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OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR

DIFFERENTIAL EQUATIONS

BLANKA BACULÍKOVÁ

Abstract. Our aim in this paper is to present criteria for oscillation of the
nonlinear differential equation

u′′(t) + p(t)f
`

u(g(t))
´

= 0 .

The obtained oscillatory criteria improve existing ones.

1. Introduction

We consider the second order nonlinear differential equation with delayed ar-
gument

(1) u′′(t) + p(t)f
(

u(g(t))
)

= 0

We suppose throughout the paper that the following conditions hold:

(i) p(t) ∈ C((t0,∞)), p(t) > 0;
(ii) f(x) ∈ C((−∞,∞)), xf(x) > 0 for x 6= 0, f ∈ C1(RD) ,

where RD = (−∞,−D) ∪ (D,∞), D > 0;
(iii) g(t) ∈ C1((t0,∞)), where t0 ∈ R+, g′(t) > 0, g(t) → ∞ as t→ ∞, g(t) ≤ t

for all large t.

We make standing hypotesis that (1) possesses solutions on (t0,∞) only and
they are nontrivial in any neighbourhood of ∞. Such solution is called oscillatory if
it has a sequence of zeros tending to infinity, otherwise it called nonoscillatory. An
equation is said to be oscillatory if all its solutions are oscillatory. All functional
inequalities are supposed to hold eventually, that is they are assumed to hold for
all t large enough.

2. Main results

The following lemma is a partial case of well-known lemma of Kiguradze [1].
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Lemma 2.1. Let u(t) be nonoscillatory solution of (1). Then there exists a τ ≥ t0
such that u(t)u′(t) > 0, u(t)u′′(t) < 0 for t ≥ τ.

The following theorem presents oscillatory criterion for (1).

Theorem 2.1. Let there exist constant k > 0 such that f ′(x) ≥ k for all x ∈ RD.

If

(2)

∫ ∞

t0

[

∫ ∞

s1

p(s) ds
]

ds1 = ∞

and

(3)

∫ ∞

t0

(

tp(t) − 1

4tg′(t)k

)

dt = ∞ .

Then equation (1) is oscillatory.

Proof. Assume that u(t) is a nonoscillatory solution of (1).

1. Let u(t) > 0. Then by Lemma 2.1, we obtain that u′(t) > 0, u′′(t) < 0 for
t ∈ (τ,∞), τ ≥ t0.
Define

(4) W (t) =
tu′(t)

f(u(g(t)))
, t ∈ (τ,∞) .

Differentiating W (t) and using (1), we have

dW (t)

dt
=

W (t)

t
− tp(t) − W (t)

f ′(u(g(t)))u′(g(t))g′(t)

f(u(g(t)))
.

Since u′(t) is decreasing, we see that

u′
(

g(t)
)

≥ u′(t) .

Consequently,

dW (t)

dt
≤ W (t)

t
− tp(t) − W (t)f ′(u(g(t)))u′(t)g′(t)

f(u(g(t)))

=
W (t)

t
− tp(t) − W 2(t)

t
f ′(u(g(t)))g′(t) .

Now, we shall show that (2) implies u(t) → ∞ as t → ∞. On the contrary,
assume that u(t) is bounded above, that is u(t) ∈ 〈α, β〉, where α > 0. Using
properties of g(t), we may assume that u(g(t)) ∈ 〈α, β〉. Since u′(t) is positive and
decreasing limt→∞ u′(t) exists and it is finite. Integrating equation (1) from t to
∞, we obtain

u′(∞) − u′(t) = −
∫ ∞

t

p(s)f
(

u(g(s))
)

ds .

Using properties of u(t), we have

u′(t) ≥
∫ ∞

t

p(s)f
(

u(g(s))
)

ds .
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Let f0 = minu∈〈α,β〉f(u), f0 > 0. Then

u′(t) ≥ f0

∫ ∞

t

p(s) ds .

Integrating this inequality from t0 to t, we have

β ≥ u(t) ≥ f0

∫ t

t0

(

∫ ∞

s1

p(s) ds
)

ds1 .

