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PROLONGATION OF PAIRS OF CONNECTIONS
INTO CONNECTIONS ON VERTICAL BUNDLES

MIROSLAV DOUPOVEC AND WLODZIMIERZ M. MIKULSKI

ABSTRACT. Let F' be a natural bundle. We introduce the geometrical construction
transforming two general connections into a general connection on the F-vertical
bundle. Then we determine all natural operators of this type and we generalize
the result by I. Kolaf and the second author on the prolongation of connections to
F-vertical bundles. We also present some examples and applications.

INTRODUCTION

Let M f,, be the category of m-dimensional manifolds and local diffeomor-
phisms, FM be the category of fibered manifolds and fiber respecting mappings
and FM,, , be the category of fibered manifolds with m-dimensional bases and
n-dimensional fibers and locally invertible fiber respecting mappings.

Consider an arbitrary bundle functor F' on the category M f, and denote by
V' its vertical modification. Our starting point is the paper [9] by I. Kolai and
the second author, who studied the prolongation of a connection I' on an arbitrary
fibered manifold Y — M with respect to an F-vertical functor V. In particular,
they have introduced an F-vertical prolongation VT of a connection I' and have
proved that V¥ is the only natural operator of finite order transforming connections
on Y — M into connections on VFY — M. They have also described some
conditions under which every natural operator of such a type has finite order.
Further, in the case of the vertical Weil functor V4 they have proved that the
operator transforming a connection I' on Y — M into its vertical prolongation
VAT is the only natural one.

The aim of this paper is to study the prolongation of a pair of connections
't and 'y on Y — M into a connection on VFY — M. Our main result is
Theorem 1 which describes all such natural operators. As a direct consequence
we prove the generalization of a result by I. Koldf and the second author. In
particular, we show that V" is the only natural operator transforming connections
on Y — M into connections on VY — M (without any additional assumption
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on the finite order). In Section 1 we discuss the prolongation of connections on
Y — M into connections on GY — M, where G is a bundle functor on FM,, .
Section 2 is devoted to the construction of a connection on VY — M by means
of a pair I'y, I'y of connections on Y — M. This geometrical construction will be
based on linear natural operators transforming vector fields on n-manifolds N into
vector fields on F'N. In Section 3 we introduce some examples and applications.
We also show, that in the case of a vertical Weil functor V4 the connection on
VAY — M depending on a pair I'y, T's can be constructed by means of the vertical
prolongation of the deviation §(I';, ') of I’y and I's. Finally, the whole Section 4
is devoted to the proof of Theorem 1.

In what follows Y — M stands for FM,, ,-objects and N stands for M f,,-
objects. All manifolds and maps are assumed to be of the class C*°. Unless
otherwise specified, we use the terminology and notation from the book [7].

1. PROLONGATION OF CONNECTIONS TO GY — M

Recently it has been clarified that the order of bundle functors on FM is
characterized by three integers (r, s,q), s > r < ¢ and is based on the concept of
(r, s, q)-jet, [7]. Consider two fibered manifolds p : Y — M and p: Y — M and
let 7, s > r, ¢ > r be integers. We recall that two FM-morphisms f,g:Y — Y
with the base maps f,g: M — M determine the same (r, s, q)-jet Jyoif =g,
aty ey, ply) =z, if

gyt =Jyg: 3y (f1Ya) = 4y (9lY2), Jif = jlg-

The space of all such (r, s, q)-jets will be denoted by J"*4(Y,Y). By 12.19 in [7],
the composition of F M-morphisms induces the composition of (r, s, ¢)-jets.

Definition 1 ([9]). A bundle functor G on FM,, ,, is said to be of order (r, s, ¢),
if j;»*f = j;»* g implies Gf|G,Y = Gg|G,Y .

Then the integer g is called the base order, s is called the fiber order and r is
called the total order of G.

