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HILLE-WINTNER TYPE COMPARISON CRITERIA FOR

HALF-LINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

ONDŘEJ DOŠLÝ AND ZUZANA PÁTÍKOVÁ

Abstract. We establish Hille-Wintner type comparison criteria for the half-
linear second order differential equation

`

r(t)Φ(x′)
´

′

+ c(t)Φ(x) = 0, Φ(x) = |x|p−2x , p > 1 ,

where this equation is viewed as a perturbation of another equation of the
same form.

1. Introduction

In this paper we deal with the half-linear second order differential equation
(

r(t)Φ(x′)
)′

+ c(t)Φ(x) = 0 ,(1)

where Φ(x) := |x|p−1 sgnx, p > 1, and r, c are continuous functions, r(t) > 0.
It is well known that the oscillation theory of (1) is very similar to that of the

second order Sturm-Liouville linear equation (which is the special case p = 2 in
(1))

(r(t)x′)′ + c(t)x = 0 .

In particular, the Sturm comparison and separation theorems extend verbatim to
(1), see, e.g [1, Chap. 3] and [3]. This means that (1) can be classified as oscillatory
or nonoscillatory according to whether any nontrivial solution of (1) has or does
not have infinitely many zeros on any interval of the form [T,∞).

In the classical oscillation criteria for half-linear equations, equation (1) is
viewed as a perturbation of the one-term differential equation

(r(t)Φ(x′))′ = 0(2)

and (non)oscillation criteria are formulated in terms of the asymptotic properties
of the function c for large t with respect to the function r. A typical example is
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the Leighton-Wintner type oscillation criterion which states that (1) is oscillatory
provided

∫ ∞

r1−q(t) dt = ∞ and

∫ ∞

c(t) dt = ∞ ,

where q is a conjugate number of p, i.e., 1
p

+ 1
q

= 1.

The classical Sturm comparison theorem compares the pair of equations with
coefficients c, r and C, R pointwise, while Hille-Wintner type criteria compare in-

tegrals. More precisely, together with (1) consider the equation
(

r(t)Φ(x′)
)′

+ C(t)Φ(x) = 0 .(3)

In the case when
∫ ∞

r1−q(t) dt = ∞ and the integral
∫ ∞

c(t) dt converges, the
half-linear version of the Hille-Wintner type comparison theorem says that if

0 ≤

∫ ∞

t

c(s) ds ≤

∫ ∞

t

C(s) ds for large t(4)

and (3) is nonoscillatory, then (1) is nonoscillatory as well, see [10] and also [3,
p. 206]. Concerning the complementary case

∫ ∞
r1−q(t) dt < ∞ (which is treated

in [11]), denote ρ(t) :=
∫ ∞

t
r1−q(s) ds and suppose that c(t) ≥ 0, C(t) ≥ 0 for large

t. If
∫ ∞

t

c(s)ρp(s) ds ≤

∫ ∞

t

C(s)ρp(s) ds < ∞(5)

for large t, then nonoscillation of (3) implies that of (1).
In this paper we follow the idea introduced in [2, 4, 5] and applied e.g. in

[13, 14]. We investigate (1) not as a perturbation of one-term equation (2), but as
a perturbation of the general (nonoscillatory) equation of the same form as (1)

(

r(t)Φ(x′)
)′

+ c̃(t)Φ(x) = 0 .(6)

We compare oscillatory properties of (1) and (3) under the assumption

0 ≤

∫ ∞

t

(

c(s) − c̃(s)
)

hp(s) ds ≤

∫ ∞

t

(

C(s) − c̃(s)
)

hp(s) ds < ∞ ,(7)

where h is the so-called principal solution of (6). If c̃(t) ≡ 0, then this principal
solution is either h(t) ≡ 1 or h(t) = ρ(t), depending on the divergence/convergence
of the integral

∫ ∞
r1−q(t) dt. Consequently, (7) reduces to (4) or (5) if c̃(t) ≡ 0.