Letting t → ∞ the last inequality contradicts to (2). Therefore we conclude
u(t) → ∞ as t → ∞. Thus u

(

g(t)
)

∈ RD for all t large enough. Now it is easy to

see that condition f ′
(

u(g(t))
)

≥ k implies

dW (t)

dt
≤ W (t)

t
− tp(t) − W 2(t)

t
g′(t)k ,(5)

dW (t)

dt
≤ −tp(t) +

1

t
g′(t)k

(

−
(

W (t) − 1

2g′(t)k

)2

+
1

4(g′(t))
2
k2

)

.

Thus

dW (t)

dt
≤ −tp(t) +

1

4tg′(t)k
.(6)

Integrating this inequality from t1 to t, we obtain

W (t) ≤ W (t1) −
∫ t

t1

(

sp(s) − 1

4sg′(s)k

)

ds .

Hence for t → ∞, W (t) → −∞ and we have contradiction, because W (t) > 0.

2. Let u(t) < 0. This case can be treated similarly as the case u(t) > 0 and so
it is omitted. �

Now we provide an easily verifiable oscillatory criteria for (1).

Corollary 2.1. Let there exist constant k > 0 such that f ′(x) ≥ k for all x ∈ RD.

Assume that (2) is satisfied and

(7) lim inf
t→∞

(t2p(t)g′(t)) >
1

4k
.

Then equation (1) is oscillatory.

Proof. Simple calculation shows that (7) implies (3). �

Remark 1. We do not require boundedness of f ′(x) around zero, therefore our
results can applied to sublinear and superlinear equations.

Corollary 2.2. Assume that (2) holds and α > 1. If

(8) lim inf
t→∞

(t2p(t)g′(t)) > 0 ,

then equation

(9) u′′(t) + p(t)
[

|u(g(t))|
]α

sgn
(

u(g(t))
)

= 0

is oscillatory.
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Proof. Inequality (8) implies

lim inf
t→∞

(

t2p(t)g′(t)
)

>
1

4k

and for f(x) = |x|α sgnx, f ′(x) ≥ k for all x ∈ RD, k large enough. Hence (7)
holds and the statement follows from Corollary 2.1. �

Corollary 2.3. Let (2) hold. If

(10)

∫ ∞

t0

(

tp(t) − 1

4tg′(t)

)

dt = ∞ ,

then equation

(11) u′′(t) + p(t)u
(

g(t)
)

= 0

is oscillatory.

Proof. It is easy to see that (3) reduces to (10) for f(u) = u. �

Corollary 2.4. Let (2) hold. If

(12) lim inf
t→∞

(

t2p(t)g′(t)
)

>
1

4
,

then (11) is oscillatory.

Proof. The result follows from Corollaries 2.1 and 2.3. �

Example 1. Let us consider the second order differential equation

(13) u′′(t) +
1

t2
4|u( t

2 )|
|u( t

2 )| + 1
u
( t

2

)

= 0 .

For this equation

• p(t) = 1
t2

,

• g(t) = t
2 ,

• f(x) = 4|x|
|x|+1x.

The function f(x) satisfies
1. xf(x) > 0 for x 6= 0,
2. f ′(x) ≥ 3 = k for x ∈ (−∞,−1) ∪ (1,∞).
Note that we do not require this condition to hold on R.
Moreover it holds that

∫ ∞

t0

[

∫ ∞

s1

p(s) ds
]

ds1 =

∫ ∞

t0

[

∫ ∞

s1

1

s2
ds

]

ds1 = ∞ .

Since
∫ ∞

t0

(

tp(t) − 1

4tg′(t)k

)

dt =

∫ ∞

t0

(

t
1

t2
− 1

6t

)

dt = ∞ ,

then condition (3) holds and by Theorem 2.1 equation (13) is oscillatory.

In the following theorems we shall show further oscillatory criteria for Eq. (1).
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Theorem 2.2. Let there exist constant k > 0 such that f ′(x) ≥ k for all x ∈ RD.