If X : N — TN is a vector field and F' is a bundle functor on M f,, then we
can define the flow prolongation FX : FN — TFN of X with respect to F' by

0
(1) FX = at| 0
where exptX denotes the flow of X, [7]. Quite analogously, a projectable vector
field on a fibered manifold ¥ — M is an FM-morphism Z : Y — TY over the
underlying vector field M — T'M, and its flow exptZ is formed by local FM,, ;-
morphisms. Further, if G is a bundle functor on FM,, ,, the flow prolongation of
Z with respect to G is defined by

F(exptX)

0
GZ = E‘OG(eXptZ).

By [9], this map is R-linear and preserves bracket.
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Proposition 1 ([9]). If G is of order (r,s,q), then the value of GZ at each point
of G,Y depends on j,;*17 only.

Thus the construction of the flow prolongation of projectable vector fields can
be interpreted as a map

Gy : GY xy J"ITY — TGY,

where J"%4TY denotes the space of all (r, s, ¢)-jets of projectable vector fields on
Y. Since the flow prolongation is R-linear, Gy is linear in the second factor.

Now let I' : Y — JY be a general connection on p: Y — M. In [7] and [9] it
is clarified, that if the functor G on FM,, ,, has the base order ¢, then one can
construct the induced connection G(I', A) on GY — M by means of an auxiliary
linear g-th order connection A on the base manifold M. The geometrical con-
struction of the connection G(I', A) is the following. Let X be a vector field on M
with the coordinate components X¢(x) and let

dy? =T (z,y) da’

be the coordinate expression of I'. Then the I'-lift of X is a vector field '’ X on Y,
whose coordinate form is

iy 9w iy 0
X (z)% + I (z,y)X (x)a—yp )
By Proposition 1, the flow prolongation G(I'X) depends on the g-jets of X only.
So we obtain a map

(2) GI': GY xp JITM — TGY

which is linear in the second factor. Further, let A : TM — JYT'M be a linear
g-th order connection on M. By linearity, the composition

(3) Q(I‘, A) = QI‘ o (ldGY Xid s A) :GY XM TM — TGY

is the lifting map of a connection on GY — M. Clearly, if the base order of G
is zero, then (2) is a connection on GY — M and we need no auxiliary linear
connection A. This is the case of a vertical functor V¥, which is defined as
follows. Let F' be a bundle functor on M f,, of order s. Its vertical modification
VF is a bundle functor on F M, n defined by

VEY = | F(Ya), VEf=J F(fa),

xeM reM

where f, is the restriction and corestriction of f : Y — Y over f : M — M to

the fibers Y, and Yi(x)’ [9]. Obviously, the order of the functor V¥ is (0, s, 0).

Since the base order of V" is zero, the map (2) defines a connection VT for every
connection ' on Y — M.
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Definition 2 ([9]). The connection VIT is called the F-vertical prolongation of T.

If F = T4 is a Weil functor, then VT is the vertical Weil functor on FMumn,
which will be denoted by V4. This functor induces the vertical A-prolongation
VAT. In particular, for F = T we obtain the classical vertical bundle, which will
be denoted by V instead of VT and the corresponding vertical prolongation of I’
will be denoted by VI'. 1. Kolaf [5] has proved that VT is the only natural operator
transforming connections on Y — M into connections on VY — M, see also [7],
p- 255. Moreover, the following naturality property of the F-vertical prolonga-
tion VI'T is an interesting generalization of the well known result concerning the
classical vertical prolongation VI' to an arbitrary bundle functor F' on M f,.

Proposition 2 ([9]). V¥ is the only natural operator of finite order transforming
connections on' Y — M into connections on VY — M.

Propositon 3 ([9]). If the standard fiber Fo(R™) of F is compact or if Fo(R™)
contains a point zo such that F(bidrn)(z) — zo if b — 0 for any z € Fy(R™), then
every natural operator D transforming connections on Y — M into connections
on VEY — M has finite order.

For example, the assumption of Proposition 3 is satisfied in the case F' is a Weil
functor T4. On the other hand, this assumption is not satisfied in the case F is
a cotangent bundle functor 7.

