3.9. Let ϕ ∈ C2(R), ϕ(j) ∈ A for j = 0, 1, 2, the mean value M [ϕ] = 0,
∫ t

0
ϕ(s) ds be unbounded and inf{|a+ ϕ(t)| : t ∈ R} > 0 with some a ∈ R. Set

(3.14) q(t) = −1

2

ϕ′′(t)

a+ ϕ(t)
+

3

4

( ϕ′′(t)

a+ ϕ(t)

)2

− (a+ ϕ(t))2 for t ∈ R.

Then q ∈ A, all solutions of (q) are bounded and only the trivial solution of (q)
belongs to A.

Proof. It is easily seen that q ∈ A. Set

α(t) = at+

∫ t

0

ϕ(s) ds , t ∈ R .

Then α is a phase of (q) with q given by (3.14) and since α′ = a + ϕ ∈ A and
sup{1/|α′(t)| : t ∈ R} = sup{1/|a + ϕ(t)| : t ∈ R} < ∞, all solutions of (q) are

bounded by Lemma 2.2. By our assumption
∫ t

0
ϕ(s) ds 6∈ A and so Theorem 3.1

shows that there is a solution u of (q) such that u 6∈ A. Assume now that there
exists a non-trivial solutions v of (q) such that v ∈ A. Clearly, (u, v) is a base of
(q). We know that v can be written in the form

v(t) = c1
sin(α(t) + c2)

√

|α′(t)|
, t ∈ R ,

where c1, c2 ∈ R. Since
√

|α′| ∈ A, we have sin(α + c2) ∈ A. Set w(t) =
sin(α(t) + c2) for t ∈ R. Then from the equalities

w′ = α′ cos(α+ c2), w′′ = α′′ cos(α + c2) − (α′)2 sin(α+ c2)

we deduce that w′′ is bounded, so w′ is equicontinuous and then w′ ∈ A. Therefore
cos(α+ c2) ∈ A since 1/α′ ∈ A. Let

F1(t) =
cos(α(t) + c2) + i sin(α(t) + c2)

√

|α′(t)|
, t ∈ R .

Then F1 is a u.a.p. function, |F1(t)| = 1/
√

|α′(t)| = 1/
√

|a+ ϕ(t)| ≥ l1 > 0
for t ∈ R with a constant l1, and consequently Lemma 2.3 gives argF1(t) =
α(t) + c2 + 2kπ = a1t+ ϕ1(t) for t ∈ R where k is an integer, a1 ∈ R and ϕ1 ∈ A.
Thus

at+

∫ t

0

ϕ(s) ds+ c2 + 2kπ = a1t+ ϕ1(t) , t ∈ R

and then a = a1 and ϕ1(t) =
∫ t

0 ϕ(s) ds + c2 + 2kπ for t ∈ R since M [ϕ] = 0,
contrary to ϕ1 ∈ A. We have proved that only the trivial solution of (q) belongs
to A. �
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Example 3.10. Let

ϕ(t) =
∞
∑

n=1

1

n2
cos(

t

n2
) , t ∈ R .

Then ϕ(j) ∈ A for j = 0, 1, 2, M [ϕ] = 0 and
∫ t

0 ϕ(s) ds is unbounded (see [13]).
Set γ = sup{|ϕ(t)| : t ∈ R} and q be defined by (3.14) with |a| > γ. Applying
Theorem 3.9, all solutions of (q) are bounded but there is no (non-trivial) solution
in A.

Theorem 3.11. Let q, f ∈ A and let all solutions of (q) belong to A. If a solution

of the non-homogeneous differential equation

(3.15) y′′ = q(t)y + f(t)

is bounded, then all solutions of (3.15) belong to A.

Proof. Let y be a bounded solution of (3.15) and let (u, v) be a base of (q),
u′v − uv′ = 1. Then

y(t) = c1u(t) + c2v(t) + u(t)

∫ t

0

v(s)f(s) ds− v(t)

∫ t

0

u(s)f(s) ds , t ∈ R ,

where c1, c2 ∈ R. Since u, v ∈ A, they are bounded and the function

z(t) = u(t)

∫ t

0

v(s)f(s) ds− v(t)

