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ON INTEGERS WITH A SPECIAL DIVISIBILITY PROPERTY

WILLIAM D. BANKS AND FLORIAN LUCA

Abstract. In this note, we study those positive integers n which are divisible
by

P

d|n λ(d), where λ(·) is the Carmichael function.

1. Introduction

Let ϕ(·) denote the Euler function, whose value at the positive integer n is
given by

ϕ(n) = #(Z/nZ)× =
∏

pν‖n

pν−1(p − 1).

Let λ(·) denote the Carmichael function, whose value λ(n) at the positive integer
n is defined to be the largest order of any element in the multiplicative group
(Z/nZ)×. More explicitly, for a prime power pν , one has

λ(pν) =

{

pν−1(p − 1) if p ≥ 3 or ν ≤ 2 ,

2ν−2 if p = 2 and ν ≥ 3 ,

and for an arbitrary integer n ≥ 2 with prime factorization n = pν1

1 . . . pνk

k , one
has

λ(n) = lcm
[

λ(pν1

1 ), . . . , λ(pνk

k )
]

,

Note that λ(1) = 1.
Since λ(d) ≤ ϕ(d) for all d ≥ 1, it follows that

∑

d|n

λ(d) ≤
∑

d|n

ϕ(d) = n

for every positive integer n, and it is clear that the equality

(1)
∑

d|n

λ(d) = n

cannot hold unless λ(n) = ϕ(n). The latter condition is equivalent to the statement
that (Z/nZ)× is a cyclic group, and by a well known result of Gauss, this happens
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only if n = 1, 2, 4, pν or 2pν for some odd prime p and integer exponent ν ≥ 1.
For such n, λ(d) = ϕ(d) for every divisor d of n, hence we see that the equality (1)
is in fact equivalent to the statement that λ(n) = ϕ(n).

When λ(n) < ϕ(n), the equality (1) is not possible. However, it may happen
that the sum appearing on the left side of (1) is a proper divisor of n. Indeed, one
can easily find many examples of this phenomenon:

n = 140, 189, 378, 1375, 2750, 2775, 2997, 4524, 5550, 5661, 5994, . . . .

These positive integers n are the subject of the present paper.
Throughout the paper, the letters p, q and r are always used to denote prime

numbers. For a positive integer n, we write P (n) for the largest prime factor of n,
ω(n) for the number of distinct prime divisors of n, and τ(n) for the total number
of positive integer divisors of n. For a positive real number x and a positive integer
k, we write logk x for the function recursively defined by log1 x = max{log x, 1}
and logk x = log1(logk−1 x), where log(·) denotes the natural logarithm. We also
use the Vinogradov symbols ≫ and ≪, as well as the Landau symbols O and o,
with their usual meanings.

Acknowledgements. This work was done during a visit by the second author
to the University of Missouri, Columbia; the hospitality and support of this insti-
tution are gratefully acknowledged. During the preparation of this paper, W. B.
was supported in part by NSF grant DMS-0070628, and F. L. was supported in
part by grants SEP-CONACYT 37259-E and 37260-E.

2. Main Results

Let b(·) be the arithmetical function whose value at the positive integer n is
given by

b(n) =
∑

d|n

λ(d) .

Our aim is to investigate the set B defined as follows:

B = {n : b(n) is a proper divisor of n} .

For a positive real number x, let B(x) = B ∩ [1, x]. Our first result provides a
nontrivial upper bound on #B(x) as x → ∞:

Theorem 1. The following inequality hold as x → ∞:

#B(x) ≤ x exp
(

−2−1/2(1 + o(1))
√

log x log2 x
)

.

Proof. Our proof closely follows that of Theorem 1 in [2]. Let x be a large real
number, and let

y = y(x) = exp
(

2−1/2
√

log x log2 x
)

.

Also, put

(2) u = u(x) =
log x

log y
= 21/2

√

log x

log2 x
.
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Finally, we recall that a number m is said to be powerful if p2|m for every prime
factor p of m.