If
∫ ∞

t0

[

∫ ∞

s1

p(s) ds
]

ds1 = ∞

and
∫ ∞

t0

(

g(t)p(t) − g′(t)

4g(t)k

)

dt = ∞ .(14)

Then equation (1) is oscillatory.

Proof. Define

(15) W (t) =
g(t)u′(t)

f(u(g(t)))
, t ∈ (t0 ,∞) .

The proof is similar as the proof of Theorem 2.1 and we can it to omit. �

Corollary 2.5. Let there exist constant k > 0 such that f ′(x) ≥ k for all x ∈ RD.

Assume that (2) is satisfied and

(16) lim inf
t→∞

g2(t)p(t)

g′(t)
>

1

4k
.

Then equation (1) is oscillatory.

Proof. A simple calculation shows that (16) implies (14). �

Corollary 2.6. Assume that (2) holds and α > 1. If

(17) lim inf
t→∞

g2(t)p(t)

g′(t)
> 0 ,

then equation (9) is oscillatory.

Proof. Inequality (17) implies

lim inf
t→∞

g2(t)p(t)

g′(t)
>

1

k

and for f(x) = |x|α sgnx, f ′(x) ≥ k for all x ∈ RD, k large enough. �

Corollary 2.7. Let (2) holds. If
∫ ∞

t0

(

g(t)p(t) − g′(t)

4g(t)

)

dt = ∞, (18)

then equation (11) is oscillatory.

Proof. It is easy to see that (14) reduces to (18) for f(u) = u. �

Corollary 2.8. Let (2) hold. If

(18) lim inf
t→∞

g2(t)p(t)

g′(t)
>

1

4
,

then (11) is oscillatory.
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Proof. The result follows from Corollaries 2.5 and 2.7. �

Example 2. Let us consider the equation (1). For g(t) = λt, λ ∈ (0, 1〉 the
condition (7) is equivalent to (16). For g(t) =

√
t the condition (16) takes the

form

lim inf
t→∞

(2t
√

tp(t)) >
1

4k
,

on the other hand (7) takes the form

lim inf
t→∞

t
√

tp(t)

2
>

1

4k
.

For this partial case (16) provides evidently better criterion.

Remark 2. Corollaries 2.2 and 2.6 complement Theorem 2 in [2], Corollary 2.5.3
and Theorem 4.5.5 in [3].

Remark 3. Corollaries 2.3 and 2.8 generalize Theorem 11 in [4], Theorem 1 in
[5] and the results of Kiguradze and Chanturia [6].

Theorem 2.3. Let there exist constant k > 0 such that, f ′(x) ≥ k for all x ∈ RD.

Assume that (2) holds. If for some n integer

(19) lim sup
t→∞

1

tn

∫ t

t0

(t − s)
n
(

sp(s) − 1

4sg′(s)k

)

ds = ∞ .

Then (1) is oscillatory.

Proof. Using the function W (t) defined in (4) and proceeding similarly as in the
proof of Theorem 2.1, we have inequality (6)

dW (t)

dt
≤ −tp(t) +

1

4tg′(t)k
.

We use the following notation

P (t) = tp(t) − 1

4tg′(t)k
.

Then

W ′(t) + P (t) ≤ 0 .

Multiplying this inequality by (t − s)
n
, t > s, we obtain

(t − s)
n
W ′(s) + (t − s)

n
P (s) ≤ 0 .

Integrating this inequality from t0 to t and after simple computation, we have

1

tn

∫ t

t0

(t − s)
n
P (s) ds ≤ − n

tn

∫ t

t0

(t − s)
n−1

W (s) ds +
1

tn
(t − t0)

n
W (t0)

≤ (1 − t0

t
)
n

W (t0) .

This contradicts with (20) and the proof is complete. �
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Theorem 2.4. Let there exist constant k > 0 such that, f ′(x) ≥ k for all x ∈ RD.

Assume that (2) holds. If for some n integer

(20) lim sup
t→∞

1

tn

∫ t

t0

(t − s)
n
(

g(s)p(s) − g′(s)

4g(s)k

)

ds = ∞ .