Remark 1. It is well known, that there is no natural operator transforming con-
nections on Y — M into connections on J'Y — M, see [5] and [7]. Quite analo-
gously, I. Kolaf and the first author have proved that there is no first order natural
operator transforming connections on Y — M into connections on TY — M, [2].
The second author has recently proved the following general result, [13]: If G is
a bundle functor on FM,, , such that G : Mf,,, — FM, G'M = G(M x R"),
G1(p) = G(p x id gn) is not of order zero, then there is no natural operator trans-
forming connections on Y — M into connections on GY — M. This means that
in this case, the use of an auxiliary linear connection A on the base manifold M in
the construction (3) is unavoidable. We remark that all natural operators trans-
forming a connection I' on Y — M and a linear connection A : TM — J'TM
into a connection on J'Y — M are determined in [5].

2. PROLONGATION OF PAIRS OF CONNECTIONS
INTO CONNECTIONS ON VERTICAL BUNDLES

Let F : Mf, — FM be a natural bundle of order s and V¥ : FM,, , — FM
be the corresponding vertical modification. Suppose we have a natural linear
operator

L:T~TF

transforming vector fields on NV into vector fields on FN. Let I'1, Iy : Y xp,TM —
TY be connections on an FM,, ,-object Y — M. We are going to construct
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a connection V"(T'1,T'3) on VY — M depending canonically on I'y and T's.
Clearly, such a connection can be written in the form

VO, To) : VEY xpyy TM — TVEY .
Firstly, we define a fiber linear map
(4) (T, Do) VEY xy TM — V(VEY)

covering the identity on VY as follows. Let (u,v) € (VEY xp TM),, x € M
and let v, 92 (defined on Y,) be the horizontal lifts of v with respect to I'y
and 'y respectlvely. The difference v'1:12 ;= (vt — v2) is vertical, so it can be
considered as the vector field on Y, v't12 : Y, — T(Y,) = (VY),. Using the
linear operator L, we have the vector field

L") F(Y,) = (VY ), = T(VFY).) = (V(VFY)),

which can be considered as (defined on (VIY),) vertical vector field L(vI'1:12) :
VEY - V(VEY). We put

(T, T2) (u,v) = L™ ) (u).

Since L is a linear operator, the map (I'y,I'2)f*% is linear in the second factor.
Further,

VO, Ty) = VI, + (T, Do) VEY <y TM — TVEY

is a connection on V'Y — M canonically dependent on I'; and T's.

Definition 3. The connection VI*(T'1,T'9) is called the (F, L)-vertical prolonga-
tion of (Fl, FQ)

From the geometrical construction of (I'y, T'o)f% it follows directly

Lemma 1. We have

() (T1, Do)k = —(Ty, ) °F,
(ii) (I, Tg)frerlateals = ¢ (T, Ty) 1 4 co(Ty, T2) " E2 ) 1, ¢0 € R,
(iii) VEI(I,T) = VIT.

The main result of the present paper is the following classification theorem.

Theorem 1. VIF are the only natural operators transforming pairs of connec-
tions on' Y — M into connections on VFY — M.

We have the following corollary of Theorem 1.
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Corollary 1. VF(I'},Ty) := L(VET +VFTy) is the only natural symmetric oper-
ator transforming pairs of connections on'Y — M into connections on VY — M.

Proof of Corollary 1. Let D be such an operator. By Theorem 1, D(I'1,T'2) =
VET + (T'1,T2)FE. By the symmetry of D we get VIT'; + (I'y, o)L = VI, —
(T'1,T2) " because (I'y,T'1)FE = —(Ty,To)"E. Then ([, a)Pl = (VT —
VIT1) and D(I'1,T2) = $(VIT1 4+ VFTy) as well. O

Now we show that one can omit the finite order assumption in Proposition 2.
In this way we obtain the following generalization of this result:

Proposition 2’. VI is the only natural operator transforming connections on
Y — M into connections on VIY — M.

Proof. Write I'y =I'; = T" in Corollary 1. Then we obtain ljF(F, )= Ve, O

Remark 2. The (F, L)-prolongation is a geometrical construction, which trans-
forms two connections I'y and I'; on Y — M into a connection VF’L(Fl, I's) on
VFY — M. Another example of a geometrical construction defined on pairs of
connections is the mixed curvature, which is defined as the Frolicher-Nijenhuis
bracket [['1,T'3]. We remark that the mixed curvature is a section ¥ — VY ®
®2T*M, see 27.4 in [7].