Let us consider the following sets:

B1(x) = {n ∈ B(x) : P (n) ≤ y} ,

B2(x) = {n ∈ B(x) : ω(n) ≥ u} ,

B3(x) = {n ∈ B(x) : m|n for some powerful number m > y2} ,

B4(x) = {n ∈ B(x) : τ(ϕ(n)) > y} ,

B5(x) = B(x) \ (B1(x) ∪ B2(x) ∪ B3(x) ∪ B4(x)) .

Since B(x) is the union of the sets Bj(x), j = 1, . . . , 5, it suffices to find an
appropriate bound on the cardinality of each set Bj(x).

By the well known estimate (see, for instance, Tenenbaum [7]):

Ψ(x, y) = #{n ≤ x : P (n) ≤ y} = x exp{−(1 + o(1))u log u} ,

which is valid for u satisfying (2), we derive that

(3) #B1(x) ≤ x exp
(

−2−1/2(1 + o(1))
√

log x log2 x
)

.

Next, using Stirling’s formula together with the estimate
∑

p≤x

1

p
= log log x + O(1) ,

we obtain that

#{n ≤ x : ω(n) ≥ u} ≤
∑

p1...p⌊u⌋≤x

x

p1 . . . p⌊u⌋
≤ x

⌊u⌋!
(

∑

p≤x

1

p

)⌊u⌋

≤ x
(e log log x + O(1)

⌊u⌋
)⌊u⌋

≤ x exp (−(1 + o(1))u log u) ,

therefore

(4) #B2(x) ≤ x exp
(

− 2−1/2(1 + o(1))
√

log x log2 x
)

.

We also have

(5) #B3(x) ≤
∑

m>y2

m powerful

x

m
≪ x

y
= x exp

(

− 2−1/2
√

log x log2 x
)

,

where the second inequality follows by partial summation from the well known
estimate:

#{m ≤ x : m powerful} ≪
√

x .

(see, for example, Theorem 14.4 in [5]).
By a result from [6], it is known that

(6)
∑

n≤x

τ(ϕ(n)) ≤ x exp

(

O

(
√

log x

log2 x

))

.
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Therefore,

#B4(x) ≤
∑

n≤x
τ(ϕ(n))>y

1 <
1

y

∑

n≤x

τ(ϕ(n)) ≤ x

y
exp(O(u))

≤ x exp
(

− 2−1/2(1 + o(1))
√

log x log2 x
)

.(7)

In view of the estimates (3), (4), (5) and (7), to complete the proof it suffices
to show that

(8) #B5(x) ≤ x exp
(

− 2−1/2(1 + o(1))
√

log x log2 x
)

.

We first make some comments about the integers in the set B5(x). For each
n ∈ B5(x), write n = n1n2, where gcd(n1n2) = 1, n1 is powerful, and n2 is
squarefree. Since n1 ≤ y2 (as n 6∈ B3(x)) and P (n) > y (as n 6∈ B1(x)), it follows
that P (n)|n2; in particular, P (n)‖n. By the multiplicativity of τ(·), we also have

τ(n) = τ(n1)τ(n2).

Since n 6∈ B2(x),

τ(n2) ≤ 2ω(n) < 2u = exp
(

O(u)
)

,

Also,

τ(n1) ≤ exp
(

O
( log n1

log log n1

))

≤ exp
(

O
( log y

log log y

))

= exp
(

O(u)
)

.

In particular,

(9) τ(n) ≤ exp
(

O(u)
)

.

Now let n ∈ B5(x), and write n = Pm, where P = P (n) and m is a positive
integer with m ≤ x/y. Put

(10) D1 = gcd(P − 1, λ(m)) and D2 = gcd
(

m, b(n)
)

.

Since b(n) is a (proper) divisor of n = Pm, it follows that b(n) = D2P
δ, where

δ = 0 or 1. Since P‖n and P 6= 2, we also have

b(n) =
∑

d|n

λ(d) =
∑

d|m

λ(d) +
∑

d|m

lcm[P − 1, λ(d)]

= b(m) +
∑

d|m

(P − 1)λ(d)

gcd(D1, λ(d))
= b(m) + (P − 1)b(D1, m) ,

where

b(D1, m) =
∑

d|m

λ(d)

gcd
(

D1, λ(d)
) .

