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PERIODIC SOLUTIONS

FOR A NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION

WITH MULTIPLE VARIABLE LAGS

CHENG-JUN GUO, GEN-QIANG WANG, AND SUI SUN CHENG

Abstract. By means of the Krasnoselskii fixed piont theorem, periodic so-
lutions are found for a neutral type delay differential system of the form

x′ (t) + cx′ (t − τ) = A (t, x(t)) x (t) + f (t, x (t − r1 (t)) , . . . , x (t − rk (t))) .

1. Introduction

Periodic solutions of delay differential equations are important in ecological
models and design of electronic devices, and appear in many investigations (see,
e.g. [1-10]). In particular, periodic solutions of linear differential system of the
form

(1) x′(t) = A(t)x(t) ,

where A(t) is a continuous n by n real matrix function such that A(t + T ) = A(t)
for some T > 0 and all t ∈ R, have been studied to a great extent. When periodic
perturbations exist, and when lags in the model are present, the above system
should be modified so as to reflect these additional factors.

In this paper, we consider the existence of periodic solutions of one such system

(2) x′ (t) + cx′ (t − τ) = A (t, x(t)) x (t) + f (t, x (t − r1 (t)) , . . . , x (t − rk (t))) ,

where τ and c are constants, |c| < 1, ri (t) , i = 1, 2, ..., k, are real continuous
functions on R with period T > 0. A (t, x) is a n × n real continuous matrix
function defined on R × Rn such that

A(t + T, x) = A(t, x), (t, x) ∈ R × Rn

and f (t, u1, ..., uk) is a real continuous vector function defined on R×Rn×· · ·×Rn

such that

f(t + T, u1, . . . , uk) = f(t, u1, . . . , uk), (t, u1, . . . , uk) ∈ R × Rn × · · · × Rn .
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We will invoke the Krasnoselskii fixed point theorem for finding T -periodic
solutions of (2): Suppose B is a Banach space and G is a nonempty bounded
convex and closed subset of B. Let S, P : G → B satisfy the following conditions:
(i ) Sx + Py ∈ G for any x, y ∈ G, (ii) S is a contraction mapping, and (iii) P is
completely continuous. Then S + P has a fixed point in G.

2. Preliminaries

First, we recall some basic facts about linear periodic differential system and
the matrix measures. Consider the system (1) where A (t) is a n × n continuous
matrix function defined on R such that A (t + T ) = A (t). Let Φ (t, t0) be the
fundamental matrix of (1) which satisfy Φ (t0, t0) = I. Recall that

Φ (t, w) Φ (w, s) = Φ (t, s) , t, s, w ∈ R ,

and

Φ−1 (t, s) = Φ (s, t) , t, s ∈ R .

Let A be a n × n real matrix. Let | · |p be the standard p norm for the linear

Euclidean space Rn and ‖A‖p the induced matrix norm of A corresponding to

the vector norm | · |p. The corresponding matrix measure of the matrix A is the

function (see e.g. [12])

µp(A) = lim
ε→0+

‖I + εA‖p − 1

ε
.

For instance (see e.g. [12]), let x = (x1, . . . , xn)T , A = (aij)n×n ∈ Rn×n then

|x|1 =
∑n

i=1 |xi| , ‖A‖1 = max1≤j≤n

∑n
i=1 |aij | and µ1 (A) = max1≤j≤n

{

ajj +
∑

i6=j

∣

∣aij

∣

∣

}

.

Lemma 1 ([12]). Let x (t) be a solution of system (1). Then

|x (t0)|1 exp
{

∫ t

t0

(−µ1 (−A (s))) ds
}

≤ |x(t)|1 ≤ |x(t0)|1 exp
{

∫ t

t0

(µ1 (A (s))) ds
}

for t ≥ t0.

Lemma 2. The fundamental matrix of (1) satisfies

‖Φ (t, s)‖1 ≤ exp
(

∫ t

s

µ1 (A (ζ)) dζ
)

, t > s .