By Theorem 1, natural operators transforming pairs of connections on Y — M
into a connection on V'Y — M depend on linear natural operators L : T ~ T'F
on vector fields. Now we show that it suffices to find the basis of such linear
operators.

Proposition 4. Let Lq,..., Ly be the basis of linear natural operators T ~ TF
transforming vector fields on n-manifolds N into vector fields on FN. Then all
natural operators transforming pairs of connections on' Y — M into a connection
on VEY — M are of the form

(Fl,rg) — VFF1 + Cl(Fl,Fg)F"Ll —+ -4 Ck(Fl,FQ)F"Lk, ,Ci € R.

Proof. An arbitrary linear operator L : T' ~» TF is of the form L =c¢; Ly +---+
cr Lk, ¢; € R. Then the assertion follows from Theorem 1 and from Lemma 1. [

3. APPLICATIONS

Clearly, the flow prolongation (1) is a natural linear operator T' ~ TF'. So for an
arbitrary natural bundle F' on M f, there exists a natural operator transforming
pairs of connections I'y,T'; on Y — M into a connection V¥ (I';,Ty) on VIY —
M. Now let F = T4 be a Weil functor determined by a Weil algebra A. By [7], all
product preserving functors on M f are of this type. We have the following action

(5) AxTTAN — TTAN

of the elements of A on the tangent vectors on T4N. Indeed, the multiplication
of the tangent vectors of N by reals is a map m : R x TN — T'N. Applying the
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functor T4 and using the fact that T4R = A we obtain a map T4m : AxXTATN —
TATN. Finally, the canonical identification TATN = TTAN yields the action (5).
So for an arbitrary a € A we have a natural affinor on TAN of the form

af(a)y : TTAN — TTAN .

By [7], all natural linear operators T’ ~ TT“ transforming vector fields on N into
vector fields on T4N are of the form

af (a) o T
for all a € A, where 74 means the flow operator. Thus, we have
Proposition 5. All natural operators transforming pairs of connections on'Y —
M into a connection on VAY — M are of the form
(T1,T3) — VTA,af(a)oTA (I'y,T)
for alla € A.

It is well known that J'Y — Y is an affine bundle with the associated vector
bundle VY @ T*M. So the difference of two connections I'1,I's : Y — J'Y is
amap 0(I'1,T2) : Y — VY ® T*M, which is called the deviation of I'y and T's.
Clearly, this map can be written as

(6) 5(F1,F2) ZYX]\/[ TM — VY.
A. Cabras and I. Kolar [1] have constructed the vertical A-prolongation of (6) with
respect to the first factor
(7) VAS(T1,To) : VAY xpy TM — VVAY
fiberwise in the following way. Denoting by ¢ : TM — M the bundle projection,
we can write §, : Y, — (VY), for the map y — 6(T'1,T2)(y,2),y €Y, 2z € TM,
q(z) = z. Applying T# we obtain a map

(VlAé)z = TA(6Z) : TA(YZ) = (VAY)Z - TA((VY)JE) = (VAVY)JE
which yields a map VA6 : VAY xp) TM — VAVY. Further, the canonical
exchange diffeomorphism of Weil functors ig’A :TB(TAN) — TA(TEN) from [7]
induces the exchange diffeomorphism iy : VAVY — VVAY [1]. Then the map
(7) can be defined by

(8) VA, Ty) =iy o VAS.

On the other hand, we can construct the vertical A-prolongations VAT, VAT, :
VAY xy TM — TVAY of 'y and T's. The deviation of the connections VAT
and VAT, is a map

(9) S(VAT 1, VAD,) : VAY x 0 TM — V(VAY) .
A. Cabras and 1. Kolaf have proved the formula
(10) §(VAT1, VAT2) = V{5(11,T2).

Consider now a linear map (4), where we put F = T4 and L = T4, (T'y, FQ)TA’TA :
VAY xp TM — V(VAY). We have
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Proposition 6. Let T4 be the flow operator. Then we have

(11) ([1,T5) 77" = YAS(T,,Ts).

