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GENERALIZATIONS OF THE FAN-BROWDER FIXED POINT
THEOREM AND MINIMAX INEQUALITIES

MIRCEA BALAJ AND SORIN MURESAN

ABSTRACT. In this paper fixed point theorems for maps with nonempty con-
vex values and having the local intersection property are given. As applica-
tions several minimax inequalities are obtained.

1. INTRODUCTION

A map (or a multifunction) T : X — Y is a function from a set X into the
power set 2¥ of Y, that is a function with the values T'(z) C Y. For y € Y,
T~ (y) is called the fiber of T on y.

Using an infinite dimensional version of the Knaster-Kuratowski-Mazurkiewicz
theorem, Fan [10] proved in 1961 the following:

Theorem 0. Let X be a nonempty compact convex subset of a Hausdorff topo-
logical vector space and M be a closed subset of X x X such that:

(i) (x,x) € M for all x € X;

(ii) for each y € X the set {x € X : (x,y) ¢ X} is convex (or empty).
Then X X {yo} C M for some yo € X.

Subsequently, Browder [4] obtained in 1968 the following fixed point theorem:

Theorem 1. Let X be a nonempty compact convex subset of a Hausdorff topolog-
ical vector space and T : X —o X be a map with nonempty conver values and open
fibers. Then T has a fized point.

Browder’s proof for his theorem was based on the existence of a partition of
unity for open coverings of compact sets and on the Brouwer fixed point theorem.
Let us observe that Browder’s theorem is just Theorem 0 reformulated in a more
convenient form (to see this, take T'(z) = {y € X : (z,y) ¢ M}). For this reason
Theorem 1 is known in the literature as the Fan-Browder fixed point theorem.

The existence of many significant applications in nonlinear functional analysis,
game theory and economic theory gave rise to a number of generalizations or
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versions of Theorem 1 (see [1], [2], [3], [6], [7], [16], [17], [19]). In Section 2 we
give new generalizations of Theorem 1 involving maps with the local intersection
property. Two well-known applications of the Fan-Browder fixed point theorem
will be considered in this paper. The first one is the following Fan’s minimax
inequality [12]

Theorem 2. Let X be a nonempty compact convex subset of a Hausdorff topo-
logical vector space and f : X x X — R be a function quasiconvex in y and upper
semicontinuous in x. Then

inf < max inf .

Inf f (2, 2) < max inf f(2,y)

The second application is a two-function minimax inequality due also to Fan

[11] which generalizes the celebrate Sion’s minimax theorem [18]. We state this
result as follows

Theorem 3. Let X, Y be nonempty compact convexr subsets of topological vector
spaces and f,g : X XY — R. Suppose that f is lower semicontinuous in y and
quasiconcave in T, g is upper semicontinuous in x and quasiconver iny, and f < g
on X xY. Then

WP ERS (n) S g e (o)

Note that “quasiconvex” and further notions will be explained in the last section
of the paper. In the same section, from each fixed point theorem established in
Section 2 we derive a Fan type minimax inequality and a Fan-Sion type minimax
theorem. Throughout this paper we assume that the topological vector spaces are
separated.

2. LOCAL INTERSECTION PROPERTY AND FIXED POINT THEOREMS

Let X be a topological space and Y be a set. A map T : X — Y is said to
have the local intersection property (see[20]) if for each z € X with T (z) # () there

exists an open neighbourhood V (z) of x such that [\ 7 (z) # 0. It is not hard
zeV(x)
to see that each map with open fibers has the local intersection property but the
example given in [20, p.63], shows that the converse is not true.
The following lemma is useful in what follows and can be found in [9].

Lemma 4. Let X be a topological space, Y be a set and T : X — Y be a map
with nonempty values. Then the following assertions are equivalent

(i) T has the local intersection property;

(ii) There exists a map F : X — Y such that F () C T (x) for each v € X,
F~1(y) is open for eachy €Y and X = |J F~! (y).
yey
Theorem 5. Let X be a topological space, Y be a convex subset of a topological
vector space and T : X — Y be a map with nonempty convexr values and having
the local intersection property. Then T admits a selection G (i.e. G (z) C T (x)
for all x € X) with nonempty convex values and open fibers.
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Proof. By Lemma 4, T admits a selection F' with open fibers such that

(1) x=JF @),

yey
From (1) we infer that F' (x) # 0 for all x € X. Define the map G : X — Y, by
G (x) = coF (z). Since T has convex values, G () C T (x) and G (z) is convex for
each € X. Since F has open fibers, by Lemma 5.1 in [21], it follows that G has
also open fibers. O

The first generalization of the Fan-Browder fixed point theorem is the following

Theorem 6. Let X be a compact convex subset of a topological vector space and
T : X — X be a map with nonempty convex values having the local intersection
property. Then T has a fized point.