Indeed, let Φ = (Φij) and let Φ(j) be the j-th column of the matrix Φ. Then
by Lemma 1,

‖Φ (t, s)‖1 = max
1≤j≤n

n
∑

i=1

|Φij(t, s)| = max
1≤j≤n

∣

∣Φ(j)(t, s)
∣

∣

1

≤
∣

∣Φ(j)(s, s)
∣

∣

1
exp

(

∫ t

s

µ1 (A (ζ)) dζ
)

= exp
(

∫ t

s

µ1 (A (ζ)) dζ
)

.
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Lemma 3. If

(3) exp
{

∫ T

0

(µ1 (A (s))) ds
}

< 1 ,

then the linear system (1) does not have any nontrivial T -periodic solution.

Proof. Let x (t) be a T -periodic solution of (1) which does not vanish at t0. From
Lemma 1, we have

(4) |x(t0)|1 = |x(t0 + T )|1 ≤ |x(t0)|1 exp
{

∫ t0+T

t0

(µ1 (A (s))) ds
}

< |x(t0)|1 ,

which implies x(t0) = 0. This is a contradiction. �

Lemma 4 ([11]). If the linear system (1) does not have any nontrivial T -periodic

solution, then for any T -periodic continuous function f (t), the nonhomogeneous

system

(5) x′ (t) = A (t) x (t) + f (t)

has a unique T -periodic solution x (t) determined by

(6) x (t) = Φ (t, t0)x(t0) +

∫ t

t0

Φ (t, s) f (s) ds , t ∈ R .

Under the condition

(7) exp
{

∫ T

0

(µ1 (A (s))) ds
}

< 1 ,

we see from Lemma 3 that the linear system (1) does not have any nontrivial
T -periodic solution. Hence by Lemma 4, the unique T -periodic solution x(t) of
the nonhomogeneous system (5) can be expressed by (6). We assert further that

x (t) = (I − Φ (t + T, t))−1
∫ t+T

t

Φ (t + T, s) f (s) ds .(8)

To see this, note that by (6), we have

x(t) = x (t + T ) = Φ (t + T, t0)x(t0) +

∫ t+T

t0

Φ (t + T, s) f (s) ds ,(9)

and

Φ (t + T, t)x (t) = Φ (t + T, t)Φ (t, t0)x(t0) + Φ (t + T, t)

∫ t

t0

Φ (t, s) f (s) ds

= Φ (t + T, t0) x(t0) +

∫ t

t0

Φ (t + T, s) f (s) ds .(10)

Thus,

(11) (I − Φ (t + T, t))x (t) =

∫ t+T

t

Φ (t + T, s) f (s) ds .
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Furthermore, since

(12) ‖Φ (t + T, t)‖1 ≤ exp
(

∫ t+T

t

µ1 (A (s)) ds
)

= exp
(

∫ T

0

µ1 (A (s)) ds
)

< 1 ,

we see that thus, (I − Φ (t + T, t))
−1

exists for every t ∈ R. Therefore, we may
infer from (11) that (8) holds.

We summarize these as follows.

Lemma 5. Suppose (7) holds. Then equation (5) is equivalent to (8).

3. Main Results

Let X be the Banach space of all real T -periodic continuously differentiable
functions of the form x = x (t) which is defined on R and endowed with the usual

linear structure as well as the norm ‖x‖
(2)

= ‖x‖
(0)

+ ‖x‖
(1)

where ‖x‖
(0)

=

max0≤t≤ω |x (t)|1 and ‖x‖
(1)

= max0≤t≤ω |x′(t)|1 .

For the sake of simplicity, in the sequel, we will write |x| , ‖A‖ and µ(A) instead
of |x|1 , ‖A‖1 and µ1(A).

Theorem 1. Suppose there exists a T -periodic continuous function α (t) such that

(13) µ (A (t, x)) ≤ α (t) , (t, x) ∈ [0, T ]× Rn

and

(14) κ = exp
{

∫ T

0

α (s) ds
}

< 1 .

Suppose further that there is M > 0 such that

(15)
1

M

∫ T

0

sup
|u1|≤M,...,|uk|≤M

|f (t, u1, . . . , uk)| dt <
1 − κ

M0
(1 − |c|) − |c|LT ,

where

L = sup
|x|≤M, 0≤t≤T

‖A(t, x)‖

and

(16) M0 = sup
0≤s≤t≤T

exp
{

∫ t

s

α (θ) dθ
}

.

Then (2) has a T -periodic solution.