2. Preliminaries

In this section we first point out the relationship between nonoscillation of
equation (1) and solvability of the Riccati type first order differential equation

w′ + c(t) + (p − 1)r1−q(t)|w|q = 0 .(8)

Let x be a solution of (1), then the function w = rΦ(x′/x) solves the Riccati
equation (8) and it is well known (see [3, p. 171]) that equation (1) is nonoscillatory
if and only if there exists a solution of (8) on some interval of the form [T,∞).
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Next we recall half-linear version of the so-called Picone’s identity (see [9] or [3,
p. 172]), which, in a modified form as needed in our paper, reads as follows. Let
w be a solution of (8), then for any x ∈ C1

r(t)|x′|p − c(t)|x|p = (w(t)|x|p)′ + pr1−q(t)P
(

rq−1(t)x′, Φ(x)w(t)
)

,(9)

where

P (u, v) :=
|u|p

p
− uv +

|v|q

q
≥ 0(10)

with the equality P (u, v) = 0 if and only if v = Φ(u).
Concerning the function P , we will need its quadratic estimates which are given

in the next statement whose proof can be found e.g. in [6].

Lemma 1. The function P (u, v) defined in (10) satisfies the following inequalities

P (u, v) ≥
1

2
|u|2−p

(

v − Φ(u)
)2

for p ≤ 2 ,

P (u, v) ≤
1

2
|u|2−p

(

v − Φ(u)
)2

for p ≥ 2 , u 6= 0 .

Futhermore, let T > 0 be arbitrary. There exists a constant K = K(T ) > 0 such

that

P (u, v) ≥ K|u|2−p
(

v − Φ(u)
)2

for p ≥ 2

P (u, v) ≤ K|u|2−p
(

v − Φ(u)
)2

for p ≤ 2 ,

and every u, v ∈ R satisfying

∣

∣

∣

v
Φ(u)

∣

∣

∣
≤ T .

Now we derive the so-called modified Riccati equation which plays the crucial
role in the proof of our main result. Let x ∈ C1 be any function and w be a solution
of the Riccati equation (8). Then from Picone’s identity (9) we have

(w|x|p)′ = r|x′|p − c|x|p − pr1−q|x|pP (Φ−1(wx), w),(11)

where wx = rΦ(x′/x) and Φ−1 is the inverse function of Φ. At the same time, let
h be a (positive) solution of (6) and wh = rΦ(h′/h) be the solution of the Riccati
equation associated with (6), then

(wh|x|
p)′ = r|x′|p − c̃|x|p − pr1−q|x|pP

(

Φ−1(wx, wh)
)

.(12)

Substituting x = h into (11), (12) and subtracting these equalities we get the
equation (in view of the identity P (Φ−1(wh), wh) = 0)

((w − wh)hp)′ + (c − c̃)hp + pr1−qhpP (Φ−1(wh), w) = 0 .(13)

Observe that if c̃(t) ≡ 0 and h(t) ≡ 1, then (13) reduces to (8) and this is also the
reason why we call this equation the modified Riccati equation.

Finally, let us recall the concept of the principal solution of nonoscillatory equa-
tion (1) is introduced by Mirzov in [12] and later independently by Elbert and
Kusano in [7]. If (1) is nonoscillatory, as mentioned at the beginning of this sec-
tion, there exists a solution w of Riccati equation (8) which is defined on some
interval [T,∞). It can be shown that among all solutions of (8) there exists the
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minimal one w̃ (sometimes called the distinguished solution), minimal in the sense
that any other solution of (8) satisfies the inequality w(t) > w̃(t) for large t. Then
the principal solution of (1) is given by the formula

x̃ = K exp

{
∫ t

r1−q(s)Φ−1
(

w̃(s)
)

ds

}

,

i.e., the principal solution x̃ of (1) is a solution which “produces” the minimal
solution w̃ = rΦ(x̃′/x̃) of (8).

