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SLANT HANKEL OPERATORS

S. C. ARORA, RUCHIKA BATRA AND M. P. SINGH

Abstract. In this paper the notion of slant Hankel operator Kϕ, with sym-
bol ϕ in L∞, on the space L2(T), T being the unit circle, is introduced. The
matrix of the slant Hankel operator with respect to the usual basis {zi : i ∈ Z}

of the space L2 is given by 〈αij〉 = 〈a−2i−j 〉, where
∞
P

i=−∞

aiz
i is the Fourier

expansion of ϕ. Some algebraic properties such as the norm, compactness

of the operator Kϕ are discussed. Along with the algebraic properties some
spectral properties of such operators are discussed. Precisely, it is proved
that for an invertible symbol ϕ, the spectrum of Kϕ contains a closed disc.

1. Introduction

Let ϕ =
∞
∑

i=−∞

aiz
i be a bounded measurable function on the unit circle T. Mark

C. Ho in his paper [4] has introduced the notion of slant Toeplitz operator Aϕ with
symbol ϕ on the space L2 and it is defined as follows

Aϕ(zi) =

∞
∑

i=−∞

a2i−jz
i

for all j in Z, Z being the set of integers.
Also, it is shown that if (αij) is the matrix of Aϕ with respect to the usual basis

{zi : i ∈ Z} of L2, then αij = a2i−j . Moreover if W : L2 → L2 be defined as

W (z2n) = zn

and

W (z2n−1) = 0 ,

for each n ∈ Z, then he has proved that Aϕ = WMϕ, where Mϕ is the multiplica-
tion operator induced by ϕ.

The Hankel operators Hϕ are usually defined on the space H2 but they can be
extended to the space L2 as follows.
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The Hankel operator Sϕ on L2 is defined as

Sϕ(zj) =

∞
∑

i=−∞

a−i−jz
i

for all j in Z. Moreover, if J : L2 → L2 is the reflection operator defined by
J(f(z)) = f(z), then we can see here that Sϕ = JMϕ and Mϕ = JSϕ.

Motivated by Mark C. Ho, we here in this paper introduce the notion of slant
Hankel operator on the space L2 as follows.

The slant Hankel operator Kϕ on L2 is defined as

Kϕ(zj) =

∞
∑

i=−∞

a−2i−jz
i

for all j in Z. That is, if 〈βij〉 is the matrix of Kϕ with respect to the usual basis
{zi : i ∈ Z} of L2 then βij = a−2i−j . Therefore if Aϕ is the slant Toeplitz operator
then we can easily see that Aϕ = JKϕ and Kϕ = JAϕ. Moreover, we also observe
that J reduces W as

JW (z2n) = Jzn = zn JW (z2n−1) = J0 = 0

and

WJz2n = Wz2n = zn WJz2n−1 = Wz−2n+1 = 0 .

Also

JW ∗(zn) = Jz2n = z2n = J(z2n) = JW ∗zn .

Hence

JW = WJ and JW ∗ = W ∗J .

We begin with the following

Theorem 1. Kϕ = WSϕ.

Proof. If Sϕ is the Hankel operator on L2 then

Sϕ(zj) =

∞
∑

i=−∞

a−i−jz
i .

Therefore,

WSϕ(zj) = W (

∞
∑

i=−∞

a−i−jz
i) =

∞
∑

i=−∞

a−2i−jz
i = Kϕ(zj) .

This is true for all j in Z. Therefore we can conclude that Kϕ = WSϕ. From here
we can see that Kϕ = WSϕ = WJMϕ = JWMϕ = JAϕ. �

As a consequence of the above we can prove the following

Corollary 2. A slant Hankel operator Kϕ with ϕ in L∞ is a bounded linear

operator on L2 with ‖Kϕ‖ ≤ ‖ϕ‖∞.
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Proof. Since ‖Kϕ‖ = ‖WSϕ‖ = ‖WJMϕ‖ ≤ ‖W‖ ‖J‖ ‖Mϕ‖ ≤ ‖Mϕ‖ = ‖ϕ‖∞.
This completes the proof. �

If we denote Lϕ, the compression of Kϕ on the space H2, then Lϕ is defined as

Lϕf = PKϕf

for all f in H2, where P is the orthogonal projection of L2 onto H2. Equivalently

Lϕ = PKϕ | H2 = PJAϕ | H2 = PJWMϕ | H2

= PWJMϕ | H2 = PWSϕ | H2 = WPSϕ | H2 = WHϕ .