Proof. For any u ∈ X , consider the linear periodic system

x′ (t) = A (t, u (t)) x (t) ,(17)

and

x′ (t) = A (t, u (t)) x (t) + f (t, u (t − r1 (t)) , . . . , u (t − rk (t))) − cu′ (t − τ) .(18)

From condition (13) and (14), we have

(19) exp
{

∫ T

0

µ (A (t, u (t))) dt
}

≤ exp
{

∫ T

0

α (s) ds
}

< 1 .
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By Lemma 3, (17) does not have any nontrivial T -periodic solution. Furthermore,
by Lemma 5, (18) is equivalent to the integral equation

x (t) = (I − Φu (t + T, t))
−1
∫ t+T

t

Φu (t + T, s)

× [f (s, u (s − r1 (s)) , . . . , u (s − rk (s))) − cu′ (s − τ)] ds(20)

where Φu (t, t0) is a fundamental matrix of (17) which satisfies Φu (t0, t0) = I.
Define the mappings S : X → X and P : X → X by

(21) (Su) (t) = −cu (t − τ)

and

(Pu) (t) = (I − Φu (t + T, t))
−1
∫ t+T

t

Φu (t + T, s)

× [f (s, u (s − r1 (s)) , . . . , u (s − rk (s))) − cu′ (s − τ)] ds + cu (t − τ)(22)

for u ∈ X . Clearly, if P + S has a fixed point, then this fixed point is periodic
solution of (2). To find such a fixed point, we show that the assumptions in the
Krasnoselskii theorem are satisfied. Since

Φu (s, t0)Φ−1
u (s, t0) = I

and

(Φu (t0, s))
−1 = Φu (s, t0) ,

we see that

d

ds
Φu (t, s) =

d

ds
(Φu (t, t0)Φu (t0, s)) = Φu (t, t0)

d

ds

(

Φ−1
u (s, t0)

)

= −Φu (t, s)A (s, u (s))(23)

and

(I − Φu(t + T, t))−1

∫ t+T

t

Φu (t + T, s)u′ (s − τ) ds

= (I − Φu (t + T, t))−1
∫ t+T

t

Φu (t + T, s) d(u(s − τ))

= (I − Φu (t + T, t))−1 Φu (t + T, s)u(s − τ) |s=t+T
s=t

− (I − Φu (t + T, t))
−1
∫ t+T

t

(

d

ds
Φu (t + T, s)

)

u(s − τ) ds

= u (t − τ) + (I − Φu (t + T, t))
−1

×

∫ t+T

t

Φu (t + T, s)A (s, u (s))u (s − τ) ds .(24)
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In view of (22) and (24),

(Pu) (t) = (I − Φu (t + T, t))
−1
∫ t+T

t

Φu (t + T, s)

× [f (s, u (s − r1 (s)) , . . . , u (s − rk (s)))] ds

− (I − Φu (t + T, t))−1
∫ t+T

t

Φu (t + T, s)A (s, u (s)) cu (s − τ) ds(25)

Next we will prove that for any u, v ∈ X which satisfy |u(t)| , |v(t)| ≤ M for t ∈ R,
then

|(Pv) (t) + (Su) (t)| ≤ M, t ∈ R .

Indeed, by Lemma 2, (12) -(14) we see that

‖Φu (t + T, t)‖ ≤ κ < 1 ,

so,

∥

∥ (I − Φu (t + T, t))
−1 ∥
∥ =

∥

∥

∥

∞
∑

n=0

(Φu (t + T, t))
n
∥

∥

∥

≤
∞
∑

n=0

‖(Φu (t + T, t))‖n ≤
∞
∑

n=0

κn =
1

1 − κ
.(26)

Furthermore, by Lemma 2 and (16), we get

‖Φu (t + T, s)‖ ≤ exp
{

∫ t+T

s

µ (A (θ, u (θ))) dθ
}

≤ exp
{

∫ t+T

s

α (θ) dθ
}

≤ M0(27)

for t ≤ s ≤ t + T. Thus from (15), (21), (25), (26) and (27), we have

|(Pv)(t) + (Su)(t)| ≤ |(Pv) (t)| + |(Su) (t)| ≤ |c|M +
∥

∥ (I − Φv(t + T, t))
−1 ∥
∥

×

∫ t+T

t

‖Φv (t + T, s)‖ |f (s, v (s − r1 (s)) , . . . , v (s − rk (s)))| ds

+ |c|
∥

∥(I−Φv(t + T, t))−1
∥

∥

∫ t+T

t

‖Φv (t + T, s)‖ ‖A (s, v (s))‖ |v (s−τ)| ds

≤ |c|M +
M0

1 − κ

∫ t+T

t

∣

∣f(s, v(s − r1(s)), . . . , v(s − rk(s)))
∣

∣ ds + |c|M
M0LT

1 − κ

≤ M
{

|c| + |c|
M0LT

1 − κ
+

M0

1 − κ

[1 − κ

M0
(1 − |c|) − |c|LT

]}

= M .