3. Hille-Wintner type comparison theorem

The main result of our paper is the following statement.

Theorem 1. Let
∫ ∞

r1−q(t) dt = ∞. Suppose that equation (6) is nonoscillatory

and possesses a positive principal solution h such that there exist a finite limit

lim
t→∞

r(t)h(t)Φ
(

h′(t)
)

=: L > 0(14)

and
∫ ∞ dt

r(t)h2(t)
(

h′(t)
)p−2 = ∞ .(15)

Further suppose that 0 ≤
∫ ∞

t
C(s) ds < ∞ and

0 ≤

∫ ∞

t

(

c(s) − c̃(s)
)

hp(s) ds ≤

∫ ∞

t

(

C(s) − c̃(s)
)

hp(s) ds < ∞ ,(16)

all for large t. If equation (3) is nonoscillatory, then (1) is also nonoscillatory.

Proof. As we have already mentioned before, to prove that (1) is nonoscillatory,
it is sufficient to find a solution of associated Riccati equation (8) which is defined
on some interval [T,∞). This solution we will find (using the Schauder-Tychonov
theorem) as a fixed point of a suitably constructed integral operator.

By our assumption, equation (3) is nonoscillatory, i.e., there exists an eventually
positive principal solution x of this equation. Denote by w := rΦ(x′/x) the solution
of the associated Riccati equation

w′ + C(t) + (p − 1)r1−q(t)|w|q = 0 .

From the previous section, with (1) replaced by (3), i.e., with c replaced by C, we
know that the modified Riccati equation

((w − wh)hp)′ + (C − c̃)hp + pr1−qhpP (Φ−1(wh), w) = 0

holds, where h is the principal solution of (6) and wh = rΦ(h′/h) is the minimal
solution of the Riccati equation corresponding to equation (6). By integrating we
get

hp(wh − w)|tT =

∫ t

T

(

C(s) − c̃(s)
)

hp(s) ds + p

∫ t

T

r1−q(s)P
(

rq−1h′, wΦ(h)
)

ds .

(17)
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Since
∫ ∞

r1−q(t) dt = ∞ and 0 ≤
∫ ∞

t
C(s) ds < ∞, w solves also the integral

Riccati equation (see [3, p. 207])

w(t) =

∫ ∞

t

C(s) ds + (p − 1)

∫ ∞

t

r1−q(s)|w(s)|q ds,

and therefore w(t) ≥ 0 for large t. Hence

hp(wh − w)|tT ≤ hpwh(t) + hp
(

w(T ) − wh(T )
)

and letting t → ∞ in (17) we have (with L given by (14))

L + hp
(

w(T ) − wh(T )
)

≥

∫ ∞

T

(

C(s) − c̃(s)
)

hp(s) ds

+ p

∫ ∞

T

r1−q(s)P
(

rq−1h′, wΦ(h)
)

ds .

Since P (u, v) ≥ 0 and (16) holds, this means that
∫ ∞

r1−q(t)P
(

rq−1(t)h′(t), w(t)Φ
(

h(t)
))

dt < ∞ .(18)

Now, since (14), (16), (18) hold, from (17) it follows that there exists a finite limit

lim
t→∞

hp(t)
(

w(t) − wh(t)
)

=: β

and also the limit

lim
t→∞

w(t)

wh(t)
= lim

t→∞

hp(t)w(t)

hp(t)wh(t)
=

L + β

L
.(19)

Therefore, letting t → ∞ in (17) and then replacing T by t, we get the equation

hp(t)
(

w(t) − wh(t)
)

− β =

∫ ∞

t

(

C(s) − c̃(s)
)

hp(s) ds

+ p

∫ ∞

t

r1−q(s)P
(

rq−1h′, wΦ(h)
)

ds .