Proof. By Theorem 5, T has a selection G with nonempty convex values and
open fibers, and Theorem 1 guarantees the existence of a point xy € X such that
:C()GG(ZL'()) CT(:L'()). [l

Theorem 7. Let X be a compact convex subset of a topological vector space and
Y a nonempty set. Suppose that F': X — Y, T : X — X are two maps satisfying
the following conditions

(i) T takes convex values;
(ii) F has nonempty values and open fibers;
(iii) for each y € Y there exists 2 € X such that F~' (y) C T~ (2).
Then T has a fized point.
Proof. Since F has nonempty values, |J F~!(y) = X, and from (iii) we get

yey
U T7'(2) = X, hence T has also nonempty values. According to Theorem 6
zeX
it suffices to show that 7" has the local intersection property. Let x € X. Since

F (z) # 0 there exist y € Y and z € X such that

(2) reF 1t y)cT ' (2).

Then F~!(y) is an open neighbourhood of x and, by (2), it follows that z €
(N T (a’). Thus the proof is complete. O

'€ F~1(y)

The following result extends the Fan-Browder fixed point theorem to the case
when the convex set X is not compact.

Theorem 8. Let X be a convex subset of a topological vector space andT : X —o X
be a map with nonempty convexr values, having the local intersection property.
Suppose that there exist a nonempty compact convex subset Xy of X and a compact
subset K of X satisfying the following condition

for each x € X\K there exists an open neighbourhood V (x) of x such that

(3) () T(x)NXo#0.

zeV(z)
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Then T has a fized point.
Proof. Define the maps H,G : X — X by
H(y)=int (T7'(y)) for yeX

and
G(r)=coH '(x) for z€X.

We see that H takes open values and H (y) C T~ (y) for each y € X. Since the
values of T are convex, G (z) C T () for all z € X. Using once again Lemma 5.1
in [21] we infer that G has open fibers. For an arbitrary z € X, since T has the
local intersection property, there exist a neighbourhood V' (x) of z and a point y
such that

reV(x)c T (y) whence z€ H(y)CG'(y).
Consequently, G has nonempty values and
(4) X=G1(X).
For each x € X\K, by (3), there exists y € X such that z € H (y) C G~ (y),
hence
(5) X\K =G1(Xy) .
On the other hand, by (4), K C G~!(X) and, since K is compact, there exists a
finite set A C X such that
(6) KcG'(A).
Thus, by (5) and (6), we have X = G~ (X, U A).
Let C' = co (XoU A). Then C is a compact, convex subset of X and
(7) CcG ' (Xoud) ca ().

Define the map G : C — C by G (z) = G (2)()C. Then the values of G are
nonempty (by (7)) and convex. Since G (y) = G~ (y) N C for each y € C, the
fibers of G are open in C. Applying Theorem 1 to the map G we find a point
2o € C such that 2 € G (z9) C T (z0). O

Remark. The local intersection property imposed on T and condition (3) can be
unified in the following condition

T (x) for ze K

th T:X —o X, defined by T (z) =
¢ map ; defined by T'(2) {T(m)ﬂXO for e X\K

has the local intersection property.

In our opinion it is worth comparing Theorem 8 with other noncompact gener-
alizations of the Fan-Browder fixed point theorem due to Browder [4], Lassonde
[15], Mehta [16] and Park [17].
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3. MINIMAX INEQUALITIES

Let X, Y nonempty convex subsets of topological vector spaces. Recall that a
function f: X x Y — R = RU{+o0} is said to be:
(i) quasiconcave (resp. upper semicontinuous) in x if for each y € Y and
A €R the set {x € X : f (z,y) > A} is convex (resp. closed);
(ii) quasiconvex (resp. lower semicontinuous) in y if for each x € X and A € R
the set {y € Y : f(x,y) < A} is convex (resp. closed).