Let

(28) N =
ML + b0

1 − |c|
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where

b0 = sup
0≤t≤T

|u1|≤M,...,|uk|≤M

|f (t, u1, . . . , uk)| ,

and

G = {u ∈ X : |u(t)| ≤ M, |u′(t)| ≤ N, 0 ≤ t ≤ T } .

It is easily seen that G is a nonempty bounded, convex and closed subset of X .
Now we show that for any u, v ∈ G,

∣

∣

∣

d

dt
[(Pv) (t) + (Su) (t)]

∣

∣

∣
≤ N , t ∈ R .

Indeed, since

(29)
d

dt
(Su) (t) = −cu′ (t − τ) ,

by (22) and (29), we know that (Pv) (t) + (Sv) (t) is a periodic solution of the
system of the form

x′ (t) = A (t, v (t))x (t) + f (t, v (t − r1 (t)) , . . . , v (t − rk (t))) − cv′ (t − τ) .

Hence,

d

dt
(Pv) (t) = A (t, v (t)) [(Pv) (t) + (Sv) (t)]

+ f (t, v (t − r1 (t)) , . . . , v (t − rk (t))) ,(30)

we have
∣

∣

∣

d

dt
[(Pv) (t) + (Su) (t)]

∣

∣

∣
≤ ‖A (t, v (t))‖ [|(Pv) (t) + (Sv) (t)|]

+ |f (t, v (t − r1 (t)) , . . . , v (t − rk (t)))| + |c|N

≤ LM + b0 + |c|N

= N ,

so that

‖(Pv) + (Su)‖(2) = max
0≤t≤T

|(Pv) (t) + (Su) (t)|

+ max
0≤t≤T

∣

∣

∣

d

dt
((Pv) (t) + (Su) (t))

∣

∣

∣
≤ M + N .

Now we have proved that for any u, v ∈ G, Su + Pv ∈ G. Note that for any
u, v ∈ G are T -periodic, thus we have

‖S (u − v)‖
(2)

= max
0≤t≤T

|c (u − v) (t − τ)| + max
0≤t≤T

∣

∣c (u − v)
′
(t − τ)

∣

∣

= |c|
(

max
0≤t≤T

|(u − v) (t)| + max
0≤t≤T

∣

∣(u − v)′ (t)
∣

∣

)

= |c| ‖u − v‖
(2)

.

In view of the condition |c| < 1, we now know that S is a contraction mapping.
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Next we will prove that P is a completely continuous operator from G into G.
To see this, for any u, v ∈ G, let H = Pu − Pv. By (30),

H ′ (t) = {A (t, u (t)) [(Pu) (t)+(Su) (t)]+f (t, u (t−r1 (t)) , . . . , u (t−rk (t)))}

− {A (t, v (t)) [(Pv) (t)+(Sv) (t)]+f (t, v (t−r1 (t)) , . . . , v (t−rk (t)))} .(31)

Let

h∗(t, u (t) , v (t)) = A (t, u (t)) c [v (t − τ) − u (t − τ)]

+ [A (t, u (t)) − A (t, v (t))] [(Pv) (t) + (Sv) (t)]

+
{

f (t, u (t − r1 (t)) , . . . , u (t − rk (t)))

− f (t, v (t − r1 (t)) , . . . , v (t − rk (t)))
}

.(32)

Let G1 = {x ∈ Rn : |x| ≤ M} . Since A (t, x) and f (t, u1, . . . , uk) for 0 ≤ t ≤ T
are uniform continuous on G1 and |(Sv)(t) + (Pv)(t)| is bounded, we see that as

‖u − v‖
(2)

→ 0, |h∗(t, u, v)| → 0 uniformly holds for 0 ≤ t ≤ T. By (31), we have

(33) H ′ (t) = A (t, u (t))H (t) + h∗ (t, u (t) , v (t)) ,

that is, H (t) is a T -periodic solution of (33). By Lemma 4, we have

|H(t)| ≤
∥

∥(I − Φu(t + T, t))−1
∥

∥

∫ t+T

t

‖Φu(t + T, s)‖|h∗(s, u(s), v(s))| ds

≤
M0

1 − κ

∫ t+T

t

|h∗(s, u(s), v(s))| ds .