Proof. Denoting by ¢ := §(I'1,I'2)(y,—) : (TM), — (VY),, we have §(v) =
I'yv —Tav for v € (TM),. Since §(v) is vertical, it can be considered as a vector
field Y, — T(Y,). Applying the flow operator 74 we obtain a vector field 745(v) :
TAY,) = (VAY), — T((VAY),) = (V(VAY)),, which can be considered as a
vertical vector field on VAY. This defines the map

(12)

(T, 1) T VAY %y TM > V(VAY), T1,T2)7 7" (u,v) = TA5(v)(u).

In general, given a vector field ¢ : N — TN, the flow prolongation 74¢ can be also
constructed as the composition 74¢ = if,’DoTAf, where iﬁ’D :TATN — TTAN is
the canonical exchange diffeomorphism and D is the Weil algebra of dual numbers
corresponding to the tangent bundle 7. By (8) and (12) we have 746 = V{#5. O

Remark 3. It is interesting to pose a question whether the formulas (10) and
(11) can be generalized for an arbitrary natural bundle F on Mf,. Given any
connections I'y and I's on Y — M, one can construct their F-vertical prolongations
VET, VETDy : VEY x 3y TM — T(VFY) and then the deviation

(13) SOV, V) : VEY %y TM — V(VEY).

Further, for any linear natural operator L : T' ~» T'F we have the map (4). From
Theorem 1 it follows that

(S(VFl—‘l, VFFQ) = (Fl, FQ)F"L

for some linear natural operator L. By (10) and (11), if F = T4, then L =
T4. From the proof of Theorem 1 (see the construction (14) of LP) it follows
that even in the general case of an arbitrary natural bundle F we have L = F,
where F is the flow operator (1). We remark that the construction of the vertical
prolongation (7) and the proof of (11) essentially depend on the existence of the
exchange diffeomorphism iy : VAVY — VVAY. We recall that the bundle functor
F is said to have the point property, if F(pt) = pt, where pt denote the one-point
manifold. From Theorem 39.2 in [7] it follows directly that if F' has the point
property, then there exists a natural equivalence it : VEVY — VVTY if and only
if F'is a Weil functor 7. In this case, if’ coincides with iy

Let T™*N = J"(N,R)o be the space of all r-jets from an n-manifold N into
reals with target 0. Since R is a vector space, T"*N has a canonical structure of
the vector bundle over N. T"*N is called the r-th order cotangent bundle and the
dual vector bundle

T(T)N _ (T’I‘*N)*

is called the r-th order tangent bundle. For every map f : N — N; the jet
composition A +— Ao (jif), * € N, A € (I""Ni)s(,) defines a linear map



PROLONGATION OF PAIRS OF CONNECTIONS ... 417

(T™*N1)j(xy — (T™*N),. The dual map T f : (TIN), — (TCINy)p is
called the r-th order tangent map of f at x. This defines a vector bundle functor
T() | which is defined on the whole category M f of all smooth manifolds and all
smooth maps. Clearly, for r = 1 we obtain the classical tangent functor 7" and for
r > 1 the functor T(") does not preserve products. Obviously, we have the canoni-
cal inclusion TN € T N. Using fiber translations on (") N, we can extend every
section X : N — TN into a vector field V/(X) on T N. This defines a linear
natural operator V : T ~» TT(). The second author has in [10] determined all
natural operators T ~» TT("). From this result we obtain directly that all linear
natural operators 7' ~» TT(") transforming vector fields on N into vector fields on
TN are of the form ¢, 7™ + 2V, ¢; € R. Using Proposition 4 we have

Proposition 7. All natural operators transforming pairs of connections on'Y —
M into a connection on VIY — M are of the form

(01, T2) = VI Ty + e (T, 1) T T 4 ey, T)T7Y ¢ €R.

By Corollary 4.1 in [11], all linear natural operators T' ~» TT* are linear combi-
nations (with real coefficients) of the flow operator 7* and the operator V' defined
by V(X)w = (w, X,) - Cy,, where C is the Liouville vector field of the cotangent
bundle and X € X(N), w € T)N, z € N. Thus, we have

Proposition 8. All natural operators transforming pairs of connections on'Y —
M into a connection on VT Y — M are of the form

(T1,T2) = VI Ty 41 (01,T9)T T 4 6o(M,T2)TY, ¢ eR.

