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ON 4-DIMENSIONAL LOCALLY CONFORMALLY
FLAT ALMOST KAHLER MANIFOLDS

WIESLAW KROLIKOWSKI

ABSTRACT. Using the fundamental notions of the quaternionic analysis we show
that there are no 4-dimensional almost K&hler manifolds which are locally confor-
mally flat with a metric of a special form.

I. BASIC NOTIONS AND THE AIM OF THE PAPER

Let M?" be a real C*°-manifold of dimension 2n endowed with an almost com-
plex structure J and a Riemannian metric g. If the metric g is invariant by the
almost complex structure J, i.e.

g(JX,JY)=¢g(X,Y)

for any vector fields X and Y on M?", then (M?",J, g) is called almost Hermitian
manifold.
Define the fundamental 2-form € by

AUX,Y) :=g(X,JY).

An almost Hermitian manifold (M?",J, g, ) is said to be almost Kdhler if Q is a
closed form, i.e.

d=0.

Suppose that
n=2.

The aim of the paper is to prove the following:
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Theorem 1. If (M*,J, g,9Q) is a 4-dimensional almost Kdhler manifold which is
locally conformally flat, i.e. in a neighbourhood of every point po€M? there exists
a system of local coordinates (Upy;w,x,y, z) such that the metric g is expressed by

9= go(p)[dw* + da® + dy* + dz°], peUp,,

where go(p) is a real positive C™°-function defined around py, then go is a modulus
of some quaternionic function left (right) regular in the sense of Fueter [1] uniquely
determined by J and €.

II. PROOF OF THEOREM

Let us denote by the same letters the matrices of g, J and 2 with respect to
the coordinate basis. These matrices satisfy the equality:

gJ =Q.

The metric g, by the assumption, is proportional to the identity, so it has the
form

1000
0100
9=90l=90 145 o 1 o
000 1

An almost complex structure J satisfies the condition:
JP=-1I.

Since 2 is skew-symmetric then J is a skew-symmetric and orthogonal 4 x4-matrix.
It is easy to check that J is of the form

0 a b c 0 a b c
—a 0 c b —a 0 —c b
(1) a) -b —c 0 a or b) -b ¢ 0 -—a
—c b —-a 0 —c —-b a 0

with
A+ +32=1.

Suppose that J is of the form (1a). Then the matrix 2 looks as follows:

0 a —-b c 0 A —-B C

Q—o.| @ 0 c bl | -4 0 C B
9Ny ¢ 0 o]l T | B —c 0 A
—c —-b —a O -C -B —-A 0

Since

(A)2+(£)2+(g_i)2=a2+b2+c2=1
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then we get
(2) A2+ B*+C? =g},
By the assumption
dQY=0.
Using the following formula (see e.g. [4], p.36):

dQX,Y, Z) = %{XQ(Y, 2)+YUZ X) + ZQX,Y)
- Q([Xa Y]a Z) - Q([Z,X],Y) - Q([Ya Z]vX)}a

the condition df) = 0 can be written in the form:

0 = 3d(0y,0y,0,) = Ay + By, + C,
0 = 3dQ(0y,0y,0w) = By — Ay + Cu ,
0=3dQ(0y,0,,0,) = Cyp — A, — By,
0 = 3d(0y,0:,00) =Cy — B, + Ay, .
Then the components A, B and C of 2 satisfy the following system of first order
partial differential equations:
A, +B,+C.=0,
B,—A,+C, =0,
(3) CZ_AZ_BIU:O?
Cy—B,+A,=0
and the condition (2).

The above system (3), although overdetermined, does have solutions. We will
show that the system (3) has a nice interpretation in the quaternionic analysis.

III. FUETER’S REGULAR FUNCTIONS

Denote by H the field of quaternions. H is a 4-dimensional division algebra
over R with basis {1, 1, j, k} and the quaternionic units i, j, k satisfy:

i? =4 =k =ijk=—1,

iy=—jJi=k.

A typical element ¢ of H can be written as
q=w-+1ix+jy+kz, w,x,y,2€ER.

The conjugate of g is defined by

q:=w—1x—jJy—kz
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and the modulus ||g|| by
lal* = ¢4 =Gq=w"+2° + y* + 2.

We will need the following relation (which is easy to check)

QG2 = q2°q1 -
A function F' : H—H of the quaternionic variable ¢ can be written as
F=F,+iF +jF>+ kF3.

F, is called the real part of F' and iFy + jFs 4+ kF3 - the imaginary part of F.
In [1] Fueter introduced the following operators:

- 1,0 .0 .0 0
aleft-—z(a_w‘i‘l%‘i‘]a_y‘f'k&),
- 1,0 o. 0. 0
Oright 1= Z(a_w + £l+ a_yj + &k) ;

analogous to % = %(% + z'a%) in the complex analysis, to generalize the Cauchy-
-Riemann equations.
A quaternionic function F' is said to be left reqular (respectively, right reqular)

(in the sense of Fueter) if it is differentiable in the real variable sense and
(4) Olett'F =0 (resp. OrightF = 0).
Note that the condition (4) is equivalent to the following system of equations:

OuF, — 8, Fy — 0,Fy — 0,F3 =0,
Oy + 0uFy + 0,F3 — 8.Fy =0,
OwFo — 0p F5 + 0y F, +0.F1 =0,
OuFy + 0y Fy — O, Fy + 0.F, = 0.

There are many examples of left and right regular functions in the sense of
Fueter. Many papers have been devoted studying the properties of those functions
(e.g. [3]). One has found the quaternionic generalizations of the Cauchy theorem,
the Cauchy integral formula, Taylor series in terms of special polynomials etc.