Thus, when ‖u − v‖(0) → 0, ‖Pu − Pv‖(0) = ‖H‖(0) → 0. On the other hand,
in view of (31), we see that as ‖u − v‖(0) → 0, ‖Pu − Pv‖(1) = ‖H‖(1) =

‖H
′

‖(0)→ 0. Hence if ‖u − v‖
(2)

→ 0, then ‖u − v‖
(0)

→ 0, and so ‖Pu − Pv‖
(2)

=

‖Pu − Pv‖(0) + ‖Pu − Pv‖(1) → 0. That is, P is a continuous mapping on G.
Next, we will prove that PG is relatively compact. Note that PG ⊂ G. In view
of the definition of G, we know that G is uniformly bounded and equicontinuous.
Thus PG is uniformly bounded and equicontinuous. For any {Pun} ⊂ G, there
is a convergent subsequence of {Pun}. We may assume without loss of generality
that {Pun} converges in the norm ‖·‖0. Next we will prove that {Pun} has a

subsequence which converges in the norm ‖·‖
(2)

. Indeed, since ‖Pu‖
(1)

≤ N for

u ∈ G, we know that
∥

∥

d
dtPu

∥

∥

(0)
≤ N for u ∈ G. That is,

{

d
dt (Pu) : u ∈ G

}

is
uniformly bounded. Furthermore, for any u ∈ G, we have

d

dt
(Pu)(t) = A (t, u (t)) [(Pu) (t) + (Su) (t)]+f (t, u (t − r1 (t)) , . . . , u (t − rk (t))) .

Since A (t, x) and f (t, u1, . . . , uk) are uniformly continuous on [0, T ] × G1, and
G and PG are equicontinuous, so

{

d
dt (Pu) : u ∈ G

}

is equicontinuous. Since
{

d
dt (Pun)

}

⊂
{

d
dt(Pu) : u ∈ G

}

, we see that
{

d
dt(Pun)

}

has a subsequence
{

d
dt (Punk

)
}

which converges in the norm ‖·‖
(0)

, that is, {Punk
} converges in

the norm ‖·‖(1). Thus, P is a completely continuous mapping from G into G.
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By means of Krasnoselskii’s theorem, we know that P + S has a fixed point in
G which is a T -periodic solution of (2). The proof is complete. �

As an example, consider the two dimensional nonlinear neutral differential sys-
tem of the form

(34) x′ (t)−
1

16
x′ (t − τ) = A (t, x (t))x (t) + f (t, x (t − sin 2πt) , x (t − cos 2πt)) ,

where

A (t, x) =

(

−1
4

sin 2πt

8 exp
(

−x2
1 − x2

2

)

sin 2πt
8 exp

(

−x4
1 − x4

2

)

−1
4

)

,

and

f (t, v, w) =

(

sin 2πt

4 exp
(

−v2
1 − v2

2

)

sin 2πt

8 exp
(

−w8
1 − w8

2

)

)

.

If we take p = 1 in |·| , ‖·‖ and µ (·) , then it is easy to see that |aii (t, x)| = 1/4 < 1
for i = 1 and 2, and µ (A (t, x)) ≤ −1/8. If we let α (t) = −1/8 and M = 16, then

κ = exp
(

∫ 1

0 α (θ) dθ
)

= e−1/8, M0 = 1, L = sup|x|<16,0≤t≤1 ‖A (t, x)‖ = 3/8 and

sup|v|≤16,|w|≤16 |f (t, u, v)| = 3 |sin 2πt| /8.
In view of these calculations, we may see that the conditions of Theorem 1 are

satisfied. Hence (34) has a 1-periodic solution. This solution is also nontrivial,
since f(t, 0, 0) is not identically zero.

Acknowledgment. We appreciate the suggestions of the reviewer which are
helpful in preparing the final version of our paper.
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