A function f: X x Y — R (X,Y topological spaces) is said to be:

(iii) transfer upper semicontinuous in = (see [8]) if, for each A € R and all
xz € X,y eY with f(x,y) < A, there exist a neighbourhood V (z) of z
and a point ' € Y such that f(z,y’) < A, for all z € V (x);

(iv) transfer lower semicontinous in y (see [8]) if, for each A € Rand all z € X
y € Y with f (z,y) > A, there exist a neighbourhood V (y) of y and a point
x' € X such that f(2',u) > A, for all u € V (y).

It is clear that every function which is upper semicontinuous in x (resp. lower
semicontinuous in y) is transfer upper semicontinous in = (resp. transfer lower
semicontinuous in y) but the converse is not true (see [8]).

From each fixed point theorem obtained in the previous section we shall derive a
Fan type minimax inequality and a Fan-Sion type minimax theorem.

Theorem 9. Let X be a nonempty compact convex subset of a topological vector
space and f : X x X — R be a function quasiconver in y and transfer upper
semicontinuous in x. Then

inf < inf .
nf f (r,2) < sup yngf (z,v)

Proof. We may assume that sup inf f (z,y) < oco. Let A > sup inf f(z,y) be
zeXyeEX reX YEX
arbitrarily fixed; we define the map T': X — X by

T(z)={yeX:f(zy) <A}.

From A > sup in§( f(z,y) it follows that T (x) is nonempty for each x € X.
zeX YE
Since f is quasiconvex in y, the values of T' are convex; since f is transfer upper

semicontinuous in x, T has the local intersection property. By Theorem 6 there
exists a point xg € X such that zo € T (x¢). Hence ingf (z,z) < f(x0,20) < A,
x€

which proves the theorem. O

Theorem 10. Let X and Y be nonempty compact convexr subsets of topological
vector spaces and f,g : X XY — R be two functions satisfying the following
conditions:

(i) f<g:

(ii) f is quasiconcave in x;

(i) f is transfer lower semicontinuous in y
)

(iv) g is quasiconvez in y;
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(v) g is transfer upper semicontinuous in x.
Then

inf sup f(x,y) < sup inf g(:c y) .
yeY zeX zEX YE

Proof. Suppose that there exists a real A such that
sup inf g (z,y) < A < mf sup f (z,y) .
zEX YEY Yazex
Define the map 7': X xY — X x Y by

T(xy)={a' e X:f(a',y) > A x{y €YV :g(z,y) <A}.
Then T (x,y) is nonempty and convex (by (ii) and (iv)) for each (z,y) € X x Y.
By (iii) and (v) one can easily prove that T has the local intersection property.
Applying Theorem 6 we get a fixed point (zo,y0) € T (20,y0). Therefore A <
f(xo,y0) < g(x0,90) < A, a contradiction. O

Theorem 11. Let X be a compact convex subset of a topological vector space and
Y be a nonempty set. Suppose that f: X x X - R, g: X XY — R are two
functions satisfying the following conditions:
(i) f is quasiconvez in the second variable;
(ii) g is upper semicontinuous in x;
(iii) for each y € Y there exists z € X such that f(-,2) < g (,y).
Then
inf f(xz,x) < sup inf g(x y) -
zeX zEX YE

Proof. We may assume that sup 1nf g(:z: y) < co. Let A > sup inf g(x y) be
xeX Y€
arbitrarily fixed; we define the maps T X —oX,F:X —Y, by

T(x)={z€X: f(x,2) <A}

and

F(z)={yeY:g(z,y) <A}.
Since A > sup mf g(z y), F () is nonempty for each z € X. It is easy to
zeX Y
prove that condltlons (i), (ii), (iii) in our theorem imply the conditions similarly
denoted in Theorem 7. By Theorem 7, T has a fixed point zo. It follows that
inf f(z,z) < f(xz0,20) < A and the proof is complete. O

Theorem 12. Let X1, Y1 be nonempty compact convex subsets of topological vector
spaces and Xz, Yo be nonempty sets. Let f : Xo x Y7 — R, g: X1 xYy, — R,
h,k: X1 x Y, — R be four functions satisfying:

(i) h <k;

(i) f 4s lower semicontinuous on Yi;

(iii) g is upper semicontinous on Xi;

(iv) h is quasiconcave on X1;

(v) k is quasiconvex on Yi;



FIXED POINTS AND MINIMAX THEOREMS 405

(vi) for each x4 € Xy there exists x1 € X7 such that f (22,-)
(vii) for each ya € Ya there exists y1 € Y1 such that k (-, y1) <