Now we need an important result of [5]. It can be described as follows.

Let v be an unordered set of n integers {i1, . . ., 4, } with 1<, <3; v is determined
by three integers n1, ny and ns with ny + ny + n3 = n, where n; is the number of
1’s in v, ng - the number of 2’s and n3 - the number of 3’s.

There are 3(n+1)(n+2) such sets v and we denote the set of all of them by o,.
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Let e;, and xz;, denote i, j, k and z,y, z according as i, is 1,2 or 3, respectively.
Then one defines the following polynomials

P,(q) = % Z(w% — i) o (weq, — i, ),

where the sum is taken over all n!-nq!-ny!-ng! different orderings of ny 1’s, ny 2’s
and n3 3’s; when n = 0, so v = (), we take Py(q) = 1.

For example we present the explicit forms of the polynomials P, of the first and
second degrees. Thus we have

Pr=wi—x,

PQij_ya
Py =wk — z,

I O B S
P11f2(:c w”) — zwi,

Py = zy —wyi —wzyj,

Pi3 =2z —wzi —wzk,

1 .
Py = 5(92 —w?) — ywy
Pos = yz —wzj — wyk,

1
P33 = 5(,22 —w?) — zwk .

In [5] Sudbery proved the following

Proposition. Suppose F is left reqular in a neighbourhood of the origin 0 € H.
Then there is a ball B = B(0,r) with center 0 in which F(q) is represented by a
uniformly convergent series

F(‘]):Z ZPV(q)ay, a, cH.

n=0 v€o,

IV. THE END OF THE PROOF

Let us denote
Fapc(q) := Ai+ Bj + Ck,

where we have identified ¢ € H with (w,x,y,2) € R*. Then (3) is nothing but the
condition that Fypc is left regular in the sense of Fueter. Then, by (2), we have

|Fasell = go- 0
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V. CONCLUSIONS

Let F satisfy the assumptions of Proposition. Then

3
F(q):a0+ZPi'ai+ZPij'aij+ Z Pijr-aijr + ...
i=1

i<j i<j<k

and

3
Flo)=+ Y @GP+ ajPy+ > e Pk +....
i=1 i<j i<j<k

Multiplying the above expressions we get

3
IF(@)|? = llaoll® + Y (Piaitis + aoti P;)
=1
+ Y (Pyaig@s + a,a; Py) + Y Paia; Py
i<j i.j
+ Z (Pijkijko + aolijk Pijk)

i<j<k

3
+ Z Z(Pmama_ijﬁ'j + Pyjaij@mPm) + - . . .

m=1i<j
Example 1. Let
1 2 2 2 2 2
go(w,x,y,z): 1+7“, rt=w" 4+ Yyt + 27,
then
2 1 2 3 n n

Comparing the right sides of (5) and (6) we see that

ao 7& 0)
3
—2r = Z(Plala_o + aoa_iPi)
i=1

but the second equality is impossible.
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Example 2. Take

_ 1 2 2 2 2 2
go(wﬂﬂ,yvz)*ﬁv rT=w" "yt 427,

then

1
1+1r2

(7) 9 =
Comparing the right sides of (5) and (7) we get
a07é0, ai:(), aij:()

and

—rd = Z (Pijkaijrao + aolizk Piji)
1<j<k
but the last equality is impossible.
Example 3. Let

1 2 2 2 2 2
go(w,z,y,z): ) rt=w"+x +y + z ’
V1—72
then
1 4
(8) 9(2):—177,2:1—1—7"24—57"3—}—...

Comparing the right sides of (5) and (8) we have

aO#O, ai:0

and

(9) r? = (Pyjaiag + aoai; Pyj)
i<

Set

dij == aijag := dj; + dj;i+ dij + dk

(i, j, k denote the quaternionic units) and rewrite (9) in the form

w? +a% +y* +2° =2 Re (Pydy)

1<

=13 S e (=1)kR

221
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then we get
1
w? + 2 +y* +2° = 2Re {[5(12 —w?) — zwildy,

1
+2Re {[5 (" — v?) — yuildz

1
+ 2Re {[5(22 —w?) — zwk]dsz + . ..
Y S R
Comparing the terms in x2,y? and 22 we get

dyy, = dy, = ng =1

but then
w? = —3w?
and this is impossible.
Example 4. Let
1
gO(waxay’z):ma r*=w’+a® +y° + 2%,
then
2 1 2

Comparing the right sides of (5) and (10) we obtain
ap 7é 0 N a; = 0
and
47’2 = Z(Pijaija_o =+ aOWP_”) .
1<j
Analogously, like in the Example 3, we have

2w® + 20% + 2y + 227 = Re (Pydij) .

i<j
This time, comparing the terms in z2,y? and 22, we get
ap # 0, a; =0,
dyy = dj, = dg:a =4
but then
—6w? = 2uw?.

This is again impossible.
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VI. GENERAL CONCLUSION

There is no 4-dimensional almost Kihler manifold (M*, J, g, Q) which is locally
conformally flat with the metric

9 = go(p)[dw® + da® + dy® + dz”]

where go is expressed by the formulae (6), (7), (8) and (10). In particular the
Poincaré model, i.e. the unit ball B* in R* with the metric

g::m[dw2+d$2+dy2+dz2], T2 ::w2+$2+y2+22,

is not an almost Kéahler manifold.

Remark. If J is of the form (1b) then the proof of Theorem is similar. One has
to replace the left regular quaternionic function with the right one (see [3], p.10).
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