(20)

Since (19) holds, according to Lemma 1 there exists a positive constant K such
that

K|Φ−1(wh)|2−p(w − wh)2 ≤ P
(

Φ−1(wh), w
)

,

and hence

Kr1−qhpwq−2
h (w − wh)2 ≤ r1−qhpP

(

Φ−1(wh), w
)

= r1−qP
(

rq−1h′, wΦ(h)
)

.

Now, using the fact that wq−2
h = rq−2(h′)2−php−2, we get the inequality

K

r(t)h2(t)
(

h′(t)
)p−2

[(

w(t) − wh(t)
)

hp(t)
]2

≤ r1−q(t)P
(

rq−1(t)h′(t), w(t)Φ(t)
)

.(21)

Denote G(t) = r−1(t)h−2(t)
(

h′(t)
)2−p

, then the last inequality after integrating
over [T,∞) reads

K

∫ ∞

T

G(t)
[(

w(t)−wh(t)
)

hp(t)
]2

dt ≤

∫ ∞

T

r1−q(t)P
(

rq−1(t)h′(t), w(t)Φ(h(t)
)

dt .
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By (15) we have
∫ t

G(s) ds → ∞ as t → ∞. This implies that β = limt→∞ hp(t)
(

w(t)−

wh(t)
)

= 0 since if β 6= 0, we have
∫ ∞

G(t)
[(

w(t) − wh(t)
)

hp(t)
]2

dt = ∞ ,

which, in view of (21), implies that
∫ ∞

r1−qP
(

rq−1h′, wΦ(h)
)

dt = ∞ and this
contradicts (18). Consequently from (20), we get the integral equation

hp(t)
(

w(t) − wh(t)
)

=

∫ ∞

t

(

C(s) − c̃(s)
)

hp(s) ds(22)

+ p

∫ ∞

t

r1−q(s)P
(

rq−1h′, wΦ(h)
)

ds ,

and this equation we use in constructing the integral operator whose fixed point
is a solution of (8) which we are looking for.

Define the function set U and the mapping F by

U = {u ∈ C[T,∞) : wh(t) ≤ u(t) ≤ w(t) for t ∈ [T,∞)} ,

where T is sufficiently large,

F (u)(t) = wh(t) + h−p(t)

{
∫ ∞

t

(

c(s) − c̃(s)
)

hp(s) ds

+ p

∫ ∞

t

r1−q(s)hp(s)P
(

Φ−1(wh), u
)

ds

}

Observe that the set U is well defined since w(t) ≥ wh(t) for large t by (16) and
(22). Obviously, U is a convex and closed subset of the Frechet space C[T,∞)
with the topology of the uniform convergence on compact subintervals of [T,∞).

Denote H(s) := |s|q

q
−Φ−1(wh)s. Then H ′(s) = Φ−1(s)−Φ−1(wh) ≥ 0 for s ≥ wh.

This means that P (Φ−1(wh), u) is nondecreasing in the second variable and hence
if wh(t) ≤ u1(t) ≤ u2(t) ≤ w(t), t ∈ [T,∞), we have F (u1)(t) ≤ F (u2)(t) for
t ∈ [T,∞).

Next we show that F maps U into itself. To this end, it is sufficient to show
that wh(t) ≤ F (wh)(t) ≤ F (u)(t) ≤ F (w)(t) ≤ w(t) for large t. We have

F (wh)(t) = wh(t) + h−p(t)

{
∫ ∞

t

(

c(s) − c̃(s)
)

hp(s) ds

}

≥ wh(t)

and, at the same time, using (16) and (22) (suppressing the argument t)

F (w) = wh + h−p

{
∫ ∞

t

(c − c̃)hp + p

∫ ∞

t

r1−qhpP (Φ−1(wh), w)

}

≤ wh + h−p

{
∫ ∞

t

(C − c̃)hp + p

∫ ∞

t

r1−qhpP
(

Φ−1(wh), w
)

}

= w .