That is Lϕ = WHϕ, where Hϕ is the Hankel operator on H2. If (βij) is the matrix
of Kϕ with respect to the usual basis {zi : i ∈ Z} then this matrix is given by





























...
...

...
...

...
...

. . . a9 a8 a7 a6 a5 a4 . . .

. . . a7 a6 a5 a4 a3 a2 . . .

. . . a5 a4 a3 a2 a1 a0 . . .

. . . a3 a2 a1 a0 a−1 a−2 . . .

. . . a1 a0 a−1 a−2 a−3 a−4 . . .

. . . a−1 a−2 a−3 a−4 a−5 a−6 . . .
...

...
...

...
...

...





























.

The lower right quarter of the matrix is the matrix of Lϕ. That is











a0 a−1 a−2 . . .

a−2 a−3 a−4 . . .

a−4 a−5 a−6 . . .
...

...
...











.

We know obtain a characterization of slant Hankel operator as follows

Theorem 3. A bounded linear operator K on L2 is a slant Hankel operator if and

only if MzK = KMz2.

Proof. Let K be a slant Hankel operator. Then by definition K = WSϕ, for some
ϕ in L∞. Then,

MzK = MzWSϕ = WMz2Sϕ = WMz2JMϕ

= WJMz2Mϕ = WJMϕMz2 = WSϕMz2 = KMz2 .

Conversely, suppose that K satisfies MzK = KMz2 . Let f be in L2 and let
∞
∑

i=−∞

biz
i be its Fourier expansion. Then from the equation MzK = KMz2 , we
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get

K
(

f(z2)
)

= K
(

∞
∑

i=−∞

biz
2i

)

=

∞
∑

i=−∞

biKMz2i(1)

=
∞
∑

i=−∞

biMziK(1) =
∞
∑

i=−∞

biz
iK(1) = f(z)K(1) .

This implies that

‖f(z)K(1)‖ = ‖K(f(z2))‖ ≤ ‖K‖ ‖f(z2)‖ = ‖K‖ ‖f(z)‖ .

Let ϕ0 = K1. Let ǫ > 0 be any real number and Aǫ = {z : |ϕ0(z)| > ‖K‖ + ǫ}.
Let χAǫ

denote the characteristic function of Aǫ. Then

‖K(χAǫ
)‖2 =

∫

T

|K
(

χAǫ
(z)

)

|2 dµ =

∫

Aǫ

|K(1)|2 dµ =

∫

Aǫ

|ϕ0|
2 dµ

≥ (‖K‖ + ǫ)2µ(Aǫ) = (‖K‖ + ǫ)2‖χAǫ
‖2 .

Therefore if ‖χAǫ
‖ 6= 0 then we get ‖K‖ + ǫ ≤ ‖K‖, a contradiction. Thus

‖χAǫ
‖ = 0 and µ(Aǫ) = 0, where µ is the normalized Lebesgue measure on T.

This is true for all ǫ > 0. Hence if A = {z : |ϕ0| ≥ ‖K‖} then µ(A) = 0. Thus
|ϕ0(z)| ≤ ‖K‖ a.e. This implies that ϕ0 is in L∞. Again if we consider

K
(

zf(z2)
)

= K
(

z

∞
∑

i=−∞

biz
−2i

)

= K
(

∞
∑

i=−∞

biz
−2i−1

)

=

∞
∑

i=−∞

biKMz−2iMz =

∞
∑

i=−∞

biMziKMz

=

∞
∑

i=−∞

biz
iK(z) = f(z)K(z) .