Consequently,

b(m) + (P − 1)b(D1, m) = D2P
δ ,
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and thus

(11) P =



















1 +
D2 − b(m)

b(D1, m)
if δ = 0 ,

b(m) − b(D1, m)

D2 − b(D1, m)
if δ = 1 .

We remark that D2 6= b(D1, m) in the second case. Indeed, noting that m > 2
(since n is neither prime nor twice a prime), it follows that D1 is even; in particular,
D1 ≥ 2. Thus,

1 =
λ(1)

gcd(D1, λ(1))
≤ b(D1, m) ≤

∑

d|m
d<m

λ(d) +
λ(m)

D1
< b(m) ,

which shows that b(m) − b(D1, m) > 0, and therefore D2 cannot be equal to
b(D1, m) in view of (11). Hence, from (11), we conclude that for all fixed choices
of m, an even divisor D1 of λ(m), and a divisor D2 of m, there are at most two
possible primes P satisfying (10) and such that Pm ∈ B5(x). Using (6) and (9),
and recalling that m ≤ x/y, we derive that

#B5(x) ≪
∑

m≤x/y

τ(m)τ
(

λ(m)
)

≤ exp(O(u))
∑

m≤x/y

τ
(

ϕ(m)
)

≪ x

y
exp

(

O(u)
)

.

The estimate (8) now follows from our choice of y, and this completes the proof.
�

Our next result provides a complete characterization of those odd integers n ∈ B
with ω(n) = 2.

Theorem 2. Suppose that n = paqb, where p and q are odd primes with p < q,
and a, b are positive integers. If n 6= 2997, then n ∈ B if and only if b = 1 and

there exists a positive integer k such that

q = 2p(pk−1)/(p−1) + 1 and a = k + 2(pk − 1)/(p − 1) .

Proof. Let c be the largest nonnegative integer such that pc|(q − 1).
First, suppose that p ∤ (q − 1) (that is, c = 0). We must show that n 6∈ B.

Indeed, let t = gcd(p − 1, q − 1); then

b(n) = 1 +

a
∑

j=1

λ(pj) +

b
∑

k=1

λ(qk) +

a
∑

j=1

b
∑

k=1

λ(pjqk)

= 1 +

a
∑

j=1

ϕ(pj) +

b
∑

k=1

ϕ(qk) +

a
∑

j=1

b
∑

k=1

ϕ(pjqk)

t

= 1 + (pa − 1) + (qb − 1) + t−1(paqb − pa − qb + 1).
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If n ∈ B, b(n) = peqf for some integers e, f with 0 ≤ e ≤ a and 0 ≤ f ≤ b. Thus,

(12) tpeqf = (t − 1)(pa + qb − 1) + paqb

If e ≤ a − 1, then since t ≤ p − 1, it follows that

tpeqf < pe+1qf ≤ paqb,

which contradicts (12); therefore, e = a. A similar argument shows that f = b.
But then b(n) = paqb = n, which is not possible since b(n) is a proper divisor of
n. This contradiction establishes our claim that n 6∈ B.

If c ≥ 1, we have

b(n) = 1 +

a
∑

j=1

λ(pj) +

b
∑

k=1

λ(qk) +
∑

1≤j≤a
j≤c

b
∑

k=1

λ(pjqk)

+
∑

1≤j≤a
j≥c+1

b
∑

k=1

λ(pjqk)

= 1 +

a
∑

j=1

ϕ(pj) +

b
∑

k=1

ϕ(qk) +
∑

1≤j≤a
j≤c

b
∑

k=1

ϕ(pqk)

t

+
∑

1≤j≤a
j≥c+1

b
∑

k=1

ϕ(pj−cqk)

t
.

For any integer r ≥ 1, we have the identity:

b
∑

k=1

ϕ(prqk) = ϕ(pr)
b
∑

k=1

ϕ(qk) = (pr − pr−1)(qb − 1) .