Let T1 > T be arbitrary. As wh(t) ≤ F (u)(t) ≤ w(t) for u ∈ U and wh, w
exist on the whole interval [T,∞), the set F (U)|[T,T1] is bounded. Next we show
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that this set is also uniformly continuous. Let u ∈ U be arbitrary, ε > 0, and
t1, t2 ∈ [T, T1], without a loss of generality we may suppose that t1 < t2. Denote

f(t) :=
(

c(t) − c̃(t)
)

hp(t) + pr1−q(t)hp(t)P
(

Φ−1
(

wh(t)
)

, u(t)
)

,

then by the monotonicity of P in the second argument
∫ ∞

T

f(s) ds ≤

∫ ∞

T

[

c(t) − c̃(t))hp(t) + pr1−q(t)P
(

Φ−1(wh(t)), w(t)
)]

dt =: R

and hence

|F (u)(t2) − F (u)(t1)| ≤ |wh(t2) − wh(t1)|

+

∣

∣

∣

∣

h−p(t2)

∫ ∞

t2

f(s) ds − h−p(t1)

∫ ∞

t1

f(s) ds

∣

∣

∣

∣

= |wh(t2) − wh(t1)| +

∣

∣

∣

∣

h−p(t2)

∫ ∞

t2

f(s) ds − h−p(t1)

∫ ∞

t2

f(s) ds

+h−p(t1)

∫ ∞

t2

f(s) ds − h−p(t1)

∫ ∞

t1

f(s) ds

∣

∣

∣

∣

≤ |wh(t2) − wh(t1)| + |h−p(t2) − h−p(t1)|

∫ ∞

t2

f(s) ds + h−p(t1)

∫ t2

t1

f(s) ds

≤ |wh(t2) − wh(t1)| + |h−p(t2) − h−p(t1)|

∫ ∞

T

f(s) ds + h−p(t1)

∫ t2

t1

f(s) ds

Since wh is continuous, there exists δ1 such that |wh(t2) − wh(t1)| < ε
3 provided

|t2 − t1| < δ1. Similarly, as h−p is continuous, there exists δ2 such that |h−p(t2) −

h−p(t1)| < ε
3R

if |t2 − t1| < δ2. Finally, for R̃ := supt∈[T,T1] h
−p(t) there exists δ3

such that
∫ t2

t1
f(s) ds < ε

3R̃
provided |t2 − t1| < δ3.

Altogether,

|F (u)(t2) − F (u)(t1)| <
ε

3
+

ε

3R
R + R̃

ε

3R̃
= ε

if |t2 − t1| < min{δ1, δ2, δ3}. Hence F (U)|[T,T1] is uniformly continuous.
It is obvious that F is a continuous mapping and using the Arzela-Ascoli the-

orem, F (U) is relatively compact subset of C[T,∞). Now, from the Schauder-
Tychonov fixed point theorem follows that there exists v ∈ U such that v = F (v).
Hence v satisfies the modified Riccati integral equation

hp(t)
(

v(t)−wh(t)
)

=

∫ ∞

t

(c(s)− c̃(s)hp(s) ds+p

∫ ∞

t

r1−q(s)P
(

rq−1h′, vΦ(h)
)

ds.

By differentiating one can see that v satisfies the modified Riccati equation (13)
and hence v solves also (8). This implies that equation (1) is nonoscillatory and
the proof is complete. �

As an immediate consequence of the previous theorem we have the following
statement.

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Then the oscillation

of equation (1) implies that of (6).
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Corollary 2. Let r(t) ≡ 1, c̃ = γ̃

tp , where γ̃ =
(

p−1
p

)p

, i.e., (6) is the generalized

Euler equation with the critical coefficient

(

Φ(y′)
)′

+
γ̃

tp
Φ(y) = 0 .(23)

If equation (3) is nonoscillatory,
∫ ∞

t
C(s) ds ≥ 0 for large t, and

0 ≤

∫ ∞

t

(

c(s) −
γ̃

sp

)

sp−1 ds ≤

∫ ∞

t

(

C(s) −
γ̃

sp

)

sp−1 ds < ∞(24)

for large t, then (1) is also nonoscillatory.