So by the same arguments as above, we can see that Kz is also bounded. Let
ϕ1 = Kz and let ϕ(z) = ϕ0(z

2)+zϕ1(z
2). Since ϕ0 and ϕ1 are bounded, therefore

ϕ is also bounded and hence is in L∞. Now we will show that K = WSϕ. Let f
be in L2, then f can be written as

f(z) = f0(z
2) + zf1(z

2) .
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This implies that

WSϕf = WJMϕf = WJ(ϕf) = W (ϕ(z)f(z))

= W [(ϕ0(z
2) + zϕ1(z

2))(f0(z
2) + zf1(z

2))]

= W
[

ϕ0(z
2)f0(z

2) + ϕ1(z
2)f1(z

2)
]

{as W eliminates the odd powers of z}

= W
[

ϕ0(z
2)f0(z

2)
]

+W
[

ϕ1(z
2)f1(z

2)
]

= ϕ0(z)f0(z) + ϕ1(z)f1(z)

= f0(z)K1 + f1(z)Kz = K(f0(z
2)) +K(zf1(z

2))

= K(f0(z
2) + zf1(z

2)) = Kf .

Hence K is a slant Hankel operator. This completes the proof. �

Corollary 4. The set of all slant Hankel operators is weakly closed and hence

strongly closed.

Proof. Suppose that for each α, Kα is a slant Hankel operator and Kα → K

weakly, where {α} is a net. Then for all f , g in L2〈Kαf, g〉 → 〈Kf, g〉. This
implies that

〈MzKαMz2f, g〉 = 〈Kαz
2f, zg〉 → 〈Kz2f, zg〉 = 〈MzKMz2f, g〉

Since Kϕ is a slant Hankel operator, therefore from its characterization, we have
MzKαMz2 = Kα for each α. Thus K = MzKMz2 and so K is slant Hankel
operator. This completes the proof. �

Definition : The slant Hankel matrix is defined as a two way infinite matrix (aij)
such that

ai−1,j+2 = aij .

This definition gives the characterization of the slant Hankel operator Kϕ in
terms of its matrix as follows

A necessary and sufficient condition for a bounded linear operator on L2 to
be a slant Hankel operator is that its matrix (with respect to the usual basis
{zi : i ∈ Z}) is a slant Hankel matrix.

The adjoint K∗
ϕ, of the operator Kϕ, is defined by

K∗
ϕ(zj) =

∞
∑

i=−∞

a−2j−iz
i.

That is, K∗
ϕ = JA∗

ϕ(z). Moreover if J is the reflection operator then JK∗
ϕ(zj) =

∞
∑

i=−∞

a−2j+iz
i and therefore WJK∗

ϕ(zj) =
∞
∑

i=−∞

a−2j+2iz
i. That is the matrix of
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WJK∗
ϕ is given by





















...
...

...
...

...
. . . a2 a0 a−2 a−4 a−6 . . .

. . . a4 a2 a0 a−2 a−4 . . .

. . . a6 a4 a2 a0 a−2 . . .

. . . a8 a6 a4 a2 a0 . . .
...

...
...

...
...





















which is constant on diagonals and therefore is the matrix of the multiplication
operator Mψ where ψ = W (ϕ(z)). This helps us in proving the following

Theorem 5. Kϕ is compact if and only if ϕ = 0.

Proof. Let Kϕ be compact, then K∗
ϕ is also compact. Since W and J are bounded

linear operators, therefore WJK∗
ϕ is also compact. But WJK∗

ϕ = W (ϕ(z)) = Mψ

where ψ = W (ϕ(z)). This implies that Mψ is compact and therefore 〈ψ, zn〉 = 0
for all n. That is

〈ψ, zn〉 = 〈ϕ(z),W ∗zn〉 = 〈Σaiz
i, z2n〉 = a2n = 0 .

On the other hand, since KϕMz is also compact and therefore

WJ(KϕMz)
∗ = WJ(JAϕMz)

∗ = WJ(JWMϕz)
∗

= WJ(Kϕz)
∗ = Mψ0

.

where ψ0 = W
(

zϕ(z)
)

, is also compact. This further yields that for each n in Z

0 = 〈ψ0, z
n〉 = 〈W (ϕ(z)z), zn〉 = 〈ϕ(z)z, z2n〉

=
〈

∞
∑

i=−∞

aiz
i+1, z2n

〉

=
〈

∞
∑

i=−∞

ai−1z
i, z2n

〉

= a2n−1 .

Thus ai = 0 for all i which concludes that ϕ = 0. This completes the proof. �

The next result deals with the norm of Kϕ as follows

Theorem 5. ‖Kϕ‖ = ‖Aϕ‖ =
√

‖W |ϕ|2‖∞.