Hence, it follows that

(13) b(n) =

pa + qb − 1 +
(qb − 1)

t

(

(p − 1)min{a, c} + pmax{a−c, 0} − 1
)

.

Assuming that n ∈ B, write b(n) = peqf as before.
We claim that c < a. Indeed, if c ≥ a, then reducing (13) modulo pc (and

recalling that q ≡ 1 (mod pc)), we obtain that

pe ≡ peqf = b(n) ≡ pa (mod pc) ,

which implies that e = a. Then

paqf = b(n) = pa + qb − 1 +
(qb − 1)(p − 1)a

t
,



ON INTEGERS WITH A SPECIAL DIVISIBILITY PROPERTY 37

which in turn gives

tpa(qf − 1) = (qb − 1)(1 + (p − 1)a) .(14)

The following result can be easily deduced from [1].

Lemma 3. For every odd prime q and integer b ≥ 2, then there exists a prime P
such that P |(qb − 1), but P ∤ (qf − 1) for any positive integer f < b, except in the

case that b = 2 and q is a Mersenne prime.

If f < b and the prime P of Lemma 3 exists, the equality (14) is not possible
as P divides only the right-hand side. Thus, if (14) holds and f < b, it must be
the case that b = 2, f = 1, and q = 2r − 1 for some prime r. But this leads to the
equality

tpa = 2r(1 + (p − 1)a) ,

and since t divides (q − 1) ≡ 2 (mod 4), we obtain a contradiction after reducing
everything modulo 4. Therefore, f = b, and we again have that b(n) = paqb = n,
contradicting the fact that n ∈ B. This establishes our claim that c < a.

From now on, we can assume that c < a; then (13) takes the form:

peqf = b(n) = pa + qb − 1 +
(qb − 1)

t

(

(p − 1)c + pa−c − 1
)

.

Reducing this equation modulo pc, we immediately deduce that e ≥ c. Thus,

(15)
(qb − 1

q − 1

)(q − 1

pc

)(

1 +
(p − 1)c + pa−c − 1

t

)

= (pe−cqf − pa−c) ,

where each term enclosed by parentheses is an integer. Using the trivial estimates

qb − 1

q − 1
≥ qb−1 ,

q − 1

pc
≥ t ,

and

1 +
(p − 1)c + pa−c − 1

t
>

pa−c

t
,

we obtain that

pa−c(qb−1 + 1) < pe−cqf ,(16)

which clearly forces f = b.
Now put D = (qb − 1)/(q − 1); then D|(qb − 1) and D|(pe−cqb − pa−c) (since

f = b); thus,

(17) pe−c ≡ pa−c (mod D) .

Write D = pdD0, where p ∤ D0. From the definition of D, it easy to see that d is
also the largest nonnegative integer such that pd|b; therefore,

(18) d ≤ log b

log p
.
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On the other hand, from (17), it follows that d ≤ e − c; hence,

pe−c−d ≡ pa−c−d (mod D0) ,

which implies that D0|(pa−e − 1). Consequently,

pa−e > pa−e − 1 ≥ D0 = p−dD ≥ p−dqb−1 > p−d(pa−e)b−1 ,

where in the last step we have used the bound q > pa−e, which follows from (16)
(with f = b). Thus,

(19) d > (a − e)(b − 2) .

Combining the estimates (18) and (19), and using the fact that a − e ≥ 1, we see
that b ≤ 2. Moreover, if b = 2, then since pd|b and p is odd, it follows that d = 0,
which is impossible in view of (19). Hence, b = 1.

At this point, (15) takes the form

(20)

(

q − 1

pc

)(

1 +
(p − 1)c + pa−c − 1

t

)

= pe−cq − pa−c .