Then

< h(x1,-);
g('ayQ)'

inf sup f(x2,y1) < sup inf g(x1,y2) .
V1€Y1 he X, ( ’ ) T1EX; Y2€Y2 ( ’ )

Proof. Suppose that there exists a real A such that

(8) sup inf g(z1,y2) <A< inf sup f(x2,y1) .
21€X Y2€Y2 Y1EYL ghe Xo

Define the maps T: X1 x Y] — X1 x Y7, F: X7 XY, — Xo X Y5 by
T (x1,y1) = {2}y € X1 :h(2,01) > A} x {y) € Y11 k(z1,97) <A}

and

Fzy,y1) ={ah € Xo: f(25,51) > A} x {ys € Yo : g (21,95) <A}

By (8), F' has nonempty values. In view of conditions (iv) and (v) the values
of T are convex and by (ii) and (iii), F' has open fibers. From (vi) and (vii) it
follows readily that for each (x2,y2) € X3 X Y3 there exists (x1,y1) € X1 X Y3
such that F~!(x9,y2) € T (x1,91). Therefore all hypotheses of Theorem 7
are verified. Applying Theorem 7 we get a point (T1,71) € X3 X Y7 such that
(Z1,71) € T (71,71). Taking into account condition (i) we obtain the following
contradiction
A< h(Z1,71) < k(T1,71) < A

O

When X; = Y7, Xy = Y5 and conditions (vi), (vii) are replaced by a unique
stronger condition one can get at once the following known result (see [3]).

Corollary 13. Let X and Y be nonempty compact convex subsets of topological
vector spaces and f, g, h, k: X x Y — R, be four functions satisfying:
(i) f<h<k<y;
(ii) f is lower semicontinuous in y;
(i) g is upper semicontinous in x;
(iv) h is quasiconcave in x;
(v)

Then

k s quasiconver in y.

inf su z,y) < sup inf g (z,y) .
yeymegf( y) < Zegyeyg( y)

Theorem 14. Let X be a nonempty convex subset of a topological vector space and
f: X x X — R be a function quasiconvez in y and transfer upper semicontinuous
in x. Suppose that there exists a nonempty compact conver subset Xy of X and a
compact subset K of X satisfying the following condition

for each x € X\K and any y' € Xthere exists a neighbourhood V (x) of
(9) x and a point yo € Xo such that f(z,y0) < f(z,9') forallze€V (z) .
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Then

inf < inf .
nf f (z,2) < sup ;gyf (z,y)

Proof. As in previous proof we assume sup inf f(z,y) < oo and fix a real A >
reX Y€

sup inf f(x,y). The map T : X — X defined by
zeX YEY

T(x)={yeX:f(x,y) <A}

takes nonempty convex values and has the local intersection property. We show
that it satisfies condition (3) from Theorem 8. Let z € X\ K. Since T (z) # () and
f is transfer upper semicontinous in z, there exists a neighbourhood V' (z) of z
and a point ¥’ € X such that f(z,y") < A for each z € V' (x). By (9) there exist
a neighbourhood V” (z) of « and a point yo € K such that f(z,y0) < f(z,¥)
for all z € V" (x). Then for each z € V () = V' (z) N V" () we have f(z,y0) <
f(z,9") < A, hence

Theorem 8 implies that xg € T (x¢) for some 2y € X. Hence
inf <
ot f(z,2) < f(20,m0) <A
and the proof is complete. O

Combining the lines of the proofs of Theorems 10 and 14 one can easily prove
the following result

Theorem 15. Let X and Y be nonempty compact convex subsets of topological
vector spaces and f,g : X XY — R be two functions satisfying the following
conditions

(i) f<g;

(ii) f 4s quasiconcave in x;

(iii) f is transfer lower semicontinuous in y;

(iv) there exist a nonempty compact convex subset Yy of Y and a compact
subset K of X satisfying the following condition:

for each x € X\K and any y' € Ythere exists a neighbourhood V (x) of
x and a point yo € Yy such that f (z,y0) < f(z,y') forall z €V (x);

(V) g is quasiconver in y;

(vi) g is transfer upper semicontinuous in x;

(vii) there exist a nonempty compact convex subset Xy of X and a compact sub-
set L of Y satisfying the following condition:

for each y € Y\L and any ©’ € Xthere exists a neighbourhood V (y) of
y and a point xo € Xo such that g (zo,u) > g (z',u) for allu eV (y) .
Then

inf su z,y) < sup inf g (z,y) .
yeyzegf( y) Iegyeyg( y)
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