Then (1) is oscillatory.

Proof. Using the function W (t) defined in (15) and proceeding exactly as in the
proof of Theorem 2.3, we obtain that (21) holds. �

Now we use the integral averaging technique similar to that exploited by Grace
[7], Philos [8], Rogovchenko [9-10] and Yan [12]. In contrast to the know theorems,
we do not require the funtion f to be nondecreasing on R but only on RD.
Let us consider a function H(t, s) satisfying H(t, s) > 0 for t > s ≥ t0, H(t, t) = 0

and h(t, s) =
− ∂H(t,s)

∂s√
H(t,s)

.

Theorem 2.5. Let there exist constant k > 0 such that, f ′(x) ≥ k for all x ∈ RD.

Assume that (2) holds. Then Eq. (1) is oscillatory if

(21) lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

H(t, s)sp(s) − s

4g′(s)k

(

h(t, s) −
√

H(t, s)

s

)

2
]

ds = ∞ .

Proof. Using the function W (t) defined in (4) and proceeding similarly as in the
proof of Theorem 2.1, we obtain inequality (5)

dW (t)

dt
≤ W (t)

t
− tp(t) − W 2(t)

t
g′(t)k .

We introduce the notation tp(t) = p̃(t). Then

p̃(t) ≤ −W ′(t) +
1

t
W (t) − 1

t
W 2(t)g′(t)k .

Multiplying this inequality with H(t, s) > 0 and next integrating from t0 to t we
have

∫ t

t0

H(t, s)p̃(s) ds ≤ H(t, t0)W (t0) −
∫ t

t0

[H(t, s)

s
W 2(s)g′(s)k

+
√

H(t, s)W (s)
(

h(t, s) −
√

H(t, s)

s

)]

ds .

Using the following notation h(t, s) −
√

H(t,s)

s
= Q(t, s), then we have

∫ t

t0

H(t, s)p̃(s) ds ≤ H(t, t0)W (t0) −
∫ t

t0

[

√

H(t, s)√
s

W (s)
√

g′(s)
√

k

+
1

2

Q(t, s)
√

s
√

g′(s)
√

k

]2

ds+

∫ t

t0

sQ2(t, s)

4g′(s)k
ds .

Consequently
∫ t

t0

H(t, s)p̃(s) ds −
∫ t

t0

sQ2(t, s)

4g′(s)k
ds ≤ H(t, t0)W (t0) .
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Multiplying this inequality with 1
H(t,t0) , we obtain

1

H(t, t0)

∫ t

t0

(

H(t, s)p̃(s) ds − sQ2(t, s)

4g′(s)k

)

ds ≤ W (t0) .

Since, we have assumed (22) for t → ∞, we have contradiction ∞ ≤ W (t0). �

Theorem 2.6. Let there exist constant k > 0 such that, f ′(x) ≥ k for all x ∈ RD.

Assume that (2) holds. Then Eq. (1) is oscillatory if

(22)

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

H(t, s)g(s)p(s)− g(s)

4g′(s)k

(

h(t, s) −
√

H(t, s)g′(s)

g(s)

)

2
]

ds = ∞ .

Proof. We proceed similarly in the proof of Theorem 2.5 for W (t) defined in
(15). �

For more results on “H-function averagin technique” we refer for example to
[7-12] and to the monograph [13].

Example 3. Let us consider the second order differential equation

(23) u′′(t) +
a

t2
u
( t

2

)

= 0 ,

where f(x) = x, p(t) = a
t2

, a ∈ R, g(t) = t
2 . Then Eq. (24) is oscillatory by

Theorem 2.3 if constant a > 1
2 .

Our results complement the results in [14], where equation without deviating
argument is studied.
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[2] Džurina, J., The oscillation of a differential equation of second order with deviating argu-

ment, Math. Slovaca 42, No. 3 (1992), 317–324.

[3] Ladde, G. S., Lakshmikhantam, V., Zhang, B. G., Oscillation theory of differential equations

with deviating arguments, Dekker, New York, 1987.
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