Since t ≤ p − 1, we have

pe−cq >
(q − 1

pc

)( pa−c

p − 1

)

= pa−2c
(q − 1

p − 1

)

> pa−2c
(q

p

)

= pa−2c−1q ,

thus a ≤ e + c.
We now write q − 1 = pctµ for some positive integer µ. Then from (20), it

follows that

(21) pa−c(µ + 1) − petµ = pe−c + µ − tµ − (p − 1)cµ .

First, let us distinguish a few special cases. If t = 2 and µ = 1, we have

2pa−c − 2pe = pe−c − 1 − (p − 1)c .

If a ≤ e + c − 1, we see that

pe−c − 1 − (p − 1)c ≤ 2pe−1 − 2pe ;

hence,

2pe−1(p − 1) ≤ c(p − 1) + 1 − pe−c ≤ e(p − 1) ,

which is not possible for any e ≥ 1. Thus, a = e + c, and it follows that

c =
pe−c − 1

p − 1
.

Taking k = e − c (which is positive since c is an integer), we have

q = 2pc + 1 = 2p(pk−1)/(p−1) + 1 ,

and

a = e + c = k + 2c = k + 2(pk − 1)/(p − 1) ;

hence, our integer n = paq has the form stated in the theorem.
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Next, we claim that e 6= 1. Indeed, if e = 1, then c = 1; as c < a ≤ e + c, it
follows that a = 2. Substituting into (21), we obtain that

p(µ + 1) − ptµ = 1 + µ − tµ − (p − 1)µ ,

or

p(1 + 2µ − tµ) = 1 + 2µ− tµ .

This last equality implies that 1 + 2µ − tµ = 0, therefore µ = 1 and t = 3, which
is not possible since t is an even integer.

For convenience, let S denote the value on either side of the equality (21). We
note that the relation (20) implies that pe−c|(t + (p − 1)c − 1); thus,

S ≤ t + (p − 1)c − 1 + µ − tµ − (p − 1)cµ = (1 − µ)
(

t + (p − 1)c − 1
)

.

In the case that S ≥ 0, we immediately deduce that µ = 1, which implies that
S = 0. Then 2pa−c = pet, and we conclude that t = 2 (and a = e + c), which is a
case we have already considered.

Suppose now that S < 0. From (21) we derive that

−S

pe−cµ
= pct − pa−e

(

1 +
1

µ

)

=
t + (p − 1)c

pe−c
− 1

µ
− 1

pe−c
,

and since we already know that a ≤ e + c, t ≤ p − 1 and c ≤ e, it follows that

pc
(

t − 1 − 1

µ

)

<
t + (p − 1)c

pe−c
≤ (p − 1)(c + 1)

pe−c
≤ (p − 1)(e + 1)

pe−c
.

If t 6= 2 or µ 6= 1 (which have already been considered), then (t − 1 − 1/µ) ≥ 1/2,
and therefore

e + 1 >
pe

2(p − 1)
.

This implies that e ≤ 2 for p = 3, and e = 1 for p ≥ 5. Since we have already
ruled out the possibility e = 1, this leaves only the case where p = 3 and e = 2.
To handle this, we observe that (t − 1 − 1/µ) ≥ 2/3 if µ ≥ 3, and we obtain the
bound

e + 1 >
2pe

3(p − 1)
,

which is not possible for p = 3 and e = 2. Thus, we left only with the case p = 3
and e = t = µ = 2. Since c ≤ e, c < a ≤ e + c, and q = 4 · 3c + 1, it follows that
n ∈ {117, 351, 999, 2997}. It may be checked that, of these four integers, only
2997 lies in the set B.

To complete the proof, it remains only to show that if

q = 2p(pk−1)/(p−1) + 1 and a = k + 2(pk − 1)/(p − 1)

for some positive integer k, then n = paq lies in the set B. For such primes
p, q, we have t = 2, c = (pk − 1)/(p − 1), q = 2pc + 1, and a = k + 2c; taking
e = a − c = k + (pk − 1)/(p − 1), we immediately verify (20). Noting that e < a,
it follows that b(n) is a proper divisor of n. �

As a complement to Theorem 2, we have:
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Theorem 4. If n is even and ω(n) = 2, then n 6∈ B.