Proof. The function h(t) = t
p−1

p is the principal solution of (23) (see [8]),

lim
t→∞

h(t)Φ(h′(t)) = lim
t→∞

t
p−1

p

(p − 1

p
t−

1

p

)p−1

=
(p − 1

p

)p−1

,

and
∫ ∞ dt

h2(t)(h′(t))p−2
=

( p

p − 1

)p−2
∫ ∞ dt

t
= ∞ .

Since all remaining assumptions of Theorem 1 are obviously satisfied, the state-
ment follows from this theorem. �

Remark 1. (i) The assumptions
∫ ∞

r1−q(t) dt = ∞ and (14), (15) are used in the

proof of Theorem 1 to prove that w(t)
wh(t) → 1 as t → ∞ and this fact is then used

in the quadratization of the function P and the proof that w(t) > wh(t) for large
t. It is an open question whether Theorem 1 can be modified in such a way that it
remains to hold without these assumptions. Also, the assumption of convergence
of the integrals

∫ ∞
C(t) ds,

∫ ∞
c̃(t) dt is natural in view of the Leighton-Wintner

oscillation criterion mentioned at the beginning of the paper since equation (3)
and (6) are supposed to be nonoscillatory.

(ii) If c̃(t) ≡ 0, no function of the form P appears in the proof of Hille-Wintner
type theorem (this proof follows essentially the linear case, see [3, p. 171]) and
hence this statement can be proved without assumptions (14), (15). If we suppose
that

∫ ∞
r1−q(t) dt = ∞, then h(t) ≡ 1 is the principal solution of one-term equa-

tion (2), i.e., wh ≡ 0 and the assumption
∫ ∞

t
c(s) ds ≥ 0 (see (4)) ensures that the

minimal solution of (8) satisfies w(t) ≥ 0. This means that the crucial requirement
w(t) > wh(t) (to construct the set U) is satisfied without assuming (14). A similar
situation we have if

∫ ∞
r1−q(t) dt < ∞. Then h(t) =

∫ ∞

t
r1−q(s) ds is the principal

solution of (2) and wh(t) < 0. The inequality w(t) > wh(t) is then ensured by the
assumption c(t) ≥ 0 since this assumption implies w(t) > wh(t) by the comparison
theorem for minimal solutions of Riccati-type equations, see [3, p. 234].

(iii) In Corollary 2 we have used Euler equation (23) as “unperturbed” equation
(6). Another example of the nonoscillatory equation which can be used at this place
is the half-linear Euler-Weber differential equation (an alternative terminology is
Riemann-Weber equation, see [15])

(Φ(x′))
′
+

[ γ̃

tp
+

γ̂

tp log2 t

]

Φ(x) = 0, γ̂ :=
1

2

(p − 1

p

)p−1

.(25)
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However, the principal solution of this equation is not known explicitly and only
its asymptotic estimate is known, see [8, 15]. This fact suggests the idea to replace
the assumption that h is a principal solution of (6) by the assumption that h is
a function close to this solution, in a certain sense. This idea is a subject of the
present investigation.

(iv) The fact that equation (25) is nonoscillatory suggests a specification of

Corollary 2, namely, we will take C(t) = t−p
[

γ̃t + γ̂ log−2 t
]

in this statement.
Then we get the following statement which is a modification of [4, Theorem 2].

Corollary 3. Suppose that

0 ≤

∫ ∞

t

(

c(s) −
γ̃

sp

)

sp−1 ds < ∞

for large t. If

log t

∫ ∞

t

(

c(s) −
γ̃

sp

)

sp−1 ds ≤ γ̂ =
1

2

(p − 1

p

)p−1

for large t, then equation (1) is nonoscillatory.
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[4] Došlý, O., Lomtatidze, A., Oscillation and nonoscillation criteria for half-linear second

order differential equations, to appear in Hiroshima Math. J.
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