Using [11], we can generalize this result in the following way. First, we have r
linear natural operators F1, ..., E. : T ~ TT" defined by

Ek(X)(j;IV) = <X(‘T)’j;7> ' %‘0(32'7 + t];(’Y)k) , k=17

where X € X(N) is a vector field on N, j7y € T7*N and ()" is the k-th power
of the map v : N — R. Further, if we interpret X as the differentiation, then
(Xy — X~v(z))(y)* ! is a function on N which maps the point z € N into zero.
So we can define linear natural operators Fs, ..., F. : T ~ TT" by

R0 = Sl iy 15 (X7 = Xa@)o)™™)] s =2,.07.

By [11], the flow operator 7"* and the operators F1,..., E,, Fs, ..., F,. form the
basis over R of the vector space of all linear natural operators T' ~~ TT"*. By
Proposition 4 we have
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Proposition 9. All natural operators transforming pairs of connections on'Y —
M into a connection on VT'Y — M are of the form

(T1,T9) = VT Ty 4 ¢o(T1, Do) T 4 e (T1, To)T P oo e (T, Tp) T 0B
+do(Dy, D)7 P2 4o d (0, D) T ¢y, d; €R.

We remark that there are many papers which classify all natural operators
T ~» TF for particular natural bundles F, see e.g. [4], [6], [10]-[12], [14] and [15].
For example, P. Kobak [4] has determined all natural operators T ~ TTT* and
J. Tomas [14] has classified all natural operators T' ~» TT*T}, where TN =
JJ(R¥,N) is the bundle of k-dimensional velocities of order r. If we restrict
ourselves only to linear natural operators, we can easily determine all natural
operators transforming pairs of connections on ¥ — M into a connection on
VY — M.

4. PROOF OF THEOREM 1

From now on R™" is the trivial bundle R™ x R™ over R". The usual coordi-
nates on R will be denoted by z!, ..., 2™, y,...,y". If D is a natural operator
of our type, then for given connections I'y and I'; on an FM,, n,-object Y — M
the difference

A(T1,Ty) = D(I',Ty) = VI, : VIY x 0, TM — V(VEY)

is a fiber linear map covering the identity on VY. So it remains to describe all
natural operators of the type as A. Consider a natural operator D of the type as
A. We prove some auxiliary lemmas.

Lemma 2. Suppose that
D(idazi@)iﬁLi ; Z . zo‘yﬁdzi(@i
i=1 Ozt = e dy?’

i=1j=1|a|+[8|<K

m ; 9 m n . § i 5
;dz ®8xi +ZZ Z Dias® y da ®@)(u,v):0

i=1j=1a|+|B|<K

for any K € N, any (u,v) € (VFR™")y x ToR™, any F{mﬁ and any ngaﬁ for
i,7,, 0 as indicated. Then D = 0.

Proof. It follows from a corollary of non-linear Peetre theorem (Corollary 19.8
in [7]). (|

Lemma 3. Suppose that

D(;dx ®%+yﬁdx ®6yj0’;dz ®3$i)(uvv)*0
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and
0 0 0
— B J
(Zzldx ®8 - de ®8 +y dx()@a )(u v) =0
for any (u,v) € (VER™")y x ToR™, any n-tuple 3 and any ip = 1,...,m and
jo=1,....,n. Then D = 0.
Proof. Using the invariance of D with respect to the base homotheties ¢id gm x
idgn for t > 0 we get the homogeneity condition

o(
i=1

0
lal+117 B
t I, ﬁxydx ®8J’

i=1j=1 |a|+|5|<K

m

: )
t\a|+1féiaﬁxayﬁd$1 ® ﬁ) (u,v)
==t ekl <k Y

m
. - 0
= D(del 1mﬁ$ *yPda’ v
i=1 i=1 j=1|a|+|8|<K

m

0
QZaB:C yﬁdx ®$)(u,v)
i=1 j=1|a|+[B|<K

By the homogeneous function theorem, this type of homogeneity gives that

m
D(z:dacz
i=1 i=1 j=1 |a|+|8| <K

de ® +ZZ Z FQzaﬁ‘T yﬁdxi®%)(u,v)

i=1 j=1 |a| +]8|<K

0
Maﬁac yﬁdx ®ﬁ’

depends linearly on I/ and I/ and is independent of I" { iap and Fgm s for

1i(0)8 2i(0)3
|a] > 0. So, the assumptions of the lemma imply the assumption of Lemma 2,
which completes the proof. (I