Proof. Write n = 2aqb, where q is an odd prime and a, b are positive integers, and
suppose first that a ≥ 3. For any divisor d = 2eqf of n, the congruence λ(d) ≡ 0
(mod 4) holds whenever e ≥ 4. On the other hand, if e ≤ 3, then λ(d) = λ(qf )
since 2|(q − 1). Reducing b(n) modulo 4, we have

b(n) ≡
3
∑

j=0

λ(2j) +

3
∑

j=0

b
∑

k=1

λ(2jqk) = 6 + 4

b
∑

k=1

λ(qk) ≡ 2 (mod 4) ,

which implies that 2‖b(n). If n ∈ B, then b(n) is a divisor of n, thus b(n) ≤ 2qb.
On the other hand,

b(n) ≥ 6 + 4

b
∑

k=1

λ(qk) = 2 + 4

b
∑

k=0

ϕ(qk) = 2 + 4qb ,

which contradicts the preceding estimate. This shows that n 6∈ B.
If a = 1, then n is twice a prime power, thus n 6∈ B.
Finally, suppose that a = 2. Then

b(n) =

2
∑

j=0

λ(2j) +

2
∑

j=0

b
∑

k=1

λ(2jqk) = 4 + 3

b
∑

k=1

λ(qk)

= 1 + 3

b
∑

k=0

ϕ(qk) = 1 + 3qb ,

which clearly cannot divide n = 4qb. �

3. Comments

In Theorem 2, the condition k = 1 is equivalent to a = 3 and q = 2p+1; that is,
q is a Sophie Germain prime. Under the classical Hardy-Littlewood conjectures
(see [3, 4]), the number of such primes q ≤ y should be asymptotic to y/(log y)2

as y → ∞; thus, we expect B to contain roughly x1/4/(log x)2 odd integers n of
the form n = p3q. When k ≥ 2, then

1

log q
≪ 1

pk−1 log p
,

and since the series
∑

p≥3
k≥2

1

pk−1 log p

converges, classical heuristics suggest that there should be only finitely many num-
bers n ∈ B with ω(n) = 2 and k > 1. Unconditionally, we can only say that the
number of such odd integers n ∈ B with n ≤ x is O((log x)/(log2 x)).

We do not have any conjecture about the correct order of magnitude of #B(x)
as x → ∞. In fact, we cannot even show that B is an infinite set, although
computer searches produce an abundance of examples.
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Let p1, p2, . . . , pk be distinct primes such that (p1 − 1)|(p2 − 1)| . . . |(pk − 1).
Taking n = p1 . . . pk, we see that

(22) b(n) =
∑

d|n

λ(d) = 1 + (p1 − 1) + 2(p2 − 1) + · · · + 2k−1(pk − 1) .

Indeed, this formula is clear if k = 1. For k > 1, put m = p1 . . . pk−1, and note that
the divisibility conditions among the primes imply that λ(m)|(pk − 1). Therefore,

b(n) =
∑

d|n

λ(d) =
∑

d|m

λ(d) +
∑

d|m

lcm[pk − 1, λ(d)]

=
∑

d|m

λ(d) + (pk − 1)τ(m) = b(m) + 2k−1(pk − 1) ,

and an immediate induction completes the proof of formula (22). If p > 5 is a
prime congruent to 1 modulo 4 such that q = 2p − 1 is also prime, then p1 = 5,
p2 = p and p3 = q fulfill the stated divisibility conditions; thus, with n = 5pq, we
have

b(n) =
∑

d|n

λ(d) = 1 + (5 − 1) + 2(p − 1) + 4(q − 1) = 10p− 5 = 5q ,

which is a divisor of n. The Hardy-Littlewood conjectures also predict that if x is
sufficiently large, there exist roughly x1/2/(log x)2 of such positive integers n ≤ x,
which suggests that the inequality #B(x) ≫ x1/2/(logx)2 holds.

Finally, we note that b(2n) = 2b(n) whenever n is odd, therefore 2n ∈ B
whenever n is an odd element of B.
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