∫ t

0

u(s)f(s) ds , t ∈ R

is a bounded solution of (3.15). To prove our theorem it suffices to show that the

functions
∫ t

0 v(s)f(s) ds and
∫ t

0 u(s)f(s) ds are bounded. Really, since vf, uf ∈ A
we conclude that

∫ t

0 v(s)f(s) ds,
∫ t

0 u(s)f(s) ds belong to A if they are bounded,
and so z ∈ A. Then from the structure of the solution space of (3.15) we deduce
that all solutions of (3.15) belong to A. We are going to prove that the func-

tions
∫ t

0 v(s)f(s) ds,
∫ t

0 u(s)f(s) ds are bounded. First, note that z′′ (= qz + f) is
bounded which implies the boundedness of z′ (see the proof of Lemma 2.1). Now,
let α be a phase of (q) such that the equalities (2.3) are satisfied. Then

u′ = α′ cosα
√

|α′|
− α′′

2α′

sinα
√

|α′|
= α′v − α′′

2α′
u ,

v′ = −α′ sinα
√

|α′|
− α′′

2α′

cosα
√

|α′|
= −α′u− α′′

2α′
v

and

z′ =
(

α′v − α′′

2α′
u
)

∫ t

0

vf ds+
(

α′u+
α′′

2α′
v
)

∫ t

0

uf ds

= α′
(

v

∫ t

0

vf ds+ u

∫ t

0

uf ds
)

− α′′

2α′
z .



AN ALMOST-PERIODICITY CRITERION 239

Since 1/α′, α′ and α′′ are bounded by Lemma 2.2 and we know that z, z′ are
bounded, from the equality

v

∫ t

0

vf ds+ u

∫ t

0

uf ds =
α′′

2(α′)2
z +

1

α′
z′

we see that v
∫ t

0 vf ds+ u
∫ t

0 uf ds is bounded. As

z2 +
(

v

∫ t

0

vf ds+ u

∫ t

0

uf ds
)2

= (u2 + v2)
[(

∫ t

0

vf ds
)2

+
(

∫ t

0

uf ds
)2]

=
1

|α′|
[(

∫ t

0

vf ds
)2

+
(

∫ t

0

uf ds
)2]

,

(

∫ t

0
vf ds

)2

+
(

∫ t

0
uf ds

)2

is bounded. Consequently the functions
∫ t

0
v(s)f(s) ds

and
∫ t

0 u(s)f(s) ds are bounded, which completes the proof. �

Corollary 3.12. Let q ∈ A and suppose that all solutions of (q) belong to A. Let

(u, v) be a base of (q). Then for each non-zero constants a, b, all solutions of the

differential equation

(3.16) y′′ = q(t)y +
1

(a2u2(t) + b2v2(t))
3

2

belong to A.

Proof. Fix a, b ∈ R, a 6= 0, b 6= 0. Set

(3.17) u1(t) = signw

√

∣

∣

∣

a

bw

∣

∣

∣
u(t), v1(t) =

√

∣

∣

∣

b

aw

∣

∣

∣
v(t) , t ∈ R ,

where w = u′v−uv′. Then (u1, v1) is a base of (q) and u′1v1−u1v
′
1 = 1. Therefore

there exists a phase α of (q), α′ > 0, such that

u1(t) =
sinα(t)
√

α′(t)
, v1(t) =

cosα(t)
√

α′(t)
, t ∈ R .

Hence (see (3.17))

1

α′(t)
= u2

1(t) + v2
1(t) =

∣

∣

∣

a

bw

∣

∣

∣
u2(t) +

∣

∣

∣

b

aw

∣

∣

∣
v2(t) =

a2u2(t) + b2v2(t)

|abw|
and

(3.18) a2u2(t) + b2v2(t) =
|abw|
α′(t)

, t ∈ R .

Since

p(t) = u1(t)

∫ t

0

v1(s)

(a2u2(s) + b2v2(s))
3

2

ds− v1(t)

∫ t

0

u1(s)

(a2u2(s) + b2v2(s))
3

2

ds
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is a solution of (3.16) and (a2u2(t) + b2v2(t))−3/2 ∈ A, to prove our corollary it
suffices to verify that p is bounded (see Theorem 3.11). From (3.17) and (3.18) it
follows that

∫ t

0

v1(s)

(a2u2(s) + b2v2(s))
3

2

ds =

∫ t

0

cosα(s)
√

α′(s)

(α′(s)

|abw|
)

3

2

ds

=
1

|abw| 32

∫ t

0

α′(s) cosα(s) ds

=
sinα(t) − sinα(0)

|abw| 32

and
∫ t

0

u1(s)

(a2u2(s) + b2v2(s))
3

2

ds =

∫ t

0

sinα(s)
√

α′(s)

(α′(s)

|abw|
)

3

2

ds

=
1

|abw| 32

∫ t

0

α′(s) sinα(s) ds

=
cosα(0) − cosα(t)

|abw| 32
.

Hence

∫ t

0

v1(s)
(a2u2(s)+b2v2(s))3/2

ds and

∫ t

0

u1(s)
(a2u2(s)+b2v2(s))3/2

ds are bounded func-

tions and since u1, v1 ∈ A, the function p is bounded. �
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