Lemma 4. Suppose that

D(i_zldx%@%—i—dm“’ ®Y,i_zldxz®@)(u,v) =0
and
(de@ de ®ai+d$Z°®Y)(u v) =0

for any (u,v) € (VER™™)y x ToR™, any io = 1,...,m and any vector field Y on
R"™. Then D = 0.

Proof. Obviously, the assumptions of the lemma imply the assumptions of
Lemma 3, which completes the proof. ([
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Lemma 5. Suppose that

(Zdz ®ai+das ®8 I,de ®—) (u,v) =0

D(i_1 de ®az—|—dm ®%)(u,v):0

for any (u,v) € (VFRm"”)o x ToR™. Then D = 0.

Proof. Any non-vanishing vector field Y on R"™ is locally % modulo a local
diffeomorphism ¢ : R — R™. There exists a diffeomorphism ¢ : R™ — R™
sending z% into z'. Using the invariance of D with respect to F.M,, ,-map
1 X  we can see that the assumptions of the lemma imply the assumptions of
Lemma 4 with non-vanishing Y. Then the regularity of D implies the assumptions

of Lemma 4, which completes the proof. ([

and

Lemma 6. Suppose that

(de@ =+ da! ®Yde ®ai)(u v) =0

for any (u,v) € (VER™")y x ToR™, and any vector field Y on R™. Then D = 0.

Proof. The assumption of the lemma implies the first assumption of Lemma 5.

Further, using the invariance of D with respect to F M, ,-map (z*,..., 2™, —yl +
', y?,...,y") we obtain the second assumption of Lemma 5. Finally, Lemma 5
completes the proof. O

Lemma 7. Suppose that

oSl o ) o) =1

for any u € (VER™™)g, and any vector field Y on R"™. Then D = 0.

Proof. Any vector v € ToyR™ with doz!(v) # 0 is proportional to ax 1 (0) modulo
a diffeomorphism v : R™ — R™ preserving #!. Using the invariance of D with
respect to F M, ,-map 9 xid g» we see that the assumption of the lemma implies
the assumption of Lemma 6 with dox!(v) # 0. Then using the regularity of D we
obtain the assumption of Lemma 6, which completes the proof. (]

Let Y be a vector field on an n-manifold N. Define a vector field L”(Y) on

F(N) by
(14)

LD(Y)(u):D<m i ii 1 ,.m i a.)(u,i(o))eTuF(N)

ozt ozl

for any u € (VF(R™ x N))o = F(N), where we use the obvious identification
Vu(VE(R™ x N)) = T, F(N).
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Lemma 8. The M f,-natural operator LP : T ~ TF is linear.

Proof. The M f,-naturality is a simple consequence of the invariance of D with
respect to FM,, ,-maps of the form id gm X¢. Further, by the invariance of D
with respect to the base homotheties tid gm X id g» for ¢ > 0 we get the homogene-
ity condition D(tY")(u) = tD(Y)(u). So, the linearity is an immediate consequence
of the homogeneous function theorem. O

Lemma 9. We have
i 0 1 i O 9
D(;dx ® 5z e ®Y,izzldx ® 5 ) (1. 57(0))
S i 0 1 S i 0 F.L” 0
_ (;das ® 5 +da ®Y,;da§ ® axi) (u,ﬁ(()))
for any u € (VER™™)g and Y € X(R"), where (I'1,T2)"F was defined in Sec-

tion 2.

Proof. Observe that v = v+Y if I'= 3" da'® 32 +de' ® Y and v = 52 (0).
O

Now, using Lemma 7 we see that D(I'1,T'2) = (Fl,Fg)FvLD. Therefore D =

VEL® and the proof of Theorem 1 is complete. ([
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