Proof. Consider,

KϕK
∗
ϕ = JAϕ(JAϕ)∗ = JWMϕ(JWMϕ)∗ = JWMϕMϕW

∗J∗

= JWM|ϕ|2W
∗J∗ = WJ(JWM|ϕ|2)

∗ = WJK∗
|ϕ|2 = Mψ

where ψ = W (|ϕ|2). It follows that

‖Kϕ‖
2 = ‖KϕK

∗
ϕ‖ = ‖Mψ‖ = ‖ψ‖∞ = ‖W |ϕ|2‖∞ = ‖Aϕ‖

2.

This completes the proof. �
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2. Spectrum of Kϕ

In [4] Mark C. Ho has proved that the spectrum of slant Toeplitz operator
contains a closed disc, for any invertible ϕ in L∞(T). The same is true for slant
Hankel operator. We begin with the following

Lemma 6. If ϕ is invertible in L∞, then σp(Kϕ) = σp(Kϕ(z2)), where σp(Kϕ)
denotes the point spectrum of Kϕ.

Proof. Let λ ∈ σp(Kϕ). Therefore there exists a non zero f in L2 such that
Kϕf = λf . Consider F = ϕf . Then

Kϕ(z2)F = Kϕ(z2)ϕf = JAϕ(z2)(ϕf) = JWMϕ(z2)ϕf = JMϕ(z)WMϕf

= Mϕ(z)JAϕf = ϕ(z)Kϕ(f) = ϕλf = λϕf = λF .

Since ϕ is invertible and f 6= 0, therefore F 6= 0 and hence λ ∈ σp(Kϕ(z2)). This
implies that σp(Kϕ) ⊂ σp(Kϕ(z2)).

Conversely, let µ ∈ σp(Kϕ(z2)). Thus there exists some 0 6= g in L2 such that

Kϕ(z2)g = µg. Let G = ϕ−1g. This gives that

KϕG = Kϕ(ϕ−1g) = JAϕ(ϕ−1g) = JWMϕ(ϕ−1g) = WJ(ϕϕ−1g) = WJg

= ϕ−1ϕWJg = ϕ−1WJϕ(z2)g = ϕ−1Kϕ(z2)g

= ϕ−1µg = µϕ−1g = µG .

By the same reasons ϕ is invertible, g 6= 0, we must have G 6= 0 and therefore the
result follows. �

Lemma 7. σ(Kϕ) = σ(Kϕ(z2)) for any ϕ in L∞, where σ(Kϕ) denotes the spec-

trum of Kϕ.

Proof. We know the if A and B are two bounded linear operators then

σ(AB) ∪ {0} = σ(BA) ∪ {0} .

Consider
K∗
ϕ = (JAϕ)∗ = A∗

ϕJ
∗ = MϕW

∗J∗ = Mϕ(JW )∗ .

Therefore,

σ(K∗
ϕ) ∪ {0} = σ

[

(Mϕ)(JW )∗] ∪ {0} = σ
[

(JW )∗(Mϕ)
]

∪ {0}

Again since,

(JW )∗Mϕ = W ∗J∗Mϕ(z) = W ∗Mϕ(z)J
∗ = Mϕ(z2)W

∗J∗

= (WMϕ(z2))
∗J∗ = A∗

ϕ(z2)J
∗ = K∗

ϕ(z2) .

So,
σ(K∗

ϕ) ∪ {0} = σ(Kϕ(z2)) ∪ {0} .

This gives that

σ(Kϕ) ∪ {0} = σ(K∗
ϕ) ∪ {0} = σ(K∗

ϕ(z2)
) ∪ {0} = σ(Kϕ(z2)) ∪ {0} .

We assert the 0 ∈ σp(Kϕ(z2)). We can see that R(W ∗) = the range of W ∗ =

Pe(L
2)= the closed linear span of {z2n : n ∈ Z} in L2 6= L2. Hence W ∗ is
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not onto. This gives that R(W ∗J∗Mϕ) 6= L2. As W ∗L∗Mϕ = K∗
ϕ(z2), therefore

kerKϕ(z2) 6= 0. This implies that 0 ∈ σp(Kϕ(z2)). If ϕ is invertible in L∞, then
by the above Lemma 0 ∈ σp(Kϕ) and we are done.

Let ϕ be not invertible in L∞. As the set {ϕ ∈ L∞ : ϕ−1 ∈ L∞} is dense in
L∞ [4], therefore we can have a sequence {ϕn} of invertible functions such that
‖ϕn −ϕ‖ → 0 as n→ ∞. Since ϕn is invertible for each n, therefore 0 ∈ σp(Kϕn

)
for each n. Hence for each n we can find fn 6= 0 such that Kϕn

fn = 0. Without
loss of generality, we can assume that ‖fn‖ = 1. Now

‖Kϕfn‖ = ‖Kϕfn −Kϕn
fn +Kϕn

fn‖

≤ ‖Kϕfn −Kϕn
fn‖ + ‖Kϕn

fn‖ ≤ ‖ϕ− ϕn‖ → 0

as n → ∞. Hence 0 ∈ Π(Kϕ), the approximate point spectrum of Kϕ and hence
is in the spectrum of Kϕ. Also 0 is in the approximate point spectrum of Kϕ(z2).
This completes the proof. �

Theorem 8. The spectrum of Kϕ contains a closed disc, for any invertible ϕ in

L∞(T).

Proof. Let λ 6= 0 and suppose that K∗
ϕ(z2) − λ is onto. For f in L2(T), we have

(K∗
ϕ(z2) − λ)f = K∗

ϕ(z2)f − λf = Mϕ(z2)W
∗J∗f − λf

= ϕ(z2)f(z2) − λ(Pef ⊕ P0f) = (W ∗J∗(ϕf) − λPef) ⊕ (−λP0f)

= (J∗W ∗(ϕf) − λPef) ⊕ (−λP0f) = (J∗W ∗ϕ− λPe)f ⊕ (−λP0f)

= λJ∗W ∗Mϕ(λ−1 −Mϕ−1JW )f ⊕ (−λP0f)

where P0 = I − Pe, that is P0 = {z2k−1 : k ∈ Z}. Let 0 6= g0 be in P0(L
2).

Since K∗
ϕ(z2) − λ is onto, there exists a non zero vector f in L2(T) such that

(K∗
ϕ(z2) − λ)f = g0. That is,

λJ∗W ∗Mϕ(λ−1 −Mϕ−1JW ) ⊕ (−λP0f) = g0 .

Since g0 ∈ P0(L
2) and g0 6= 0, therefore, we must have

λJ∗W ∗Mϕ(λ−1 −Mϕ−1JW )f = 0 .

Since λ 6= 0, W ∗ and J∗ are isometries and Mϕ being invertible, this implies that

(λ−1 −Mϕ−1JW )f = 0 .

Since Mϕ−1JW = Kϕ−1(z2), therefore we have

(λ−1 −Kϕ−1(z2))f = 0 .

Thus λ−1 ∈ σp(Kϕ−1(z2)). Now let λ ∈ ρ(K∗
ϕ(z2)), the resolvent of K∗

ϕ(z2), the

operator K∗
ϕ(z2) − λ is invertible and hence onto, therefore, λ−1 ∈ σp(Kϕ−1(z2)).

That is

D = {λ−1 : λ ∈ ρ(K∗
ϕ(z2))} ⊆ σp(Kϕ−1(z2)) .

By Lemma 7, we get D ⊆ σp(Kϕ−1). So replacing ϕ−1 by ϕ, we get that D ⊆
σp(Kϕ) ⊂ σ(Kϕ) and therefore we have proved that for any invertible ϕ in L∞, the
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spectrum of Kϕ contains a disc consisting of eigenvalues of Kϕ. Since spectrum
of any operator is compact, it follows that σ(Kϕ) contains a closed disc. �

Remark 1. The radius of the closed disc contained in σ(Kϕ) is
(

r(Kϕ−1)
)−1

,
where r(A) denote the spectral radius of the operator A. For,

max{|λ−1| : λ ∈ ρ
(

K∗
ϕ(z2)

)

} =
[

{|λ| : λ ∈ ρ
(

K∗
ϕ(z2)

)

}
]−1

=
[

r
(

K∗
ϕ(z2)

)]−1
=

[

r
(

Kϕ(z2)

)]−1
.

Replacing ϕ by ϕ−1 we get that the radius of the disc is
(

r(Kϕ(z2))
)−1

and therefore

r(Kϕ) ≥
(

r(Kϕ−1)
)−1

.
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